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in order to compute approximations of one-dimensional Euler equations in
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1. Introduction

For some industrial applications, we need to compute approximations
of solutions of partial differential equations (PDE) modelling the flow of a
compressible fluid in porous media or in variable cross-section ducts. This
may occur while predicting single-phase or two-phase flows. In all cases,
some non conservative terms are present in the set of PDE, which corre-
spond to the contribution of pressure effects. In practice, these situations
may occur when predicting flows in pipelines or in the primary circuit of
a nuclear power plant, or in many other industrial sets. Quite recently,
many authors have investigated this subject, both from a theoretical and
from a numerical point of view, among which we may quote the papers
[2, 4, 5, 11, 13, 15, 17, 18, 19, 21, 22].

In a recent work devoted to two-phase flow modelling ([9, 10]), it has been
shown that classical solvers may fail at predicting relevant approximations
of this kind of flows, when the cross-section (or alternatively the porosity)
becomes discontinuous. This study has been performed while focusing on
two-fluid models, but the structure of PDE is such that consequences are
the same for single phase or homogeneous two-phase flow models. In par-
ticular, it has been proved in [9] that standard solvers may develop rather
spurious approximations when restricting to coarse meshes and even more
may converge to wrong solutions when the mesh size tends to zero. A way
to handle this rather difficult problem is grounded on Greenberg-Leroux [13]
and Kröner-Thanh ideas [18]. Actually the very simple solver proposed in
[18] enables to recover a correct convergence when investigating solutions of
Riemann problems with a discontinuous cross section. However, a drawback
of the latter approach is that the accuracy of the resulting scheme is rather
poor. Hence, the basic idea that has motivated the present work is to blend
both ideas, hence taking advantage of the accuracy of approximate Godunov
solvers such as those introduced in reference [3], while accounting for the
well-balanced spirit of [13, 18, 9, 19, 17], in order to converge towards cor-
rect solutions in all situations.

Thus, our main goal in this paper is to detail a new accurate well-balanced
approximate Riemann solver that enables to perform computations involv-
ing both smooth and discontinuous cross sections. The well-known strategy
of well-balanced solvers was introduced in [13], and revisited by numerous
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authors recently (see [1, 11] among others). A drawback of the well-balanced
approach [13] is that the exact Godunov interface solver complexifies the
code, and meanwhile substantially increases the CPU time. The basic idea
is to upwind so-called source terms in a suitable way, in order to maintain all
steady solutions on coarse meshes. By the way, we insist that this should not
be confused with solvers that only maintain steady solutions involving flows
at rest (which is actually a subclass of the latter class). The present scheme
has been built in such a way that Riemann invariants of the steady wave are
perfectly preserved, both for interface and cell values, since this seems manda-
tory in order to guarantee convergence towards relevant solutions when the
mesh is refined.

The paper is organised as follows. We first briefly recall the set of gov-
erning equations and its main properties. Then we detail the well-balanced
approximate Godunov solver, and exhibit its main properties. Eventually,
we provide a few results of computations of Riemann problems and then
some results in a difficult situation corresponding to the sudden collapse of
a spherical bubble.

2. Compressible model

2.1. Governing equations

We consider one-dimensional flows of a compressible fluid that is charac-
terized by its mean density ρ(x, t), its mean pressure P (x, t), and the mean
velocity U(x, t) within the cross section.

We define the cross-section A(x) > 0 through which the fluid flows. The
function A(x) must be given in each case. For some applications, we will use
in practice spherical geometries, which means that we will have A(x) = 4πx2.
We define classically the total energy E:

E(x, t) = ρ(x, t)U(x, t)2/2 + ρ(x, t)e(P (x, t), ρ(x, t))

in terms of the internal energy e(P, ρ) which is provided by the equation of
state (EOS). The conservative state variable W is noted:

W t = (A,Aρ,AρU,AE) . (1)
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The governing equations of the fluid are:














∂t (A) = 0 ;
∂t (Aρ) + ∂x (AρU) = 0 ;
∂t (AρU) + ∂x (AρU2) + A∂x (P ) = 0 ;
∂t (AE) + ∂x (AU(E + P )) = 0 .

(2)

If we note:

{

f t(W ) = (0, AρU,AρU2, AU(E + P )) ,
gt(W ) = (0, 0, P, 0) ,

(3)

System (2) may be rewritten:

∂t (W ) + ∂x (f(W )) + A∂x (g(W )) = 0 . (4)

We also introduce the specific entropy S that must comply with:

∂P (S(P, ρ)) |ρ
∂ρ (S(P, ρ)) |P

=
−1

(c)2(P, ρ)
. (5)

In the latter equation, the speed of sound waves c is defined by:

c(P, ρ) =

(

P
(ρ)2

− ∂ρ (e(P, ρ)) |P

∂P (e(P, ρ)) |ρ

)1/2

. (6)

Eventually, we need to introduce two additional intermediate variables:

1. the total enthalpy H
def
= e(P, ρ) + P

ρ
+ U2

2
= h(P, ρ) + U2

2
, where h

denotes the enthalpy,

2. the mean discharge Q
def
= AρU .

2.2. Properties

We briefly recall some basic properties below. For that purpose, we in-
troduce the condensed form of (2) which reads:

∂t (W ) + B(W )∂x (W ) = 0 . (7)

Property 1 (Hyperbolicity and entropy inequality)
System (2) has four real eigenvalues:

λ0 = 0 ; λ1 = U ; λ2 = U − c ; λ3 = U + c (8)

4



The set of right eigenvectors of B(W ) spans the whole space if |U | 6= c.
The 0, 1 fields are linearly degenerated. Other fields are genuinely non linear.
Moreover, if we note:

η = AρLog(S) ; fη = AρLog(S)U

the entropy-entropy flux pair, smooth solutions W (x, t) of (2) agree with:

∂t (η) + ∇.(fη) = 0 . (9)

This result is classical. One may for instance use the variable Y =
(A, S, ρ, U) is useful to check that property. When U2 − c2 = λ2λ3 = 0,
the set of right eigenvectors spans R3. On the other hand, this set spans
R4 when λ1 = U = 0, which corresponds to a superposition of two linearly
degenerate fields.

We now detail the structure of the two Linearly Degenerate (LD) waves
associated with λ0 and λ1. A straightforward computation provides the fol-
lowing result:

Property 2 (Riemann invariants in the LD waves)
Riemann invariants of the LD steady wave associated with λ0 are:

I0
1 (W ) = S ; I0

2 (W ) = Q ; I0
3 (W ) = H .

Riemann invariants of the LD wave associated with λ1 are:

I1
1 (W ) = A ; I1

2 (W ) = U ; I1
3 (W ) = P .

The structure of the LD wave associated with λ0 will be the keystone of
the well-balanced scheme. We may now present the Finite Volume procedure.

3. A well-balanced Finite Volume scheme for compressible flows in

variable cross-section ducts

3.1. Computing cell values

We introduce now a rather simple well-balanced Finite Volume scheme.
We recall first that the basic ideas of well-balanced schemes have been in-
troduced by Greenberg and Leroux in the early paper [13]. The concept has
been used extensively (see [8, 1, 15] for instance, among others). In order to
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present the scheme, we first need to define W n
i which is an approximation of

the mean value of W at time tn within each Finite Volume Ωi of size hi

W n
i ≃

1

hi

∫

Ωi

W (x, tn)dx . (10)

Moreover, we define:

ai+1/2 = (ai + ai+1)/2 ; ∆ai+1/2 = (ai+1 − ai) ; δai = (an+1
i − an

i ).

We may now introduce the new variable

Zt = (A, S,Q,H)

in R4. The discrete variable Ai is assumed to be constant within each cell i.
The computation of the scheme is performed by the following update:

hi(W
n+1
i − W n

i )+∆tn
(

Fi+1/2,−(Zn
i , Zn

i+1) − Fi−1/2,+(Zn
i−1, Z

n
i )
)

(11)

+∆tnAi

(

Gi+1/2,−(Zn
i , Zn

i+1) − Gi−1/2,+(Zn
i−1, Z

n
i )
)

= 0.

The time step ∆tn must comply with a CFL condition. The numerical flux
Fi+1/2,− is defined by:

Fi+1/2,−(Zn
i , Zn

i+1)
def
= f(W (Zi+1/2,−)), (12)

and the pressure contribution is similar:

Gi+1/2,−(Zn
i , Zn

i+1)
def
= g(W (Zi+1/2,−)). (13)

We must now detail how to compute interface values Zi+1/2,±, and also
how to get back to W .

3.2. Computing interface values Zi+1/2,±

In order to define interface states Zi+1/2,− and Zi−1/2,+ we proceed as
follows. For regular solutions, system (2) may be rewritten in the form:














∂t (A) = 0 ;
∂t (S) + U∂x (S) = 0 ;
∂t (Q) + U∂x (Q) + ρA∂x (H) + A(∂S (P ) |ρ − ρ∂S (h) |ρ)∂x (S) = 0 ;

∂t (H) + U∂x (H) + c2

ρA
∂x (Q) + U

ρ
∂S (P ) |ρ∂x (S) = 0 ,

(14)
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or in a condensed form as:

∂t (Z) + C(Z)∂x (Z) = 0 . (15)

We define the right eigenvectors rk(Z) of C(Z):















r0(Z) = (1, 0, 0, 0)
r1(Z) = (0, 1,−Au

c2
∂S (P ) , b(ρ, S))

r2(Z) = (0, 0, ρA,−c)
r3(Z) = (0, 0, ρA, c)

(16)

setting b(ρ, S) = −1
ρ
(∂S (P ) |ρ − ρ∂S (h) |ρ.

Before going further on, we note that this set of right eigenvectors always
spans R4, even when the product λ2λ3 vanishes (unless a vacuum occurs in
the solution). This is easy to check: if we define Ω the matrix of right eigen-
vectors (r0, r1, r2, r3), the determinant reads: det(Ω) = 2ρAc.

Now, rather than computing interface states Zi+1/2,− and Zi+1/2,+ by
solving the exact Riemann problem associated with (14), these states are
computed by solving a linear Riemann problem associated with the following
system:

∂t (Z) + C(Â, ρ̂, Û , P̂ )∂x (Z) = 0 (17)

with given initial condition Z((x − xi+1/2) < 0, t = 0) = Zn
i and Z((x −

xi+1/2) > 0, t = 0) = Zn
i+1, and setting the average φ̂ of any quantity φ as:

(φ̂)i+1/2 = (βφ)i+1/2φi + (1 − (βφ)i+1/2)φi+1.

where the βφ coefficient lies in [0, 1]. In practice, this coefficient is usually set
to 1/2 in almost all cases (see [3, 7]). Nonetheless, one may also use other
averages (see [15] where the harmonic average is used).

For conservative systems, VFRoe-ncv scheme is an approximate Godunov
scheme, where the intermediate states at the interface x/t = 0, that are com-
puted with help of (17), are directly used to evaluate the numerical interface
flux function ; thus it is a conservative scheme in the conservative framework.
As emphasized in [3, 7], the convergence towards the correct shock solutions
has been checked extensively by investigating approximate solutions obtained
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while computing various Riemann problems involving contact discontinuities,
shocks and rarefaction waves, for different systems. The asymptotic rate of
convergence in L1 norm is 1/2 for so-called first order schemes (respectively
2/3 for ”second-order” schemes). More precisely, when restricting to first or-
der schemes, pure contact waves converge as h1/2, and pure shocks or rarefac-
tion waves converge as h, if h denotes the mean mesh size. The VFRoe-ncv
scheme actually requires an entropy correction at sonic points in rarefaction
waves, as occurs for many approximate Riemann solvers.

Since our system (2) has no conservative form, the numerical flux will be
discontinuous and we need to define our scheme precisely (see below). Owing
to the steady contact discontinuity, the solution of the linearized system
(17) is discontinuous through the interface (x − xi+1/2)/t = 0. If we denote
ZRiemann(x/t) the solution of the linear Riemann problem associated with
(17), we define:

Zi+1/2,− = ZRiemann((x − xi+1/2)/t = 0−) ,

and:
Zi+1/2,+ = ZRiemann((x − xi+1/2)/t = 0+) .

In order to detail the construction of the solution of the linearized Riemann
problem (17), we introduce the right eigenvectors of the matrix C(Â, ρ̂, Û , P̂ )
which are noted:



















r̂0 = (1, 0, 0, 0)

r̂1 = (0, 1,− Âû

c(P̂ ,ρ̂)2
(∂S (P ))(P̂ , ρ̂), b(ρ̂, S(P̂ , ρ̂)))

r̂2 = (0, 0, ρ̂Â,−c(P̂ , ρ̂))

r̂3 = (0, 0, ρ̂Â, c(P̂ , ρ̂))

(18)

and the numerical eigenvalues:


















λ̂0 = 0

λ̂1 = û

λ̂2 = û − c(P̂ , ρ̂)

λ̂3 = û + c(P̂ , ρ̂)

(19)

The matrix Ω̂ of right eigenvectors (r̂0, r̂1, r̂2, r̂3) is not singular (see above),
and we may decompose ZR − ZL as follows:

Zi+1 − Zi =
3
∑

k=0

αkr̂k
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and compute:
(α0, α1, α2, α3)

t = (Ω̂)−1(Zi+1 − Zi)

which read:














α0 = Ai+1 − Ai

α1 = Si+1 − Si

α2 = γ(Si+1 − Si) + (Qi+1 − Qi)/(2ρ̂Â) − (Hi+1 − Hi)/(2c(P̂ , ρ̂))

α3 = δ(Si+1 − Si) + (Qi+1 − Qi)/(2ρ̂Â) + (Hi+1 − Hi)/(2c(P̂ , ρ̂))

(20)

where: γ + δ = Û/(ρ̂(c(P̂ , ρ̂)2), and: −γ + δ = −b(ρ̂, S(P̂ , ρ̂))/c(P̂ , ρ̂).

Obviously, we note that if:

Si+1 − Si = Qi+1 − Qi = Hi+1 − Hi = 0 ,

we get in a straightforward way: α1 = α2 = α3 = 0. Thus in that particular
case, we get:

Z((x − xi+1/2)/t < 0) = Zi+1 and : Z((x − xi+1/2)/t > 0) = Zi

whatever Ai and Ai+1 are. This will be one important ingredient in the proof
of Proposition 2.

We may now detail all interface states that are then defined by:

• If λ̂2 > 0, then Zi+1/2,− = Zi and Zi+1/2,+ = Zi + α0r̂0 ;

• If λ̂2 < 0 and λ̂1 > 0, then Zi+1/2,− = Zi + α2r̂2 and Zi+1/2,+ =
Zi + α2r̂2 + α0r̂0 ;

• If λ̂1 < 0 and λ̂3 > 0, then Zi+1/2,− = Zi+1−α3r̂3−α0r̂0 and Zi+1/2,+ =
Zi+1 − α3r̂3 ;

• If λ̂3 < 0, then Zi+1/2,− = Zi+1 − α0r̂0 and Zi+1/2,+ = Zi+1.

Thus, we get: Zi+1/2,+ −Zi+1/2,− = α0r̂0. Moreover, in specific situations
where eigenvalues vanish, we define in a natural way:

• If λ̂1 = 0, then Zi+1/2,− = Zi + α2r̂2 and Zi+1/2,+ = Zi+1 − α3r̂3 ;

• If λ̂2 = 0, then Zi+1/2,− = Zi and Zi+1/2,+ = Zi+1 − α3r̂3 − α1r̂1 ;
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• If λ̂3 = 0, then Zi+1/2,− = Zi + α2r̂2 + α1r̂1 and Zi+1/2,+ = Zi+1 .

We now provide a first result which is the following:

Proposition 1: (Well-balanced interface solver)
We assume that λ̂1λ̂2λ̂3 6= 0. Then, the interface Riemann solver computes
intermediate states which are such that:

Qi+1/2,− = Qi+1/2,+ ; Hi+1/2,− = Hi+1/2,+ ; Si+1/2,− = Si+1/2,+ .

Moreover the interface Riemann solver is such that:

Ai+1/2,− = Ai and: Ai−1/2,+ = Ai .

Proof :
The proof is obvious : if λ̂1λ̂2λ̂3 6= 0, owing to the form of the first right
eigenvector r̂0 (see (18)), we get:

Zi+1/2,+ − Zi+1/2,− = (Ai+1 − Ai)r̂0 .

and thus :

[Q]
i+1/2,+
i+1/2,− = 0 ; [H]

i+1/2,+
i+1/2,− = 0 ; [S]

i+1/2,+
i+1/2,− = 0 ,

(where [φ]ba denotes the jump φb − φa) but also:

Ai+1/2,+ − Ai+1/2,− = Ai+1 − Ai .

Moreover, we get Zi+1/2,+−Zi+1/2,− = α0r̂0 +α1r̂1 when λ̂1 = 0. In that case

we have: [Q]
i+1/2,+
i+1/2,− = 0.

Since Ai−1/2,+ = Ai+1/2,− = Ai, the scheme (11) may be rewritten in a
slightly different form by gettting rid of Ai in all cell equations:

hi(Y
n+1
i − Y n

i )+ ∆tn
(

Li+1/2,−(Zn
i , Zn

i+1) − Li−1/2,+(Zn
i−1, Z

n
i )
)

= 0 ,
(21)

where:

{

Y t = (A, ρ, ρU,E) ,
lt(Y ) = (0, ρU, ρU2 + P,U(E + P )) ,

(22)
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and:
{

Li+1/2,−(Zn
i , Zn

i+1)
def
= l(Y (Zi+1/2,−)) ,

Li−1/2,+(Zn
i−1, Z

n
i )

def
= l(Y (Zi−1/2,+)) .

(23)

We must now provide definitions of both values Y (Zi+1/2,−) and Y (Zi+1/2,+)
at each cell interface i + 1/2.

3.3. Computing interface solutions ρi+1/2,− and ρi+1/2,+

Once Zi+1/2,− and Zi+1/2,+ have been computed, we need to calculate
Y (Zi+1/2,−) and Y (Zi+1/2,+). For that purpose, we will in fact calculate the
two densities ρi+1/2,− and ρi+1/2,+ at each cell interface. This is achieved as
follows.

We do not consider any specific form of the equation of state e(P, ρ).
Nonetheless, rewriting P in terms of ρ, S, and introducing

h(ρ, S) = e(P (ρ, S), ρ) + P (ρ, S)/ρ ,

we will assume that the following holds:

h(0, S) = 0 and: lim
X−>+∞

h(X,S) = +∞ , (24)

∂X (h(X,S)) |S > 0 and: ∂X2 (h(X,S)) |S > 0 , (25)

whatever S is.

We now aim at computing the solutions X− = ρ−

i+1/2 and X+ = ρ+
i+1/2 of

the equations:

ji+1/2,−(X−)
def
= (h + U2/2)(Ai, S

−

i+1/2, Q
−

i+1/2, X
−) = H−

i+1/2 , (26)

and:

ji+1/2,+(X+)
def
= (h + U2/2)(Ai+1, S

+
i+1/2, Q

+
i+1/2, X

+) = H+
i+1/2 , (27)

taking into account the fact that:

Ui+1/2,− = Q−

i+1/2/(AiX
−) and: Ui+1/2,+ = Q+

i+1/2/(Ai+1X
+) , (28)

and also:

hi+1/2,− = h(X−, S−

i+1/2) and: hi+1/2,+ = h(X+, S+
i+1/2) . (29)
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• We focus first on the calculation of X−.
Thus, we study the function:

ji+1/2,−(X) =
(Q−

i+1/2)
2

2A2
i (X)2

+ h(X,S−

i+1/2) ,

whose derivatives are:

j′i+1/2,−(X) = −
(Q−

i+1/2)
2

A2
i (X)3

+ ∂X (h) |S(X,S−

i+1/2) ,

j′′i+1/2,−(X) = 3
(Q−

i+1/2)
2

A2
i (X)4

+ ∂X2 (h) |S(X,S−

i+1/2) .

– If Qi+1/2 = 0, the equation (26) obviously admits a unique positive
solution X− such that:

h(X−, S−

i+1/2) = H−

i+1/2 .

– Otherwise, we define Xmin > 0 the solution of:

X3
min∂X (h) |S(Xmin, S

−

i+1/2) = (Q−

i+1/2)
2/A2

i .

Owing to the previous assumptions (24), (25) on the equation of
state, the function ji+1/2,−(X) is decreasing when X ∈]0, Xmin]
and increasing when X ∈ [Xmin, +∞[ ; moreover:

lim
0+

ji+1/2,−(X) = +∞ and: lim
+∞

ji+1/2,−(X) = +∞ (30)

Thus, two cases may arise:

∗ If ji+1/2,−(Xmin) < H−

i+1/2, then, the equation (26) admits two
distinct solutions. Using a continuity argument, the solution
X− that is retained is:

X− ∈ ]0, Xmin] if: ρn
i ∈ ]0, Xmin] (31)

(respectively X− ∈ [Xmin, +∞[ if ρn
i ∈ [Xmin, +∞[). Hence

the solution X− is in the subsonic (respectively supersonic)
branch if the ith cell state is subsonic (respectively super-
sonic).
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∗ If H−

i+1/2 ≤ ji+1/2,−(Xmin), the value which is retained is the

one that minimizes the quantity (ji+1/2,−(X)−H−

i+1/2)
2 , that

is: X− = Xmin.

Numerical fluxes f(W (Zi+1/2,−)) and g(W (Zi+1/2,−)) are now uniquely
defined.

• We now turn to the computation of X+.
We compute now in the same manner X+ = ρi+1/2,+ , studying the
function:

ji+1/2,+(X) − H+
i+1/2 =

(Q+
i+1/2)

2

2A2
i+1(X)2

+ h(X,S+
i+1/2) − H+

i+1/2 .

We are now in cell i+1, and thus the reference is ρn
i+1 when two solutions

arise. This means that the solution is X+ ∈]0, XMin] if ρn
i+1 ∈]0, XMin]

(respectively X+ ∈ [XMin, +∞[ if ρn
i+1 ∈ [XMin, +∞[) where XMin > 0

is the solution of:

X3
Min∂X (h) |S(XMin, S+

i+1/2) = (Q+
i+1/2)

2/A2
i+1 .

The definition of the scheme (11), (12), (13) is now complete.

3.4. Remarks

Remark 1- The particular case of a perfect gas EOS
We only detail here the case where the equation of state of the fluid follows
a perfect gas law, that is:

e(P, ρ) = P/((γ − 1)ρ).

In that particular case, we get S = P/ργ and thus:

ji+1/2,−(X) = γ/(γ − 1)S−

i+1/2X
γ−1 + (Q−

i+1/2)
2/(2A2

i X
2) ,

ji+1/2,+(X) = γ/(γ − 1)S+
i+1/2X

γ−1 + (Q+
i+1/2)

2/(2A2
i+1X

2) .

The function ji+1/2,−(X) (respectively ji+1/2,+(X)) is decreasing when X lies
in [0, Xmin] (respectively in [0, XMin]), and increasing in [Xmin, +∞[ (respec-
tively in [XMin, +∞[), while setting:

Xmin = (Q2
i+1/2/(γA2

i Si+1/2))
1/(γ+1) ; XMin = (Q2

i+1/2/(γA2
i+1Si+1/2))

1/(γ+1) .
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Remark 2- Entropy correction at sonic points in rarefaction waves
An entropy fix is required at sonic points in rarefaction waves for the present
approximate Riemann solver. We use here a very simple and efficient parameter-
free entropy correction that has been introduced in [14].

4. Main property of the scheme

This scheme preserves flows at rest, even when the cross-section A is not
uniform. Actually, we have:

Proposition 2: (Well-balanced scheme)
We consider arbitrary values of Ai, and initial data such that for all i:

Si = S0 ; Qi = Q0 ; Hi = H0 .

Then the scheme (11) introduced above preserves steady states on any mesh,
i.e.:

δρi = 0 ; δUi = 0 ; δEi = 0 .

Thus the scheme is well-balanced.

Proof :
The proof is obtained by construction.

• We start with the mass balance equation:

hi(ρ
n+1
i − ρn

i ) + ∆tn
(

ρi+1/2,−Ui+1/2,− − ρi−1/2,+Ui−1/2,+

)

= 0 .

The initial conditions and the interface solver guarantee that:

Qn
i = Qn

i+1 = Q0 and: Ai+1/2,−ρi+1/2,−Ui+1/2,− = Q0 ,

but also:

Qn
i = Qn

i−1 = Q0 and: Ai−1/2,+ρi−1/2,+Ui−1/2,+ = Q0 .

Owing to the fact that: Ai+1/2,− = Ai−1/2,+ = Ai, we deduce: ρi+1/2,−Ui+1/2,− =
ρi−1/2,+Ui−1/2,+. Hence: δρi = 0.
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• We turn then to the momentum discrete equation. The initial condition
and the approximate interface solver will provide interface quantities
so that:

H0 = h(S0, ρ
n
i+1) + (Un

i+1)
2/2 = h(S0, ρi+1/2,−) + (Ui+1/2,−)2/2 ,

and:

H0 = h(S0, ρ
n
i−1) + (Un

i−1)
2/2 = h(S0, ρi−1/2,+) + (Ui−1/2,+)2/2 .

Hence, taking the previous identity ρi+1/2,−Ui+1/2,− = ρi−1/2,+Ui−1/2,+ =
q0 into account, we get:

ρi−1/2,+ = ρi+1/2,− and: Ui−1/2,+ = Ui+1/2,− ,

owing to the choice of the solution that depends on the cell value (see
(31)). As a consequence, we also get:

Pi+1/2,− = P (ρi+1/2,−, S0) = P (ρi−1/2,+, S0) = Pi−1/2,+ .

This eventually results in: δ(ρiUi) = 0, and hence: δUi = 0, since we
now know that δρi = 0.

• Using similar arguments, we may complete the proof for the total en-
ergy discrete equation, and get δEi = 0, since: (U(E + P ))i−1/2,+ =
(U(E + P ))i+1/2,−.

We emphasize that Proposition 2 is not only useful for practical com-
putations, but that it also seems mandatory in order to ensure convergence
towards the relevant solution when the section is not smooth (see [9, 10]).

5. Numerical results

We restrict to unsteady cases, except in the first Riemann problem, which
aims at illustrating the well-balanced property proved in Proposition 2. The
interface solver used herein relies on the arithmetic average for (ρ, U, P ) and
on the harmonic average for A.
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In a first series, we focus on the computation of four distinct Riemann
problems, with discontinuous values of the cross section. The first one corre-
sponds to a steady contact discontinuity. The second one involves two contact
discontinuities only. The third one, which contains two contact discontinu-
ities together with a one-rarefaction wave and a 3-shock wave, is taken from
[21]. Two shock waves and two contact waves arise in the fourth Riemann
problem. Exact Riemann solutions can be found using reference [24] for in-
stance.

Next we turn to a very difficult test case that has been inspired by [20]. In
this case which mimics the collapse of a bubble, the cross section is smooth.
The initial ratio of pressures and densities on each side of the initial discon-
tinuity are actually close to 105.

In all cases, computations have been performed using a time step in agree-
ment with the CFL condition CFL = 1/2.

5.1. Preservation of non-trivial steady states

This test case is aimed at illustrating Proposition 2. Thus we consider an
initial data where the left and right states are chosen in order to guarantee
a steady solution. We wish to check whether the discrete cell values will
remain unchanged when t > 0. Initial data are given below:

Left state Right state
A 1. 1.1
ρ 1. 1.1314126
U 1. 0.8035007
P 1. 1.1886922

We use a perfect gas state law:

P = (γ − 1)(E − ρU2/2) , (32)

setting: γ = 7/5, and the initial discontinuity of the Riemann problem is
located at x = 0.4. We note that left and right velocities are non zero values.
The right state given above has been obtained by prescribing AR = 1.1, and
then enforcing Riemann invariants of the steady wave -defined in property
2- to be uniform: I0

k(WR) = I0
k(WL).
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We consider a regular mesh with one thousand cells. We compute ap-
proximations of the solution over 1000 time iterations, and we plot numerical
results for the density. We check here that the well-balanced scheme perfectly
preserves the initial data, looking at Figure 1. This of course is in agreement
with the statement in Proposition 2.

0 0.2 0.4 0.6 0.8 1
0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 1: Steady test case: mean density profile.

5.2. Three distinct Riemann problems

5.2.1. A Riemann problem involving two contact discontinuities

We turn now to a slightly different case involving the steady contact
discontinuity and a moving contact discontinuity. This case is equivalent to
one of those introduced in [9]. The equation of state is still the same as
before ((32) with γ = 7/5). The initial conditions are now the following:

Left state State A Right state
A 1. 2. 2.
ρ 1. 1.3359863 1.
U 1. 0.3742553 0.3742553
P 1. 1.5001089 1.5001089
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Thus the -sole- intermediate state between the two contact discontinuities
x/t = 0 and x/t = U1 is such that: (U1, P1) = (UR, PR) and ρ1 = 1.3359863.
Figures 2 and 3 show the density, pressure, velocity and entropy profiles,
focusing on two regular meshes with 100 and 20000 cells respectively. Once
again, the steady contact discontinuity is not smeared at all, in agreement
with the previous test cases. The smearing of the moving contact disconti-
nuity is classical. Owing to the structure of the solution, it may be checked
that the convergence rate is very close to 1/2 in L1 norm (see Figure 4).

0 0,2 0,4 0,6 0,8 1
1

1,1

1,2

1,3

1,4

0 0,2 0,4 0,6 0,8 1

1

1,2

1,4

1,6

1,8

2

Figure 2: First Riemann problem: density (top) and pressure (bottom) profiles at time
t = 0.6, using 100 cells -red circles- and 20000 cells -black line-.
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Figure 3: First Riemann problem: velocity (top) and entropy (bottom) profiles at time
t = 0.6, using 100 cells -red circles- and 20000 cells -black line-, compared with the exact
solution -green dashed line-.

5.2.2. Second Riemann problem

We focus now on a test case that has been proposed recently in [21]. The
EOS is exactly the same as in the previous case. The solution contains a left-
going rarefaction wave, a steady contact discontinuity, a right-going contact
discontinuity and eventually a right-going shock wave. The initial data (and
the values of the three intermediate states A, B, C separating the four waves)
is recalled below:
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Figure 4: First Riemann problem: L1 norm of the error for the density at time t = 0.2243.
The coarser and finer meshes contain 100 and 40000 regular cells respectively, and h = 1/N
where N denotes the number of cells.

Left state State A State B State C Right state
A 1. 1. 0.4 0.4 0.4
ρ 4. 3.214845 2.540263 2.724432 1.340907
U 0. 80 253.1111 253.1111 25.562711
P 4. × 105 29457.78 211839.13 211839.13 75118.155

We recall here that three scalar constraints have been enforced in order to
construct this solution, for a given left state, assuming AR = 0.4; these are:
UA = 80, ρC/ρB = 1.0725 and PR/PC = 0.3546 (see [21]).

We compute the solution at time t = 8.02× 10−4, and we consider rather
fine meshes here with 5000 and 20000 regular cells. We first notice that the
steady contact discontinuity is perfectly represented, whatever the mesh size
is. When focusing on the entropy profiles, no oscillation arises, which slightly
differs from what may be noticed beyond the right going shock wave in [21].
The approximate solutions with 5000 cells -red line- and 20000 cells have
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been compared with the exact solution on Figures 5, 6.
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Figure 5: Second Riemann problem: density (top) and pressure (bottom) profiles at time
t = 8.02 × 10−4, using 5000 cells -red circles- and 20000 cells -black circles-, compared
with the exact solution.

5.2.3. Third Riemann problem

The EOS is still a perfect gas EOS with γ = 7/5. The computational
domain is [0, 1000], and the initial discontinuity is located at x = 500. The
solution contains a left-going shock wave (whose speed is: σ1 = −152.26249),
the steady contact discontinuity, a right-going contact discontinuity and also
a right-going shock wave (σ3 = 461.11895). The initial data (and values
of the three intermediate states A, B, C separating the four waves) are the
following:
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Figure 6: Second Riemann problem: velocity (top) and entropy (bottom) profiles at time
t = 8.02 × 10−4, using 5000 cells -red circles- and 20000 cells -black circles-, compared
with the exact solution.

Left state State A State B State C Right state
A 1. 1. 0.5 0.5 0.5
ρ 0.5 1. 0.842644896 1. 0.5
U 352.26249 100. 237.347904 237.347904 13.5768571
P 36363.6364 1. × 105 78686.8994 78686.8994 28613.418

The approximate solutions of density, pressure and velocity are plotted at
time t = 0.8 on Figures 7 and 8 respectively, considering two distinct meshes
with 5000 and 20000 regular cells. Once again, no diffusion arises through
the steady contact discontinuity, while the right-going contact discontinuity
is smeared (see Figure 7), as it classically happens. The L1 norm of the
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error has been plotted on Figure 9 ; it allows to check that a first order rate
of convergence is achieved. This is due to the fact that the steady wave is
”perfectly” approximated, and also to the fact that P is a Riemann invariant
through the moving contact wave associated with λ2 = U .

5.3. Implosion of a bubble

We now consider a difficult test case that simulates the collapse of a
spherical bubble of vapour in liquid water that has been generated by a laser
beam (see [20]). For that purpose, we assume a perfect invariance under
rotation, and thus adopt a pure 1D approach with a variable cross section
A(r) = 4πr2, for r ∈ [0, 1]. We still assume a perfect gas state law for the
fluid (32), setting now γ = 1.01.

The initial condition is: W (r < 0.4, t = 0) = WL, and W (r > 0.4, t =
0) = WR, where left and right states are given by:

Left state Right state
ρ 0.01 1000.
U 0. 0.
P 5 105

This test case is difficult since the pressure ratio is very high, and also due
to the fact that the cross section tends to 0 when getting close to the left
boundary r = 0. An entropy correction is of course mandatory due to the
strong rarefaction wave that develops during the computation. Otherwise,
negative values of pressure and density occur rapidly and the code stops.
We use here the efficient parameter-free entropy correction that has been
proposed in [14]. The latter correction is only active through one -sonic-
interface at each time step.

The flow is somewhat similar to a strong rarefaction wave that propagates
over a near-vacuum initial state. We plot on Figures 10, 11, the profiles of
the density, pressure, momentum and velocity, focusing on meshes containing
1000, 5000 and 20000 cells respectively, just before the reflexion of the initial
left-going shock wave on the left boundary.

Of course all profiles are quite different from what they would be if the
cross section were uniform. The results are much sensitive to the mesh re-
finement at this stage of the computation, owing to the fact that the ratio of
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Figure 7: Third Riemann problem: density (top) and pressure (bottom) profiles at time
t = 0.8, using 5000 cells -red circles- and 20000 cells -black circles-.

cross sections in two neighbouring cells varies much close the left boundary.
Figures 12 and 13 show the density-pressure-momentum ditributions at time
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Figure 8: Third Riemann problem: velocity profiles at time t = 0.8, using 5000 cells -red
circles- and 20000 cells -black circles-.

t = 0.004, just before the reflexion of the initial left-going shock wave on the
left boundary.

These latter results have been obtained using a mesh with 20000 and
50000 -dotted line- regular cells respectively.

6. Conclusion

The present well-balanced scheme based on VFRoe-ncv interface Rie-
mann solver provides approximations that converge towards correct solu-
tions when discontinuities of the cross section occur in the computation. As
already emphasized in [9], the well-balanced property 2 seems mandatory
in order to obtain this result. The interface Riemann solver thus requires
solving two non-linear scalar equations at each cell interface, which means
of course that it is more expensive than the standard VFRoe-ncv scheme
(see [8] for instance). However, we underline that the modified well-balanced
scheme introduced in [18] and [9] for single and two phase flows respectively,
also requires solving two scalar non-linear equations per interface, in order
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Figure 9: Third Riemann problem: L1 norm of the error at time t = 0.8, focusing on the
pressure variable.

to get relevant converged approximations. Hence, the increase of CPU time
between WBR and WB-VFRoe-ncv is compensated by the increase of accu-
racy, for a given mesh size. In practice, the rate of convergence of the scheme
WB-VFRoe-ncv is close to 1/2 in L1 norm, and thus is almost the same as
the one obtained with WBR (see [9]); this result was of course expected,
owing to the two contact discontinuities in the governing set of equations.

If we turn to physical considerations, we nonetheless insist that there is
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Figure 10: Bubble test case: density (left) and pressure (right) profiles at time t = 0.004
using 1000 -blue line-, 5000 -red line- and 20000 -black line- regular cells.

still a need to improve the formulation of the momentum equation, so that we
may get a better representation of the true flow when a discontinuity occurs
in the cross section profile. This has been recently highlighted in [10], and
some ideas to cure this point are currently investigated (see [23]).
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Comptes rendus Mécanique, vol. 338, pp. 493-498, 2010.

[15] Hérard J.-M., ”A rough scheme to couple free and porous me-
dia”, Int. J. Finite Volumes (electronic), http://www.latp.univ-
mrs.fr/IJFV/, vol. 3 (2), pp. 1-28, 2006.
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7. Answers and comments

• Typos have been corrected.

• There are now two distinct Riemann problems involving the four waves
(see sections 5.2.2 and 5.2.3 in the section devoted to numerical results).
We think that these, which involve shocks and rarefaction waves, are
rather convincing. In particular, we retrieve the expected rates of con-
vergence (first order for velocity and pressure, and 1/2 for the density),
for fine enough meshes. This confirms that the steady contact wave is
very well approximated (otherwise the rate would be lower for both U
and P ).

• We thank the reviewer who pointed out to us reference [24] (now in-
cluded in this second revision), and also for his useful comments.
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