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Abstract

This paper is dedicated to the derivation of a multilevel Schwarz Waveform Relaxation (SWR) Do-
main Decomposition Method (DDM) in real- and imaginary-time for the NonLinear Schrödinger
Equation (NLSE). In imaginary-time, it is shown that the use of the multilevel SWR-DDM accel-
erates the convergence compared to the one-level SWR-DDM, resulting in an important reduction
of the computational time and memory storage. In real-time, the method requires in addition the
storage of the solution in overlapping zones at any time, but on coarser discretization levels. The
method is numerically validated on the Classical SWR and Robin-based SWR methods but can
however be applied to any SWR approach.

Keywords: Domain decomposition method, Schwarz waveform relaxation algorithm, multilevel
preconditioning, nonlinear Schrödinger equation, dynamics, stationary states

1. Introduction

This paper is devoted to the derivation of a multilevel Schwarz Waveform Relaxation (SWR)
method for computing both in real- and imaginary-time the solution to the NonLinear Schrödinger
Equation (NLSE) [4, 5, 6, 10, 11]. Domain decomposition SWR methods for solving wave equations
have a long history from the classical SWR method with overlapping zones to optimized version
without overlap (see e.g. [7, 9, 12, 15, 16, 17, 18, 19, 22, 8] as well as http://www.ddm.org, for a
complete review and references about this method). Basically in SWR methods, the transmission
conditions at the subdomain interfaces are derived from the solution to the corresponding wave
equation, usually using Dirichlet boundary conditions (Classical SWR), Robin boundary conditions,
transparent or high-order Absorbing Boundary Conditions (ABCs) including Dirichlet-to-Neumann
(DtN) transmitting conditions (Optimized SWR), or Perfectly Matched Layers [1, 9, 21]. We also
refer to [1, 2, 20, 23] for some reviews on truncation techniques for quantum wave equations in
infinite domains. SWR methods can be a priori applied to any type of wave equation [13, 14, 15].
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In this paper, we will focus on multilevel SWR for the NLSE. More specifically, we consider the
cubic time-dependent (real-time) NLSE set on Rd, with d > 1,

i∂tu = −4u+ V (x)u+ κ|u|2u, x ∈ Rd, t > 0,

u(x, 0) = φ0(x), x ∈ Rd.
(1)

The real-valued space-dependent smooth potential V is positive for attractive interactions and
negative for repulsive interactions. The nonlinearity strength κ is a real-valued constant which is
positive for a focusing nonlinearity and negative for a defocusing nonlinearity. The function φ0 is
a given initial data. In the sequel of the paper, P(|u|) denotes the nonlinear operator

P(|u|)u =
(
i∂t +4− V (x)− κ|u|2

)
u. (2)

By using pseudodifferential operator calculus, rates of convergence for the CSWR and OSWR meth-
ods can be derived [7] in imaginary-time. Concretely, the imaginary-time formulation [4, 5, 6, 10, 11]
is used to compute the stationary solutions to the NLSE. The corresponding method is referred
to as Continuous Normalized Gradient Flow (CNGF) formulation [7, 11] in the Mathematics lit-
erature and imaginary-time method in the Physics literature. The current paper is an extension
of [7] where we focus on multilevel preconditioning. In the imaginary-time framework (stationary
state computation), we refer to as preconditioning the storage and use of a converged solution at
a lower (coarser) level for i) initializing the CNGF algorithm (Cauchy data selection) and for ii)
deriving the transmission conditions in the overlapping zone interfaces at an upper (finer) level. In
real-time (computation of the dynamics), preconditioning also includes the storage of the converged
solution in the overlapping zones, at any time, for accurately deriving the transmission conditions.
We numerically show that the convergence of the SWR method is improved in both cases. Al-
though, the convergence acceleration is moderate in imaginary-time, it is however shown that the
computational cost per Schwarz iteration, that is the CNGF convergence, is strongly accelerated
compared to unpreconditioned SWR methods.

The paper is organized as follows. In Subsections 2.1 and 2.2, we recall some results about SWR
methods in real- and imaginary-time. In Subsection 2.2, we provide some informations about the
Continuous Normalized Gradient Flow (CNGF) method for solving the stationary NLSE. Subsec-
tion 2.3 gives some notations about the multi-level approximation. In Section 3, we describe the
two-level SWR method in imaginary-time and next in real-time. A discussion on the computational
complexity is also addressed. Section 4 is devoted to some numerical experiments where two types
of results are presented: i) convergence rates for Schwarz algorithms and ii) CNGF convergence
time in imaginary-time. We finally conclude in Section 5.

2. SWR methods in real- and imaginary-time; notations

2.1. SWR algorithms in real-time

We recall the basics of SWR algorithms which are presented for two subdomains for the sake
of conciseness. We introduce two open sets Ω±ε such that Rd = Ω+

ε ∪ Ω−ε , with overlapping region
Ω+
ε ∩ Ω−ε , where ε is a (small) non-negative parameter. In 1d (d = 1), the domains of interest

read: Ω+
ε =

(
− ∞, ε/2

)
, Ω−ε =

(
− ε/2,∞

)
and R = Ω+

ε ∪ Ω−ε . with Ω+
ε ∩ Ω−ε =

(
− ε/2, ε/2

)
.

We denote by φ± the solution to the time-dependent GPE in Ω±ε . Solving the NLSE by a Schwarz
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waveform domain decomposition [9] requires transmission conditions at the subdomain interfaces.
More specifically, for any Schwarz iteration k > 1, the equation in Ω±ε reads, for a given T > 0,

(
i∂t +4− V − κ

∣∣φ±,(k)
∣∣2)φ±,(k) = 0, on Ω±ε × (0, T ),

B±φ±,(k) = B±φ∓,(k−1), on Γ±ε × (0, T ),

φ±,(k)(·, 0) = φ0(·) on Ω±ε ,

(3)

where Γ±ε = ∂Ω±ε . The notation φ±,(k) stands for the solution φ± in Ω±ε × (0, T ) at Schwarz
iteration k. Initially, φ±,(0) are two given functions defined in Ω±ε . We denote by B± an operator
characterizing the type of SWR algorithm. In the CSWR case, B± is the identity operator and
B± = ∂n± + γId (γ ∈ R∗+) for the Robin-like SWR method. For the Optimized SWR algorithm,
B± can be a local or a nonlocal approximation of the DtN operator (see [9, 21]). The convergence
criterion for the Schwarz DDM is fixed by the constraint∥∥ ‖φ+,(k)

|Γ+
ε
− φ−,(k)

|Γ−
ε
‖∞,Γε

∥∥
L2(0,T )

6 δSc. (4)

typically with δSc = 10−14 (”Sc” is added for Schwarz). The convergence occurs at an iteration
denoted by kcvg, and the converged global solution is denoted by φcvg := φ(kcvg).

2.2. SWR algorithms in imaginary-time

The computation of stationary states, e.g. ground states and excited states, corresponds [11]
to computing a real number µ and a spatially varying eigenfunction φ satisfying the equation

µφ(x) = −4φ(x) + V (x)φ(x) + κφ(x),x ∈ Rd,

with the L2-norm constraint

||φ||20 :=

∫
Rd

|φ(x)|2dx = 1.

The total energy of the system is defined as

Eκ(χ) :=

∫
Rd

|∇χ(x)|2 + V (x)|χ(x)|2 +
κ

2
|χ(x)|4dx. (5)

A stationary state is then such that Eκ(φ) := min||χ||0=1Eκ(χ). Once φ is obtained, the eigenvalue
µ is given by

µ := µκ(φ) = Eκ(φ) +

∫
Rd

κ

2
|φ(x)|4dx.

To determine µ and φ, a standard method is the imaginary-time/CNGF method [11] which consists
in solving (1) in imaginary-time, i.e. setting t→ it. This leads to

∂tφ(x, t) = −∇φ∗Eκ(φ) = 4φ(x, t)− V (x)φ(x, t)− κ|φ|2φ(x, t), x ∈ Rd, tn < t < tn+1,

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

||φ(·, t−n+1)||0
,

φ(x, t) = φ0(x), x ∈ Rd,with ||φ0||20 = 1.

(6)
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In the above equation, t0 := 0 < t1 < ... < tn+1 < ... are the discretization times (that we assume
to be equally spaced here), φ0 is an initial guess for the time marching algorithm discretizing the
projected gradient method and limt→t±n φ(x, t) = φ(x, t±n ). The corresponding semi-discrete energy
is diminishing [11] for given positive potential V and interaction strength κ.

Within the SWR formalism, we then have to minimize an energy problem at each Schwarz
iteration k > 1. This is achieved at an imaginary-time, denoted by T (k) > 0, where for t > T (k),
‖φ±(·, T (k))− φ±(·, t)‖0 is small enough. The convergence time of the CNGF at iteration k grows
with T (k). For a two-subdomains decomposition, we then solve

∂tφ
±,(k) = 4φ±,(k) − V (·)φ±,(k) − κ|φ±,(k)|2φ±,(k), on Ω±ε × (tn, tn+1),

B±φ±,(k) = B±φ∓,(k−1), on Γ±ε × (tn, tn+1),

φ±,(k)(·, 0) = φ0(·), on Ω±ε ,

φ±,(k)(·, tn+1) = φ±,(k)(·, t+n+1) =
φ±,(k)(·,t−n+1)

||φ̃−,(k)(·,t−n+1)+φ̃+,(k)(·,t−n+1)||0
, in Ω±ε ,

(7)

where again, t0 := 0 < t1 < ... < tn+1 < ... are uniformly spaced discrete times, with constant time
step ∆t, and φ̃+ (resp. φ̃−) denotes the extension to Rd of φ+ (resp. φ−). Concerning the CNGF
convergence criterion for a given Schwarz iteration k, we stop the computation when

||φn+1,(k) − φn,(k)||∞ 6 δ,

where δ is a small parameter and ‖φ‖∞ := supx∈Rd |φ(x)|. At the CNGF convergence, the stopping
time is such that: T (k) = T cvg,(k) := ncvg,(k)∆t for a converged solution φcvg,(k) reconstructed from
the two subdomains solutions φ±,cvg,(k). The convergence criterion for the Schwarz DDM is fixed
by the constraint ∥∥ ‖φ+,cvg,(k)

|Γ+
ε

− φ−,cvg,(k)

|Γ−
ε

‖∞,Γε

∥∥
L2(0,T (kcvg))

6 δSc. (8)

The convergence of the whole iterative algorithm is obtained at Schwarz iteration kcvg. Then, one
gets the converged global solution φcvg := φcvg,(kcvg), typically with δSc = 10−14 (”Sc” is added for
Schwarz).

2.3. Notations and discretization

We introduce here some important notations. The domain Rd (d > 1) is approximated by a
uniform finite volume/difference grids Ωl with cell volume hdl , where hl = h0/2

l (l > 1) and h0 ∈ R∗
corresponds to the coarsest grid one-dimensional space step. For instance, for d = 3, we have

Ωl = ∪i,j,kΩ
(i,j,k)
l = ∪i,j,k

[
ihl, (i+ 1)hl

]
×
[
jhl, (j + 1)hl

]
×
[
khl, (k + 1)hl

]
.

The operator Pm;l
h designates a projection operator from the grid Ωm to Ωl, where m > l. In

practice, Pm;l
h is an average operator defined iteratively from Ωm to Ωl. Conversely, we introduce

I l;mh , for m > l, as a polynomial interpolation operator from Ωl to Ωm. In practice, the standard
Lagrangian interpolation is be used. Moreover, Ω±ε,l is defined as the uniform subgrid such that Ωl =

Ω+
ε,l ∪Ω−ε,l on which are defined the semi-discrete time-dependent solutions φ

±,(k)
l (t) =

{
φ
±,(k)
l,j (t)

}
j
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at Schwarz iteration k. For the sake of simplicity we also use the notation φ
±,(k)
l =

{
φ
±,(k)
l,j

}
j

for

denoting φ
±,(k)
l (t), and we now set Ω±l = Ω±ε,l. The reconstructed solution φ

(k)
l on Ωl is

φ
(k)
l :=

φ̃
+,(k)
l + φ̃

−,(k)
l

||φ̃+,(k)
l + φ̃

−,(k)
l ||`2(Ωl)

, (9)

where φ̃
±,(k)
l denotes the extension by 0 of φ

±,(k)
l to Ω∓l and ||φ̃l||`2(Ωl) is the (discrete) `2-norm on

Ωl.

3. Multi-level SWR methods

A two-level preconditioning technique is derived by using i) the converged solution computed
at a lower (coarser) level and ii) interpolation operations from Ω±m to Ω±l , with m > l.

3.1. Two-level SWR method in imaginary-time

Let us assume that an approximation fp;l =
{
fp;l,j

}
j

of the eigenfunction fp associated to the

pth eigenvalue λp approximated by λp;l has been computed at level l on Ωl, where

Pl(|fp;l|)fp;l = λp;lfp;l,

where Pl designates a discrete approximation of P on Ωl (see Section 4.1). For m > l, using
a domain decomposition on Ω±m, as described above, leads to computing time-dependent local

wavefunctions φ
±,(k)
l =

{
φ
±,(k)
l,j

}
j
. This requires

• to choose a discrete initial guess φ
(k)
m (t = 0) =

{
φ

(k)
m,j(t = 0)

}
j
, for all k > 0,

• and to impose a transmission condition on φ
±,(k)
m (t) at the interface Γ±m for all t > 0.

To this end, we use i) fp;l and ii) the interpolation operator I l;mh . At level m > l (hm < hl) and for
all k > 0, the initial guess is built as

φ(k)
m (0) = I l;mh fp;l, on Ω±m.

Therefore, this is useful since the initial function in the minimization process at level m is expected
to be close to the converged solution fp;m, for m close to l. We then impose

φ±,(k)
m (0) = I l;mh f±p;l, on Ω±m.

We also want to benefit from the knowledge of fp;l for designing the transmission conditions. We
then impose at the subdomain interfaces, for all t > 0

B±mφ±,(0)
m (t) = B±mI

l;m
h f±p;l, on Γ±m, (10)

where the operator B±m is an approximation of the operator B± on Γ±m. From now on, all the
necessary conditions to perform the Algorithm (7) on Ωm are available. The preconditioning step
ensures simultaneously that the initial guess and transmission conditions are already close to the
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exact solution on the grids Ω±m. Compared to a direct computation of fp;m, the additional workload
consists of computing and storing fp;l, which makes this approach quite simple and attractive. The
computational complexity aspects will be detailed in Section 3.4.

To summarize, from level l to level m > l, we perform:

1. At the lower level l: computation of fp;l, starting from an initial guess φ±l (0) = φ±0;l.

2. At the upper level m: computation of fp;m, starting from φ±m(0) = I l;mh f±p;l and with trans-

mission conditions at Γ±m by using I l;mh fp;l .

The expected gain is not the acceleration of the SWR algorithm through an improved convergence,
but rather the acceleration of the CNGF algorithm at each Schwarz iteration k. Typically, this
procedure is used between two successive levels, i.e. with m = l + 1.

3.2. Two-level SWR method in real-time

It is possible to directly adapt the method proposed above from imaginary-time to real-time.
However, although the relative computational workload is roughly the same compared to imaginary-
time, additional data-storage is necessary as detailed below. Let us first assume that the converged
solution to (1) is computed on Ω±l × [0, T ] and its restriction to Γ±l is stored in S±l , defined by

S±l =
{
φ±,cvg
l

(
tnl
)

at Γ±l , ∀n ∈ {0, · · · , Ll}
}
, (11)

where i) φ±,cvg
l is the converged solution on Ω±l and ii) tnl = n∆tl, with n ∈ {0, · · · , Ll}, ∆tlLl = T .

This set is used for preconditioning the Schwarz algorithm. More specifically on Ω±m, at Schwarz
iteration k > 1, we need to impose transmission conditions at any time t ∈ [0, T ]. Note that unlike
the imaginary-time situation, the Cauchy data is a given data, which restricts the flexibility of the
method in the real-time context. We then set the following transmission conditions at any time tnm
on Γ±m.

• If ∆tl = ∆tm, we impose:

B±φ±,(0)
m (tnm) = B±I l;mh φ±,cvg

l

(
tnm
)
, on Γ±m.

• If ∆tl > ∆tm, it is necessary to interpolate in time the converged solution on Ω±l computed

at times tnl , for n 6 Ll, to get an estimate of I l;mh φ±,cvg
l at times t

(n)
m , with n 6 Lm, and where

Lm < Ll. The corresponding interpolation operator is denoted by I l;m∆t and we then impose

B±φ±,(0)
m

(
tnm
)

= B±
(
I l;m∆t I

l;m
h

)
φ±,cvg
l

(
tnm
)
, on Γ±m.

• If ∆tl < ∆tm, we need to project in time the converged solution on Ω±l computed at times tnl ,

for n 6 Ll, to get an estimate of I l;mh φ±,cvg
l at times t

(n)
m with n 6 Lm, and where Ll < Lm.

The corresponding interpolation operator is denoted P l;m∆t . We then impose

B±φ(0)

m|Γ±
m

(
tnm
)

= B±
(
P l;m∆t I

l;m
h

)
φ±,cvg
l

(
tnm
)
, on Γ±m.
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Unlike the imaginary-time case, the real-time method then requires the storage of the restriction
to Γ±l of the converged solution on Ω±l , at any discrete time tnl 6 T . It is however important to

notice that, in practice, we only interpolate φ±,cvg
l in the overlapping region Γ±m and not in all Ω±m.

The overall process is summarized as follows. For all n 6 Ll,

1. At the lower level l: compute φ±,cvg
l (tnl ), starting from the Cauchy data φ±l (0) = φ±0;l.

2. Store S±l as defined in (11).

3. At upper level m > l: compute φ±,cvg
m (tnm), with initial data φ±m(0) = φ±0;m and transmission

conditions I l;mh φ±,cvg
l and imposed on Γ±m.

Again, this algorithm should preferably be applied to two successive levels (m = n + 1), as it is
numerically shown in Section 4.

3.3. Multilevel method and computational complexity in real-time

The methodology presented above can easily be iteratively extended to q > 3 levels, where
q = m − l. We define Ωp → Ωp+1: φcvg

p → φcvg
p+1, with p ∈ {l, · · · ,m − 1}, Nl < Nl+1 < · · · < Nm,

and where typically Np+1 ≈ 2dNp.
At any level p ∈ {l, · · · ,m}, the computational complexity for computing a convergent solution

is O(kcvg
p N

αp
p Kp), where Kp is the number of time iterations to reach T and kcvg

p is the number
of Schwarz iterations to converge without preconditioning. Coefficient αp typically belongs to (1, 3)
is related to the complexity for solving the induced sparse linear system. Assume now that the
computation at level p was preconditioned by using the converged solution at level p− 1, according
to the procedure described in subsections 2.1 and 3.2. In this case, the number of Schwarz iterations
to converge at the upper level p, is denoted by kcvg

p;p−1. It is expected that kcvg
p;p−1 6 kcvg

p , for all
p 6 m − 1. Let us remark that the space and time interpolations from one level to another have
a negligible computational complexity compared with any NLSE solution and Schwarz iterations.
We can now estimate the overall complexity in real-time, which is designated2 by Orl;m (from levels
l to m), of a q-level preconditioned method by

Orl;m = O
(
kcvg
l Nαl

l Kl +
m∑

p=l+1

kcvg
p;p−1N

αp
p Kp

)
. (12)

In addition, this procedure requires the storage at any level p ∈ {l, · · · ,m − 1} of the converged
solution φ±,cvg

p at any time and in the overlapping region of Ω±p . The overall procedure is relevant
as long as Orl;m � Orm, where Orm denotes the computational complexity of the direct method

(1-level) on Ω±m, that is if

Orl;m � Orm = O
(
kcvg
m Nαm

m Km

)
.

We recall that Nm = Nl/2
d(m−l) and αm > 1.

2Upper index r in Or
l;m stands for real-time.
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3.4. Multilevel method and computational complexity in imaginary-time

In imaginary-time, the overall gain is expected to be higher compared to real-time. First, at any

Schwarz iteration k, let us denote by K
(k)
p the number of imaginary-time iterations for the CNGF

algorithm to converge at any unpreconditioned level p. We also denote by K
(k)
p;p−1 the number of

imaginary-time iterations for the CNGF algorithm to converge at level p with preconditioning at
the lower level p − 1, as described in subsections 2.2 and 3.1. Then, from one level p − 1 to p, we
expect that

• kcvg
p;p−1 6 kcvg

p , as in real-time, thanks to the transmission conditions,

• K(k)
p;p−1 � K

(k)
p , if p 6 m. This additional outstanding property is due to the fact that the

interpolated solution at lower level p− 1 is taken as the initial guess at the upper level p.

In conclusion, in imaginary-time, the overall complexity3 Oil;m of a p-level method from levels l to
m is given by

Oil;m = O
(
Nαl
l

kcvgl∑
k=1

K
(k)
l +

m∑
p=l+1

N
αp
p

kcvgp;p−1∑
k=1

K
(k)
p;p−1

)
, (13)

where Oim is the computational complexity of the direct method (1-level) on Ω±m, i.e.

Oil;m � Oim = O
(
Nαm
m

kcvgm∑
k=1

K(k)
m

)
.

We again recall that Nm = Nl/2
d(m−l) and αm > 1.

4. Numerical examples

In the one-dimensional and for a > 0, we introduce Ωa = (−a, a), Ω+
a,ε = (−a, ε/2) and Ω−a,ε =

(−ε/2, a), where ε is a (small compared to a) parameter equal to the size of the overlapping region.
Homogeneous Dirichlet boundary conditions are imposed at ±a. We denote by {xj}j∈{1,··· ,N+

ε } the

grid nodes in Ω+
a,ε and {yj}j∈{1,··· ,N−

ε } those in Ω−a,ε. In the following tests, the domains overlap on
o nodes such that: xN+

ε
= y1+o and xN+

ε −o = y1. The spatial mesh size h = h0 is assumed to be
constant and then ε = (o− 1)h.

4.1. Discrete SWR methods in real- & imaginary-time

At a given level and in real-time, we consider the following Crank-Nicolson scheme [3]. Denoting
φ±,n,(k) the approximate solution in Ω± at time tn with n > 0 and at Schwarz iteration k > 0, we
get

3Upper index i in Oi
l;m stands for imaginary-time.
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• For the SWR DDM (denoted by CSWR-DDM)

i
φ±,n+1,(k) − φ±,n,(k)

∆t
= −∂2

x

φ±,n+1,(k) + φ±,n,(k)

2
+ V (x)

φ±,n+1,(k) + φ±,n,(k)

2

+κ|φ±,n+1,(k) + φ±,n,(k)|2
φ±,n+1,(k) + φ±,n,(k)

8
= 0, in Ω±a,ε,

φ
±,n+1,(k)
±ε/2 = φ

∓,n+1,(k−1)
±ε/2 , on

{
± ε/2

}
.

• For the SWR DDM with Robin-type transmission conditions(
∂n± + γ

)
φ
n+1,(k)
±,ε/2 =

(
∂n± + γ

)
φ
∓,n+1,(k−1)
ε/2 , on

{
± ε/2

}
,

for some given parameter γ ∈ R∗ and where n± denotes the time index.

In imaginary-time, the basic principle consists in replacing t → it and ∆t → i∆t in the above
scheme. The second derivative is approximated by using a 3 point-scheme. We again refer to [7] for
details about SWR methods in imaginary-time. As the CNGF method is a minimization technique,
it is important to note that at each Schwarz iteration a convergence criterion has to be imposed
to ensure the convergence of the minimizer. More specifically, denoting by φ̃(k) the imaginary-time
solution of (3) at Schwarz iteration k in Ωa, the imaginary-time iterations are stopped when, for
n > 0

‖φ̃(k)(·, t−n+1)− φ̃(k)(·, tn)‖L2(Ωa) 6 δ, (14)

where δ is a very small positive parameter.

4.2. Numerical tests in imaginary-time

In this series of tests, we consider a one-dimensional optical lattice with potential V (x) =
x2/2 + 25 sin2(πx/2) and nonlinearity strenght κ = 250. The initial data is given by φ0(x) =
exp(−x2/2)π−1/4. The two subdomains are Ω+

a,ε = (−a, ε/2) and Ω−a,ε = (−ε/2, a), with a = 16.
The DDM algorithms are the CSWR and Robin-type SWR methods. The coarsest level has N0 = 27

nodes and h0 = (b− a)/(N0 − 1). This level is refereed to as level 0. We successively compare the
rate of convergence or residual history (8), at level i > 0, i.e. on upper levels Ωi, with hi ≈ h0/2

i

and i = 1, 2, 3. We then have Ni = 2iN0, N+
i = o + 2i−1N0 and N−i = 2i−1N0. The overlapping

region covers two nodes (o = 2): εi = (o − 1)hi = hi, i = 1, 2, 3. The time steps are equal to
∆t1 = 5 × 10−2, ∆t2 = 2 × 10−2 and ∆t3 = 5 × 10−3. The convergence parameter in (14) for the
CNGF is fixed to δ = 10−9.

Test-case 1. In the first test-case dedicated to the CSWR method, we assume that the pre-
conditioning is derived from level 0, i.e., at level 0 (or in Ω0) fg;0 is first computed. As proposed in

Section 2.2, we impose φ±0 = I0;i
h f±p;0 at the upper level i, with i = 1, 2, i.e. at {±εi/2} × {t > 0},

we impose

φ
±,(0)
i = I0;i

h f±p;0,

9



where fg;0 is the ground state computed on Ω±0 . In Test 1, the size of the overlapping region is
always reduced to ε = hi, i = 1, 2. Convergence results (residual history) are reported in Fig. 1
(left). These correspond to estimates of kcvg

1 , kcvg
2 , kcvg

1;0 and kcvg
2;0 defined in (8). In addition, we

provide in Fig. 1 (right) the convergence times T (k) of the CNGF per Schwarz iteration, i.e. for
i = 1, 2,

• K(k)
i;0 ∆ti: time step × number of CNGF iterations K

(k)
i;0 to converge at level i (= 1, 2) with

preconditioning at level 0,

• K(k)
i ∆ti: time step × number of CNGF iterations K

(k)
i , without preconditioning.

We observe on Fig. 1 (left) that the preconditioning from lower levels i−1 or i−2 has only a weak
effect on the acceleration of the convergence of the CSWR method. Regarding the convergence time

of the CNGF method, we however notice that i) for all k, K
(k)
1;0 � K

(k)
1 , and that ii) K

(k)
2;0 � K

(k)
2

for the first CSWR iterations and then K
(k)
2;0 ≈ K

(k)
2 . This test illustrates that the convergence

acceleration of the DDM-CNGF method thanks to the preconditionning at a lower level.
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Figure 1: Levels 1 and 2. Left: Comparison of the residual history (8) vs k, with/without preconditioning at the
coarse level 0. Right: Minimization time (convergence time of the CNGF) T (k) per Schwarz iteration k, for N0 = 27.

Test-case 2. In the second test-case, we compare the residual history (8) of the CSWR method
at level i > 1, that is for Ω±i , with and without preconditioning at level i − 1 for different spatial

discretization step sizes. We impose i) initially φi(0) = Ii−1;i
h fg;i−1, and ii) at {±εi/2}, we force

φ
±,(0)
i = Ii−1;i

h f±g;i−1.

In other words, we compare kcvg
i;i−1 with kcvg

i , for i = 1, 2, 3. We also study the convergence times

T (k) of the minimization algorithm i) K
(k)
i;i−1∆ti (with preconditioning) and K

(k)
i ∆ti (without pre-

conditioning). In the previous expressions, K
(k)
i;i−1 (resp. K

(k)
i ) is the number of iterations of the

CNGF to converge at level i with (resp. without) preconditioning, for i = 1, 2, 3 (see Section 3.4).
At the coarse level i−1 > 0, φ±i−1(0) is chosen as the projection on Ω±i−1 of φ0(x) = π−1/4e−x

2/2 for
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computing the ground state of the NLSE [11]. We consider the standard homogeneous Dirichlet

boundary conditions when k = 0: φ
±,(0)
i = 0 at {±εi/2}. We report on Fig. 2 the residual history

(8) with respect to the lower level preconditioning, for different values of grid points Ni = 27+i. We
observe that kcvg

1;0 6 kcvg
1 , kcvg

2;1 6 kcvg
2 , kcvg

3;2 6 kcvg
3 . However, the Schwarz acceleration is moderate

and seems independent of the number of grid points.
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Figure 2: Comparison of the residual history (8) vs k, of the CSWR method at level i, for a solution with precondi-
tioning at level i− 1, and without preconditioning. Left: i = 1. Middle: i = 2. Right: i = 3.

The genuine gain is again the acceleration of the CNGF algorithm. Indeed, the minimization
algorithm at fixed Schwarz iteration k and finer level i is strongly accelerated as it can be observed

in Fig. 3 and as it was expected from Section 3: K
(k)
i;i−1 � K

(k)
i , with convergence times given by

K
(k)
i ∆ti without preconditioning, or K

(k)
i;i−1∆ti with preconditioning.

0 10 20 30 40 50 60 70 80
1.5

2

2.5

3

3.5

4

4.5

Schwarz iterations (k)

C
o
n
v
er
g
ed

ti
m
e
T

(k
)

N1 = 256

 

 

No preconditioning
Preconditioning at lower level

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

Schwarz iterations (k)

C
o
n
v
er
g
ed

ti
m
e
T

(k
)

N2 = 512

 

 

No preconditioning
Preconditioning at lower level

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

Schwarz iterations (k)

C
o
n
v
er
g
ed

ti
m
e
T

(k
)

N3 = 1024

 

 

No preconditioning
Preconditioning at lower level

Figure 3: Minimization time (CNGF convergence time) T (k): comparison for the CSWR method at level i between
the solution with preconditioning at level i−1, and without preconditioner. Left: i = 1. Middle: i = 2. Right: i = 3.

Test-case 3. Now, the preconditioning technique is applied to the Robin-based Schwarz Waveform
Relaxation algorithm, taking γ = 20, which provides a fast convergence. The methodology and
numerical data are the same as for the test case 2. We compare i) the residual history (8) at level
i > 1, that is on Ω±i , with preconditioning at level i − 1. The number of grid points at level i is

given by Ni = 27+i. Therefore, we i) initially (t = 0) take φ±i (0) = Ii−1;i
h f±g;i−1 and ii) we impose(

∂x + γ
)
φ
±,(0)
i (tni ) =

(
∂x + γ

)
Ii−1;i
h f±g;i−1

at
{
± εi/2

}
. We also study the convergence times T cvg,k of the minimization algorithm, with and

without preconditioning. The results are summarized in Figs. 4 and 5.
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Figure 4: Comparison of the residual history (8) vs k, for the Robin-based SWR method at level i, between the
solution with preconditioning at level i− 1 and without preconditioning. Left: i = 1. Right: i = 2.
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Figure 5: Minimization time (CNGF convergence time) T (k) comparison for Robin-based SWR at level i between
solution with preconditioning at level i− 1, and without preconditioning. Left: i = 1. Right: i = 2.

As for the CSWR method, it is numerically observed that the preconditioning technique applied
to the Robin SWR method has a strong positive effect on the convergence of the CNGF, but a
moderate one from the SWR convergence point of view.

4.3. Numerical tests in real-time

This section is devoted to experiments in real time. We consider Ω+
a,ε = (−a, 5/2 + ε/2) and

Ω−a,ε = (5/2 − ε/2, a), with ε > 0 and a = 10. Homogeneous Dirichlet boundary conditions are
again imposed at ±a. The final real time is T = 0.5. In the equation, we have chosen κ = 50 and
V = 0, corresponding to a standard cubic NLSE. In addition, the initial data is given by a gaussian
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profile

φ0(x) = exp
(
−

1

5

(b+ 2a

4
− x
)2)

exp(2ix).

Test-case 1. In this first test case, the numerical data are as follows: N1 = 2N0, N+
1 = o + N0,

N−1 = N0, with N0 = 400. The overlapping region covers respectively 20, 10 and 2 nodes. The
time step is fixed to ∆t1 = ∆t0 = 1× 10−2.
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Figure 6: Comparison of the residual history (4) vs k, for the CSWR method, with and without preconditioning for
N0 = 400. Left: o = 20. Middle: o = 10. Right: o = 2.

Figs. 6 illustrate the effect of the acceleration of the preconditioning on the convergence of
the CSWR (8), in the three studied cases N0 = 400 and: o = 20, 10, 2 and ε = (o − 1)hi. Let
us note that with or without preconditioning, the convergence graphs have two plateaux and two
decreasing regions. More specifically, we notice that the main effect of the preconditioning is to
extend the first decreasing zone and to reduce the length of the second plateau. We finally remark
that the preconditioning allows for a reduction of the number of iterations to reach the machine
tolerance of about 20%, whatever the size of the overlapping region is (see Fig. 6).

Test-case 2. In the second test-case, we consider the SWR method with Robin-based transmission
conditions. In this case, we expect a faster convergence compared to the CSWR method [21]. Notice
that for this type of transmission condition, it is necessary to reconstruct the normal derivatives
at the subdomain interfaces. The numerical data are as follows: Ni = 2iN0, N+

i = o + 2i−1N0

and N−i = 2i−1N0, with overlap o = 2 and N0 = 200 and ε = (o − 1)hi. The time step is fixed to
∆t1 = ∆t0 = 1× 10−2, for all i = 1, 2. We impose at the subdomain interfaces, and for all n > 0(

∂x ± γ
)
φ±,(0)
m =

(
∂x ± γ

)
In;m
h φ±,cvg

l , at
{
± εi/2

}
,

with γ = 20. We compare the residual history (8) for the CSWR and Robin-based SWR algorithms
with and without preconditioning. As expected, the convergence is faster for the Robin-based SWR
methods than for the CSWR algorithm. The results on Fig. 7 also show that preconditioning the
Robin SWR method also improves the convergence. As for the CSWR method, the effect of
preconditioning is to extend the first decay zone and to reduce the length of the second plateau.
The global gain is not as high as for the CSWR method and is about 15%.
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Figure 7: Comparison of the residual history (4) vs k, of the CSWR and Robin-based SWR methods, with and
without preconditioning, for o = 2. Left: N0 = 200. Right: N0 = 400.

5. Conclusion

We proposed and numerically tested a simple preconditioning technique for accelerating SWR
algorithms applied to the solution of NLSE both in real- and imaginary-time. The general principle
consists, by using approximate solutions computed on coarser grids (lower levels), in designing i)
suitable SWR transmission conditions, as well as ii) adapted initial data in imaginary-time. Due to
its simplicity and efficiency, the presented approach can easily be included in a parallel SWR-DDM
solver for the NLSE in real- or imaginary-time. In a forthcoming paper, the procedure developed
in this work will be implemented in higher dimensions and tested on more realistic situations.
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