
HAL Id: hal-01266071
https://hal.archives-ouvertes.fr/hal-01266071

Preprint submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the p-adic stability of the FGLM algorithm
Guénaël Renault, Tristan Vaccon

To cite this version:
Guénaël Renault, Tristan Vaccon. On the p-adic stability of the FGLM algorithm. 2016. �hal-
01266071�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49426792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01266071
https://hal.archives-ouvertes.fr

On the p-adic stability of the FGLM algorithm

Guénaël Renault
PolSys project INRIA Paris-Rocquencourt,

UPMC Univ. Paris 06, CNRS, UMR 7606, LIP6,
Paris, France

guenael.renault@lip6.fr

Tristan Vaccon
JSPS–Rikkyo University

Tokyo, Japan
vaccon@rikkyo.ac.jp

ABSTRACT

Nowadays, many strategies to solve polynomial systems use
the computation of a Gröbner basis for the graded reverse
lexicographical ordering, followed by a change of ordering
algorithm to obtain a Gröbner basis for the lexicographical
ordering. The change of ordering algorithm is crucial for
these strategies. We study the p-adic stability of the main
change of ordering algorithm, FGLM.

We show that FGLM is stable and give explicit upper
bound on the loss of precision occuring in its execution. The
variant of FGLM designed to pass from the grevlex ordering
to a Gröbner basis in shape position is also stable.

Our study relies on the application of Smith Normal Form
computations for linear algebra.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations—Algebraic Algorithms

General Terms

Algorithms, Theory

Keywords

Gröbner bases, FGLM algorithm, p-adic precision, p-adic
algorithm, Smith Normal Form

1. INTRODUCTION
The advent of arithmetic geometry has seen the emergence

of questions that are purely local (i.e. where a prime p is
fixed at the very beginning and one can not vary it). As an
example, one can cite the work of Caruso and Lubicz [CL14]
who gave an algorithm to compute lattices in some p-adic
Galois representations. A related question is the study of
p-adic deformation spaces of Galois representations. Since
the work of Taylor and Wiles [TW95], one knows that these
spaces play a crucial role in many questions in number the-
ory. Being able to compute such spaces appears then as
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC’16, July , 2016, London, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 9 ...$15.00.

DOI: http://dx.doi.org/.

an interesting question of experimental mathematics and
require the use of purely p-adic Gröbner bases and more
generally p-adic polynomial system solving.

Since [Vac14], it is possible to compute a Gröbner ba-
sis, under some genericness assumptions, for a monomial
ordering ω of an ideal generated by a polynomial sequence
F = (f1, . . . , fs) ⊂ Qp[X1, . . . , Xn] if the coefficients of the
fi’s are given with enough initial precision. Unfortunately,
one of the genericness assumptions (namely, the sequence
(f1, . . . , fi) has to be weakly-ω) is at most generic for the
graduate reverse lexicographical (denoted grevlex in the se-
quel) ordering (conjecture of Moreno-Socias). Moreover, in
the case of the lexicographical ordering (denoted lex in the
sequel) this statement is proved to be generically not sat-
isfied for some choices of degrees of the entry polynomi-
als. In the context of polynomial system solving, where the
lex plays an important role, this fact becomes a challenging
problem that is essential to overcome.

Thus, in this paper, we focus on the fundamental problem
of change of ordering for a given p-adic Gröbner basis. In
particular we provide precise results in the case where the
input basis has a grevlex ordering and one wants to com-
pute the lex basis corresponding. We will use the following
notations.

1.1 Notations
Throughout this paper, K is a field with a discrete valu-

ation val such that K is complete with respect to the norm
defined by val. We denote by R = OK its ring of integers,
mK its maximal ideal and k = OK/mK its fraction field. We
denote by CDVF (complete discrete-valuation field) such a
field. We refer to Serre’s Local Fields [Ser79] for an intro-
duction to such fields. Let π ∈ R be a uniformizer for K and
let SK ⊂ R be a system of representatives of k = OK/mK .
All numbers of K can be written uniquely under its π-adic
power series development form:

∑
k≥l

akπ
l for some l ∈ Z,

ak ∈ SK .
The case that we are interested in is when K might not be

an effective field, but k is (i.e. there are constructive proce-
dures for performing rational operations in k and for decid-
ing whether or not two elements in k are equal). Symbolic
computation can then be performed on truncation of π-adic
power series development. We will denote by finite-precision
CDVF such a field, and finite-precision CDVR for its ring
of integers. Classical examples of such CDVF are K = Qp,
with p-adic valuation, and Q[[X]] or Fq[[X]] with X-adic val-
uation. We assume that K is such a finite-precision CDVF.

The polynomial ring K[X1, . . . , Xn] will be denoted A,
and u = (u1, . . . , un) ∈ Zn

≥0, we write xu for Xu1
1 . . . Xun

n .

1.2 Mains results
In the context of p-adic algorithmic, one of the most im-

portant behavior to study is the stability of computation:
how the quality of the result, in terms of p-adic precision,
evolves from the input. To quantify such a quality, it is usual
to use an invariant, called condition number, related to the
computation under study. Thus, we define such an invariant
for the change of ordering.

Definition 1.1. Let I ⊂ A be a zero-dimensional ideal. Let
≤1 and ≤2 be two monomial orderings on A. Let B≤1 and
B≤2 be the canonical bases of A/I for ≤1 and ≤2. Let M
be the matrix whose columns are the NF≤1(x

β) for xβ ∈
B≤2 . We define the condition number of I for ≤1 to ≤2,
with notation cond≤1,≤2(I) (or cond≤1,≤2 when there is no
ambiguity) as the biggest valuation of an invariant factor of
M .

We can now state our main result on change of ordering
of p-adic Gröbner basis.

Theorem 1.2. Let ≤1 and ≤2 be two monomial orderings.
Let G = (g1, . . . , gt) ∈ K[X1, . . . , Xn]

t be an approximate
reduced Gröbner basis for ≤1 of the ideal I it generates, with
dim I = 0 and deg I = δ, and with coefficients known up
to precision O(πN). Let β be the smallest valuation of a
coefficient in G. Then, if N > cond≤1,≤2(I), the stabilized
FGLM Algorithm, Algorithm 3, computes a Gröbner basis
G2 of I for ≤2. The coefficients of the polynomials of G2

are known up to precision N + n2(δ + 1)2β − 2cond≤1,≤2 .
The time-complexity is in O(nδ3).

In the case of a change of ordering from grevlex to lex, we
provide a more precise complexity result:

Theorem 1.3. With the same notations and hypothesis as
in Theorem 1.2. If ≤1, ≤2 are respectively instantiated to
grevlex and lex, and if we assume that the ideal I is in shape
position. Then, the adapted FGLM Algorithm for general
position, Algorithm 6, computes a Gröbner basis G2 of I for
lex, in shape position. The coefficients of the polynomials of
G2 are known up to precision N + βδ − 2cond≤1 ,≤2 . The
time-complexity is in O(nδ2) +O(δ3).

In order to obtain these results, one has to tackle technical
problems related to the core of the FGLM algorithm. Thus,
we first present a summary of some important facts on this
algorithm. Then we present more precisely the underlying
problems in the p-adic situation.

1.3 The FGLM algorithm
For a given zero-dimensional I in a polynomial ring A,

the FGLM algorithm [FGLM93] is mainly based on com-
putational linear algebra in A/I . It allows to compute a
Gröbner basis G2 of I for a monomial ordering ≤2 starting
from a Gröbner basis G1 of I for a first monomial order-
ing ≤1. To solve polynomial systems, one possible method
is the computation of a Gröbner basis for lex. However,
computing a Gröbner basis for lex by a direct approach is
usually very time-consuming. The main application of the
FGLM algorithm is to allow the computation of a Gröb-
ner basis for lex by computing a Gröbner basis for grevlex
then by applying a change of ordering to lex. The supe-
riority of this approach is mainly due to the fact that the
degrees of the intermediate objects are well controlled during

the computation of the grevlex Gröbner basis. The second
step of this general method for polynomial system solving, is
what we call the FGLM algorithm. Many variants and im-
provements (in special cases) of the FGLM algorithm have
been published, e.g. Faugère and Mou in [FM11, FM13,
Mou13] and Faugère, Gaudry, Huot and Renault [FGHR13,
FGHR14, Huo13] takes advantages of sparse linear algebra
and fast algorithm in linear algebra to obtain efficient algo-
rithms. In this paper, as a first study of the problem of loss
of precision in a change of ordering algorithm, we follow the
original algorithm. This study already brings to light some
problems for the loss of precision and propose solutions to
overcome them. Thus, the FGLM algorithm we consider can
be sketched as follows:

1. Order the images in A/I of the monomials of A ac-
cording to ≤2.

2. Starting from the first monomial, test the linear inde-
pendence in A/I of a monomial xα with the xβ smaller
than it for ≤2.

3. In case of independence, xα is added to the canonical
(for ≤2) basis A/I in construction.

4. Otherwise, xα ∈ LM(I) and the linear relation with
the xβ smaller than it for ≤2 give rise to a polynomial
in I whose leading term is xα.

Precision problems arise in step 2 and 4. The first one is
the issue of testing the independence of a vector from a linear
subspace. While it is possible to prove independence when
the precision is enough, it is usually not possible to prove
directly dependence. It is however possible to prove some
dependence when there is more vectors in a vector space
than the dimension of this vector space. It is indeed some
dimension argument that permits to prove the stability of
FGLM. We show (see Section 3) that it is enough to treat
approximate linearly dependence (up to some precision) in
the same way as in the non-approximate case and to check
at the end of the execution of the algorithm that the number
of independent monomials found is the same as the degree
of the ideal. The second issue corresponds to adding the
computation of an approximate relation. We show that the
same idea of taking approximate linear dependence as non-
approximate and check at the end of the computation is
enough.

1.4 Linear algebra and Smith Normal Form
As we have seen, the FGLM algorithm relies mainly on

computational linear algebra: testing linear independence
and solving linear systems.

The framework of differential precision of [CRV14] has
been applied to linear algebra in [CRV15] for some optimal
results on the behavior of the precision for basic operations
in linear algebra (matrix multiplication, LU factorization).
From this analysis it seems clear, and this idea is well ac-
cepted by the community of computation over p-adics, that
using the Smith Normal Form (SNF) to compute the inverse
of a matrix or to solve a well-posed linear system is highly
efficient and easy to handle. Moreover, it always achieves
a better behavior than classical Gaussian elimination, even
allowing gain in precision in some cases. Its optimality re-

mains to be proved but in comparison with classical Gaus-
sian elimination, the loss of precision is far fewer. 1

This is the reason why we use the SNF in the p-adic ver-
sion of FGLM we propose in this paper. In Section 2 we
briefly recall some properties of the SNF and its computa-
tion. We also provide a dedicated version of SNF computa-
tion for the FGLM algorithm. More precisely, to apply the
SNF computation to iterative tests of linear independence
(as in step 2), we adapt SNF computation into some iter-
ative SNF in Algorithm 4. This allows us to preserve an
overall complexity in O(nδ3).

2. SNF AND LINEAR SYSTEMS

2.1 SNF and approximate SNF
We begin by presenting our main tool, the SNF of a matrix

in Mn,m(K):

Proposition 2.1. Let M ∈ Mn,m(K). There exist some
P ∈ GLn(OK), val(detP) = 0, Q ∈ GLm(OK), detQ = ±1
and ∆ ∈ Mn,m(K) such that M = P∆Q and ∆ is diag-
onal, with diagonal coefficients being πa1 , . . . , πas , 0, . . . , 0
with a1 ≤ · · · ≤ as in Z. ∆ is unique and called the Smith
Normal Form of M , and we say that P,∆, Q realize the SNF
of M . The ai are called the invariant factors of M.

In a finite-precision context, we introduce the following
variant of the notion of SNF:

Definition 2.2. Let M ∈ Mn,m(K), known up to preci-
sion O(πl). We define an approximate SNF of M as a
factorization

M = P∆Q

with P ∈ Mn(R), val(detP) = 0, Q ∈ Mm(R) with detQ =
±1 known up to precision O(πl) and ∆ ∈ Mn,m(K) such
that ∆ = ∆0 + O(πl), where ∆0 ∈ Mn,m(K) is a diago-
nal matrix, with diagonal coefficients of the form ∆0[1, 1] =
πα1 , . . . ,∆0[min(n,m),min(n,m)] = παmin(n,m) with α1 ≤
· · · ≤ αmin(n,m). αi = +∞ is allowed. (P,∆, Q) are said to
realize an approximate SNF of M.

To compute an approximate SNF, with use Algorithm 1.

Algorithm 1: SNFApproximate: Computation of an ap-
proximate SNF

Input : M ∈Mn×m(K), known up to precision O(πl), with
l > cond(M)

Output: P,∆, Q realizing an approximate SNF of M .

Find i, j such that the coefficient Mi,j realize mink,l val(Mk,l) ;
Track the following operations to obtain P and Q ;
Swap rows 1 and i and columns 1 and j ;

Normalize M1,1 to the form πa1 + O(πl) ;
By pivoting reduce coefficients Mi,1 (i > 1) and M1,j (j > 1) to

O(πl). ;
Recursively, proceed with Mi≥2,j≥2 ;
Return P,M,Q ;

Behaviour of Algorithm 1 is given by the following propo-
sition:

Proposition 2.3. Given an input matrix M , of size n×m,
with precision (O(πl) on its coefficients, Algorithm 1 termi-
nates and returns U,∆, V realising an approximate SNF of

1See Chapter 1 of [Vac15] for more details on the comparison
between these two strategies.

M . Coefficients of U,∆ and V are known up to precision
O(πl). Time complexity is in O(min(n,m)max(n,m)2) op-
erations in K at precision O(πl).

Now, it is possible to compute the SNF of M , along with
an approximation of a realization, from some approximate
SNF of M with Algorithm 2.
Algorithm 2: SNFPrecised : from approximate SNF to
SNF

Input : (U,∆, V) (precision O(πl)) realizing an approximate
SNF of M ∈ Mn×m(K), of full rank. We assume
cond(M) < l.

Output: ∆0 the SNF of M , and U ′, V ′ known with precision

O(πl−cond(M)) such that M = U ′∆0V
′,

val(detU ′) = 0 and detV = ±1.
∆0 ← ∆ ;
Track the following operations to obtain P and Q ;
t := min(n,m) ;
for i from 1 to t do

Normalize ∆0[i, i] ;
if t = m then

By pivoting with ∆0[i, i], eliminate the coefficients
∆0[j, i] ;

else
By pivoting with ∆0[i, i], eliminate the coefficients
∆0[i, j] ;

Return ∆0, P,Q ;

Proposition 2.4. Given an input matrix M , of size n×m,
with precision (O(πl) on its coefficients (l > cond(M)), and
(U,∆, V), known at precision O(πl), realizing an approx-
imate SNF of M , Algorithm 2 computes the SNF of M ,
with U ′ and V ′ known up to precision O(πl−cond(M)). Time-
complexity is in O(max(n,m)2).

We refer to [Vac14, Vac15] for more details on how to
prove this result. We can then conclude on the computation
of the SNF:

Theorem 2.5. Given an input matrix M , of size n × m,
with precision O(πl) on its coefficients (l > cond(M)), then
by applying Algorithms 1 and 2, we compute P,Q,∆ with
M = P∆Q and ∆ the SNF of M . Coefficients of P and Q
are known at precision O(πl−cond(M)). Time complexity is
in O(max(n,m)2 min(n,m)) operations at precision O(πl).

2.2 Solving linear systems
Computation of P and Q in the previous algorithms can

be slightly modified to obtain (approximation of) P−1 and
Q−1, and thus M−1.

Proposition 2.6. Using the same context as the previous
theorem, by modifying Algorithms 1 and 2 using the in-
verse operations of the one to compute P and Q, we can
obtain P−1 and Q−1 with precision O(πl−cond(M)). When
M ∈ GLn(K), using M−1 = Q−1∆−1P−1, we get M−1

with precision O(πl−2cond(M)). Time complexity is in O(n3)
operations at precision O(πl).

We can then estimate the loss in precision in solving a
linear system:

Theorem 2.7. Let M ∈ GLn(K) be a matrix with coeffi-
cients known up to precision O(πl) with l > 2cond(M). Let
Y ∈ Kn be known up to precision O(πl). Then one can
solve Y = MX in O(n3) operations at precision O(πl). X

is known at precision O(πl−2cond(M)).

When the system is not square but we can ensure that
Y ∈ Im(M), then we have the following variant:

Proposition 2.8. Let M ∈ Mn,m(K) be full rank ma-
trix, with coefficients known at precision O(πl), with l >
2cond(M). Let Y ∈ Kn known at precision O(πl) be such
that Y ∈ Im(M). Then, we can compute X such that Y =

MX, with precision O(πl−2cond(M)) and time-complexity
O(nmmax(n,m)) operations in K at precision O(πl).

Algorithm 3: Stabilized FGLM

Input : The reduced Gröbner basis G of the zero-dimensional
ideal I ⊂ A for a monomial ordering ≤. deg I = δ.
B≤ = (1 = ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫδ) the canonical basis of
A/I for ≤ .
A monomial ordering ≤2.

Output: An approximate Gröbner basis G2 of I for ≤2, or
Error if the precision is not enough.

Compute the multiplication matrices T1, . . . , Tn for I and ≤
with Algorithm 5 ;

B2 := {1} ; v = [t(1, . . . , 0)] ; G2 := ∅ ;
L := {(1, n), (1, n − 1), . . . , (1, 1)} ;
Q1, Q2, P1, P2,∆ := I1, I1, Iδ , Iδ,v ;
while L 6= ∅ do

m := L[1] ; Erase m of L ;
j := m[1] ; i := m[2] ;
v := Tiv[j] ;
s := card(B2) ;

λ = t(λ1, . . . , λδ) := P1v ;
if we have no significant digit on λs+1, . . . , λδ (i.e. those
are O(πv)) then

Compute the SNF of v from the approximate SNF given
by ∆, P1, Q1 and their inverses P2, Q2, with Algorithm
2 ;
Find W such that vW = v, thanks to the SNF of v,
assuming that v ∈ Im(v) (Proposition 2.8);
G2 := G2 ∪ {B2[j]xi −

∑s
l=1 WlB2[l]}

else

B2 := B2 ∪ {B2[j]xi} ;
v = v ∪ [v] ;
L := IncreasingSort(L ∪ [(s + 1, l)|1 ≤ l ≤ n],≤2) ;
Remove the repeats in L ;
Update(v, s, P1, P2, Q1, Q2,∆) ;

Remove from L all the multiples of LM≤2
(G2) ;

if card(B2) = δ then

Return G2 ;
else

Return ”Error, not enough precision”

3. STABILITY OF FGLM

3.1 A stabilized algorithm
This section is devoted to the study of the FGLM algo-

rithm at finite precision over K. More precisely, we provide
a stable adaptation of this algorithm. The main difference
with the classical FGLM algorithm consists in the replace-
ment of the row-echelon form computations by SNF compu-
tation, as in Section 2. This way, we are able to take ad-
vantage of the smaller loss in precision of the SNF, and the
nicer estimation on the behaviour of the precision it yields.

FGLM is made of Algorithms 5, 3 and 4, with Algorithm
3 being the main algorithm.

Remark 3.1. For the linear systems solving in Algorithm 3,
we use the computation of a SNF from an approximate SNF
thanks to Algorithm 2, and then solve the system as in 2.8.

The remaining of this Section is devoted to the proof of
our main theorem 1.2.

3.2 Proof of the algorithm
To prove Theorem 1.2 regarding the stability of Algorithm

3, we first begin by a lemma to control the behaviour of the
condition number of v during the execution of the algorithm,

and then apply it to prove each component of the proof one
after the other.

A preliminary remark can be given: over infinite preci-
sion, correction and termination of Algorithm 3 are already
known. Indeed, the only difference in that case with the clas-
sical FGLM algorithm is that the independence testing and
linear system solving are done using (iterated) SNF instead
of reduced row-echelon form computation.

3.2.1 Growth of the condition in iterated SNF

In order to control the condition number of v during the
execution of the algorithm, and thus control the precision,
we use the following lemma:

Lemma 3.2. Let M ∈ Ms,δ(K) be a matrix, with s < δ
being integers. Let v ∈ Kδ be a vector and M ′ ∈ Ms+1,δ(K)
the matrix obtained by adjoining the vector v as an (s+ 1)-
th column for M. Let c = cond(M), and c′ = cond(M ′).
We assume c, c′ 6= +∞ (i.e., the matrices are of full-rank).
Then c ≤ c′.

Proof. We use the following classical fact : let d′s be the
smallest valuation achieved by an s × s minor of M ′, and
d′s+1 the smallest valuation achieved by an (s+ 1)× (s+ 1)
minor of M ′, then2 c′ = d′s+1 − d′s.

In our case, let P,Q,∆ be such that ∆ is the SNF of
M, P ∈ GLδ(R), Q ∈ GLs(R) and PMQ = ∆. Then, by
augmenting trivially Q to get Q′ with Q′

s+1,s+1 = 1, we can
write:

PM
′
Q

′
=

πa1 w1

0

πas

0
wδ

.

In this setting, c = as.
Moreover, we can deduce from this equality that d′s+1 is

of the form a1 + · · ·+ as + val(wk) for some k > s. Indeed,
the non-zero minors (s + 1) × (s + 1) of PM ′Q′ are all of
the following form: they correspond to the choice of (s+ 1)
row linearly independent, and all the rows of index at least
(s + 1) are in the same one-dimensional sub-space. With
such a choice of rows, the corresponding minor is the deter-
minant of a triangular matrix, whose diagonal coefficients
are πa1 , . . . , πas , wk.

On the other hand, a1+· · ·+as−1+val(wk) is the valuation
of an s×sminor of PM ′Q′. By definition, we then have d′s ≤
a1+· · ·+as−1+val(wk). Since d

′
s+1 = a1+· · ·+as+val(wk)

and c′ = d′s+1 − d′s, we deduce that c′ ≥ as = c, q.e.d..

We introduce the following notation:

Definition 3.3. Let E be an R-module and X ⊂ E a finite
subset. We write V ectR(X) for the R-module generated by
the vectors of X.

The previous lemma has then the following consequence:

Lemma 3.4. Let I,G1,≤,≤2, B≤, B≤2 be as in Theorem
1.2. Let xβ ∈ B≤2(I). Let V = V ectR({NF≤(xα)|xα ∈

B≤2 , x
α < xβ}) then NF≤(xβ) ∈ π−cond≤,≤2

(I)V

2This is a direct consequence of the fact that for an ideal
I in the ring of integers of a discrete valuation field, any
element x ∈ I such that val(x) = min val(I) generates I ,
with the converse being true.

Proof. The proof of the correction of the classical FGLM
algorithm shows that, if v is a matrix whose columns are
the NF≤(x

α) with xα ∈ B≤2 and xα < xβ (written in the
basis B≤), then NF≤(xβ) ∈ Im(v).

By applying the proof of the Proposition 2.8, we obtain
thatNF≤(xβ) ∈ π−cond(v)V ectR({NF≤(xα)|xα ∈ B≤2 , x

α <
xβ}).

Finally, Lemma 3.2 implies that cond(v) ≤ cond≤,≤2(I).
The result is then clear.

3.2.2 Correction and termination

We can now prove the correction and termination of Al-
gorithm 3 under the assumption that the initial precision is
enough. Which precision is indeed enough is addressed in
the following Subsubsection.

Proposition 3.5. Let G1,≤,≤2, B≤, B≤2 , I be as in The-
orem 1.2. Then, assuming that the coefficients of the poly-
nomials of G1 are all known up to a precision O(πN) for
some N ∈ Z>0 big enough, the stabilized FGLM algorithm 3
terminates and returns a Gröbner basis G2 of I for ≤2.

Proof. The computation of the multiplication matrices only
involves multiplication and addition and the operation per-
formed do not depend on the precision. This is similar for
the computation of the NF≤(xα) processed in the algorithm
and obtained as product of Ti’s and 1. We may assume that
all those NF≤(xα), for |xα|, are obtained up to some preci-
sion O(πN) for some N ∈ Z>0 big enough. Subsubsection
3.2.3 gives a precise estimation on such an N and when it is
big enough.

Let M be the matrix whose columns are the NF≤(xβ) for
xβ ∈ B≤2 . Let cond≤,≤2 be as in Definition 1.1.

To show the result, we use the following loop invariant: at
the beginning of each time in the while loop of Algorithm
3, we have (i), B2 ⊂ B≤2 and (ii) if xβ = B2[j]xi (where
(j, i) = m, m taken at the beginning of the loop), then ev-
ery monomial xα <2 xβ satisfies xα ∈ B≤2 or NF≤(x

α) ∈
πN−cond≤,≤2V ectR(NF≤(B≤2)) + O(πN−cond≤,≤2). Here,
O(πN−cond≤,≤2) is the R-module generated by the
πN−cond≤,≤2 ǫ’s for ǫ ∈ B≤.

We begin by first proving that this proposition is a loop
invariant. It is indeed true when entering the first loop since
1 ∈ B≤2 , for I is zero-dimensional.

We then show that this proposition is stable when passing
through a loop. Let xβ = B2[j]xi with (j, i) = m. By the
way we defined it, xβ is in the border of B2 (i.e. non-trivial
multiple of a monomial of B2). Since B2 ⊂ B≤2 , we deduce
that xβ is also in either in B≤2 , or in the border of B≤2 ,
also denoted by B≤2(I).

We begin by the second case. We then have, thanks to
Lemma 3.4, NF≤(x

β) ∈ π−cond≤,≤2V ectR({NF≤(xα)|xα ∈
B≤2 , xα < xβ}). Precision being finite, it tells us that
λ = P1v = P1NF≤(xβ) only appears with coefficients of the

form O(πl′) for its coefficients or row of index i > s. This
corresponds to being in the image of ∆.

Hence, the if test succeeds, and xβ is not added to B2.
Points (i) and (ii) are still satisfied.

We now consider the first case, where xβ ∈ B≤2 . Once
again, two cases are possible. The first one is the follow-
ing: we have enough precision for, when computing λ =
P1v where v = NF≤(x

β), we can prove that v is not in
V ect(NF≤(B≤2)). In other words, we are in the else case,

and xβ is rightfully added to B2. The points (i) and (ii) re-
main satisfied. In the other case: we do not have enough pre-
cision for, when computing λ = P1v with v = NF≤(xβ), we
can prove that v is not in V ect(B≤2). In other words, numer-

ically, we get NF≤(xβ) ∈ π−cond(v)V ectR({NF≤(xα)|xα ∈

B≤2 , x
α < xβ}) +O(πN−cond(v)). In that case, the if con-

dition is successfully passed and, since cond(v) ≤ cond≤,≤2 ,
the points (i) and (ii) remain satisfied.

This loop invariant is now enough to conclude this demon-
stration. Indeed, since B2 ⊂ B≤2 is always satisfied, we can
deduce that L is always included in B≤2 ∪B≤2(I), and since
a monomial can not be considered more than once inside the
while loop, there is at most nδ loops. Hence the termina-
tion.

Regarding correction, if the if test with card(B2) = δ =
card(B≤2) is passed, then, because of the inclusion we have
proved, we have B2 = B≤2 . In that case, the leading mono-
mials which passed the if are necessarily inside the border
of B≤2(I), and can indeed be written in the quotient A/I
in terms of the monomials of B2 smaller than them. In
other words, the linear system solving with the assumption
of membership indeed builds a polynomial in I . In fine, G2

is indeed a Gröbner basis of I for ≤2.
In the second case, where the if test is failed, with

card(B2) 6= δ, then precision was not enough.

Algorithm 4: Update, iterated approximate SNF

Input : s ∈ Z≥0. A matrix v of size δ × s, P1, Q1,∆ some

matrices such that P1v
′Q1 = ∆ is an approximate

SNF of v′ with v′ the sub-matrix of v corresponding
to its s− 1 first columns. P2, Q2 are the inverses of
P1, Q1.

Output : P1, P2, Q1, Q2,∆ updated such that P1vQ1 = ∆ is
an approximate SNF of v, and P2, Q2 are inverses of
P1, Q1.

Augment trivially the matrices Q1, Q2 into square invertible
matrices with one more row and one more column ;

Compute U1, V1 and ∆′ realizing an approximate SNF of
P1vQ1, as well as U2, V2 the inverses of U1, V1 for Algorithm 1 ;
P1 := U1 × P1 ;
Q1 := Q1 × V1 ;
P2 := P2 × U2 ;
Q2 := V2 ×Q2 ;

∆ := ∆′ ;

3.2.3 Analysis of the loss in precision

We can now analyse the behaviour of the loss in precision
during the execution of the stabilized FGLM algorithm 3,
and thus estimate what initial precision is big enough for the
execution to be without error. To that intent, we analyse the
precision on the computation of the multiplication matrices
and we use the notion of condition number of Definition
1.1 to show that it can handle the behaviour of precision
inside the execution the stabilized FGLM algorithm 3. This
is what is shown in the following propositions.

Lemma 3.6. Let I,G1,≤, B≤, δ, β be as defined when an-
nouncing Theorem 1.2. Then the coefficients of the multi-
plication matrices for I are of valuation at least nδβ.

Proof. G1 is a reduced Gröbner basis of a zero-dimensional
ideal. Hence, it is possible to build a Macaulay matrix Mac
with columns indexed by the monomials of mon := {Xi ×
ǫ, i ∈ J1, nK, ǫ ∈ B≤}, in decreasing order for ≤, and rows
of the form xαg, with xα a monomial and g ∈ G, such that
this matrix is under row-echelon form, (left)-injective and
all monomials in mon ∩ LM≤(I) are leading monomial of
exactly one row of Mac. Since G1 is a reduced Gröbner

Algorithm 5: Computation of the multiplication matri-
ces
Input : The reduced Gröbner basis G of the zero-dimensional

ideal I ⊂ A for a monomial ordering ≤. deg I = δ.
B≤ = (1 = ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫδ) the canonical basis of
A/I for ≤ .

Output : The multiplication matrices Ti’s for I and ≤.

for i ∈ J1, nK do

Ti := 0δ×δ ;

L := [xiǫk|i ∈ J1, nK et ǫk ∈ B≤], ordered increasingly for ≤
with no repetition ;
for u ∈ L do

if u ∈ E≤(I) then

Ti[u, u/xi] = 1 for all i such that xi|u ;
/* The column indexed by u is zero, except on its

coefficient indexed by u/xi */

else if u = LM(g) for a certain g ∈ G then

Write g as u +
∑δ

k=1 akǫk ;

Ti[·, u/xi] := −
t(a1, . . . , aδ) for all i such that xi|u ;

else

Find the smallest xj for ≤ such that xj |u. ;
Let v = u/xj ;
Find ǫ and l such that v = xlǫ ;
V := Tl[·, v] (this column contains NF≤(v)) ;
W := TjV (W is the vector corresponding to the
normal form NF≤(xjv) = NF≤(u));
Ti[·, u/xi] := W for all i such that xi|u ;

Return T1, . . . , Tn ;

basis, the first non-zero coefficients of the rows are 1 and
all other coefficients are of valuation at least β. Mac has at
most nδ columns and rows.

The computation of the reduced row-echelon form of Mac
yields a matrix whose coefficients are of valuation at least
nδβ, except the first non-zero coefficient of each row which
is equal to 1.

NF≤(xα) for xα ∈ mon\B≤ can then be read on the row of
Mac of leading monomial xα. It proves that the coefficients
of such a NF≤(x

α) are of valuation at least nδβ. The result
is then clear.

Proposition 3.7. Let I,G1,≤,≤2, B≤, B≤2 be as defined
when announcing Theorem 1.2. Let M be the matrix whose
columns are the NF≤(xβ) for xβ ∈ B≤2 . Then, if the coef-
ficients of the polynomials of G1 are all known up to some
precision O(πN) with N ∈ Z>0, N > cond≤,≤2(M)+n2(δ+
1)2β, the stabilized FGLM algorithm 3 terminates and re-
turns an approximate Gröbner basis G2 of I for ≤2. The
coefficients of the polynomials of G2 are known up to preci-
sion N − n2(δ + 1)2β − 2cond≤,≤2(M).

Proof. We first analyse the behaviour of precision for the
computation of the multiplication matrices. There are at
most nδ matrix-vector multiplication in the execution of
Algorithm 5. The coefficients involved in those multipli-
cation are of valuation at least nδβ thanks to Lemma 3.6.
Hence, the coefficients of the Ti are known up to precision

O(πN−(nδ)2β).
We now analyse the exection of Algorithm 3. The compu-

tation of v involves the multiplication of deg(v) Ti’s and 1.

Hence, v is known up to precision O(πN−(nδ)2β−deg(v)nδβ),

which can be lower-bounded by O(πN−(δ+1)2n2β).
As a consequence, all coefficients of M are known up to

precision O(πN−(δ+1)2n2β) and this is the same for its ap-
proximate SNF.

Now, we can address the loss in precision for the linear
system solving. Thanks to Proposition 2.8, and with the
membership assumption of v to Im(v), a precision O(πN)
with N strictly bigger than (δ+1)2n2β plus the biggest valu-
ation c of an invariant factor of v is enough to solve the linear
system vW = v, and the coefficients of W are determined

up to precision O(πN−n2(δ+1)2β−2c). The Lemma 3.2 then
allows us to conclude that at any time, c ≤ cond≤,≤2(M),
hence the result.

3.2.4 Complexity

To conclude the proof of Theorem 1.2, what remains is
to give an estimation of the complexity of Algorithm 3. Re-
garding to the computation of multiplication matrices, there
is no modification concerning complexity, and what we have
to study is only the complexity of the iterated SNF compu-
tation. This is done in the following lemma:

Lemma 3.8. Let 1 ≤ s ≤ δ and prec be integers, k ∈ J1, sK

and M,C(k) be two matrices in Mδ×s(K). We assume that
the coefficients of M satisfies Mi,j = mi,jδi,j +O(πprec) for

some mi,j ∈ K and the coefficients of C(k) satisfies C
(k)
i,j =

ci,jδj,k +O(πprec) for some ci,j ∈ K. Let CSNF (M +C(k))
be the number of operations in K (at precision O(πprec))
applied on rows and columns to compute an approximate
SNF for M +C(k) at precision O(πprec). Then CSNF (M +

C(k)) ≤ sδ.

Proof. We show this result by induction on s. For s = 1, for
any δ, prec, k,M and C(k), the result is clear.

Let us assume that for some s ∈ Z>0, we have for any
δ, prec, k, M and C(k) ∈ Mδ×(s−1)(K) as in the lemma,

CSNF (M + C(k)) ≤ (s− 1)δ.
Then, let us take some δ ≥ s, k ∈ J1, sK and rec ∈ Z≥0.

Let M,C(k) be two matrices in Mδ×s(K) such that their
coefficients satisfies Mi,j = mi,jδi,j + O(πprec), for some

mi,j ∈ K, and C
(k)
i,j = ci,jδj,k +O(πprec) for some ci,j ∈ K.

Let N = M + C(k).
We apply Algorithm 1 until the recursive call. Let us

assume that the coefficient used as pivot, that is, one Ni,j

which attains the minimum of the val(Ni,j)’s, is N1,1. Then
1 operation on the columns is done when going through the
two consecutives for loops in Algorithm 1. The only other
case is that of pivot being some Ni,k for some i. Then δ− 1
operations on the rows and 1 operation on the columns are
done.

The matrix N ′ = Ñi≥2,j≥2 can be written N ′ = M ′+C
′(k)

with M ′ and C
′(k) in M(δ−1)×(s−1)(K) of the desired form,

for k = s− 1 if the pivot Ni,j is N1,1 and k = i if it is Ni,s.
By applying the induction hypothesis on N ′, we obtain that
CSNF (M + C(k)) ≤ δ + (δ − 1) × (s− 1) ≤ δs.

The result is then proved by induction.

We then have the following result regarding the complex-
ity of Algorithm 3 :

Proposition 3.9. Let G1 be an approximate reduced Gröb-
ner basis, for some monomial ordering ≤, of some zero-
dimensional I ⊂ A of degree δ, and let ≤2 be some monomial
ordering. We assume that the coefficients of G1 are known
up to precision O(πN) for some N > cond≤,≤2 . Then, the
complexity of the execution of Algorithm 3 is in O(nδ3) op-
erations in K at absolute precision O(πN).

Proof. Firstly, we remark that the computation of the ma-
trices of multiplication is in O(nδ3) operations at precision
O(πN). Now, we consider what happens inside the while

loop in Algorithm 3. The computation of approximate SNF
through Algorithm 4 are in O(δ2) operations at precision
O(πN) thanks to Lemma 3.8. The solving of linear systems
thanks to Proposition 2.8 are also in O(δ2) operations at
precision O(πN). There is at most nδ entrance in this loop
thanks to the proof of termination in Proposition 3.5. The
result is then proved.

We can recall that the complexity of the classical FGLM
algorithm is also in O(nδ3) operations over the base field.

4. SHAPE POSITION
In this Section, we analyse the special variant of FGLM

to compute a shape position Gröbner basis. We show that
the gain in complexity observed in the classical case is still
satisfied in our setting. We can combine this result with that
of [Vac14] to express the loss in precision to compute a shape
position Gröbner basis starting from a regular sequence.

4.1 Grevlex to shape
To fasten the computation of the multiplication matrices,

we use the following notion.

Definition 4.1. I is said to be semi-stable for xn if for
all xα such that xα ∈ LM(I) and xn | xα we have for all
k ∈ J1, n− 1K xk

xn
xα ∈ LM(I).

Semi-stability’s application is then explained in Proposi-
tion 4.15, Theorem 4.16 and Corollary 4.19 of [Huo13] (see
also [FGHR13]) that we recall here:

Proposition 4.2. Applying FGLM for a zero-dimensional
ideal I starting from a Gröbner basis G of I for grevlex:
1. Ti1 (i < n) can be read from G and requires no arithmetic
operation;
2. If I is semi-stable for xn, Tn can be read from G and
requires no arithmetic operation;
3. After a generic change of variable, I is semi-stable for
xn.

The FGLM algorithm can then be adapted to this setting
in the special case of the computation of a Gröbner basis of
an ideal in shape position, with Algorithm 6.

Remark 4.3. If the ideal I is weakly grevlex (or the initial
polynomials satisfy the more restrictive H2 of [Vac14]), then
I is semi-stable for xn.

The remaining of this Section is then devoted to the proof
of Theorem 1.3.

4.2 Correction, termination and precision
We begin by proving correction and termination of this

algorithm.

Proposition 4.4. We assume that the coefficients of the
polynomials of the reduced Gröbner basis G1 for grevlex are
known up to a big enough precision, and that the ideal I =
〈G1〉 is in general position and semi-stable for xn. Then
Algorithm 6 terminates and returns a Gröbner basis for lex
of I, yielding an univariate representation. Time complexity
is in O(δ3) +O(nδ2).

Proof. As soon as one can certify that the rank ofM is δ, the
dimension of A/I , then we can certify that I possesses an
univariate representation. Correction, termination are then
clear. Computing Tn and the Ti1 is free, computing the
SNF is in O(δ3) and solving the linear systems is in O(nδ2),
hence the complexity is clear.

What remains to be analysed is the loss in precision. To
that intent, we use again the condition number of I (from
grevlex to lex) and the smallest valuation of a coefficient of
G1.

Proposition 4.5. Let G1 be the reduced Gröbner basis for
grevlex of some zero-dimensional ideal I ⊂ A of degree δ.
We assume that the coefficients of the polynomials of G1

are known up to precision O(πN) for some N ∈ Z>0, except
the leading coefficients, which are exactly equal to 1. Let
β be the smallest valuation of a coefficient of G1. Let m =
condgrevlex,lex(I). We assume that m − δβ < N , that I is
in shape position and semi-stable for xn. Then Algorithm
6 computes a Gröbner basis (x1 − h1, . . . , xn−1 − hn−1, hn)
of I for lex which is in shape position. Its coefficients are
known up to precision O(πN−2m+δβ). The valuation of the
coefficients of hn is at least βδ−m, and those of the hi’s is
at least β −m.

Proof. There is no loss in precision for the computation con-
cerning the multiplication matrices since it only involves
reading coefficients on G1. Their coefficients are of valuation
at least β. The columns of M := MatBgrevlex

(NF≤(1), . . . ,

NF≤(xδ−1
n)) are obtained using Tn. Their coefficients are

known up to precision O(πN+(δ−1)β) and are of valuation at
least (δ− 1)β. For z[δ], it is O(πN+δβ) and δβ. The only re-
maining step to analyse is then the solving of linear systems,
which is clear thanks to Theorem 2.7.

4.3 Summary on shape position
Thanks to the results of [Vac14] and [Vac15], we can ex-

press the loss in precision to compute a Gröbner basis in
shape position under some genericity assumptions. Let F =
(f1, . . . , fn) ∈ R[X1, . . . , Xn] be a sequence of polynomials
satisfying the hypotheses H1 and H2 of [Vac14] for grevlex.
Let D be the Macaulay bound of F and I = 〈F 〉 . We as-
sume that I is strongly stable for xn. Let δ = deg(I). Let
β = −precMF5(F,D, grevlex) be the bound on loss in pre-
cision to compute an approximate grevlex Gröbner basis of
[Vac14]. Let γ = −δβ + 2condgrevlex,lex(I).

Theorem 4.6. If the coefficients of the fi’s are known up
to precision N > γ, then one can compute a shape position
Gröbner basis for I with precision N − γ on its coefficients.

Proof. An approximate reduced Gröbner basis of I for grevlex
is determined up to precision N +2β and its coefficients are
of valuation at least β. Thanks to Proposition 4.5, the lexico-
graphical Gröbner basis of I is of the form x1 − h1(xn), . . . ,
xn−1 − hn−1(xn), hn(xn). Moreover, the coefficients of hn

are of valuation at least δβ − condgrevlex,lex(I) and known
at precision N − δβ− 2condgrevlex,lex(I). For the other hi’s,
the coefficients are of valuation at least β−condgrevlex,lex(I)
and precision N − γ.

Remark 4.7. As a corollary, if xn ∈ R is such that val(f ′
n(x))

= 0, then xn lifts to x ∈ V (I), known at precision N − 2γ.

Algorithm 6: Stabilized FGLM algorithm for an ideal
in shape postition starting from grevlex

Input : An approximate reduced Gröbner basis G1 for
grevlex of some ideal I ⊂ A of dimension zero and
degree δ. I is semi-stable for xn and in in shape
position.

Output : An approximate Gröbner basis G2 of I for ≤lex, in
shape position, or Error if the precision is not
enough.

Read the multiplication matrix Tn for I and grevlex using G;
G2 := ∅ ;
Read the y[i] := Ti1’s from G (1 ≤ i < n) ;
z[0] := 1 ;
for i from 1 to δ do

Compute z[i] = Tnz[i− 1] ;

M := MatB≤
(z[0], . . . , z[δ − 1]) ;

Compute ∆ the SNF of M with ∆ = PMQ ;
if rank(M) == δ then

for i from 1 to n− 1 do
Let U s.t. y[i] = −M · U thanks to P,Q,∆ and Thm
2.7 ;

hi(T) :=
∑δ−1

i=1 U [i]T i ;

Let U s.t. z[δ] = −M · U thanks to P,Q,∆ and Thm 2.7 ;

hn(T) := T δ +
∑δ−1

i=1 U [i]T i ;
Return x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn) ;

else
Return ”Error, not enough precision”

5. EXPERIMENTAL RESULTS
An implementation in Sage [S+11] of the previous algo-

rithms is available at http://www2.rikkyo.ac.jp/web/vaccon/fglm.sage.
Since the main goal of this implementation is the study
of precision, it has not been optimized regarding to time-
complexity. We have applied the main Matrix-F5 algorithm
of [Vac14] to homogeneous polynomials of given degrees,
with coefficients taken randomly in Zp (using the natural
Haar measure): f1, . . . , fs, of degree d1, . . . , ds in Zp[X1, . . . , Xs],
known at precision O(p150), for grevlex, using the Macaulay
bound D. We also used the extension to the affine case of
[Vac14] to handle affine polynomials with the same setting
(we specify this property in the column aff.). We have then
applied our p-adic variant of FGLM algorithm, specialized
for grevlex to lex or not , on the obtained Gröbner bases to
get Gröbner bases for the lex order.

d = nbtest aff. fast D p max mean fail
[3,3,3] 20 no no 7 2 21 3 (0,0)
[3,3,4] 20 no no 8 2 21 3 (0,0)
[4,4,4] 20 no no 10 2 28 5.2 (0,0)

[3,3,3] 20 yes no 7 2 150 78 (0,0)
[3,3,4] 20 yes no 8 2 149 92 (0,5)
[4,4,4] 20 yes no 10 2 150 118 (0,11)

[3,3,3] 20 yes yes 7 2 145 65 (0,1)
[3,3,4] 20 yes yes 8 2 150 89 (0,7)
[4,4,4] 20 yes yes 10 2 156 124 (0,15)

[3,3,3] 20 no no 7 65519 0 0 (0,0)
[4,4,4] 20 no no 10 65519 0 0 (0,0)

[3,3,3] 20 yes no 7 65519 0 0 (0,0)
[4,4,4] 20 yes no 10 65519 0 0 (0,0)

[3,3,3] 20 yes yes 7 65519 0 0 (0,0)
[4,4,4] 20 yes yes 10 65519 0 0 (0,0)

This experiment has been realized nbtest times for each
given choice of parameters. We have reported in the previ-
ous array the maximal (column max), resp. mean (column
mean), loss in precision (in successful computations), and
the number of failures. This last quantity is given as a cou-
ple: the first part is the number of failure for the Matrix-F5
part and the second for the FGLM part.

We remark that these results suggest a difference of order
in the loss in precision between the affine and the homoge-
neous case. Qualitatively, we remark that, for some given
initial degrees, more computation (particularly computation
involving loss in precision) are done in the affine case, be-
cause of the inter-reduction step. Also, it seems clear that
loss in precision decreases when p increases, in particular, on
small instances like here, loss in precision when p = 65519
are very unlikely.

6. FUTURE WORKS
Following this work, it would be interesting to investigate

whether the sub-cubics algorithms of [FM11, FM13, Mou13,
FGHR13, FGHR14, Huo13] could be adapted to the p-adic
setting with reasonable loss in precision. Another possibility
of interest for p-adic computation would be the extension of
FGLM to tropical Gröbner bases.

7. REFERENCES
[CL14] Xavier Caruso and David Lubicz. Linear algebra over

Zp[[u]] and related rings. LMS J. Comput. Math.,
17(1):302–344, 2014.

[CRV14] Xavier Caruso, David Roe, and Tristan Vaccon. Tracking
p-adic precision. LMS J. Comput. Math., 17(suppl.
A):274–294, 2014.

[CRV15] Xavier Caruso, David Roe, and Tristan Vaccon. p-Adic
Stability In Linear Algebra. pages 101–108, 2015.

[FGHR13] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and
Guénaël Renault. Polynomial Systems Solving by Fast
Linear Algebra. preprint, 2013. 23 pages.

[FGHR14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and
Guénaël Renault. Sub-cubic Change of Ordering for
Gröbner Basis: A Probabilistic Approach. In
Proceedings of the 39th International Symposium on
Symbolic and Algebraic Computation, pages 170–177,
Kobe, Japon, July 2014. ACM.

[FGLM93] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard,
and Teo Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. Journal of
Symbolic Computation, 16(4):329–344, 1993.

[FM11] Jean-Charles Faugère and Chenqi Mou. Fast Algorithm
for Change of Ordering of Zero-dimensional Gröbner
Bases with Sparse Multiplication Matrices. In
Proceedings of the 36th international symposium on
Symbolic and algebraic computation, ISSAC ’11, pages
115–122, New York, NY, USA, 2011. ACM.

[FM13] Jean-Charles Faugère and Chenqi Mou. Sparse FGLM
algorithms. CoRR, abs/1304.1238, 2013.

[Huo13] Louise Huot. Résolution de systèmes polynomiaux et
cryptologie sur les courbes elliptiques. PhD thesis,
Université Pierre et Marie Curie (Paris VI), December
2013. http://tel.archives-ouvertes.fr/tel-00925271.

[Mou13] Chenqi Mou. Solving Polynomial Systems over Finite
Fields: Algorithms, Implementation and Applications.
Theses, Université Pierre et Marie Curie, May 2013.

[S+11] W.A. Stein et al. Sage Mathematics Software (Version
4.7.2). The Sage Development Team, 2011.
http://www.sagemath.org.

[Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate
Texts in Mathematics. Springer-Verlag, New
York-Berlin, 1979. Translated from the French by
Marvin Jay Greenberg.

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic
properties of certain Hecke algebras. Ann. of Math. (2),
141(3):553–572, 1995.

[Vac14] Tristan Vaccon. Matrix-F5 algorithms over
finite-precision complete discrete valuation fields. In
Proceedings of the 2014 ACM on International
Symposium on Symbolic and Algebraic Computation,
ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
397–404, 2014.

[Vac15] Tristan Vaccon. p-adic precision. Theses, Université
Rennes 1, July 2015.

http://www2.rikkyo.ac.jp/web/vaccon/fglm.sage
http://tel.archives-ouvertes.fr/tel-00925271

	Introduction
	Notations
	Mains results
	The FGLM algorithm
	Linear algebra and Smith Normal Form

	SNF and linear systems
	SNF and approximate SNF
	Solving linear systems

	Stability of FGLM
	A stabilized algorithm
	Proof of the algorithm
	Growth of the condition in iterated SNF
	Correction and termination
	Analysis of the loss in precision
	Complexity

	Shape position
	Grevlex to shape
	Correction, termination and precision
	Summary on shape position

	Experimental Results
	Future works
	References

