
HAL Id: hal-01266147
https://hal.archives-ouvertes.fr/hal-01266147

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clique-decomposition revisited
David Coudert, Guillaume Ducoffe

To cite this version:
David Coudert, Guillaume Ducoffe. Clique-decomposition revisited. [Research Report] INRIA Sophia
Antipolis - I3S. 2016. �hal-01266147�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49426724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01266147
https://hal.archives-ouvertes.fr

Clique-decomposition revisited∗

David Coudert1,2 and Guillaume Ducoffe2,1

1Inria, France
2Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract

The decomposition of graphs by clique-minimal separators is a common algorithmic tool, first in-
troduced by Tarjan. Since it allows to cut a graph into smaller pieces, it can be applied to pre-
process the graphs in the computation of many optimization problems. However, the best known
clique-decomposition algorithms have respective O(nm)-time and O(n2.69)-time complexity, that is pro-
hibitive for large graphs. Here we prove that for every graph G, the decomposition can be computed in
O

(
T (G) + min{n2.3729, ω2n}

)
-time with T (G) and ω being respectively the time needed to compute a

minimal triangulation of G and the clique-number of G. In particular, it implies that every graph can
be clique-decomposed in Õ(n2.3729)-time. Based on prior work from Kratsch et al., we prove in addition
that computing the clique-decomposition is at least as hard as triangle detection. Therefore, the exis-
tence of any o(n2.3729)-time clique-decomposition algorithm would be a significant breakthrough in the
field of algorithmic. Finally, our main result implies that planar graphs, bounded-treewidth graphs and
bounded-degree graphs can be clique-decomposed in linear or quasi-linear time.

Keywords: clique-decomposition; minimal triangulation; clique-number; treewidth; planar graphs;
bounded-degree graphs.

1 Introduction

Our purpose in this work is to study the complexity of separating a graph with all its minimal separators
that are cliques. In the literature, such minimal separators are called clique-minimal separators, and the
decomposition process is called clique-decomposition. We refer to [6] for a survey. The clique-decomposition
has been introduced by Tarjan in [32], where it is studied for its algorithmic applications. Indeed, it is often
the case that hard problems on graphs (theoretically or in practice) can be solved on each subgraph of the
clique-decomposition separately. See for instance [4, 9, 14, 15, 18, 19, 26, 34]. In particular, there are NP-
hard problems that can be solved on graphs when the subgraphs obtained with the clique-decomposition are
“simple enough” w.r.t. the problem. This was first noted by Gavril in [22] for the so-called clique-separable
graphs. Other classes of graphs with a “simple” clique-decomposition comprise the chordal graphs (that
can be clique-decomposed into complete subgraphs), the EPT graphs [23] and the P6-free graphs [12, 13].
Note that general graphs may fail to contain a clique-minimal separator (we will call them prime graphs
in the following), however in practice the biological networks, the graph of the autonomous systems of the
Internet and some other complex networks do contain clique-minimal separators — as supported by some
experimentations [1, 15].

With the exception of an O(n2.69)-time algorithm in [28], all the best known algorithms for computing
clique-decomposition have an O(nm)-time complexity [2, 30, 32], that is cubic for dense graphs. Therefore,

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program “Investments
for the Future” under reference ANR-11-LABX-0031-01.

1

it becomes too prohibitive to run them on large graphs with thousands of vertices and sometimes billions of
edges. Following a recent trend in algorithmic [11], we here investigate on the optimal time for computing
the clique-decomposition.

Related work. To the best of our knowledge, the time complexity of clique-decomposition has received
little attention in the literature. We are only aware of a recent article [7] introducing a generic framework
to compute the clique-decomposition of graphs. This framework applies to all the best-known algorithms to
compute the clique-decomposition. Indeed, all these algorithms follow the same three steps:

1. Compute a minimal triangulation of the graph;

2. Find the clique-minimal separators of the graphs (using the minimal triangulation);

3. Finally, recursively disconnect the graph with its clique-minimal separators.

We emphasize that the first step: computing a minimal triangulation, has been extensively studied (see [24]
for a survey). So far, the best-known algorithm to compute a minimal triangulation of a graph has an
Õ(n2.3729)-time complexity. Note that it is less than O(n2.69), that has been the best-known complexity for
computing the clique-decomposition of a graph — until this note.

Furthermore, new clique-decomposition algorithms are proposed in [7] that are provably faster than the
classical approach in some cases, that is, they run in O(nm0)-time for some m0 < m. In order to compare
these algorithms with our work, let us note that the authors in [7] claim that bounded-treewidth graphs
can be clique-decomposed in quadratic-time, whereas we will show that it can be done in quasi linear-time.
Fast (quadratic-time) algorithms to compute the clique-decomposition can also be found in [3, 8] for some
specific graph classes, but the latter algorithms deeply rely upon the structural properties of these graphs.

Closest to our work are two papers from Kratsch and Spinrad [27, 28]. In [28], they describe what has been,
until this note, the best-known algorithm to compute the clique-decomposition. The latter algorithm has
running timeO(n2.69), that follows from an algorithm to compute a minimal triangulation of the graph within
the same time bounds. We will generalize their result in our work, proving that the clique-decomposition
can be computed in O(n2.3729)-time if any minimal triangulation of the graph is given1. Furthermore, lower-
bounds on the complexity of computing the clique-decomposition can be deduced from some results in [27].
In particular, they show that finding a clique-minimal separator in a graph is at least as hard as finding a
simplicial vertex, even if a minimal elimination ordering is given as part of the input. The latter implies that
computing a minimal triangulation is not the only complexity bottleneck of clique-decomposition algorithms.

Our contributions. On the negative side, we first prove a lower-bound on the complexity of computing
the clique-decomposition. More precisely, we will build upon a result in [27] in order to prove that clique-
decomposition is at least as hard as triangle detection (Theorem 4).

We next focus on the two last steps of clique-decomposition algorithms, that is, we ignore the first step of
computing a minimal triangulation. Our main result is that the clique-minimal separators of a graph G can
be computed in O(T (G) + min{n2.3729, ω2n})-time, with T (G) and ω being respectively the time needed to
compute a minimal triangulation of G and the clique-number of G (let us remind that the clique-number of
G is the size of a largest clique in G). The latter result follows from two simple algorithms that respectively
run in O(T (G) + n2.3729)-time (Proposition 5) and in O(T (G) + ω2n)-time (Proposition 6). Furthermore,
whereas the first algorithm (in O(T (G) + n2.3729)-time) relies upon fast matrix multiplication, the second
one is purely combinatorial and can be easily implemented.

We finally notice that any graph G can be clique-decomposed within the same time bound O(T (G) +
min{n2.3729, ω2n}) (Theorem 7). Since a minimal triangulation can be computed in T (G) = Õ(n2.3729)-
time for any graph G, our main result implies that any graph can be clique-decomposed in Õ(n2.3729)-time.
Furthermore, faster and practical algorithms can be obtained in some cases — whenever the graphs have
bounded clique-number and a minimal triangulation can be computed efficiently. We will show it is the case

1It seems to us that the techniques in [28] could also be applied to any minimal triangulation. Nonetheless, we will propose
a method that is, to our opinion, slightly simpler than theirs.

2

1

2 3

4

6 5

7
8

(a) G

S1 = {2, 6}

A1 = {1, 2, 6} S2 = {2, 6, 8}

A2 = {2, 6, 7, 8} A3 = {2, 3, 4, 5, 6, 8}

(b) Atom tree of G

Figure 1: A connected graph G (Figure 1a), an atom tree of the graph (Figure 1b).

for interesting graph classes such as planar graphs, bounded-treewidth graphs and bounded-degree graphs
(see Section 5.1 for details).

Altogether, this is hint that our Õ(n2.3729)-time clique-decomposition algorithm is optimal up to polyloga-
rithmic factors — due to the well-know equivalence between triangle detection and matrix multiplication [33].

Definitions and useful notations are given in Section 2. Last, we will conclude this paper with an open
conjecture in Section 6.

2 Definitions and preliminaries

We will use standard graph terminology from [10]. Graphs in this study are finite, simple (hence without
loops nor multiple edges) connected and unweighted, unless stated otherwise. Given a graph G = (V,E) and
a set S ⊆ V , we will denote by G[S] the subgraph of G that is induced by S. The open neighbourhood of
S, denoted by N(S), is the set of all vertices in G[V \ S] that are adjacent to at least one vertex in S. The
closed neighbourhood of S is denoted by N [S] = N(S) ∪ S.

Clique-minimal separators. A set S ⊆ V is a separator in G if there are at least two connected com-
ponents in G[V \ S]. In particular, a full component in G[V \ S] is any connected component C in G[V \ S]
satisfying that N(C) = S (note that a full component might fail to exist). The set S is called a minimal
separator in G if it is a separator and there are at least two full components in G[V \ S]. In particular, S is
a clique-minimal separator if it is a minimal separator and G[S] is a complete subgraph.

Clique-decomposition and atom tree. A graph is prime if it does not contain any clique-minimal
separator. Examples of prime graphs are the complete graph Kn and the cycle graph Cn. The clique-
decomposition of a graph G is the family of all inclusionwise maximal subsets Ai such that G[Ai] is prime,
and it is unique [30]. The subsets Ai are called the atoms of G.

Usually, we represent the clique-decomposition with a binary rooted tree, that is called an atom tree and
is recursively defined as follows (see Figure 1 for an illustration).

• If G is a prime graph then it has a unique atom tree, that is a single node labeled with V .

• Else, an atom tree of G is any binary rooted tree such that: its root is labeled with a clique-minimal
separator S in G, the left child of the root is a leaf-node that is labelled with A = S ∪ C where C is a
full component of G[V \ S] and G[A] is prime, furthermore the subtree that is rooted at the right child
of the root is an atom tree of G[V \ C].

Informally, an atom tree can be seen as the trace of some execution of a clique-decomposition algorithm
(e.g., a decomposition ordering). Note that the atom tree of a graph may not be unique. Furthermore, any
atom tree has linear-size (defined as the sum of the label cardinalities) O(n+m) [5].

Lemma 1 ([30]). Let G = (V,E) and T be an atom tree of G. Each leaf-node of T is labeled with an atom
of G, and each atom of G appears exactly once as a leaf-node label in T .

3

Since any atom tree has linear-size, we have by Lemma 1 that
∑
i |Ai| = O(n + m), where the sets Ai

denote the atoms of G. In contrast with the above result, we observe that there may be Ω(ω2n) edges in
the subgraphs that are induced by the atoms of G, with ω being the clique-number of G, that is, the size of
a largest complete subgraph in G (e.g., see Figure 2).

...

Kω - 1

n - ω + 1

v1

v2

v3

v4

n - ω
v

v

Figure 2: A split graph G with clique-number ω. The atoms of G are the sets N [vi] for 1 ≤ i ≤ n− ω + 1.
Hence, there are ω(ω− 1)(n−ω+ 1)/2 edges in the subgraphs G[N [vi]] that are induced by the atoms of G.

Minimal triangulation. A triangulation of G = (V,E) is any supergraph H = (V,E ∪ F) such that H
does not contain any induced cycle of length at least four. In particular, H is a minimal triangulation of G
if for any strict subset F ′ ⊂ F , the supergraph H ′ = (V,E ∪ F ′) is not a triangulation of G.

There exist strong relationships between minimal triangulations and clique-minimal separators. Namely,
we will use the following lemma.

Lemma 2 ([6]). For any minimal triangulation H of a graph G, the clique-minimal separators in G are
exactly the minimal separators in H that induce complete subgraphs of G.

3 Time complexity lower-bound

Let us start proving the hardness of clique-decomposition by reducing this problem from triangle detection. In
the following, recall that a simplicial vertex is one whose closed neighbourhood induces a complete subgraph.
We will need the following lemma.

Lemma 3 ([27]). The problem of counting the number of simplicial vertices in a graph with 3n+ 2 vertices
is at least as hard as determining whether a graph on n vertices has a triangle.

Theorem 4. The problem of computing the clique-decomposition of a graph with 3n+ 2 vertices is at least
as hard as determining whether a graph on n vertices has a triangle.

Proof. Let G = (V,E) be any graph with 3n+ 2 vertices. In order to prove the theorem, by Lemma 3 it is
sufficient to prove that counting the number of simplicial vertices in G can be done in O(n+m)-time if the
clique-decomposition of G is given (encoded as an atom tree).

We claim that for every simplicial vertex v ∈ V , its closed neighbourhood N [v] is an atom, and in
particular it is the unique atom containing v. Indeed, since G[N [v]] is complete, we have that G[N [v]] is
prime, and so, the subset N [v] must be contained in any atom A containing v. Furthermore, if it were the
case that there exists u ∈ A \N [v] then the clique N(v) would be a uv-separator, thus contradicting the fact
that G[A] is prime. As a result, we have that A = N [v], that proves the claim.

Recall that using an atom tree of G, every atom Ai of G can be written Ai = Ci ∪ Si with Si being a
clique-minimal separator and Si ⊆ N(Ci). In particular, let Mi ⊆ Ci contain every vertex in the atom that
is not contained in any other atom Aj , with j 6= i. Note that all the subsets Mi can be computed by visiting
the atoms sequentially, which takes O(

∑
i |Ai|) = O(n+m)-time. Furthermore, we have by the above claim

that in order to count the number of simplicial vertices in G, it is sufficient to sum together the cardinalities

4

|Mi| of the subsets Mi such that the atom Ai is a clique. Here is a way to achieve the goal in linear-time.
Since the subsets Ci are pairwise disjoint, let us reorder the vertices in G so that in any adjacency list, it
first appears the neighbours in C1, then those in C2, and so on. In such case, the atom Ai is a clique if and
only if each vertex in Ci has |Ai| − 1 neighbours in Ai, that is, |Ai| − 1 neighbours that are not contained
in any Cj , with j < i. The latter can be verified by visiting the subsets Ci sequentially, while removing the
vertices in Ci from all adjacency lists at the ith step. Since the adjacency lists have been reordered, it can
be done in O(m+

∑
i |Ci|) = O(n+m)-time. So, overall, finding the atoms Ai that are cliques can be done

in O(n + m)-time, which implies that counting the number of simplicial vertices in G can be done within
the same time complexity.

4 Computing the clique-minimal separators

This section is devoted to fast computation of the clique-minimal separators in a graph. We will introduce
two methods which both make use of Lemma 2.

Proposition 5. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-minimal separators of G can be computed in O(T (G) + n2.3729)-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Let Ξ = (S1, S2, . . . , Sl) be the minimal separators of H, with l ≤ n. By [21],
the family Ξ can be computed in O(n + m + f) = O(n2)-time. Furthermore, recall that by Lemma 2 the
clique-minimal separators of G are exactly the separators in Ξ that are cliques of G. In order to compute
them, let V = (v1, v2, . . . , vn) be totally ordered. Let AG be the adjacency matrix of G, and let BH be the
clique matrix of H (of dimensions n × l) defined as follows. For every 1 ≤ i ≤ n and for every 1 ≤ j ≤ n,
we have bij = 1 if vi ∈ Sj and bij = 0 otherwise. Then, C = AGBH is a matrix of dimensions n × l. It can
be computed in O(n2.3729)-time by using fast matrix multiplication since l ≤ n [29]. Furthermore, for every
1 ≤ i ≤ n and for every 1 ≤ j ≤ n, we have cij = |NG(vi) ∩ Sj |. Therefore, Sj ∈ Ξ is a clique-minimal
separator of G if and only if we have cij = |Sj | − 1 for every vi ∈ Sj . As a result, the clique-minimal

separators of G are obtained from the matrix C in time O(
∑l
j=1 |Sj |), that is O(n+m+ f) = O(n2).

Proposition 6. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-minimal separators of G can be computed in O(T (G) + ω2n)-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Let us compute the set Ξ of all minimal separators of H. By [21], the family Ξ
can be computed in O(n+m+ f) = O(T (G))-time.

Let S = Ξ. Our aim is to remove separators of H from S until it only contains the clique-minimal
separators of G. In order to achieve the result, let V = (v1, v2, . . . , vn) be totally ordered. We consider the
vertices sequentially. For every 1 ≤ i ≤ n, let Si ⊆ S contain every S ∈ S such that vi ∈ S. Furthermore,
let S<i := S ∩ {v1, . . . , vi−1} for every S ∈ Si. If S<i 6⊆ NG(vi) then S is not a clique and it is discarded
from S. Therefore, once the algorithm has terminated, subsets in S are exactly the minimal separators of H
that are cliques of G. By Lemma 2, these are exactly the clique-minimal separators of G. Hence the above
algorithm is correct.

Let us focus on the time complexity. Assume for ease of computation that we maintain an “incidence
graph” IS : with vertex set V ∪S and an edge between every vertex vi ∈ V and every separator S ∈ Si. Note
that IS can be constructed at the initialization step (when Ξ = S) in O(|V |+

∑
S∈Ξ |S|) = O(n+m+f)-time,

that is O(T (G)). Furthermore, for every 1 ≤ i ≤ n the separators in Si are exactly the neighbours of vertex
vi in IS , hence it takes O(|Si|)-time to access to each of the separators in Si. Discarding a separator S ∈ Si
from S is equivalent to deleting the vertex corresponding to S in IS , which can be done in O(|S|)-time.
Overall, these two types of operations (accessing and discarding) take O(

∑n
i=1 |Si| +

∑
S∈Ξ |S|)-time, that

is O(
∑
S∈Ξ |S|) = O(T (G))-time.

5

Finally, deciding whether S<i 6⊆ NG(vi) for every S ∈ Si takes time O(|NG(vi)| +
∑
S∈Si |S<i|). Fur-

thermore, since the vertices are considered sequentially, we have that S<i is a clique for every S ∈ Si
(or else, S would have been discarded from S at some step j < i of the algorithm). This implies that∑
i|S∈Si |S<i| ≤

∑ω
j=1 j = ω(ω + 1)/2 = O(ω2) for every S ∈ Ξ. Hence, since H is triangulated, and so,

|Ξ| ≤ n, we have:
n∑
i=1

∑
S∈Si

|S<i| =
∑
S∈Ξ

∑
i|S∈Si

|S<i| = O(ω2n).

5 Faster computation of clique-decomposition

In Section 4, we proved that if a minimal triangulation of a graph G can be computed in time T (G), then
the clique-minimal separators of G can be computed in O(T (G) + min{n2.3729, ω2n})-time. We now prove
that an atom tree of G can be computed within the same time bounds.

Theorem 7. Let G = (V,E). Suppose that a minimal triangulation of G can be computed in time T (G).
Then, the clique-decomposition of G can be computed in O(T (G) + min{n2.3729, ω2n})-time.

Proof. Let H = (V,E∪F) be a minimal triangulation of G, with f = |F | fill edges. By the hypothesis it can
be computed in time T (G). Furthermore, the clique-decomposition of G can be computed in O(n+m+f) =
O(T (G))-time if H and the clique-minimal separators of G are given [7]. By Propositions 5 and 6, the
clique-minimal separators of G can be computed in O(T (G) + min{n2.3729, ω2n})-time. So, overall it takes
O(T (G) + min{n2.3729, ω2n})-time to compute the clique-decomposition of G.

On the combinatorial side, our approach for computing the clique-decomposition (Theorem 7) is at least
as good as the state-of-the-art O(nm)-time algorithm. Indeed, for any graph G, a minimal triangulation of
G can be computed in time T (G) = O(nm) [31]. Furthermore if G has clique-number ω then it has number
of edges m ≥ ω(ω − 1)/2 = Ω(ω2).

Corollary 8. The clique-decomposition of a graph G can be computed in Õ(n2.3729)-time.

Proof. Since a minimal triangulation of a graph G can be computed in Õ(n2.3729)-time [25], the result follows
from Theorem 7 by replacing T (G) with Õ(n2.3729).

5.1 Applications

By Theorem 7, the clique-decomposition of a graph G can be computed in quasi linear-time if i) G has
bounded clique-number and ii) a minimal triangulation of G can be computed efficiently. Below, we list a
few graph classes for which it is the case.

• A graph G has tree-width at most k if there exists a triangulation of G with clique-number at most k.
Note that the clique-number ω of G is a lower-bound on its tree-width. Furthermore, if G has tree-
width k then a minimal triangulation of G can be computed in O(k7 · n log n)-time [20]. Therefore, by
Theorem 7 the clique-decomposition of bounded tree-width graphs can be computed in O(n log n)-time.

• A graph G is planar if it can be drawn in the Euclidean plane so that edges may only intersect at their
endpoints. By Kuratowski Theorem, G is planar if and only if G is {K3,3,K5}-minor-free. So, a planar
graph G has bounded clique-number ω ≤ 4. Furthermore, if G is planar then a minimal triangulation
of G can be computed in O(n)-time [16]. As a result, by Theorem 7 the clique-decomposition of planar
graphs can be computed in linear-time.

6

• Finally, let us consider bounded-degree graphs. Indeed, for every graph G, ω ≤ ∆ + 1 with ω and ∆
being respectively the clique-number and the maximum degree of G. Therefore, bounded-degree graphs
have bounded clique-number. Furthermore, if G has maximum degree ∆ then a minimal triangulation
of G can be computed in O(n · (∆3 + α(n)))-time where α(n) here denotes the inverse of Ackerman’s
function [17]. Hence by Theorem 7 the clique-decomposition of bounded-degree graphs can be computed
in O(n · α(n))-time.

6 Conclusion

By Corollary 8, the time complexity of computing the clique-decomposition of an n-vertex graph G is
Õ(n2.3759). It is unlikely that the problem can be solved in o(n2.3759)-time by Theorem 4 (recall that the
two problems of triangle detection and matrix multiplication are equivalent [33]).

Finally, we proved in Theorem 7 that for every graph G with bounded clique-number ω, the clique-
decomposition of G can be computed in O(T (G) + ω2n)-time where T (G) here denotes the time needed to
compute a minimal triangulation of G. We conjecture that in fact, it can be computed in O(ω2n)-time.

References

[1] M. Abu-Ata and F. Dragan. Metric tree-like structures in real-world networks: an empirical study.
Networks, 67(1):49–68, 2016.

[2] A. Berry and J.-P. Bordat. Decomposition by clique minimal separators. Technical Report 97213, 1999.

[3] A. Berry, A. Brandstädt, V. Giakoumakis, and M. F. Efficiently decomposing, recognizing and trian-
gulating hole-free graphs without diamonds. Discrete Applied Mathematics, 184:50 – 61, 2015.

[4] A. Berry, R. Pogorelcnik, and A. Sigayret. Vertical decomposition of a lattice using clique separators.
In Proceedings of The Eighth International Conference on Concept Lattices and Their Applications,
Nancy, France, October 17-20, 2011, pages 15–29, 2011.

[5] A. Berry, R. Pogorelcnik, and G. Simonet. Efficient clique decomposition of a graph into its atom graph.
Technical Report RR-10-07, Mar. 2010.

[6] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator decomposition.
Algorithms, 3(2):197, 2010.

[7] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms of the clique separator decomposition
into an atom tree. Discrete Applied Mathematics, 177:1 – 13, 2014.

[8] A. Berry and A. Wagler. Triangulation and clique separator decomposition of claw-free graphs. In M. C.
Golumbic, M. Stern, A. Levy, and G. Morgenstern, editors, Graph-Theoretic Concepts in Computer
Science: 38th International Workshop, WG 2012, Jerusalem, Israel, June 26-28, 2012, Revised Selcted
Papers, pages 7–21. Springer Berlin Heidelberg, 2012.

[9] H. Bodlaender and A. Koster. Safe separators for treewidth. Discrete Mathematics, 306(3):337 – 350,
2006.

[10] J. Bondy and U. Murty. Graph theory. Berlin: Springer, 2008.

[11] M. Borassi, P. Crescenzi, and M. Habib. Into the square - on the complexity of quadratic-time solvable
problems. arXiv preprint arXiv:1407.4972, 2014.

[12] A. Brandstädt and C. Hoàng. On clique separators, nearly chordal graphs, and the maximum weight
stable set problem. In Integer Programming and Combinatorial Optimization, pages 265–275. Springer,
2005.

[13] A. Brandstädt and R. Mosca. Weighted efficient domination for P6-free graphs in polynomial time.
arXiv preprint arXiv:1508.07733, 2015.

7

[14] M. Changat and J. Mathew. On triangle path convexity in graphs. Discrete Mathematics, 206(1):91–95,
1999.

[15] N. Cohen, D. Coudert, G. Ducoffe, and A. Lancin. Applying clique-decomposition for computing Gromov
hyperbolicity. Research Report RR-8535, Inria, June 2014.

[16] E. Dahlhaus. Minimal elimination of planar graphs. In Algorithm Theory - SWAT ’98, 6th Scandinavian
Workshop on Algorithm Theory, Stockholm, Sweden, July, 8-10, 1998, Proceedings, pages 210–221, 1998.

[17] E. Dahlhaus. Minimal elimination ordering for graphs of bounded degree. Discrete Applied Mathematics,
116(1-2):127–143, 2002.

[18] M. Didi Biha, B. Kaba, M.-J. Meurs, and E. SanJuan. Graph decomposition approaches for terminology
graphs. In MICAI 2007: Advances in Artificial Intelligence, volume 4827 of Lecture Notes in Computer
Science, pages 883–893. Springer, 2007.

[19] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discrete Mathemat-
ics, 307(16):2008–2029, 2007.

[20] F. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and W. Wrochna. Fully polynomial-time param-
eterized computations for graphs and matrices of low treewidth. Technical Report abs/1511.01379,
arXiv, 2015.

[21] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187, 1972.

[22] F. Gavril. Algorithms on clique separable graphs. Discrete Mathematics, 19(2):159–165, 1977.

[23] M. Golumbic and R. Jamison. The edge intersection graphs of paths in a tree. Journal of Combinatorial
Theory, Series B, 38(1):8–22, 1985.

[24] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–317, 2006.

[25] P. Heggernes, J. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) =
o(n2.376). In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
907–916. Society for Industrial and Applied Mathematics, 2005.

[26] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, and A. Berry. Clustering gene expression data using
graph separators. In silico biology, 7(4-5):433–452, 2007.

[27] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). SIAM Journal on Computing, 36(2):310–325,
2006.

[28] D. Kratsch and J. Spinrad. Minimal fill in O(n2.69) time. Discrete mathematics, 306(3):366–371, 2006.

[29] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, New York, NY, USA,
2014. ACM.

[30] H.-G. Leimer. Optimal decomposition by clique separators. Discrete Mathematics, 113(1):99–123, 1993.

[31] D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal
on computing, 5(2):266–283, 1976.

[32] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221 – 232, 1985.

[33] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
645–654. IEEE, 2010.

[34] H. Yaghi and H. Krim. Probabilistic graph matching by canonical decomposition. In Image Processing,
2008. ICIP 2008. 15th IEEE International Conference on, pages 2368–2371. IEEE, 2008.

8

	Introduction
	Definitions and preliminaries
	Time complexity lower-bound
	Computing the clique-minimal separators
	Faster computation of clique-decomposition
	Applications

	Conclusion

