
HAL Id: hal-01266492
https://hal.archives-ouvertes.fr/hal-01266492

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exclusive Graph Searching
Lélia Blin, Janna Burman, Nicolas Nisse

To cite this version:
Lélia Blin, Janna Burman, Nicolas Nisse. Exclusive Graph Searching. Algorithmica, Springer Verlag,
2017, 77 (3), pp.942-969. �10.1007/s00453-016-0124-0�. �hal-01266492�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49426424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01266492
https://hal.archives-ouvertes.fr

Exclusive Graph Searching∗

Lélia Blin
Sorbonne Universités, UPMC Univ Paris 06, CNRS,

Université d’Evry-Val-d’Essonne.

LIP6 UMR 7606,

4 place Jussieu 75005, Paris, France

lelia.blin@lip6.fr

Janna Burman
LRI, Université Paris Sud, CNRS, UMR-8623, France.

janna.burman@lri.fr

Nicolas Nisse
Inria, France.

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France.

nicolas.nisse@inria.fr

February 2, 2016

Abstract

This paper tackles the well known graph searching problem, where a team of searchers
aims at capturing an intruder in a network, modeled as a graph. This problem has been
mainly studied for its relationship with the pathwidth of graphs. All variants of this problem
assume that any node can be simultaneously occupied by several searchers. This assumption
may be unrealistic, e.g., in the case of searchers modeling physical searchers, or may require
each individual node to provide additional resources, e.g., in the case of searchers modeling
software agents. We thus introduce and investigate exclusive graph searching, in which no
two or more searchers can occupy the same node at the same time. As for the classical
variants of graph searching, we study the minimum number of searchers required to capture
the intruder. This number is called the exclusive search number of the considered graph.
Exclusive graph searching appears to be considerably more complex than classical graph
searching, for at least two reasons: (1) it does not satisfy the monotonicity property, and (2)
it is not closed under minor. Moreover, we observe that the exclusive search number of a
tree may differ exponentially from the values of classical search numbers (e.g., pathwidth).
Nevertheless, we design a polynomial-time algorithm which, given any n-node tree T , com-
putes the exclusive search number of T in time O(n3). Moreover, for any integer k, we
provide a characterization of the trees T with exclusive search number at most k. Finally,
we prove that the ratio between the exclusive search number and the pathwidth of a graph
is bounded by its maximum degree.

1 Introduction

Graph Searching was first introduced by Breisch [5, 6] in the context of speleology, for solving
the problem of rescuing a lost speleologist in a network of caves. Alternatively, graph searching

∗An extended abstract of this work has been presented in ESA 2013 [4]

1

can be defined as a particular type of cops-and-robber game, as follows. Given a graph G,
modeling any kind of network, the goal is to design a strategy for a team of searchers moving
in G resulting in capturing an intruder. There are no limitations on the capabilities of the
intruder, who may be arbitrary fast, be aware of the whole structure of the network, and be
perpetually aware of the current positions of the searchers. The objective is to compute the
minimum number of searchers required to capture the intruder in G.

To be more formal regarding the behavior of the intruder, it is more convenient to rephrase
the problem in terms of clearing a network of pipes contaminated by some gas [15]. In this
framework, a team of searchers aims at clearing the edges of a graph, which are initially con-
taminated. Searchers stand on the nodes of the graph, and can slide along its edges. Moreover,
a searcher can be removed from one node and then placed to any other node, i.e., a searcher
can “jump” from node to another. Sliding of a searcher along an edge, as well as positioning
one searcher at each extremity of an edge, results in clearing that edge. Nevertheless, if there
is a path free of searchers between a clear edge and a contaminated edge, then the former is
instantaneously recontaminated. Thus, to actually keep an edge clear, searchers must occupy
appropriate nodes for avoiding recontamination to occur.

Informally, a search strategy is a sequence of movements executed by the searchers, resulting
in all edges being eventually clear. The main question tackled in the context of graph searching
is, given a graph G, compute a search strategy minimizing the number of searchers required for
clearing G. This number, denoted by s(G), is called the search number of the graph G. For
instance, one searcher is sufficient to clear a path graph, while two searchers are necessary (and
sufficient) in a cycle: the search number of any path is 1, while the search number of any cycle
is 2.

The above variant of graph searching is actually called mixed-search [3]. Other classical
variants of graph searching are node-search [2], edge-search [14,15], connected-search [1], etc. All
these variants suffer from two serious limitations as far as practical applications are concerned:

• First, all these works assume that any node can be simultaneously occupied by several
searchers. This assumption may be unrealistic in several contexts. Typically, placing
several searchers at the same node may simply be impossible in a physical environment in
which, e.g., the searchers are modeling physical robots moving in a network of pipes. In
the case of software agents deployed in a computer network, maintaining several searchers
at the same node may consume local resources (e.g., memory, computation cycles, etc.).
We investigate exclusive graph searching, i.e., graph searching bounded to satisfy the
exclusivity constraint stating that no two or more searchers can occupy the same node at
the same time.

• Second, most variants of graph searching also suffer from another unrealistic assumption:
searchers are enabled to “jump” from one node of the graph, to another, potentially far
away, node (e.g., see the classical mixed-search, defined above). We restrict ourselves to
the more realistic internal search strategies [1], in which searchers are limited to move
along the edges of the graph, that is, restricted to satisfy the internality constraint.

To sum up, we define exclusive-search as mixed-search with the additional exclusivity and
internality constraints1. As for all classical variants of graph searching, we study the minimum
number of searchers required to clear all edges of a graph G. This number is called the exclusive
search number, denoted by xs(G).

1Note that, whenever exclusivity is not required, internality is not a strong constraint (difficult to overcome),
since the jumping of one searcher from a node u to a node v can be replaced by sliding this searcher along a path
from u to v. However, the combination of exclusivity and internality makes the problem much more difficult.

2

We demonstrate that exclusive graph searching behaves very differently from classical graph
searching, for at least two reasons. First, it does not satisfy the monotonicity property. That
is, there are graphs (even trees) in which every exclusive search strategy using the minimum
number of searchers requires to let recontamination occurring at some step of the strategy.
Second, exclusive graph searching is not closed under taking minor (not even under subgraph).
That is, there are graphs G and H such that H is a subgraph of G, and xs(H) > xs(G).
The absence of these two properties (which will be formally established in the paper) makes
exclusive-search considerably different from classical search, and its analysis requires introducing
new techniques.

Our Results. First, in Section 2, we formally define exclusive graph searching and present
basic properties for general graphs. Motivated by positive results for trees and inspired by
the pioneering work of Parson [15] and Megiddo et al. [14], we essentially focus on trees. We
observe that the exclusive search number of a graph can differ exponentially from the values of
classical search numbers: in a tree, the former can be linear in the number of nodes n, while all
classical search numbers of trees are at most O(log n). On the other hand, we prove that the
ratio between the exclusive search number and other search numbers is bounded in the class of
graphs with bounded maximum degree. Formally, we prove that xs(G) ≤ (∆−1) · (s(G)+1) in
any graph G with maximum degree ∆. Section 3 is devoted to proving some technical properties
of exclusive graph searching in trees. Our main result (Section 4) is a polynomial-time algorithm
which, given any n-node tree T , computes the exclusive search number xs(T) of T in time O(n3).
Our algorithm is based on a new characterization of the trees with exclusive search number at
most k, for any given k ≤ n.

Related Work. Graph searching has mainly been studied in the centralized setting for its
relationship with the treewidth and pathwidth of graphs [3, 10]. In particular, the pathwidth of
a graph and its mixed-search number differ by at most one [3, 12]. An important property of
mixed-graph searching is the monotonicity property. A strategy is monotone if no edges are
recontaminated once they have been cleared. For any graph G, there is an optimal winning
monotone (mixed-search) strategy [3]. By extension, mixed-search is said monotone. This
enables to prove that the number of steps of an optimal strategy is polynomially bounded by
the number of edges. Hence, the problem to decide the mixed-search number of a graph belongs
to NP.

The problem of computing the search number of a graph is NP-hard [14]. However, this
problem is polynomial in various graph classes [9, 11, 18]. In particular, it has been widely
studied in the class of trees [8,14–17]. More precisely, Parsons has given a nice characterization
of trees with search number k: for any k ≥ 1, a tree T has search number at least k + 1 if
and only if there is a node v ∈ V (T) such that at least three components of T \ v have search
number at least k [14, 15]. This result and the relative simplicity of its proof mainly come
from the monotonicity of classical graph searching and from the fact that search number is not
increasing by taking subtrees.

Other variants of graph searching have been introduced to deal with practical applications.
Connected graph searching, in which the set of clear edges must always induce a connected
subgraph (in order to ensure safe communications between the searchers), is not monotone in
general [19] and it is not known if connected search is in NP. Connected search is however
monotone in trees [1]. The connectivity constraint may only increase the search number of any
graph by a factor up to two [7].

Concerning exclusive graph searching, a recent work has shown that computing the exclusive
search number is NP-hard in planar graphs with maximum degree 3 [13]. In the same paper,
it is proved that the computational complexities of monotone exclusive graph searching and
pathwidth cannot be compared. Precisely, monotone exclusive graph searching is NP-complete

3

in split graphs where pathwidth is known to be solvable in polynomial time. Moreover, monotone
exclusive graph searching is in P in a subclass of star-like graphs where pathwidth is known to
be NP-hard [13].

2 Exclusive Search

In this section, we provide the formal definition of exclusive graph searching, and present some
basic general properties. All graphs considered in this paper are undirected, simple and con-
nected.

Given a connected n-node graph G, an exclusive search strategy in G, using k ≤ n searchers
consists in (1) placing the k searchers at k different nodes of G, and (2) performing a sequence
of moves. A move consists in sliding one searcher from one extremity u of an edge e = {u, v}
to its other extremity v. Such a move can be authorized only if v is free of searchers. That is,
exclusive-search limits the strategy to place at most 1 searcher at each node, at any point in
time. The edges of graph G are supposed to be initially contaminated. An edge becomes clear
whenever either a searcher slides along it, or one searcher is placed at each of its extremities.
An edge becomes recontaminated whenever there is a path free of searchers from that edge to
a contaminated edge. A search strategy is winning if its execution results in all edges of the
graph G being simultaneously clear. The exclusive-search number of G, denoted by xs(G) is
the smallest number k for which there exists a winning search strategy in G.

Now, we state and explain the main differences between exclusive search and all classical
variants of graph searching. These differences are mainly due to the combination of the two
restrictions introduced in exclusive search: two searchers cannot occupy the same node (ex-
clusivity) and a searcher cannot “jump” (internality). Intuitively, the difficulty occurs when a
searcher has to go from one node u to a far away node v, and all paths from u to v contain an
occupied node.

Consider a simple example of a star with central node c and f leaves. In the classical
graph searching, one searcher can occupy c, while a second searcher will sequentially clear all
leaves, either by jumping from one leaf to another, or by sliding from one leaf to another, and
therefore occupying several times the already occupied node c. In exclusive graph searching,
such strategies are not allowed. Intuitively, if a searcher r1 has to cross a node v that is already
occupied by another searcher r2, the latter should step aside for letting r1 pass. However, r2

may occupy v to preserve the graph from recontamination, and moving away from v could lead
to recontaminate the whole graph. To avoid this, it may be necessary to use extra searchers
(compared to the classical graph searching) that will guard several neighbors of v to prevent
from recontamination when r2 gives way to r1. It follows that, as opposed to all classical
search numbers, which differ by at most some constant multiplicative factor, the exclusive
search number may be arbitrary large compared to the mixed-search number, even in trees. For
instance, it is easy to check that xs(Sn) = n− 2 for any n-node star Sn, n ≥ 3. More generally,

Claim 1 For any tree T with maximum degree ∆ ≥ 2, xs(T) > ∆− 2 .

Proof. We prove the following more general result. Let G be any connected graph with a
cut-vertex v (so G has at least two edges) and let cc(v) ≥ 2 be the number of the connected
components in G \ {v}, then xs(G) > cc(v)− 2. The result clearly holds if cc(v) = 2 since any
strategy must use at least one searcher to clear any graph with at least one edge. Therefore,
we may assume that cc(v) > 2.

Let v be a cut-vertex of a graph G and consider any strategy using at most cc(v) − 2
searchers. Initially, at least two components U and W of G \ {v} are unoccupied and so all

4

edges in these components are contaminated. Let us, consider the first step when a searcher
occupies a node in one of these components, say U . That is, let us consider the first step when a
searcher slides from v to a node in U . But after this step, no searchers are occupying a node in
W which is still contaminated, no searcher is occupying v and there is a connected component
C of G\({v}∪U∪W) that contains no searchers. Hence, C is fully (re)contaminated. Hence, at
any step of the strategy, at least two connected components of G \ {v} remain contaminated.�

We proof on Claim 1 that an exponential increase in the number of searchers used to clear a
graph since the mixed-search number of n-node trees is at most O(log n) [15]. On the positive
side, we show that, for any graph G with maximum degree ∆, xs(G) ≤ (∆− 1)(s(G) + 1). To
prove it, we consider a classical strategy S for G using s(G) searchers. To build an exclusive
strategy S∗ for G, we mimic S using a team of ∆− 1 searchers to “simulate” each searcher in
S. For details, see the proof below.

Let N(v) denote the set of neighbors of a node v ∈ V (G) and let N [v] = N(v) ∪ {v} be the
close neighborhood of node v.

Theorem 1 For any connected graph G with maximum degree ∆,

s(G) ≤ xs(G) ≤ (∆− 1) · (s(G) + 1).

Moreover, if ∆ ≤ 3, s(G) ≤ xs(G) ≤ s(G) + 1.

Proof. s(G) ≤ xs(G) is a direct consequence of the definition since exclusive-search is a
variant of mixed-search where searchers are more constrained.

To prove the second inequality, it is more convenient to deal with node-search. A node-
search strategy is a search strategy where edges become clear only if both their ends are occupied
simultaneously. The node-search number, denoted by ns(G), of a graph G is the smallest number
of searchers needed to clear G in this setting. It is well known that ns(G) ≤ s(G) + 1 for any
graph G and that recontamination does not help for node-search [2, 3]. Hence, we will prove
here that xs(G) ≤ (∆− 1) · ns(G) for any graph G with maximum degree ∆.

Let S be a winning monotone node-search strategy of G using k ≥ ns(G) searchers. Let
(s1, · · · , sr) be the corresponding sequence of place and remove steps. Note that we can assume
that a searcher is removed as soon as possible, i.e., if after some step si, a searcher occupies
a node incident only to clear edges, no other searcher can be placed before this searcher is
removed. We also may assume that there are no useless steps, i.e., no step consists in placing a
searcher at a node incident to only clear edges nor in placing a searcher at an already occupied
node. Last remark, before each step si that consists in placing a searcher at a node v, all edges
incident to v are contaminated.

For any i, 1 ≤ i ≤ r, let Ei be the set of clear edges after step si and let Vi be the set of
occupied nodes after step si. By remark above, if si+1 consists in placing a new searcher, then
every node of Vi is incident to at least one contaminated edge after step si. We set V0 = E0 = ∅.
Because the strategy is monotone, Ei−1 ⊆ Ei for any 1 < i ≤ r. Moreover, any path from an
edge in Ei and an edge in E \ Ei must contain a node in Vi.

1. Let us first assume that ∆ ≤ 3. In this case, we show that xs(G) ≤ ns(G). We use S to
define an exclusive strategy S∗ to clear G using k searchers. Initially, the k searchers are
placed at any arbitrary k nodes. Then, the strategy consists of r phases described below,
where Phase i of S∗ depends on step si of S (i ≤ r). For any 1 ≤ i ≤ r, we show that,
if before Phase i, the nodes of Vi−1 were occupied and the edges of Ei−1 were clear, then
after Phase i, the nodes of Vi are occupied and the edges of Ei are clear. In particular,
this implies that after Phase r, the edges of Er = E are clear. Note that, before Phase 1,

5

the induction hypothesis holds since V0 = E0 = ∅. Now, let 1 ≤ i ≤ r and assume that
the induction hypothesis holds before Phase i.

The easy case is when si is a remove-step. In that case, Phase i consists in doing nothing
and the induction still holds before Phase i+ 1.

Let us now assume that step si consists in placing a searcher at some node v ∈ V .
Therefore, |Vi−1| < k and there are searchers that are not occupying a node in Vi−1 just
before Phase i. We call these searchers ”free searchers”. Let us consider the free searcher
f in node x that is the closest to v just before Phase i. The Phase i consists in “moving”
f from w to v. We show how it can be done without recontaminating any edge in Ei−1

and then we show that the edges of Ei are clear at the end of the Phase i.

Let P = (w,w2, · · · , un1 , v) be a shortest path from w to v.

(a) First assume that P contains no nodes in Vi−1. Then, no nodes in {u2, · · · , un1 , v}
are occupied because we have considered the free searcher f that is closest to v.
Therefore, Phase i consists in sliding f from w to v along P . Let F be the set
of edges that are incident to some node of P . To show that no edges in Ei−1 is
recontaminated during these moves, it is sufficient to point out that either F ⊆ Ei−1

or F ⊆ E \ Ei−1. Indeed, we already mentioned that any path between an edge in
Ei−1 and an edge in E \ Ei−1 contains a node in Vi−1. In other words, an edge of
Ei−1 might be recontaminated only by moving a searcher from a node in Vi−1.

(b) Otherwise, there exist 2 ≤ j ≤ ` < h such that, for any q < j, uq /∈ Vi−1; for any
j ≤ q ≤ `, uq ∈ Vi−1 and u`+1 /∈ Vi−1. In that case, f first slides from w to uj−1. No
edges of Ei−1 are recontaminated for the same reason as in the previous item. Then,
we simulate the “jump” of the free searcher from uj−1 to u`+1 in the following way.
For t from ` down to j, the searcher at ut slides to ut+1. Finally, the free searcher
occupying uj−1 slides to uj .

When a searcher moves from ut to ut+1, the only two edges that might be recontam-
inated are {ut−1, ut} and {ut+1, ut} because ut has degree at most three. However,
{ut+1, ut} is clear as soon as the next searcher moves from ut−1 to ut.

Therefore, after these `− j + 2 moves, the edges of Ei−1 are still clear, the nodes of
Vi−1 are still occupied and a (new) free searcher is occupying the node u`+1, i.e., the
free searcher has progressed along P .

The same process is done until a searcher reaches v (always following P).

To conclude, after Phase i, a searcher is on v and all nodes of Vi−1 are occupied, hence
the nodes of Vi = Vi−1 ∪ {v} are occupied. Moreover, we showed above that the edges of
Ei−1 are still clear after Phase i. Since Ei \Ei−1 is the set of edges that are incident to v
and to some node in Vi−1, they are clear as well at the end of this phase.

Hence, the induction hypothesis holds after Phase i and S∗ is a winning strategy satisfying
exclusivity for clearing G with k searchers. Hence, xs(G) ≤ ns(G).

2. Now, let us consider the case of an arbitrary ∆. We use S to define an exclusive strategy
S∗ to clear G using (∆− 1)k searchers. As previously, S∗ consists of r phases such that,
after Phase i, i ≤ r, we ensure that the edges in Ei are clear. The difference with previous
case is that at each step, we ensure that all nodes of Vi are occupied after Phase i and,
moreover, for any node v ∈ Vi at most two neighbors of v are not occupied.

As previously, all the searchers are placed on arbitrarily different nodes initially. Then,
for each step si (1 ≤ i ≤ r), if si is a remove-step then Phase i consists in doing nothing.

6

Otherwise, if si consists in placing a searcher at some node v, this means that |Vi−1| < k
and therefore there are at least ∆− 1 free searchers. Here, each node in Vi−1 is assigned
≤ ∆−1 searchers, the remaining searchers being the free searchers. Intuitively, a searcher
assigned to a node v is dedicated to protect v from recontamination, either by occupying
v or by occupying some neighbor of v. To ensure this, Phase i consists in moving ∆ − 1
free searchers from their current positions either to v or to some neighbor of v until v is
occupied and at most two neighbors of v are not occupied.

More precisely, while v has not been yet assigned ∆ − 1 searchers and there is still a
node in N [v] that is unoccupied, we do the following. Let us consider a free searcher f
not occupying a node in N [v] and that is closest to an unoccupied node x in N [v]. f
is assigned to v in the following manner. Let w be the node occupied by f at the end
of Phase i − 1, and let P = (w = u1, · · · , uh = x) be a shortest path from w to x. As
previously, if no nodes in {u2, · · · , uh} are occupied, f simply slides along the path until
it reaches x.

Otherwise, w.l.o.g., assume that {u2, · · · , uj} are occupied and uj+1 is not for some 2 ≤
j < h. Then, the strategy is the following. For t from j down to 1, if ut /∈ Vi−1, the
searcher at ut slides to ut+1. Otherwise, if ut ∈ Vi−1 there are two cases. If there are two
neighbors z 6= ut+1 and y 6= ut+1 of ut that are not occupied, then the searcher at ut slides
to y. Note that such a case may occur only if ut+1 /∈ Vi−1. Otherwise, the searcher at ut
slides to ut+1.

After Phase i, all edges of Ei are clear and all nodes of Vi and their neighbors (but at
most two per node in Vi) are occupied. Hence, the theorem follows.

�

Because the pathwidth of a graph G and its search number s(G) differ by at most one,
Theorem 1 also proves that the ratio between the exclusive search number and the pathwidth
of G is bounded by the degree of G.

Note that the example of the n-node star (Sn) shows that the inequalities in Theorem 1 are
tight up to a constant ratio, since s(Sn) = 2 and xs(Sn) = n− 2 for any n ≥ 4.

We now focus on monotonicity property. Indeed, another important difference of exclusive
search compared to classical graph searching is that it is not monotone. As explained in the
example of a star (at the beginning of the section), when a searcher needs to cross another one,
letting the former searcher pass (to satisfy exclusivity) may lead to a recontamination of some
edges. The goal of the winning strategy is to prevent a possible “uncontrolled” recontamination.

Claim 2 Exclusive graph searching is not monotone, even in trees.

a1 a2

a3

b c2

c3

c1

Figure 1: A tree where no optimal exclusive search strategy is monotone.

Proof. Let T be a tree with a node set {a1, a2, a3, b, c1, c2, c3} such that (a1, a2, b, c2, c1) is a
path and a3 is adjacent to a2 and c3 is adjacent to c2 see Figure 1.

7

We first prove that xs(T) = 2. A winning strategy using two searchers is defined as follows:
choose {a1, a3} as initial positions and place searchers X and Y on these nodes respectively.
Then, Y slides along the edges of the path from a3 to c2, X slides along the edges from a1 to
b, Y goes to c3 (here the edge {b, c2} is recontaminated), and finally, X slides to c1. The fact
that xs(T) > 1 is obvious and follows Claim 1.

Finally, consider any winning strategy using two searchers, we show that there is a step
with recontamination. There are two cases to be considered. Either the set of initial positions
contains no nodes in C = {c1, c2, c3} (or symmetrically in A = {a1, a2, a3}), or one searcher
initially occupies a node in C and the other searcher occupies a node in A.

In the first case, i.e., no nodes in C are occupied initially, consider the first step when c1

or c3, w.l.o.g., say c1, is occupied. This can be done only by moving a searcher along the
edge {c2, c1}. But then, the edge {b, c2} is recontaminated by {c2, c3} (since c3 has never been
occupied yet).

In the second case, consider the first searcher to reach b, w.l.o.g., it comes from a2. Then,
it is easy to verify that {a2, b} is recontaminated because a single searcher cannot have cleared
{a1, a2} and {a3, a2} simultaneously. �

Last, but not least, contrary to classical graph searching, exclusive graph searching is not
closed under minor. We show below that though taking a subgraph can decrease the connectivity
and “help” the searchers in the classical case, it does not do so in general in the exclusive search.
Formally, we show the following.

Claim 3 For any ∆ ≥ 3, there exists a graph G with 2∆ + 1 nodes and an induced subgraph H
such that xs(H) = ∆− 1 and xs(G) ≤ 3.

Proof. Let H be a (∆ + 1)-node star. By Claim 1, xs(H) ≥ ∆− 1 and it is easy to check that
xs(H) = ∆− 1. Let G be a graph built from a cycle with a set of nodes (a1, · · · , a2∆) (in this
order), and by adding a node c adjacent to a2i, for any 1 ≤ i ≤ ∆. H is an induced subgraph
of G. Finally, xs(G) ≤ 3: place searchers at each node in {c, a1, a2}. The searcher at a2 then
slides to a2∆ along the path induced by V (G) \ {a1, c}. �

Actually, there is an even more surprising behaviour of exclusive graph searching. Consider
any (mixed) search strategy S that clears a graph G, let H be any subgraph and let k be the
maximum number of searchers that occupy the nodes of H at some step of S. Then, s(H) ≤ k
[folklore]. In other words, since s(H) searchers are required to clear H, there must be a step of
S where at least s(H) searchers are occupying simultaneously some nodes of H. Note that this
property is one of the key points of the proof of the Parsons’ characterization [15].

Unfortunately, this property is not true anymore for exclusive graph searching even restricted
to trees. Indeed, let ∆ > 3 and let T be the tree obtained from a star S with leaves (a1, · · · , a∆)
by adding, for any 3 ≤ i ≤ ∆, two neighbors bi and ci to ai. Note that T \ S induces a graph
that is not connected. Consider the following exclusive search strategy: start with one searcher
at any node bi, 3 ≤ i ≤ ∆ and one searcher at a1; the searcher at a1 slides to the center of S;
then, sequentially for i from 3 to ∆, the searcher at bi goes to ai and then to ci; finally, the
searcher at the center goes to a2. At any step of the described strategy, at most 2 searchers are
occupying the nodes in S, while xs(S) = ∆− 1.

Nevertheless, we prove in Lemma 1 that this property remains true for some particular
subtrees of trees (roughly, when T \ S is connected). As a corollary, it follows that exclusive-
search is closed under subgraph in trees.

8

3 Exclusive search number is closed under taking subtrees

This section is devoted to proving that the exclusive search number of trees is closed under
taking subtrees. Theorem 2 will be used to prove the necessary conditions for our main result
(Theorem 3 in the next section).

Theorem 2 For any tree T and any subtree R of T , xs(R) ≤ xs(T).

Contrary to classical graph searching, the proof of Theorem 2 is not trivial, due to of the
exclusivity property. To prove it, we will transform an exclusive strategy S for a tree T into
a strategy S ′ for a subtree R using the same number of searchers, and without violating the
exclusivity property. Before going into the details of the proof and to point out the main
difficulties, let us briefly recall the proof of the fact that the mixed-search number is closed
under taking subgraphs. Let Sm = (s1, · · · , sr) be a mixed-search strategy that clears a graph
G using k ≥ s(G) searchers and let H be any subgraph of G. Then, a mixed-search strategy
clearing H can be obtained as follows. For any i ≤ r such that si is a step that does not
concerns the nodes of H2, remove si from Sm. For any i ≤ r, if si consists in sliding a searcher
along {u, v} ∈ E(G) (from u to v) where u ∈ V (G) \ V (H) and v ∈ V (H), then replace si by
the step placing a searcher at v. Finally, for any i ≤ r, if si consists in sliding a searcher along
{u, v} ∈ E(G) (from u to v) where u ∈ V (H) and v ∈ V (G) \ V (H), then replace si by the
step removing a searcher from u. It is easy to check that the obtained sequence of moves is a
mixed-search strategy that clears H using at most k searchers.

A key point when designing the mixed-search strategy for H is that some searchers may be
removed from the graph when they are useless and placed at some node later when they become
useful (for instance when a step of Sm slides a searcher from a node in V (G) \ V (H) to a node
of H). Note that when a searcher is removed from H, it does not interfere with the moves of
other searchers. Such removals are not allowed in exclusive search strategy. On the contrary,
in an exclusive search strategy, any searcher must occupy some node of H since the beginning
of the strategy and without disturbing the motions of other searchers. Moreover, notice that,
a searcher may occupy some node that must be crossed by some other searcher (according to
mixed-search strategy for H). Then, in the exclusive strategy, the moves should be adapted to
avoid violation of the exclusivity constraint.

The next two Propositions are technical results that will be used to deal with these problems
in trees and finally to prove Lemma 1. Informally, these propositions state that, if there exists
a sequence of moves in a tree, then we can initially add a searcher without disturbing the whole
motion of the searchers. That is, we are able to clear the same part of the tree even with the
extra searcher “in the middle”. Moreover, in some cases, we can keep some control on the final
position of the extra searcher with respect to its initial position.

Notations. Let G = (V,E) be a graph and S = (s1, · · · , sr) be a sequence of moves. A
state after step si (or before step si+1) consists of a pair (I, F) where I is the set of nodes
occupied by some searchers after step si and F is a subset of cleared edges (after si). Moreover,
we impose that, for any two incident edges e ∈ F and f /∈ F , their common end is in I3. Note
that F does not necessarily contain all clear edges. We say that S is a sequence from state C to
state C′ if C is the state before the first step of S and C′ is the state after its last step.

We recall that for any v ∈ V (G), N(v) denotes the set of the neighbors of v and N [v] =
N(v) ∪ {v}.

2That is, si consists in either placing a searcher at a node of V (G) \ V (H), or removing a searcher from a
node of V (G) \ V (H), or sliding a searcher along an edge in {u, v} ∈ E(G) where u, v ∈ V (G) \ V (H)

3This constraint is only to avoid considering pathological cases when a sequence S starts from a state (I, F)
and some edges of F are recontaminated before the first move of S.

9

Proposition 1 Let T be a tree, S = (s1, · · · , sr) be a sequence of exclusive-search moves from
state C = (I, F) to state C′ = (I ′, F ′) and let v ∈ V (T) \ I. There exists a sequence S ′ of moves
in T from (I ∪ {v}, F) to (I ′ ∪ {w}, F ′), where w ∈ V (T) \ I ′. Moreover, if v /∈ I ′ then w = v.

Proof. If |V (T)| = 1, the claim clearly holds. Indeed, since v ∈ V (T) \ I, then I = ∅. In that
case, S ′ consists only in placing a searcher at v. Assume by induction on n > 1 that the claim
holds for any tree T with |V (T)| < n. We now show that it holds if |V (T)| = n by induction
on r > 0.

If the first step s1 of S consists of sliding a searcher from x ∈ I to y 6= v, let F̄ be the set
of clear edges after this step in S.

• If r = 1, then S goes from state (I, F) to state (I ∪ {y} \ {x}, F ′) (where F̄ = F ′ and
I ′ = I ∪ {y} \ {x}). Then S ′ only executes the step s1 and the result clearly holds.

More precisely, S ′ starts from (I ∪ {v}, F) (possible since v /∈ I) and then moves the
searcher at x along the edge {x, y} (possible since v 6= y). The set of edges that are
cleared at the end of such strategy must be a super-set of (or equal to) the subset F̄
of edges cleared at the end of S (in S ′, there is one searcher more, so no edge can be
recontaminated by S ′ while it is not recontaminated by S). Hence, F̄ = F ′ is a subset of
cleared edges after S ′. Therefore, the state (I ′ ∪ {v}, F ′) is achieved by S ′.
In other words, S ′ goes from (I ∪ {v}, F) to (I ′ ∪ {v}, F ′).

• Otherwise, the sequence (s2, · · · , sr) goes from ((I ∪{y}) \x, F̄) to (I ′, F ′). By induction,
there is a sequence S∗ of moves from ((I∪{y, v})\x, F̄) to (I ′∪{w}, F ′) where w /∈ I ′ and
w = v if v /∈ I ′. The sequence (s1,S∗) starting from (I∪{v}, F) satisfies the requirements.

Otherwise, let us assume that the first step s1 of S consists in sliding a searcher from
x ∈ I ∩N(v) to v.

If r = 1, then the sequence that starts from (I ∪ {v}, F) and does nothing satisfies the
requirements.

Let us assume that r > 1. There are two cases: either v remains occupied during the whole
strategy S, or let si, 1 < i ≤ r, be the first step such that the searcher at v slides to some node
y ∈ N(v). Let T1, · · · , Tp be the connected components of T \ {v} where Tp is the component
of x.

1. Consider the first case, i.e., from s1, v is always occupied in S. We may assume (up to
reordering the steps in S) that S applies move s1, and then applies the moves in T1, · · · , Tp
sequentially, i.e., any move in Ti is performed before any move in Ti+1 for any 1 ≤ i < p.

Let S∗ be the restriction of (s2, · · · , sr) to Tp (that is the subsequence of the moves that
consists in sliding along an edge of Tp). The sequence S∗ starts from ((I∩V (Tp))\{x}, F̄),
where F̄ is the set of edges of E(Tp) that are cleared after step s1 of S. Moreover, S∗
terminates in (I ′ ∩ V (Tp), F

′ ∩ E(Tp)).

Since |V (Tp)| < |V (T)|, using induction, there is a sequence of moves Sp in Tp that
starts from ((I ∩ V (Tp))∪ {x}, F̄) and terminates in (I ′ ∩ V (Tp)∪ {w}, F ′ ∩E(Tp)) where
w /∈ I ′ ∩ V (Tp) and w = x if x /∈ I ′ ∩ V (Tp).

Then, the following sequence of moves proves the claim. Starting from (I ∪{v}, F), apply
sequentially the moves of S in T1, · · · , Tp−1 and finally apply the sequence of moves Sp.

2. Now, let si, 1 < i ≤ r, be the first step of S such that the searcher at v slides to some
node y ∈ N(v). Let (Ii, F i) be the state reached by S after this step. Note that v /∈ Ii.

10

Therefore, the sequence of moves (si+1, · · · , sr) allows to go from state (Ii, F i) to state
(I ′, F ′). By induction on r, there is sequence of moves S∗∗ that allows to go from (Ii ∪
{v}, F i) to (I ′ ∪ {w}, F ′), where w /∈ I ′ and w = v if v /∈ I ′.
It only remains to prove that there is a sequence S∗ of moves that starts in (I ∪ {v}, F)
and terminates in (Ii ∪ {v}, F i). The sequence of moves that consists of applying the
moves in S∗ and then the moves in S∗∗ will then satisfy the requirements.

Let Si−1 be the sequence of moves (s2, · · · , si−1) and let (Ii−1, F i−1) be the state reached
by Si−1. We may assume (up to reordering the steps in Si−1) that Si−1 applies move s1,
and then applies the moves in T1, · · · , Tp sequentially.

Let us define S∗ as follows. First, apply sequentially the moves of Si−1 in T1, · · · , Tp−1.
Then,

(a) if y 6= x, move the searcher at v to y and the searcher at x to v and then apply the
moves of Si−1 in Tp.

(b) Otherwise, as in previous item, by induction since |V (Tp)| < |V (T)|, from the se-
quence of moves of Si−1 restricted to Tp, we can define a sequence Ŝ of moves in Tp
that starts in the same state as in Si−1 (restricted to Tp) plus one extra searcher at
x and that reach the same final state as in Si−1 (restricted to Tp) with the extra
searcher still at x. Apply Ŝ to terminate S∗.

�

Proposition 2 Let T be a tree and let S = (s1, · · · , sr) be a sequence of moves from C = (I, F)
to C′ = (I ′, F ′). Assume that there is v ∈ I such that v is occupied only during the first r − 1
steps of S and sr consists in sliding the searcher at v to one of its neighbors. Note that v /∈ I ′.
There exists w ∈ V (T) \ I and a sequence S ′ of moves in T starting from (I ∪ {w}, F) and
ending in state (I ′ ∪ {v}, F ′).

Proof. We build a strategy S ′ = (s′1, · · · , s′p) with an extra searcher f(compared with S) that
starts in some node w /∈ I and ends in v such that, at the end of S ′, all edges in F ′ are cleared
and the set of occupied nodes is I ′ ∪ {v}.

We need to find an unoccupied initial position w for t f , such that it ensures that v will be
occupied at the end of the sequence of moves. Let {v = w`, · · · , w1 = w}, ` > 1, be the path
defined as follows. w ∈ V (T) \ I, i.e., w1 is not initially occupied in S. For any 1 < j ≤ `, wj is
initially (in S) occupied by a searcher, i.e., wj ∈ V (T) ∩ I, and the first move of this searcher
in S, at step s∗j , is to slide from wj to wj−1. Such a path clearly exists and s∗j > s∗j−1 (meaning
step s∗j occurs before step s∗j+1 in S) for any 1 ≤ j < `. In particular, note that s∗` = sr.

Strategy S ′ initially places f at w1 = w and other searchers are placed at the nodes of I.
Let (I2, F2) be the state reached by S just before step s∗2 (when the searcher at w2 moves

for the first time and goes to w1 = w). Note that w /∈ I2∪ I. Therefore, by Proposition 1, there
is sequence S2 of moves that goes from state (I ∪ {w}, F) to (I2 ∪ {w}, F2).

Therefore, starting with f in w and executing S2, we obtain the same state as in S before
s∗2, but with f still in w (possibly more edges may have been cleared). Then s∗2 moves a searcher
from w2 ∈ I2 to w1. Actually, since both w2 and w1 are occupied after executing S2, we have
reached the state after step s∗2 in S, having f in w2.

Assume that we have executing the sequence of moves (S2, · · · ,Si), i < `, and that we
have reached the state (Ii ∪ {wi}, Fi) where (Ii, Fi) is the state reached by S after step s∗i (in
particular, wi /∈ Ii). Let (Ii+1, Fi+1) be the state reached by S just before step s∗i+1. Note

11

that wi+1 /∈ Ii+1. By Proposition 1, there is sequence Si+1 of moves that goes from state
(Ii ∪ {wi}, Fi) to (Ii+1 ∪ {wi}, Fi+1). Then s∗i+1 moves a searcher from wi+1 ∈ Ii+1 to wi.
Actually, since both wi+1 and wi are occupied after executing Si+1, we have reached the state
after step s∗i+1 in S, having f in wi+1.

Going on in that way, the sequence of moves (S2, · · · ,S`) satisfies the desired requirements.
�

Definition 1 Given a node v in a tree T , a connected component of T \ {v} is called a branch
at v.

We are now ready to prove the main lemma.

Lemma 1 Let T be any tree and R be a branch at v ∈ V (T). Let S ′ = (s′1, · · · , s′r) be any
exclusive strategy for T and let k be the maximum number of searchers occupying simultaneously
(at the same step) some nodes of R. Then xs(R) ≤ k.

Proof. Let u be the node of R that is adjacent to v and let e = {u, v} ∈ E(T).
Note that, for all i ≤ r, s′i consists of the sliding of a searcher along an edge of E(T). We

consider the restriction of S ′ to R and we build the sequence S of moves as follows. Let I be
the set of nodes of R that are initially occupied by a searcher in S ′. In S, let us start by placing
one searcher at each node of I. Then, for any step s′i of S ′, if s′i consists of sliding a searcher
along an edge {x, y} ∈ E(R), we keep this move; if s′i consists of sliding a searcher along an
edge {x, y} ∈ E(T) \ (E(R) ∪ {e}) (i.e., v /∈ {x, y}), we remove s′i; if s′i consists in sliding a
searcher from v to u, we add a particular move that consists in placing a searcher at u; and if
s′i consists in sliding a searcher from u to v, we add a particular move that consists in removing
a searcher at u.

Therefore, S = (s1, · · · , sp) is a sequence of moves that are either sliding a searcher along an
edge of R, or a particular step which is either placing a searcher at u or removing a searcher at
u. It is easy to check that this sequence results in the clearing of all edges in R, no more than
k nodes are occupied at any step, and any node is never occupied by more than one searcher.

We prove by induction on the number of particular steps of S (removing or placing a searcher)
that xs(R) ≤ k. First assume that S contains no particular steps. Clearly, it is an exclusive
strategy, using k searchers and clearing all edges of R. Therefore, the result holds.

If S contains some particular steps, we build a new strategy S∗ with same properties and
one less particular step. The result then follows by induction. There are three cases to be
considered.

1. Assume that the last particular step si (i ≤ p) of S is a removal step. Let (I, F) be the
state after this step and let (I ′, F ′) be the state at the end of S. Note that u /∈ I and
|I| < k.

By Proposition 1, there is a sequence S∗of moves from (I ∪ {u}, F) to (I ′ ∪ {w}, F ′) with
w ∈ V (R) \ I ′. Hence, the sequence of moves (s1, · · · , si−1,S∗) clears all edges in R and
no more than k nodes are occupied at some step. Moreover, it has less particular moves
than S, therefore the result holds by induction.

2. Assume that the first particular step si (i ≤ p) of S is a placing step. Let (I, F) be the
state at the beginning of S and let (I ′, F ′) be the state before this step si. Note that
u /∈ I ′, that |I| < k and that (I ′ ∪ {u}, F ′) is the state just after si.

By Proposition 2 and Proposition 1, there is a sequence S∗of moves from (I ∪ {w}, F) to
(I ′ ∪ {u}, F ′) with w ∈ V (R) \ I. Hence, the sequence of moves (S∗, si+1, · · · , sp) clears

12

all edges in R and no more than k nodes are occupied at some step. Moreover, it has less
particular moves than S, therefore the result holds by induction.

3. If none of the previous cases hold, then there are 1 ≤ i < j ≤ p such that si is a removal
step, sj is a placing step and s` is not a particular step for all i < ` < j. Let (I, F) be the
state after step si and let (I ′, F ′) be the state before step sj . Note that u /∈ I ∪ I ′, that
|I| = |I ′| < k and that (I ′ ∪ {u}, F ′) is the state just after sj .

From Proposition 1, there is a sequence S∗ of moves from (I ∪ {u}, F) to (I ′ ∪ {u}, F ′).
Hence, the sequence of moves (s1, · · · , si−1,S∗, sj+1, · · · , sp) clears all edges in R and no
more than k nodes are occupied at some step. Moreover, it has less particular moves than
S, therefore the result holds by induction.

�

Note that, in particular, previous lemma implies that xs(R) ≤ xs(T) for any branch R of
any tree T .

Proof of Theorem 2: We only need to prove the result when V (T) \ V (R) is a leaf of T and
then the result follows by induction on |V (T) \ V (R)|. Hence, let v be the leaf of T such that
R = T \ {v}. Then, R is a branch at v of T and by Lemma 1, it follows that xs(R) ≤ xs(T).

4 Exclusive Search in Trees

This section is devoted to our main result. We present a polynomial-time algorithm which, given
any tree T , computes the exclusive search number xs(T) of T and an exclusive search strategy
enabling xs(T) searchers to clear T . Our algorithm is based on a characterization of the trees
with exclusive search number at most k, for any given k. Our characterization establishes a
relationship between the exclusive-search number of T and the exclusive-search number of some
of the branches adjacent to any node in T .

Theorem 3 Let k ≥ 1. For any tree T , xs(T) ≤ k if and only if, for every node v in T , the
following three properties hold:

1. δ(v) ≤ k + 1 where δ(v) is the degree of v in T .

2. for any branch B at v, xs(B) ≤ k;

3. for any even i > 1, at most i branches B at v have xs(B) ≥ k − i/2 + 1.

To prove the theorem, we first prove (Section 4.1) that, for any tree T and k ≥ 1, xs(T) ≤ k,
only if the conditions of Theorem 3 are satisfied. Then, we show that any tree satisfying
these conditions can be decomposed in a particular way, depending on k (Figure 2). Next, in
Section 4.3, we describe an exclusive search strategy using at most k searchers, that clears any
tree decomposed in such a way.

From the characterization of Theorem 3, it follows that xs(T) can be computed by dynamic
programming on T in polynomial-time. Moreover, such an algorithm computes the correspond-
ing decomposition (see Section 4.3 and Section 4.4). Hence, the following result holds:

Theorem 4 There exists a polynomial-time algorithm that computes xs(T) and a corresponding
exclusive search strategy for any tree T .

Definition 2 A configuration is a set of distinct nodes C ⊆ V (T) that describes the positions
of |C| searchers in T .

13

4.1 Necessary Conditions for Theorem 3

We first show that the conditions of Theorem 3 are necessary. The fact that the first condition
is necessary directly follows from Claim 1. The second condition is necessary by Theorem 2.
The fact that the third condition is necessary mainly relies on Lemma 1.

Lemma 2 Let k ≥ 1. For any tree T , if there exist v ∈ V (T) and an even integer i > 1 such
that there is a set B = {Tj : xs(Tj) ≥ k− i/2+1} of branches at v and |B| > i, then xs(T) > k.

Proof. Let S be any exclusive strategy that clears T . By Lemma 1, for any j ≤ |B|, there is
a step of the strategy S such that at least k− i/2 + 1 searchers occupy simultaneously nodes in
Tj . Let sj be the last such step of S that occurs in Tj . W.l.o.g. assume that sj−1 < sj , for any
1 < j ≤ |B|, and we may assume that, before step sj , Tj is not completely clear (this means
that S uses k− i/2 + 1 searchers in Tj only if it is really needed). Then, at step si/2+1, at least
k − i/2 + 1 searchers are in Ti/2+1, some nodes have been cleared in Tj for any j ≤ i/2, and
Tj cannot become fully contaminated anymore until the end of the strategy (otherwise there
would be another step after sj where k − i/2 + 1 searchers are in Tj).

For the sake of contradiction, let us assume that S uses at most k searchers. Then, at step
si/2+1, at least k− i/2+1 searchers are in Ti/2+1 and there are at most i/2−1 searchers outside
Ti/2+1. That is, at that moment, there is at least one branch X ∈ {Ti/2+2, . . . , T|B|} (|B| > i)
at v with still contaminated edges, and at least one branch Y ∈ {T1, . . . , Ti/2} at v with (at
least) some clear edges that must not be recontaminated and no searchers occupy nodes in both
these branches. If there is no searcher at v, Y is fully recontaminated. Therefore, we obtain a
contradiction.

Otherwise, there is a searcher in v. However, since there is at least one non cleared yet
branch without any searcher in it, it has to be cleared by moving there at least one searcher.
For that, the searcher from v have to move. However, if this searcher moves (no matter where),
there will be still at most i/2 − 1 searchers outside Ti/2+1 and hence, at least one cleared and
one uncleared branch without any searcher, and no searcher in v. The cleared branch will be
fully recontaminated. Therefore, we obtain a contradiction. �

4.2 Avenue, Decomposition and Notations

In this section, we show that any tree satisfying the conditions of Theorem 3 admits a particular
shape. Moreover, for the purpose of clarity, we introduce some others notations. Figure 2
depicts a particular structure that we prove to exist for any tree T satisfying the conditions of
Theorem 3, for k ≥ 1. Specifically, following [14], we prove that there is a path A = (u1, · · · , up)
in T called avenue (bold line in Figure 2) such that p ≥ 1 and, for any component T ′ of T \A,
there is an exclusive strategy that clears T ′ using < k searchers, i.e., xs(T ′) < k. The proof of
the existence of such a path A is very similar to the one given in [14] in the case of edge graph
searching. We give the proof for our case of exclusive search below.

Claim 1 Let a tree T satisfy the conditions of Theorem 3 for k ≥ 1. Then, there is a subpath
A in T such that, for any connected component S of T \A, xs(S) < k.

Proof. If T is a path, then let A = T . Otherwise, if xs(S) < k for every branch S at every
node of T , then choose any node u1 ∈ V (T) and set V (A) = {u1}. Otherwise, let u1 ∈ V (T)
be a node with the maximum number of branches having search number k. Note that, by the
condition 3 of Theorem 3 (for i = 2), there are at most two such branches. Then, there are two
cases to consider:

14

Figure 2: A tree T with avenue A = (u1, · · · , up). For any subtree X of T \A, xs(X) < k.

• First, if there is only one branch S at u1 with xs(S) = k, let u2 be the neighbor of u1

in S, i.e., {u2} = N(u1) ∩ S. Then, either all connected components S ∈ T \ {u1, u2}
with xs(S) < k and then, V (A) = {u1, u2}. Or, there is a branch S′ at u2, u1 /∈ S′ with
xs(S′) = k. In this case, continue this iterative process of decomposition with u2 and its
neighbor u3 ∈ N(u2) ∩ S′ as before with u1 and u2. Proceed till two adjacent nodes up−1

and up are found such that all connected components of T \A, A = {u1, . . . up}, are such
that each of them, S′′, has xs(S′′) < k.

• Second, if there are two branches S and S′ at u1 such that xs(S) = xs(S′) = k, let
u2 ∈ N(u1) ∩ S and u′2 ∈ N(u1) ∩ S′. Then, {u1, u2, u

′
2} ∈ A. If R and R′ are two

branches at u2 with xs(R) = xs(R′) = k, then by Lemma 2, one of these branches, say R′,
has to contain u1 (otherwise, xs(T) > k). Let u3 ∈ N(u2)∩R. Then, {u1, u2, u3, u

′
2} ∈ A.

Let us continue this process iteratively, till for every connected component S ∈ T \ A,
xs(S) < k. The process clearly terminates since, at each step, there are at most two
components of T \A with xs = k and their size strictly decreases.

�

Notations. Let a tree T satisfy the conditions of Theorem 3 for k ≥ 1 and let A be an avenue
in T . Hence, each node of the avenue A satisfies the condition 3 of Theorem 3. We introduce
some notations depicted in Figure 2. In particular, the ordering of the branches incident to the
nodes of the avenue will be crucial in next sections.

Let A = {u1, · · · , up} be the avenue in T . Let R1 ⊆ T \ A be a branch at u1 maximizing
ws(R1) < k (out of all the branches in T \ A). Let Sp ⊆ T \ A be the branch at up (different
from R1 if p = 1), and maximizing ws(Sp) (out of the branches at up). Let x ∈ N(u1)∩R1 and
y ∈ N(up) ∩ Sp.

For every 1 ≤ i ≤ p, let vi1, · · · , vidi be the neighbors of ui not in A∪{x, y} (by the condition

1 of Theorem 3, di ≤ k − 1 for any 1 ≤ i ≤ p). Let T i
j be the branch at ui containing

vij , for any 1 ≤ j ≤ di. For any 1 ≤ i ≤ p, the nodes vi1, · · · , vidi , are ordered such that

xs(T i
1) ≥ xs(T i

di
) ≥ xs(T i

2) ≥ xs(T i
di−1) ≥ xs(T i

3) ≥ xs(T i
di−2) · · · . By definition of A, for any

1 ≤ i ≤ p and any 1 ≤ j ≤ di, xs(T i
j) ≤ k − 1. For i > 1, let Ri be the branch at ui containing

ui−1 and for i < p, let Si be the branch at ui containing ui+1. Set Rp+1 = T \ Sp.

15

In the next section, we describe a strategy, called ExclusiveClear , based on this decomposi-
tion and allowing k searchers to clear T in an exclusive way. The strategy consists in clearing
the subtrees of T \A, starting with the subtrees that are adjacent to u1, then the ones adjacent
to u2 and so on, finishing in up. To clear a subtree T ′ of T \ A, we proceed in a recursive way.
That is, we recursively use ExclusiveClear on T ′ using k′ < k searchers. The first difficulty is
to ensure that no subtrees that have been cleared are recontaminated. For this purpose, when
clearing T ′, the remaining k − k′ searchers that are not needed to clear it are used to prevent
recontamination. The second difficulty is to ensure exclusivity: while these k− k′ searchers are
protecting from recontamination, k′ searchers should be able to enter T ′ to clear it.

4.3 Exclusive Search Strategy to Clear Trees

Let k ≥ 1 and let T be any tree satisfying the conditions of Theorem 3. That is, for any
v ∈ V (T), v has degree at most k + 1, for any branch B at v, xs(B) ≤ k and, for any even
i > 1, at most i branches B at v have xs(B) ≥ k − i/2 + 1.

By the previous claim, T admits an avenue as described in the previous subsection. We use
the same notations as in previous subsection and in Figure 2. In this section, we describe a
search strategy that clears T using k searchers.

By definition, our following recursive strategy ExclusiveClear ensures that all moves are
performed along paths free of searchers, satisfying the exclusivity and internally properties.
Moreover, it is easy to check that it actually clears T . To prove its correctness, it is sufficient
to show that it uses at most k searchers (in particular, when applying the sub-procedures
bring searchers or transfer defined below). The formal proof mainly relies on the properties of
the decomposition.

A formal description of ExclusiveClear is given in Algorithm 1 and the detailed description
follows. Before that, let us introduce some new notations. For u, v ∈ V (T) and U ⊆ V (T), let
u v denote the sequence of slidings bringing the searcher at u to v; and let U v denote
the sequence of slidings bringing a searcher, occupying some closest to v node of U , to v, along
a path free of searchers (in both cases).

Strategy ExclusiveClear . For ease of description, let us assume that |V (R1)| ≥ k − 1. Let I
be a subset of u1 and k − 1 distinct nodes in R1. The strategy starts by placing the searchers
at the nodes of I4. By definition of A, xs(R1) ≤ k − 1. Then, the k − 1 searchers in R1 apply
ExclusiveClear(R1) (such a strategy exists by induction). It is important to mention that the
searcher at u1 preserves R1 from being recontaminated by the rest of T . After this sequence of
moves, all edges in E(R1 ∪ {(x, u1)}) are cleared. Finally, a searcher in R1 that is closest to x
goes to x. After this step, R1 is clear and u1 and x are occupied. Moreover, all searchers are at
nodes in R1 ∪ {u1}.

Then, we aim at clearing the remaining subtrees of T \ A that are adjacent to u1, that
is, the subtrees T 1

1 , · · · , T 1
di

(see Figure 2). Moreover, after clearing any subtree T 1
i , we need

to preserve it from recontamination. Notice that, during the clearing of a subtree T 1
i , u1 will

always be occupied. However, to ensure that exclusivity property is satisfied when searchers
go from one subtree T 1

i to the next one T 1
i+1 (during the bring searchers procedure explained

later), we need to free u1 and then other nodes must be occupied to avoid recontamination.
In order to use as few searchers as possible, the cleaning of the subtrees adjacent to u1 must

be done in a specific order. The order used to clear the subtrees is defined by partitioning these
subtrees into two sets S1 and S2 built as follows. Each subtree is considered one after the other,
in the non-increasing order of xs. In this order, we assign the first subtree to S1, the second

4If |V (R1)| < k− 1, then the strategy starts by placing one searcher at u1, then as much as possible searchers
at the nodes of R1, then at the nodes of T 1

1 , of T 1
2 , and so on, until the k searchers are placed.

16

Algorithm 1 ExclusiveClear strategy
Require: Tree T satisfying the conditions of Theorem 3 for k ≥ 1. Notations are recalled in Figure 2.
1: Initially, the searchers occupy k− 1 nodes of R1 and u1 (if |V (R1)| < k− 1, all nodes of R1 are occupied and

then the nodes of T 1
1 , T 1

2 , etc., by k − 1 searchers).
2: ExclusiveClear(R1)
3: R1 x
4: for all 1 ≤ i ≤ p do
5: for all 1 ≤ j0 ≤ di + 1 do
6: if i = p ∧ j0 = dp + 1 then
7: up y
8: Rp+1 up

9: bring searchers(p, dp + 1)
10: ExclusiveClear(Sp) /* end of the strategy */
11: else if j0 = di + 1 ∧ i < p then
12: ui ui+1

13: Ri+1 ui

14: else
15: if j0 = 1 then
16: bring searchers(i, 1)
17: else if 1 < j0 ≤ ddi/2e then
18: if there is a searcher in Ri then
19: Ri ui−1

20: else
21: ui ui−1 (u0 = x)
22: let j < j0 such that there is a searcher in T i

j \ vij .
23: vij ui

24: T i
j vij

25: bring searchers(i, j0)
26: else if ddi/2e < j0 < di + 1 then
27: ui ui+1 (up+1 = y)
28: Ri

j0 ui

29: bring searchers(i, j0)
30: ExclusiveClear(T i

j0)
31: T i

j0 vij0
32: if j0 = ddi/2e then
33: transfer(i)

17

one to S2, the third one to S1, the fourth one to S2, and we continue to divide the subtrees
until each of them is assigned to one of the two sets. Note that the formula given in Figure 2
respects this order. The resulting S1 = {T 1

1 , . . . , T
1
dd1/2e} and S2 = {T 1

dd1/2e+1, . . . , T
1
d1
} such

that xs(T 1
1) ≥ xs(T 1

d1
) ≥ xs(T 1

2) ≥ xs(T 1
d1−1) ≥ xs(T 1

3) ≥ xs(T 1
d1−2) . . .

The clearing of the subtrees is then divided into three phases. The subtrees in S1 are cleared
first, in the non-increasing order of their xs. Then, the searchers are moved in a particular way
(Using Procedure transfer). Finally, the subtrees in S2 are cleared in the non-decreasing order
of their xs.

Let us detail each phase.

• Let 1 ≤ i < dd1/2e. Let us assume that R1, T 1
1 , · · · , T 1

i−1 have been cleared, that
u1, x, v

1
1, · · · , v1

i−1 are occupied by searchers and all other searchers are occupying nodes
in R1, T 1

1 , · · · , T 1
i−1 and u1.

First, Procedure bring searchers is used to move k′ = xs(T 1
i) searchers to nodes of T 1

i

without recontaminating the subtrees that have already been cleared. When k′ searchers
are in T 1

i and u1, x, v
1
1, · · · , v1

i−1 are occupied, ExclusiveClear(T 1
i) is applied recursively

to clear T 1
i using the k′ searchers. Finally, a searcher in T 1

i reaches v1
i .

Below, we detail Procedure bring searchers and we prove that k′ = xs(T 1
i) searchers are

actually available to clear T 1
i .

Each time that a subtree T 1
j ∈ S1 has been cleared, one searcher is left on its root v1

j

(its node adjacent to u1). That is, once a new subtree is cleared, we somehow loose one
searcher to clear the next one. This is balanced by the fact that the number of searchers
needed to clear the next subtree does not increase, according to the order of clearing
established above, and provided by the properties of T .

• After clearing the subtrees in S1, there are searchers currently “blocked” in the roots of the
cleared subtrees. More precisely, R1, T 1

1 , · · · , T 1
dd1/2e have been cleared and u1, x, v

1
1, · · · , v1

dd1/2e
are occupied by searchers.

In order to “re-use” these searchers to clear the remaining subtrees, the strategy changes.
Now, the roots of the still contaminated subtrees (set S2) will be occupied to prevent
recontamination of the cleared subtrees (set S1). Procedure transfer (explained later) is
used to occupy these nodes, ensuring no recontamination of the subtrees and satisfying
the exclusivity property. After transfer , the searchers at the roots of the cleared subtrees
become free, i.e., it is possible now to use them to clear the next subtrees.

More precisely, after this phase, R1, T 1
1 , · · · , T 1

dd1/2e are still clear and u1, u2, v
1
dd1/2e, · · · , v

1
d1

are occupied by searchers.

• Then, the subtrees in S2 have to be cleared in the non-decreasing order of their xs. Each
time that a subtree T 1

j ∈ S2 has been cleared, the searcher on its root v1
j becomes free.

That is, we somehow gain a searcher to clear the next subtree, whose search number may
increase, according to the properties of T .

More precisely, let dd1/2e + 1 ≤ i ≤ d1. Let us assume that R1, T 1
1 , · · · , T 1

i−1 have
been cleared, that u1, u2, v

1
i , · · · , v1

d1
are occupied by searchers and all other searchers

are occupying nodes in R1, T 1
1 , · · · , T 1

i−1 and u1, u2.

First, Procedure bring searchers is used to move k′ = xs(T 1
i) searchers to nodes of T 1

i

without recontaminating the subtrees that have already been cleared. When k′ searchers
are in T 1

i and u1, u2, v
1
i+1, · · · , v1

d1
are occupied, ExclusiveClear(T 1

i) is applied recursively
to clear T 1

i using the k′ searchers.

18

w ∈ I ij0

3

2

Ri

T i
1

T i
j

T i
j0

vi1
ui−1

ui ui+1

vidi

Si

T i
di

vij0

vij
1

(a) Description of one phase of
bring searchers(i, j0).

1

Ri

T i
1

T i
j0

vij T i
di

vidi

Si
ui+1ui

vi1

ui−1

T i
j

vij0

T i
j′

vij′

3

2

(b) Description of one phase of
transfer(i).

Figure 3: Black nodes are occupied. Grey subtrees are cleared. Steps are depicted by dotted
arrows.

Once all subtrees of T \A adjacent to u1 are cleared, the searcher at u1 goes to u2 (unless it
is already occupied). Now, all the searchers in R2 (see Figure 2) become free. Then, a similar
strategy is applied for the subtrees of T \ A adjacent to u2, and so on, until all the subtrees
adjacent to up are cleared.

We now describe more precisely two sub-procedures that are used to implement the strategy
we have given above.

Procedure bring searchers. It remains to detail how the searchers, once a subtree has been
cleared, go to the next subtree, satisfying exclusivity and preventing recontamination. To do
so, let 1 ≤ i ≤ p and let us consider the step of the strategy when the branch Ri (see Fig. 2)
and all subtrees T i

1, · · · , T i
j0−1 (1 < j0 ≤ di) are cleared (the grey subtrees in Fig. 3(a)).

We describe the procedure in the case when j0 ≤ ddi2 e. The case when ddi2 e+ 1 ≤ j0 ≤ di is
similar.

As explained before, at this step, the nodes in {ui, vi1, · · · , vij0−1} are occupied, and all other

searchers are free and occupy nodes of Ri and T i
j , for j < j0. It is ensured that also ui−1 (if

i = 1, set ui−1 = x) will be occupied.
Let k − j0 be the number of free searchers, i.e., searchers not occupying {ui, vi1, · · · , vij0−1}.

We first prove that k − j0 ≥ xs(T i
j0

). Indeed, by definition of the ordering of T i
1, · · · , T i

di
, there

are at least 2(j0− 1) + 3 branches at ui with exclusive search number at least xs(T i
j0

). Namely,

xs(Ri) ≥ xs(T i
j0

), xs(Si) ≥ xs(T i
j0

), and xs(T i
1) ≥ xs(T i

di
) ≥ xs(T i

2) ≥ xs(T i
di−1) ≥ xs(T i

3) ≥
xs(T i

di−2) ≥ · · · ≥ xs(T i
di−j0+1) ≥ xs(T i

j0
). By the condition 3 of Theorem 3, we get that

xs(T i
j0

) ≤ k − j0 (since the number of branches at ui with exclusive search number at least
k − j0 + 1 is at most 2j0).

The process bring searchers(i, j0) is applied to bring xs(T i
j0

) searchers into T i
j0

. The searchers

are brought one by one, from the clear part to T i
j0

, without recontamination (but possibly the
edges incident to ui) and satisfying the exclusivity property.

Figure 3(a) depicts one phase of this process. Before each phase (but the last one, which is
slightly different), there is a free searcher at some node b, either in T i

j \ vij (for some j < j0) or

in Ri \ ui−1. First, the searcher at ui goes to the furthest unoccupied node in T i
j0

(dotted line

1 in Fig. 3(a)). Second, the searcher at vij (or at ui−1) goes to ui (dotted line 2 in Fig. 3(a)).

Finally, the searcher at b goes to vij (or to ui−1) (dotted line 3 in Fig. 3(a)). Clearly, doing so,
no recontamination occurs in the cleared subtrees (but in ui) and exclusivity is satisfied.

Procedure transfer . Let 1 ≤ i ≤ p and j0 = ddi/2e. Just after clearing T i
j0

, we reach a con-

figuration where the nodes in {ui, vi1, · · · , vij0} are occupied, T i
j0

is clear, and all other searchers

are at nodes of Ri or T i
j (j ≤ j0). First, the searcher at ui goes to ui−1 unless it is already

occupied.

19

As explained before, the nodes in {vij0+1, · · · , vidi} must now be occupied before clearing any

subtree T i
j , for j > j0. This is the role of sub-process transfer(i). The searchers are brought

one by one, from the clear part to {vij0+1, · · · , vidi}, without recontamination and satisfying
exclusivity.

Figure 3(b) depicts one phase of this process. By the condition 1 of Theorem 3, di+2 ≤ k+1.
This ensures that, before each phase, there is a free searcher at some node b either in T i

j \ {vij}
(for some j ≤ j0) or in Ri \{ui−1}. First, the searcher at vij (if b ∈ V (T i

j)) or at ui−1 (otherwise)
goes to ui (unless ui is occupied) (dotted line 1 in Fig. 3(b)). Second, the searcher at b goes to
vij (or ui−1) (dotted line 2 in Fig. 3(b)). Finally, the searcher at ui goes to an unoccupied node

in {vij0+1, · · · , vidi} (dotted line 3 in Fig. 3(b)). Once all these nodes are occupied, the searcher
at ui−1 goes back to ui. Clearly, doing so, exclusivity is satisfied and no recontamination occurs
in the cleared subtrees. This, in particular, since either all the nodes {ui−1, v

i
1, · · · , vij0−1}, or

ui, are always occupied during transfer(i).

4.4 Polynomial-time algorithm

From the characterization of Theorem 3, it follows that xs(T) can be computed recursively for
any tree T . This section is devoted to the design of such a polynomial-time algorithm. The
algorithm to compute xs follows the one designed in [14] to compute the edge-search number of
trees. The main difference between our algorithm and the one of [14] comes from the third item
of our characterization (Theorem 3) for which we require our dynamic programming algorithm
to keep more information (fields “neighbors” and “branches” below).

Avenue and types of rooted trees. First let us refine the definition of avenue in order to
ensure its unicity. Let T be a tree with xs(T) = k. An avenue is a subpath A = (u1, · · · , up)
in T such that p > 1, u1 and up have exactly one branch with exclusive search number k
(containing v2 and vp−1 respectively) and, for any 2 ≤ i < p, ui has exactly two branches with
exclusive search number k (containing vi−1 and vi+1 respectively). Note that the definition of
a branch in our work (Definition 1) differs a bit from the one in [14]. We adapt the algorithm
below according to this definition.

The proof of Claim 1 shows that

Claim 2 Let T be a tree with xs(T) = k. Either T has a vertex v (called hub) such that all
branches at v have exclusive search number < k, or T has a unique avenue (u1, · · · , up) and
p > 1.

The algorithm takes a tree T rooted in r ∈ V (T) and recursively computes xs(T). The
location of the root relatively to the avenue is important, therefore we need the following
notations (borrowed from [14]). By Claim 2, there are 4 possible types:

Type H. All branches at r have exclusive search number < k. In that case, r is called the hub
of T .

Type E. T has a unique avenue (u1, · · · , up) and r belongs to a branch at u1 or up with
exclusive search number < k, or r ∈ {u1, up} (in the latter case, we moreover impose that
p > 1, otherwise this is the case of Type H).

Type I. T has a unique avenue (u1, · · · , up), p > 1 and r ∈ {u2, · · · , up−1}.

Type M . T has a unique avenue (u1, · · · , up) and r belongs to a branch M at ui (2 ≤ i < p)
with exclusive search number < k.

20

Recursive algorithm. The algorithm recursively computes the following information record,
denoted by

info(T, r) = [type, xs, branches,M-info, neighbors],

associated with tree T (whose root r is chosen arbitrarily).
Note that the only difference with the algorithm designed in [14] comes from the fields

neighbors and branches.
The five fields of info(T, r) are defined as follows

type. It is the type (H,E, I or M) of the tree T rooted at r.

xs. It is the exclusive search number xs(T) of T .

branches. For any branch B at r, branches contains the value of xs(B).

M-info. If type = M , let (u1, · · · , up) be the avenue of T and let B be the branch at ui
that contains r. This field contains the information record info(B, r) associated with the
branch B at ui containing r. Otherwise, it is nil.

neighbors. If r has degree one in T , then neighbors = nil.

Otherwise, neighbors is a set of information records, one record for every branch B at r.
More precisely, for any branch B at r, neighbors contains the record
[type(S), xs(S), branches(S),M -info(S), nil] associated to the subtree S = B∪{r} rooted
at r.

The algorithm (the computation of info(T, r)) proceeds as follows. If T is an edge, then
info(T, r) = [H, 1, {0}, nil, nil]. Otherwise,

• If r has degree at least 2, then procedures merge (see below) and re-root are applied to
compute info(T, r). Precisely, let r1, · · · , rd be the neighbors of r. For every 1 ≤ i ≤ d,
let Ti = Bi ∪ {r} be the subtree of T that consists of r plus the branch Bi at r in T that
contains ri. The algorithm first recursively computes info(Ti, r) for every i ≤ d. Then,
info(T, r) = merge(info(T1, r), · · · , info(Td, r)).

• If r has degree 1, then procedure re-root (see below) is applied to compute info(T, r).
Precisely, let r1 be the neighbor of r. First info(T, r1) is computed and then info(T, r) =
re-root(info(T1, r1)).

4.4.1 Procedure merge

Procedure merge is used to compute info(T, r) from the information records of the branches of
T . Namely, info(T, r) = merge(info(T1, r), · · · , info(Td, r)). The procedure merge is defined
as follows.

When Procedure merge has more than two arguments (d > 2), it is defined recursively by
merge(X1, · · · , Xd) = merge(X1,merge(X2, · · · , Xd)). The case d = 2 is defined as follows.

Let T be any rooted tree obtained from two rooted trees T1 and T2 by identifying their roots
into a single vertex r, the root of T . Let info(T1, r) = [type1, xs1, branches1,M -info1, neighbors1]
and info(T2, r) = [type2, xs2, branches2,M -info2, neighbors2]. Then,
info(T, r) = merge(info(T1, r), info(T2, r)) is computed as follows.

We may assume that xs1 ≥ xs2.

21

Computation of neighbors. For i ∈ {1, 2}, if r has degree 1 in Ti, set neighbors∗i =
{info(Ti, r)} and set neighbors∗i = neighborsi otherwise. Then, neighbors = neighbors∗1 ∪
neighbors∗2.

Computation of branches. Let branches of info(T, r) be branches1 ∪ branches2.

Computation of xs, type and M-info. Let `′ be the smallest integer such that, for any
even i > 1, at most i branches B at r in T have xs(B) ≥ `′ − i/2 + 1, and xs(B) ≤ `′. Clearly,
`′ can be computed using branches. Let ` = max{`′, xs1, d} where d equals the degree of r in
T minus one.

1. If ` > xs1, then info(T, r) = [H, `, branches, nil, neighbors].

Now, we may assume that ` = xs1.

2. If xs1 = xs2, there are the following cases.

(a) If type1 = type2 = H, then info(T, r) = [H, `, branches, nil, neighbors].

(b) If type1 = H and type2 = E or vice versa, then info(T, r) = [E, `, branches, nil, neighbors].

(c) If type1 = type2 = E, then info(T, r) = [I, `, branches, nil, neighbors].

(d) If type1 = I and type2 = H, or vice versa, then info(T, r) = [I, `, branches, nil, neighbors].

(e) Otherwise (at least one of T1 or T2 is of type M , or one is of type I and the other
of type I or E), then at least 3 branches at r in T have exclusive search number at
least xs1. Therefore, in that case, ` ≥ `′ > xs1. Hence, this case is treated in the
previous item.

3. xs1 > xs2.

(a) If type1 = H,E or I, then info(T, r) = [type1, `, branches, nil, neighbors].

(b) Otherwise, type1 = M . In that case, Procedure merge is called on T2 and M (the
branch where r stands in T1), using info(T2, r) and M -info1 = info(M, r). Let
[type′, xs′, branches′,M -info′, neighbors′] = merge(info(T2, r), info(M, r)) be the
result of this call.

• If xs′ < xs1, then
info(T, r) = [M, `, branches, [type′, xs′, branches′,M -info′, neighbors′], neighbors].

• Otherwise, info(T, r) = [H, `, branches, nil, neighbors].

Lemma 3 The procedure merge computes info(T, r) from info(T1, r) and info(T2, r), where
T is the n-node tree obtained by identifying the roots of two trees T1 and T2. Moreover, its
time-complexity is O(n).

Proof. The proof is by case analysis, corresponding to the cases in the description of the
procedure.

1: ` > xs1. In this case, all branches at r have exclusive search number at most xs1 < `.
Moreover, ` is the smallest integer that satisfies the conditions of Theorem 3. Hence, the
result follows.

2a: ` = xs1, xs1 = xs2, type1 = type2 = H. In this case, both trees have the root as hub,
and their union is a tree in which all branches at the root have search number less than
xs1 = xs2. The new tree has the root as a hub, and its exclusive search number is `, by
Theorem 3.

22

2b: ` = xs1, xs1 = xs2, type1 = H, type2 = E. The new tree can be searched with `, by
Theorem 3. T has an avenue of length at least one, with r as an endpoint, and hence it
is type E.

2c: ` = xs1, xs1 = xs2, type1 = type2 = E. The avenue of T is the shortest path that contains
both the avenues of T1 and T2, and this avenue can be used to search T with ` searchers.
Since r is one of the interior points on the avenue, T is type I.

2d: ` = xs1, xs1 = xs2, type1 = I, type2 = H. The root of T1 is a node on the interior of
its avenue, and after combination with T2 the off-avenue branches at that root will all
continue to have a search number less than xs1 = xs2. Thus, T has the same type as T1

and xs = `.

2e: As already said, this case is treated in Case 1.

3a: ` = xs1, xs1 > xs2, type1 is H, E, or I. If type1 is H, then the root continues to have
only branches with search number less than xs1 in T, so T is of type H and has search
number `. If type1 is E, T has an avenue of length at least one, with r on a branch at an
endpoint (possibly it is the endpoint), so T is of type E. If type1 = I, the argument of
Case 2d applies, so T is of type I and has search number `.

3b: ` = xs1, xs1 > xs2 and type1 = M . The search number for T depends on the search
number xs(T ′) of the union of the M -tree for T1 with T2. If xs′ = xs(T ′) < xs1, then
the avenue of T is exactly the same as the avenue of T1, the same search number xs1 = `
suffices, and T ′ is now the M -tree of T . If xs′ ≥ xs1, then T is type H with search number
`, by Theorem 3.

Every case of the function takes a constant time, but the case 3b which makes the recursive
call merge(info(T2, r), info(M, r)) on a tree obtained from the identification of r in T2 and
M which has strictly smaller exclusive search number. The time-complexity O(xs(T)) = O(n)
follows. �

4.4.2 Procedure re-root

The procedure re-root is defined as follows. Let us assume that r has a unique neighbor r′ in T .
Let info(T, r′) = [type′, xs′, branches′,M -info′, neighbors′] (that has been computed re-

cursively). Then, info(T, r) = [type, xs, branches,M -info, neighbors] is computed as follows.

Computation of xs. Since the tree is not modified (only the root changes), xs = xs′.

Computation of branches. Let {r′1, · · · , r′h} be the set of neighbors of r′ but r. For any i ≤ h,
let B′i be the branch at r′ containing r′i. By definition, for any i ≤ h, neighbors′ contains the
information record info(B′i ∪{r′}, r′) associated to the subtree B′i ∪{r′} rooted in r′. Applying
the sub-procedure merge allows us to compute

info(T \ {r}, r′) = merge(info(B′1 ∪ {r′}), · · · , info(B′h ∪ {r′}, r′))

that contains xs(T \{r}). Note that no recursive call of the main algorithm is done at this step.
The field branches of info(T, r) is set to {xs(T \ {r})}.

23

Computation of type and M-info.

1. If type′ = E, then type = E and M -info = nil.

2. If type′ = H, then type = E and M -info = nil.

3. If type′ = I and xs′ = 1 (i.e., T is a path with end r) then type = E and M -info = nil.

If type′ = I and xs′ > 1, then type = M and M -info = [H, {0}, ∅, nil, nil].

4. If type′ = M , then type = M , M -info = re-root(M -info′).

Computation of neighbors. Because r has degree 1 in T , neighbors = nil.

Lemma 4 For any nnode tree T that is not just a single edge, the procedure re-root computes
info(T, r) from info(T, r′), where T is rooted at a leaf r and r′ is the neighbor of r. Moreover,
its time-complexity is O(n2).

Proof. The correctness of re-root directly follows from the correctness of merge by Lemma 3.
All steps are executed in constant-time but, the application of merge(info(B′1 ∪ {r′}), · · · ,

info(B′h∪{r′}, r′)) which takes time O(n) by Lemma 3, and the recursive call re-root(M -info′)
to a tree with smaller exclusive search number. Overall, the time-complexity is O(n2). �

4.4.3 Time-complexity

Theorem 5 The algorithm described in this section computes info(T, r) for any tree T rooted
in r and having n nodes in O(n3) time.

Proof. The correctness of the algorithm follows immediately from Lemmas 3 and 4.
The worst case is when r has a unique neighbor r′. Let B′1, · · · , B′d be the branches at r′

and let Bi = B′i∪{r′} for any 1 ≤ i ≤ d. We may assume that T is not an edge, so d ≥ 2 (r′ has
degree at least 2). Let ni be the size of Bi and note that

∑
1≤i≤d ni = n+d−1. First info(Bi, r

′)
is computed for any 1 ≤ i ≤ d. Then, merge(B1, · · · , Bd) is computed, which consists of O(n)
merging of two subtrees taking O(n)-time each. Finally, the algorithm executes re-root(T, r′)
which takes time O(n2).

Let g(n) be the complexity of the algorithm applied to an n-node tree. By previous para-
graph, we get that g(n) =

∑
1≤i≤d g(ni) +O(n2). Since

∑
1≤i≤d ni = O(n), we get by induction

that g(n) = O(n3). �

5 Conclusion

In this paper, we have defined and study a new graph searching parameter, namely the exclusive
search number of graphs. It appears that, contrary to all previous variants of graph searching
games, the exclusive search number is not related to pathwidth. An interesting open-problem is
to determine if exclusive graph searching is related to other graph parameters related to vertices
layouts such as cutwidth or bandwidth.

It has been recently proved that computing the exclusive search number is NP-hard [13]. Is
this problem Fixed Parameter Tractable? Do approximation algorithms exist?

24

References

[1] Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud, Nicolas Nisse, Nicola Santoro, and Dim-
itrios M. Thilikos. Connected graph searching. Information and Computation, 219:1–16, 2012.

[2] Daniel Bienstock. Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser.
in Discr. Maths and Theoretical Comp. Sc., 5:33–49, 1991.

[3] Daniel Bienstock and Paul D. Seymour. Monotonicity in graph searching. J. Algorithms, 12(2):239–245,
1991.

[4] Lélia Blin, Janna Burman, and Nicolas Nisse. Exclusive graph searching. In 21st Annual European Sympo-
sium on Algorithms (ESA), volume 8125 of Lecture Notes in Computer Science, pages 181–192. Springer,
2013.

[5] Richard L. Breisch. An intuitive approach to speleotopology. Southwestern Cavers, 6:72–78, 1967.

[6] Richard L. Breisch. Lost in a Cave-applying graph theory to cave exploration. National Speleological Society,
2012. 298 pages.

[7] Dariusz Dereniowski. From pathwidth to connected pathwidth. SIAM J. Discrete Math., 26(4):1709–1732,
2012.

[8] Jonathan A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. The vertex separation and search number
of a graph. Information and Computation, 113(1):50–79, 1994.

[9] Fedor V. Fomin, Pinar Heggernes, and Rodica Mihai. Mixed search number and linear-width of interval and
split graphs. Networks, 56(3):207–214, 2010.

[10] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph searching.
Theor. Comput. Sci., 399(3):236–245, 2008.

[11] Petr A. Golovach, Pinar Heggernes, and Rodica Mihai. Edge search number of cographs. Discrete Applied
Mathematics, 160(6):734–743, 2012.

[12] Lefteris M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical Computer Science, 47
(2):205–218, 1986.

[13] Euripides Markou, Nicolas Nisse, and Stéphane Pérennes. Exclusive Graph Searching vs. Pathwidth. Re-
search Report RR-8523, INRIA, 2014. URL https://hal.inria.fr/hal-00980877.

[14] Nimrod Megiddo, Seifollah L. Hakimi, Michael R. Garey, David S. Johnson, and Christos H. Papadimitriou.
The complexity of searching a graph. J. Assoc. Comput. Mach., 35(1):18–44, 1988.

[15] T. D. Parsons. The search number of a connected graph. In 9th Southeastern Conf. on Combinatorics,
Graph Theory, and Computing, Congress. Numer., XXI, pages 549–554. Utilitas Math., Winnipeg, Man.,
1978.

[16] Sheng-Lung Peng, Chin-Wen Ho, Tsan-sheng Hsu, Ming-Tat Ko, and Chuan Yi Tang. Edge and node
searching problems on trees. Theoretical Computer Science, 240(2):429–446, 2000.

[17] Konstantin Skodinis. Computing optimal linear layouts of trees in linear time. J. Algorithms, 47(1):40–59,
2003.

[18] Karol Suchan and Ioan Todinca. Pathwidth of circular-arc graphs. In 33rd Int. Workshop on Graph-Theoretic
Concepts in Computer Sc. (WG), volume 4769 of LNCS, pages 258–269. Springer, 2007.

[19] Boting Yang, Danny Dyer, and Brian Alspach. Sweeping graphs with large clique number. Discrete Mathe-
matics, 309(18):5770–5780, 2009.

25

