
HAL Id: hal-01239341
https://hal.inria.fr/hal-01239341

Submitted on 3 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Usability of Shortest Remaining Time First
Policy in Shared Hadoop Clusters

Nathanaël Cheriere, Pierre Donat-Bouillud, Shadi Ibrahim, Matthieu Simonin

To cite this version:
Nathanaël Cheriere, Pierre Donat-Bouillud, Shadi Ibrahim, Matthieu Simonin. On the Usability of
Shortest Remaining Time First Policy in Shared Hadoop Clusters. SAC 2016-The 31st ACM/SIGAPP
Symposium on Applied Computing, Apr 2016, Pisa, Italy. �hal-01239341�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49426192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01239341
https://hal.archives-ouvertes.fr

On the Usability of Shortest Remaining Time First Policy in
Shared Hadoop Clusters

Nathanaël Cheriere
ENS Rennes / IRISA

Rennes, France
nathanael.cheriere@ens-rennes.fr

Pierre Donat-Bouillud
ENS Rennes / IRISA

Rennes, France
pierre.donat-bouillud@ens-rennes.fr

Shadi Ibrahim
Inria Rennes - Bretagne Atlantique

Rennes, France
shadi.ibrahim@inria.fr

Matthieu Simonin
Inria Rennes - Bretagne Atlantique

Rennes, France
matthieu.simonin@inria.fr

ABSTRACT
Hadoop has been recently used to process a diverse variety of
applications, sharing the same execution infrastructure. A
practical problem facing the Hadoop community is how to
reduce job makespans by reducing job waiting times and ex-
ecution times. Previous Hadoop schedulers have focused on
improving job execution times, by improving data locality
but not considering job waiting times. Even worse, enforcing
data locality according to the job input sizes can be ineffi-
cient: it can lead to long waiting times for small yet short
jobs when sharing the cluster with jobs with smaller input
sizes but higher execution complexity. This paper presents
hSRTF, an adaption of the well-known Shortest Remaining
Time First scheduler (i.e., SRTF) in shared Hadoop clus-
ters. hSRTF embraces a simple model to estimate the re-
maining time of a job and a preemption primitive (i.e., kill)
to free the resources when needed. We have implemented
hSRTF and performed extensive evaluations with Hadoop
on the Grid’5000 testbed. The results show that hSRTF
can significantly reduce the waiting times of small jobs and
therefore improves their makespans, but at the cost of a rel-
atively small increase in the makespans of large jobs. For
instance, a time-based proportional share mode of hSRTF
(i.e., hSRTF-Pr) speeds up small jobs by (on average) 45%
and 26% while introducing a performance degradation for
large jobs by (on average) 10% and 0.2% compared to Fifo
and Fair schedulers, respectively.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; •Networks → Cloud computing;

Keywords
MapReduce; Hadoop; Scheduling, SRTF

1. INTRODUCTION
Large-scale data analysis has increasingly come to rely
on MapReduce [5, 9] and its open-source implementation
Hadoop [3]. Hadoop has recently been used to run mul-
tiple divers MapReduce applications belonging to multiple
concurrent users, thanks to its built-in schedulers (i.e., Fifo,
Fair and Capacity schedulers). A practical problem facing

the Hadoop community is how to reduce job makespans1, es-
pecially for latency-sensitive small jobs. It is reported that
a typical production Hadoop cluster contains a significant
fraction of small jobs (e.g., 75% of the jobs in Facebook
clusters are small jobs [16]). Consequently, previous Hadoop
schedulers have focused on improving job execution times by
optimizing data locality (i.e., introducing short delays and
launching multiple copies of map tasks to increase the possi-
bility of local map execution [16, 12], and data-aware virtual
machine placement [10]) or reducing the cross-rack commu-
nication [4]. However, a few efforts have focused on reducing
job waiting times, although waiting time is as important as
execution time to improve job makespans. Evaluating and
prioritizing jobs according to their input data sizes may re-
sult in long waiting times for “real” short jobs when sharing
the cluster with jobs with smaller input sizes but higher ex-
ecution complexity. As shown in Figure 1(a), in workload
traces collected over a period of one month in three different
Hadoop research clusters [11, 2], we find that the execution
times of MapReduce applications are not strongly depend-
ing on their input data sizes. Even worse, enforcing data
locality according to the input sizes can be inefficient. The
runtimes of map and reduce tasks are highly heterogeneous
(see Figure 1(b)): it varies between applications. To this
end, in this paper we present hSRTF, an adaption of the
Shortest Remaining Time First scheduler (i.e., SRTF) in
shared Hadoop clusters. SRTF is a well-known scheduling
policy which favors tasks with short remaining times to fin-
ish and execute them first to reduce their waiting times [6].
However, several challenges arise when adopting SRTF to
Hadoop including: preserving data locality, estimating job
remaining times, and so on. To this end, this paper makes
the following contributions:

[Contribution 1] We propose hSRTF, an adoption of the
well-known SRTF scheduling policy in shared Hadoop clus-
ters. hSRTF embraces a simple model to estimate the re-
maining time of a job to complete and thus to allocate as
much resources as possible to satisfy its computation needs.
To meet the dynamicity of Hadoop clusters (i.e., changes in

1
In this paper, job makespan is the time between the submission

and the completion time of a job. Job waiting time is the time
between the submission time of the job and the starting time of the
first map task. Job execution time is the time between the starting
time of the first map task and the completion time of the job.

10
0

10
1

10
2

10
3

10
4

0

1,000

2,000

3,000

4,000

5,000

of map tasks per job (log scale)

E
xe
cu
ti
on

ti
m
es

(s
)

(a) Distribution of job execution
times with respect to their in-
put data sizes (number of map
tasks): There is no strong co-
relation between job execution
times and job input sizes. Even
worse for the same input size
(for some cases), there is a fac-
tor of 40 difference in execution
time between the shortest and
the longest jobs.

0 2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

Task Runtimes (s)
P
ro
p
or
ti
o
n
(%

)

Map tasks
Reduce tasks

(b) CDFs of the task runtimes
(map and reduce tasks): Even
though all map tasks have the
same input size, their runtimes
vary by 880% which is due to
the complexity of the map task
(the characteristic of the appli-
cation) and data locality. On
the other hand, the runtimes of
reduce tasks experience a varia-
tion of 500%.

Figure 1: Analysis of Workload traces from three differ-

ent research clusters (which covers one month duration

“January 2011”): (a) Distribution of job execution times

and (b) CDFs of the task runtimes.

the resource utilization according to the arrival and types
of jobs), hSRTF periodically estimates remaining times of
running jobs and therefore keeps the estimation up-to-date.
A preemption primitive (i.e., kill) to free the resources is
adopted in hSRTF. Moreover, we have employed a technique
to co-locate map and reduce tasks of the same jobs to reduce
the need of data transfer during the shuffle phase.

[Contribution 2] A time-based proportional share mode
of hSRTF is proposed in which resources are partitioned
according to the remaining times of running jobs. This is
an important feature in hSRTF especially when jobs have
similar remaining times. Furthermore, it improves the time
estimation by allowing a few tasks of each job to run.

[Contribution 3] We implement hSRTF as a pluggable
scheduler in Hadoop and performed extensive evaluations
with Hadoop on the Grid’5000 testbed. The results show
that hSRTF can significantly reduce the waiting times of
small jobs and therefore improves their makespans, but at
the cost of a relatively small increase in the makespans of
large jobs. For instance, a time-based proportional share
mode of hSRTF (i.e., hSRTF-Pr) speeds up small jobs by
(on average) 45% and 26% while introducing a performance
degradation for large jobs by (on average) 10% and 0.2%
compared to Fifo and Fair schedulers, respectively.

It is important to mention that the focus of this paper is to
investigate the usability of the well-known scheduling policy
(SRTF) in shared Hadoop clusters. Towards this goal, we
have discussed a possible adoption of SRTF to Hadoop. This
in turn allows us to study the impact of reducing waiting
times on the job makespans.

Paper Organization. The rest of this paper is organized
as follows: Section 2 discusses the related work. Section 3
discusses the design of hSRTF scheduler. We then describe

our experimental methodology and results in Sections 4 and
5. Finally, we conclude the paper and propose our future
work in section 6.

2. RELATED WORK
Job scheduling in Hadoop has attracted a lot of attention in
the last few years. Most work has focused on improving job
makespans by improving data locality and thus reducing job
execution times [16, 12, 10, 7]. Zaharia et al. [16], have pro-
posed a simple scheduling algorithm called delay scheduling
to achieve locality and fairness in cluster scheduling. When a
job, that should be scheduled next according to fairness, can-
not launch a local task, it waits for a small amount of time,
letting other jobs launch tasks instead. Purlieus (locality-
aware resource allocation) [10] employed a static placement
of virtual machines according to the distribution of the data
inputs to ensure the local execution of map tasks. Consider-
ing that the majority of jobs in production Hadoop clusters
are small jobs, several techniques have been proposed to
improve the execution time of small jobs. Given that lo-
cality is of high importance to small jobs, Venkataraman et
al. [12] proposed to launch multiple copies of map tasks to
guarantee that they will be executed locally. All the afore-
mentioned work targets improving the makespans of small
jobs by reducing their execution times (by enforcing data
locality). hSRTF aims at improving the makespans of small
jobs by reducing their waiting times, which is as important
as execution time. Moreover, some of the proposed tech-
niques can be applied in hSRTF to improve data locality of
small jobs and thus further reduce their makespans.

3. SHORTEST REMAINING TIME
SCHEDULING IN HADOOP

SRTF is a preemptive scheduling algorithm in which the
process with the smallest amount of remaining time un-
til completion is selected to execute [6]. However, several
challenges arise when adopting SRTF to Hadoop including:
preserving data locality (when needed), estimating job re-
maining times, and so on. Hereafter, we discuss how we
addressed these challenges, starting by introducing the de-
sign principles of hSRTF.

3.1 Design Principles
We designed and implemented hSRTF with the following
goals in mind:

One size doesn’t fit all: To reduce the makespans of small
jobs (which counts for almost 75% of the jobs in Facebook
clusters [16]), current schedulers tend to evaluate and there-
fore prioritize jobs according to their input data sizes (i.e.,
the number of map tasks). They assume that tasks (e.g.,
map tasks) belonging to different jobs have the same run-
time. This assumption is not necessary true since the run-
time of a task differs between applications: even though
they compute the same amount of data (i.e., map tasks are
usually performed on a fixed-size block of data, 128MB in
Hadoop), a complicated map (reduce) function will prob-
ably take more time to finish than a simple map (reduce)
function (As shown in Figure 1). Even worse, as reported
in [4, 16], shuffle-heavy jobs count for almost 60% and 20%
of the total jobs in Yahoo! and Facebook clusters, thus, the
makespans of these jobs are dominated by the completion
of the last reduce task. hSRTF thus evaluates jobs accord-

ing to their remaining time which can better identify “real”
small jobs.

Avoid blocked jobs: Considering a simple example of two
jobs: Job1 has a small size input data but heavy shuffle and
reduce phase and Job2 has a slightly bigger size input data
and light reduce phase. Traditional schedulers try to allocate
map and reduce slots to Job1 to finish fast. However, even
if the map phases of Job1 and Job2 are completed, Job2 will
be blocked waiting for the long reduce tasks of Job1 to be
completed. This results in a long makespan of some small
jobs as discussed in [14]. hSRTF periodically evaluates the
remaining times of running jobs and therefore allocates slots
to jobs accordingly. This in turn reduces the overall blocking
time, especially for short jobs.

Reduce waiting time: Previous Hadoop schedulers focus
on improving job execution times, by improving data local-
ity but do not consider job waiting times. Enforcing data
locality according to the job input sizes can lead to long
waiting times for small and short jobs. hSRTF allocates re-
sources according to the shortest remaining times and thus
ensures shorter waiting time for small jobs.

Preserving data Locality: Local execution of map tasks
is crucial for Hadoop performance. hSRTF, by dedicating
all the resources to jobs with the shortest remaining times,
allows these jobs to expose the native data locality imple-
mented in Hadoop and therefore can preserve similar data
locality to the Fifo scheduler. We are now working on im-
proving data locality, especially for small jobs, by making
the preemption technique data-aware.

Resource utilization: hSRTF co-locates map and reduce
tasks to run on the same set of nodes (on the same node if
possible), this reduces the need to transfer the intermediate
data (reduce inputs), and thus reduces the execution times of
small jobs as it leverages in-memory data processing: reduce
function computes the map output which is already buffered
in the memory of the same node [8].

3.2 Estimating job remaining times
A typical MapReduce application consists of two (over-
lapped) phases: a map phase and a reduce phase. However,
an accurate estimation of the execution time of a MapRe-
duce application is a very hard task. It is contributed to by
many factors including the size of input data, map complex-
ity, reduce complexity, size of intermediate data, and the
time in which map and reduce phases overlap. These fac-
tors vary according to the type of MapReduce applications,
the underlying infrastructure, and the distribution of the
data blocks. Therefore profiling the execution time could
be costly, especially with the proliferation of MapReduce
applications. Several efforts have therefore targeted predi-
cating the execution time of the map and reduce phase sep-
arately and exploit the predication to optimize scheduling
in Hadoop [13].

In hSRTF, we have developed a simple model to estimate
job remaining times, as shown below:

remaining time =

⌈
map unfinished

map capacity

⌉
∗ avg map time+⌈

reduce unfinished

reduce capacity

⌉
∗ avg reduce time (1)

This equation is supported by the following assumptions:

[1] The remaining time needed by a job is computed as
if it was the only job running on the cluster to compare
every job with the same parameters. [2] The number of
map and reduce tasks a job can launch at the same time
is limited by the capacity of map slots and reduce slots of
the cluster. That is why the estimation of the remaining
time also takes into account those two parameters. [3] The
remaining time of a job is estimated in two phases: the
remaining time needed for the map phase, and the remaining
time needed for the reduce phase. [4] During the map phase,
the remaining time is dominated by the complexity of map
tasks and the size of map inputs. Thus, we rely on the
finished map tasks and/or on the progress score and the
duration of ongoing ones to calculate avg map time. For
the avg reduce time, we assume that reduce tasks have the
same complexity of map tasks and therefore reduce runtime
depends on the reduce input data. That is:

avg reduce time =
input size per reducer

avg map time
∗ block size (2)

[5] During the reduce phase, the remaining time is domi-
nated by reduce tasks only, therefore, we rely on the finished
reduce tasks and/or on the progress score and the duration
of ongoing ones to calculate avg reduce time.

When a new job is launched, we take the average values of
the map and reduce tasks which belong to the currently run-
ning jobs. However, our estimation gets more realistic with
time as more information about the job can be obtained.
It is very important to mention that the remaining time
is recomputed every 10 sec to cope with the dynamicity of
currently running jobs and infrastructure.

3.3 Preemption
hSRTF uses kill action to free up slots for tasks belonging
to jobs with the shortest remaining times. The preempted
tasks are chosen from the jobs with the longest remaining
time to finish. Furthermore, to minimize resources waste,
tasks with the lowest progress score are selected.

3.4 Map and reduce task co-location
Given that most of the resources are dedicated to the job
with the shortest remaining time, this allows to have a better
placement of the reduce tasks. hSRTF tries to co-locate map
and reduce tasks belonging to the same job. This reduces
the need to send intermediate data through the network,
which is normally the most scarce resource in today’s data-
centers: intermediate data just needs to be read from the
memory to/from the disk (In case of very small jobs, data
stays in-memory during map and reduce phase). To co-
locate map and reduce tasks, we try to launch reduce tasks
according to the location of currently running map tasks and
to the distribution of the map inputs (assuming map tasks
will eventually run locally).

3.5 Time-based proportional sharing
The SRTF scheduling algorithm was originally designed for
monotask systems and all the resources were given to the job
that would finish first. Thus in our work we have adopted
the same policy: hSRTF always satisfies the resource needs
of the job with the shortest remaining time.

However, to provide a fair share of resources when jobs have
the same remaining times (e.g., large job was running for

Scheduler Description

Fifo Priority scheduler with respect to job submission
time

Fair Provides fair allocation of resources between differ-
ent jobs

hSRTF-Pu Allocates all resources to the job with the shortest
remaining time

hSRTF-
PuP

Similar to hSRTF-Pu, but with the possibility of
preempting (kill) running tasks which belong to a
job with the longest remaining time to provide early
allocation to a job with the shortest remaining time

hSRTF-Pr Allocates resources to jobs according to their re-
maining time

hSRTF-
PrP

Similar to hSRTF-Pr, but with the possibility of
preemption

Table 1: List of schedulers used in our evaluation

a long period and a new submitted small job) and to im-
prove the time estimation (by allowing a few tasks of each
job to run), we have implemented a time-based proportional
share mode of hSRTF. That is, we allocate resources to jobs
according to their remaining times. If a job takes n more
time to finish than a reference job, it will have n time less
resources than the reference job. Let us denote RTi as the
remaining time of job i and Si its share of available resources.
We have the set of equations for n jobs (0,..., n− 1):

∀i, Si =
RT0

RTi
S0 (3)

n−1∑
i=0

Si = cluster resources (4)

If a job receives more resources than what is needed
(this happens at the end of a job), the used resources
are redistributed to other jobs. However, there is a risk
of starvation, jobs being always left behind to prioritize
shorter jobs. In order to avoid such starvation, the number
of resources a job receives is coefficiented with a starvation
ratio STi:

STi =
Time since launch+ Estimated remaining time on share

Estimated makespan alone
(5)

We estimate the total makespan of the job – assuming that
the current share of resources will remain the same until
the end of the job (by changing map and reduce capacity
in Equation 1 by Si) – and we divide it by the estimation
of the makespan of the job as if it had all the resources for
itself. This ratio represents the extra time a job needs to
complete when sharing the resources with other jobs. The
more a job starves (its estimated total makespan increases),
the more it will have resources.

4. METHODOLOGY OVERVIEW
Platform. The experiments were carried out on the
Grid’5000 [1] testbed. For our experiments, we employed
58 nodes belonging to the Toulouse site of Grid’5000. These
nodes are outfitted with 4-core AMD Opteron 2.6 GHz
CPUs and 8 GB of RAM. Intra-cluster communication is
done through a 1 Gbps Ethernet network.

Benchmarks. For our experiments, we selected two appli-
cations that are commonly used for benchmarking MapRe-
duce frameworks: distributed wordcount and distributed sort.

Hadoop deployment. On the testbed described earlier,
we configured and deployed a Hadoop cluster using the
Hadoop 1.0.4 stable version [3]. The Hadoop instance con-
sists of 58 nodes to serve as both datanodes and tasktrackers,
among which, one node was also configured to serve as na-
menode and jobtracker. The tasktrackers were configured
with 8 slots for running map tasks and 2 slots for executing
reduce tasks. At the level of HDFS, we used the default
chunk size of 128 MB and the default replication factor of 3
for the input and output data.

hSRTF Implementation. hSRTF is built as a pluggable
scheduler in Hadoop-1.0.4. As mentioned earlier, hSRTF
can be tuned to operate in two different modes: pure mode
represented as hSRTF-Pu and time-based proportional-
share mode represented as hSRTF-Pr. Each mode may work
with and without preemption. This gives us 4 different pos-
sibilities for running hSRTF (see Table1). By disabling pre-
emption, we ensure a fair comparison with Fifo and Fair
schedulers. Fair scheduler is configured with one pool and
fairness is applied in-between the jobs within this pool.

5. EXPERIMENTS RESULTS
We run a mixed workload consisting of sort and wordcount
applications. For both applications we vary the input data
sizes as shown in Table 2. Each job is submitted 10 seconds
after each other.

Figure 2 shows the CDFs of job makespans, waiting times
and execution times for each group. hSRTF significantly
improves the makespan of smaller jobs, but at the cost of
slowing larger jobs. Hereafter we will explain these results
for each group, separately, and present a detailed compara-
tive discussion of the various used schedulers.

5.1 Small Jobs
hSFTF-Pu vs Fifo. We observe that hSRTF-Pu outper-
forms Fifo for all small jobs with an average speedup of 43%
(see Figure 2(a)). This improvement however is not due to
the reduction in job waiting times as shown in Figure 2(d),
but it is because of the improvement in the job execution
times (although both achieve similar data locality, as shown
in Figure 3(a)). hSRTF-Pu launches map and reduce tasks
belonging to small jobs as soon as a slot is freed up while Fifo
was not able to launch reduce tasks for small jobs though
map tasks were already running (completed). Thus small
jobs under Fifo were blocked due to the long occupation
of reduce tasks by other running jobs, a similar issue was
reported in [14].

hSFTF-Pr vs Fair. On the other hand, hSRTF-Pr re-
duces the makespan of (most) small jobs with an average
speedup of 26%. This improvement is obviously due to the
huge reduction in waiting times as shown in Figure 2(d).
Surprisingly, as shown in Figure 2(g), hSRTF-Pr slightly

Application # of
maps

of
reduces

of
jobs

Large jobs Sort 256 32 3
Medium Jobs Sort 64 8 8

Small Jobs
Sort 1 1 10

WordCount 1 1 10

Table 2: List of jobs and their input size used in the
experiment, in the order of submission

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

time (s)

Fair Fifo
hSRTF-Pr hSRTF-PrP
hSRTF-Pu hSRTF-PuP

(a) Makespan - small

500 550 600 650 700

0

0.2

0.4

0.6

0.8

1

time (s)

Fair Fifo
hSRTF-Pr hSRTF-PrP
hSRTF-Pu hSRTF-PuP

(b) Makespan - medium

600 650 700 750 800 850

0

0.2

0.4

0.6

0.8

1

time (s)

Fair Fifo
hSRTF-Pr hSRTF-PrP
hSRTF-Pu hSRTF-PuP

(c) Makespan - large

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

time (s)

(d) Waiting time - small

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

time (s)

(e) Waiting time - medium

6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

time (s)

(f) Waiting time - large

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

time (s)

(g) Execution time - small

400 450 500 550 600 650 700

0

0.2

0.4

0.6

0.8

1

time (s)

(h) Execution time - medium

600 650 700 750 800 850

0

0.2

0.4

0.6

0.8

1

time (s)

(i) Execution time - large

Figure 2: CDFs of job

makespans, waiting times,

and execution times under

different schedulers, grouped

by job sizes

improves job execution times, although Fair achieves per-
fect locality compared to hSRTF-Pr : as shown in Figure
3(a), Fair achieves 100% data locality while hSRTF-Pr ob-
tains only 5% data locality. This can be explained due to
two reasons: (1) under Fair, some jobs were blocked wait-
ing for reduce slots to be freed up, and (2) hSRTF-Pr tries
to co-locate map and reduce tasks to reduce data transfer
during the shuffle phase, however, this was very beneficial
for small jobs in our case as most jobs were executed on
one node (map and reduce tasks) and therefore intermedi-
ate data were buffered in-memory. This avoids the extra la-
tency introduced by transferring and reading data from disk,
hence, this compensates the low data locality, especially for
sort applications (in sort, reduce input (map output) has the
same size as map input).

Preemption vs waiting. Finally, we observe that em-
ploying preemption can help in reducing the waiting time
for most small jobs, as shown in Figure 2(d). hSRTF-PrP
and hSRTF-PuP reduce the job waiting times compared
to hSRTF-Pr and hSRTF-Pu, respectively. However, job
makespans were not reduced because in some jobs, a reduce
slot was freed up on a node different from the node running
job’s map task and thus the execution time increased.

5.2 Medium Jobs
We observe that hSRTF-Pr is superior to all other sched-
ulers (see Figure 2(b)). This is due to the reduction in job
execution times and the moderate waiting times, as shown
in Figure 2(h) and Figure 2(e). Here, as resources are al-
located according to the shortest remaining time, medium
jobs continue to run with minimal resources and even with
maximum resources if their remaining time is shorter than
small jobs. On the other hand, Fair still results in longer
waiting time and therefore in longer makespans compared
to both hSRTF-Pr and hSRTF-PrP.

Medium jobs suffer the same waiting times under both Fifo
and hSRTF-Pu. However, hSRTF-Pu tries to allocate re-
sources to small jobs and thus prolongs the execution time
of medium jobs. What’s more, the reduction of small job
waiting times by exploiting preemption in hSRTF-PuP re-
sults in more waiting time compared to hSRTF-Pu.

5.3 Large Jobs
By trying to allocate and free up slots (i.e., when employing
preemption) to allow small jobs to execute their tasks, large
jobs will be blocked and will lose the work of their running
tasks, if preempted. hSRTF therefore increases the execu-

F
ai
r

F
IF
O

h
S
R
T
F
-P
r

h
S
R
T
F
-P
rP

h
S
R
T
F
-P
u

h
S
R
T
F
-P
u
P

0

20

40

60

80

100

D
at
a
lo
ca
lit
y(
%
)

(a) Data locality - small

F
ai
r

F
IF
O

h
S
R
T
F
-P
r

h
S
R
T
F
-P
rP

h
S
R
T
F
-P
u

h
S
R
T
F
-P
u
P

0

20

40

60

80

100

D
at
a
lo
ca
lit
y(
%
)

(b) Data locality - medium

F
ai
r

F
IF
O

h
S
R
T
F
-P
r

h
S
R
T
F
-P
rP

h
S
R
T
F
-P
u

h
S
R
T
F
-P
u
P

0

20

40

60

80

100

D
at
a
lo
ca
lit
y(
%
)

(c) Data locality - large

Figure 3: Data Locality

under different schedulers,

grouped by job sizes

tion time of large jobs and therefore increases job makespans
(see Figure 2(i) and Figure 2(c)), despite the relatively small
reduction in job waiting times, as shown in Figure 2(f).
Moreover, preemption adversely impacts the performance
of large jobs. For example, hSRTF-Pr outperforms hSRTF-
PrP for all large jobs.

5.4 Discussion
Improving job makespans can be achieved by reducing their
execution times and waiting times. Our results demonstrate
that hSRTF significantly reduces job waiting times com-
pared to Fifo and Fair schedulers, regardless of the job sizes
(as shown in Figure 2(d), Figure 2(e), and Figure 2(f)). This
in turn results in a reduction in the makespans of small jobs:
besides the reduction in job waiting times, hSRTF also re-
duces job execution times, thanks to the map and reduce
tasks co-location techniques. Unfortunately, the obtained
data locality is very low (as shown in Figure 3(a), it varies
between 5% to 15% according to the applied hSRTF mode).
hSRTF achieves better data locality for both medium and
large jobs (see Figure 3(b) and Figure 3(c)). The makespans
of these jobs vary according to the reduction/increase in
their waiting times, the effectiveness in the co-location tech-
nique, the arrival of small jobs (i.e., the time when re-
sources are claimed by jobs with shorter times), and the
number of preempted tasks. Under hSRTF, the reduction in
makespans of small jobs comes at the cost of a slight increase
in makespans of large jobs. This increase in job makespans
is higher when employing the preemption technique. How-
ever, using hSFTR-Pr leads to lowering the increase of the
makespans of large jobs as it allows them to continue their
executions, but with minimal resources share.

6. CONCLUSION AND FUTURE WORK
In this research work we investigate the usability of the
Shortest Remaining Time First scheduling policy in shared
Hadoop clusters. To do so, we have proposed an adaption
of SRTF in Hadoop (named hSRTF). hSRTF embraces a
simple model to estimate the remaining time of a job and
a preemption primitive (i.e., kill) to free the resources when
needed. Furthermore, a time-based proportional shared ver-
sion of hSRTF is discussed. The results show that hSRTF
can significantly reduce the waiting times of small jobs and
therefore improves their makespans, but at the cost of a rela-
tively small increase in the makespans of large jobs. Our fu-
ture work lies in two aspects. First, to improve data locality
in hSRTF : we plan to investigate several existing techniques
to enforce data locality of small jobs [16, 7] and design a

smarter preemption policy that considers data locality when
preempting tasks to free up slots for jobs with short remain-

ing times. Second, we plan to explore existing preemption
techniques [15, 14] that could save the state of preempted
tasks instead of simply killing them which in turn will result
in lower resource waste.

7. ACKNOWLEDGMENTS
The Corresponding Author is Shadi Ibrahim (shadi.ibrahim@inria.fr).
The experiments presented in this paper were carried out using the
Grid’5000/ALADDIN-G5K experimental testbed, an initiative from
the French Ministry of Research through the ACI GRID incentive ac-
tion, INRIA, CNRS and RENATER and other contributing partners
(see http://www.grid5000.fr/ for details).

8. REFERENCES
[1] Grid 5000 Project.

https://www.grid5000.fr/mediawiki/index.php.
[2] Hadoop Log Dataset. http://www.pdl.cmu.edu/HLA/, 2015.
[3] The Apache Hadoop Project. http://www.hadoop.org, 2015.
[4] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N.

Vijaykumar. Shufflewatcher: Shuffle-aware scheduling in
multi-tenant mapreduce clusters. In USENIX ATC’14.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[6] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.
Size-based scheduling to improve web performance. ACM
Trans. Comput. Syst., 21(2):207–233, May 2003.

[7] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu.
Maestro: Replica-aware map scheduling for mapreduce. In
IEEE/ACM CCGrid’12.

[8] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. Leen:
Locality/fairness-aware key partitioning for mapreduce in the
cloud. In IEEE CLOUDCOM’10.

[9] H. Jin, S. Ibrahim, L. Qi, H. Cao, S. Wu, and X. Shi. The
mapreduce programming model and implementations. Cloud
Computing: Principles and Paradigms, pages 373–390, 2011.

[10] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus:
Locality-aware resource allocation for mapreduce in a cloud. In
ACM/IEEE SC ’11.

[11] K. Ren, Y. Kwon, M. Balazinska, and B. Howe. Hadoop’s
adolescence: An analysis of hadoop usage in scientific
workloads. Proc. VLDB Endow., 6(10):853–864, Aug. 2013.

[12] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.
Franklin, and I. Stoica. The power of choice in data-aware
cluster scheduling. In USENIX OSDI’14.

[13] A. Verma, L. Cherkasova, and R. H. Campbell. Two sides of a
coin: Optimizing the schedule of mapreduce jobs to minimize
their makespan and improve cluster performance. In IEEE
MASCOTS’12.

[14] Y. Wang, J. Tan, W. Yu, X. Meng, and L. Zhang. Preemptive
reducetask scheduling for fair and fast job completion. In
USENIX ICAC’13.

[15] O. Yildiz, S. Ibrahim, T. A. Phuong, and G. Antoniu. Chronos:
Failure-aware scheduling in shared hadoop clusters. In IEEE
BigData 2015.

[16] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling. In
ACM EuroSys’10.

