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On the variations of the principal eigenvalue with respect to a

parameter in growth-fragmentation models

Fabien Campillo1,2 Nicolas Champagnat3,4,5 Coralie Fritsch6,3,4,5

Monday 23rd January, 2017

Abstract

We study the variations of the principal eigenvalue associated to a growth-frag-
mentation-death equation with respect to a parameter acting on growth and fragmen-
tation. To this aim, we use the probabilistic individual-based interpretation of the
model. We study the variations of the survival probability of the stochastic model,
using a generation by generation approach. Then, making use of the link between the
survival probability and the principal eigenvalue established in a previous work, we
deduce the variations of the eigenvalue with respect to the parameter of the model.

Keywords: Growth-fragmentation model, eigenproblem, integro-differential equa-
tion, invasion fitness, individual-based model, infinite dimensional branching process,
piecewise-deterministic Markov process, bacterial population.
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1 Introduction

In biology, microbiology and medicine, diverse models are used to describe structured
populations. For example the growth of a bacterial population or of tumor cells can
be represented, in a constant environment, by the following growth-fragmentation-death
equation (Doumic, 2007; Doumic Jauffret and Gabriel, 2010; Laurençot and Perthame,
2009; Fredrickson et al., 1967; Sinko and Streifer, 1967; Bell and Anderson, 1967; Metz
and Diekmann, 1986)

∂

∂t
mt(x) +

∂

∂x

(
g(x)mt(x)

)
+
(
b(x) +D

)
mt(x) = 2

∫ M

x

b(z)

z
q
(
z,
x

z

)
mt(z) dz ,

1Inria, MATHNEURO, Montpellier, F-34095, France
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3Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandœuvre-lès-Nancy, F-54506,

France
4CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandœuvre-lès-Nancy, F-54506, France
5Inria, TOSCA, Villers-lès-Nancy, F-54600, France

E-mail: fabien.campillo@inria.fr, nicolas.champagnat@inria.fr, coralie.fritsch@inria.fr
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which describes the time evolution of the mass density mt of the population of cells which
is subject to growth at speed g, cell division at rate b, with daughter cells generated by
a division kernel q and death at rate D. In order to study the asymptotic growth of
the population, the eigenproblem associated to this equation is generally considered. The
eigenvalue, also called Malthus parameter in this context, gives the asymptotic global
growth rate of the population and allows to determine if the environment favors the
development of the population.

Biologically, it is interesting to study the variation of this growth rate when its en-
vironment is changed (either by the action of an experimentalist or due to fluctuations
of external conditions). In this article, we consider the model described previously, in
which the growth function and the division rate depend on an environmental parameter
S describing the constant environment. The death rate is assumed independent of S since
we have in mind chemostat in which death is due to dilution at fixed rate. This parameter
can, for example, represent an external resource or the influence of other populations sup-
posed to be at equilibrium. The study of the influence of this parameter on the growth of
the population is a question of biological interest for a better understanding of the model,
but also of numerical interest, for example, for the study of mutant invasions in adaptive
dynamics problems (Fritsch et al., 2016).

This new question seems to be difficult to approach with standard deterministic math-
ematical tools where, up to our knowledge, no result is available except a study of the
influence of asymmetric division by Michel (2006, 2005) and an asymptotical study of the
influence of the parameters by Calvez et al. (2012). See also the work of Olivier (2016)
for a study of the impact of the variability in cells’ aging and growth rates as well as
the one of Clairambault et al. (2006) for comparison of Perron eigenvalue (for constant in
time birth and death rates) and Floquet eigenvalue (for periodic birth and death rates).
The approach that we propose in this article uses the probabilistic interpretation of the
growth-fragmentation-death equation under the form of a discrete stochastic individual-
based model. This class of piecewise deterministic Markov processes is studied a lot, with
a particular recent interest to the estimation of the parameters of the model (Doumic
et al., 2015; Hoang, 2015; Hoffmann and Olivier, 2015). In this individual-based model,
the growth of the population is determined by its growth rate, but also by its survival
probability in some constant environment. The link between the eigenvalue of the deter-
ministic model and the survival probability of the stochastic model, which correspond to
two different definitions of the biological concept of invasion fitness (Metz et al., 1992;
Metz, 2008), was established by Campillo et al. (2016). Our goal is to use this link to
deduce variation properties of the eigenvalue with respect to the environmental param-
eter S from the variations on the survival probability. The probabilistic invasion fitness
allows to use a generation by generation approach, which is more difficult to apply to the
eigenproblem since generations overlap. Using this approach, the variations of the survival
probability can be obtained by applying a coupling technique to the random process.

In an adaptive dynamics context, the variation of both invasion fitnesses are numeri-
cally very useful. For instance, considering the time evolution of a bacterial population in
a chemostat, the invasion fitness determines if some mutant population can invade a resi-
dent one when a mutation occurs (Metz et al., 1996). This invasion fitness is the one of the
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mutant population in the environment at the equilibrium determined by the resident one.
In this example, the environmental parameter S represents the substrate concentration at
the equilibrium of the resident population. When the mutant population appears in the
chemostat it appears in small size, hence its influence on the resident population and on
the resource concentration can be neglected, which allows to assume the substrate concen-
tration S to be constant as long as the mutant population is small. Moreover, due to the
small number of mutant individuals, it is essential to use a stochastic model (Fritsch et al.,
2015; Campillo and Fritsch, 2015). However, the stochastic invasion fitness is numerically
less straightforward to compute than the deterministic one. The mutual variations of both
invasion fitnesses established in this article allow to considerably simplify the numerical
analysis of a mutant invasion since the problem is reduced to the computation of a single
eigenvalue in order to characterize the possibility of invasion of the mutant population
(Fritsch et al., 2016).

In Section 2, we present the deterministic and the stochastic versions of our growth-
fragmentation-death model. We give the definitions of invasion fitness in both cases :
for the stochastic one, it is defined as the survival probability and for the deterministic
one, it corresponds to the eigenvalue of an eigenproblem. We extend some results from
Campillo et al. (2016), in particular Theorem 2.4 linking these two invasion fitnesses, to
our more general context. Section 3.1 is devoted to the monotonicity properties of the
survival probability of the stochastic model with respect to the initial mass and the death
rate. In Section 3.2 we prove, under suitable assumptions, the monotonicity of the survival
probability with respect to the environmental parameter S. In Section 3.3, we deduce from
the previous results and from the link between the two invasion fitnesses, the monotonicity
of the eigenvalue with respect to S. Our assumptions are based on the realistic biological
idea that the larger a bacterium is, the faster it divides and the larger the parameter S is,
the faster a bacterium grows. This is biologically consistent in the case where S represents
the substrate concentration. The monotonicity of fitnesses is obtained under additional
assumptions which are detailed in the following sections. We extend this result assuming
a particular form of the growth rate g and give a more general approach in Section 3.4.

2 Models description

In this Section we present two descriptions of the growth-fragmentation-death model. This
model is the one studied by Campillo et al. (2016), in which we add a dependence in a one-
dimensional environmental parameter S, which is supposed to be fixed in time. In Section
3, we study the variation of the invasion possibility of the population (whose definition
depends on the considered description) with respect to S for both descriptions.

2.1 Basic mechanisms

We consider models in which each individual is characterized by its mass x ∈ [0,M ], where
M is the maximal mass of individuals, and is affected by the following mechanisms:

1. Division: each individual of mass x divides at rate b(S, x), into two individuals
with masses αx and (1 − α)x, where the proportion α is distributed according to
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the probability distribution Q(x,dα) = q(x, α) dα on [0, 1].

x

↵x

(1 � ↵) x

taux b(s, x)

2. Death: each individual dies at rate D.

3. Growth: between division and death times, the mass of an individual grows at
speed g : R+ × [0,M ]→ R+ depending on an environmental parameter S, i.e.

d

dt
xt = g(S, xt) . (1)

In this model, individuals do not interact between themselves and the environmental
parameter S is fixed in time. This means that the resource S is not limiting for the
growth of the population, this is for example the case if the resource is continuously kept
at the same level or the consumption of the resource is negligible with respect to the
resource quantity. This model is relevant for a population with few individuals in a given
environment such that the resource consumption is low.

For any S > 0, let ASt be the flow associated to an individual’s mass growth in the
environment S, i.e. for any x ∈ (0,M) and t ≥ 0,

ASt (x) = x+

∫ t

0
g(S,ASu(x)) du . (2)

Throughout this paper we assume the following set of assumptions.

Assumptions 2.1. 1. For any x ∈ [0,M ], the kernel q(x, .) is symmetric with respect
to 1/2:

q(x, α) = q(x, 1− α), ∀α ∈ [0, 1]

such that
∫ 1

0 q(x, α) dα = 1.

2. For any α ∈ [0, 1], the function x 7→ q(x, α) is continuous on [0,M ].

3. There exists a function q̄ : [0, 1] 7→ R+ such that q(x, α) ≤ q̄(α) for any x ∈ (0,M)
and

∫ 1
0 q̄(α) dα < +∞.

4. g(S, 0) = g(S,M) = 0 and g(S, x) > 0 for any x ∈ (0,M) and S > 0.

5. g(S, .) ∈ C[0,M ] ∩ C1(0,M) , where C[0,M ] and C1(0,M) respectively represent
sets of continuous functions on [0,M ] and continuously differentiable functions on
(0,M).

6. b(S, .) ∈ C[0,M ] and there exists mdiv ∈ [0,M) and b̄ > 0 such that

b(S, x) = 0 if x ≤ mdiv ,

0 < b(S, x) ≤ b̄ if x ∈ (mdiv,M) .
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Assumptions 2.1-5 and 2.1-4 ensure existence and uniqueness of the growth flow defined
by (2) for x ∈ (0,M) until the exit time Texit(x) := inf{t > 0 |ASt (x) ≥M} of (0,M) and
that AS ∈ C1(D) with D = {(t, x), t < Texit(x)} (Demazure, 2000, Th. 6.8.1). We define
this flow as constant when it starts from M . Note that the exit time Texit(x) is infinite if
the convergence limx→M g(S, x) = 0 is sufficiently fast (see for example (Campillo et al.,
2016, Assumption 3.) for more details). Assumption 4 means that the maximal biomass
of an individual is the same for any concentration of resources. This may not be true in
general, but we can always change the scale of biomass for each value of S so that the
maximal value of x is always M and modify the growth and birth parameters accordingly.
This is what we shall assume in the sequel.

2.2 Growth-fragmentation-death integro-differential model

The deterministic model associated to the previous mechanisms is given by the integro-
differential equation

∂
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q
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z
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mS
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(3)

where mS
t (x) represents the density of individuals with mass x at time t evolving in the

environment determined by S, with a given initial condition mS
0 .

Let GS be the non local transport operator such that ∂tm
S
t (x) = GSmS

t (x): for any
f ∈ C1(0,M), x ∈ (0,M),

GSf(x)
def
= −∂x(g(S, x) f(x))− (D + b(S, x)) f(x) + 2

∫ M

x

b(S, z)

z
q
(
z,
x

z

)
f(z) dz , (4)

and G∗S its adjoint operator defined for any f ∈ C1(0,M), x ∈ (0,M) by

G∗Sf(x)
def
= −(D + b(S, x)) f(x) + g(S, x) ∂xf(x) + 2 b(S, x)

∫ 1

0
q(x, α) f(αx) dα . (5)

We consider the eigenproblem

GS ûS(x) = ΛS ûS(x) , (6a)

lim
x→0

g(S, x) ûS(x) = 0 , D + ΛS > 0 , ûS(x) ≥ 0 ,

∫ M

0
ûS(x) dx = 1 (6b)

and the adjoint problem

G∗S v̂S(x) = ΛS v̂S(x) , v̂S(x) ≥ 0 ,

∫ M

0
v̂S(x) ûS(x) dx = 1 . (7)

The eigenvalue ΛS is then interpreted as the exponential growth rate (or decay rate if
it is negative) of the population.
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In the rest of the paper, we will assume that the following assumption is satisfied.
Campillo et al. (2016) have given some conditions under which this assumption holds (see
also (Doumic, 2007; Doumic Jauffret and Gabriel, 2010) for sligthly different models and
(Perthame and Ryzhik, 2005; Laurençot and Perthame, 2009; Mischler and Scher, 2016)
for exponential stability of the eigenfunctions).

Assumption 2.2. For any S > 0, the system (6)-(7) admits a solution (ûS , v̂S ,ΛS) such
that ûS ∈ C1(0,M) and v̂S ∈ C[0,M ] ∩ C1(0,M).

2.3 Growth-fragmentation-death individual-based model

The mechanisms described in Section 2.1 can also be represented by a stochastic individual-
based model, where the population at time t is represented by the counting measure

ηSt (dx)
def
=

Nt∑
i=1

δXi
t
(dx) , (8)

where Nt =
∫M

0 ηSt (dx) is the number of individuals in the population at time t and
(Xi

t , i = 1, . . . , Nt) are the masses of the Nt individuals (arbitrarily ordered).
The stochastic individual-based model is relevant for small population whereas the

deterministic one is relevant for large population (Campillo and Fritsch, 2015).
The process (ηSt )t≥0 is defined by

ηSt =

N0∑
j=1

δ
AS

t (Xj
0)

+

∫∫∫∫
[0,t]×N∗×[0,1]3

1{j≤Nu−} 1{θ1≤b(S,Xj
u− )/b̄} 1{θ2≤q(Xj

u− ,α)/q̄(α)}
[
−δAS

t−u(Xj
u− )

+ δAS
t−u(αXj

u− ) + δAS
t−u((1−α)Xj

u− )

]
N1(du,dj,dα,dθ1,dθ2)

−
∫∫

[0,t]×N∗

1{j≤Nu−} δAS
t−u(Xj

u− )N2(du,dj) (9)

where N1(du,dj,dα,dθ1, θ2) and N2(du,dj) are two independent Poisson random mea-
sures defined on R+ × N∗ × [0, 1]× [0, 1]× [0, 1] and R+ × N∗, corresponding respectively
to the division and death mechanisms, with respective intensity measures

n1(du,dj,dα,dθ) = b̄du
(∑
`≥1

δ`(dj)
)
q̄(α) dα dθ1 dθ2 , (10)

n2(du,dj) = D du
(∑
`≥1

δ`(dj)
)
, (11)

(see Campillo and Fritsch (2015) and Campillo et al. (2016) for more details).
This population process can be seen as a multitype branching process with a continuum

of types. We are interested in its survival probability.
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We suppose that, at time t = 0, there is only one individual, with mass x0, in the
population, i.e.

ηS0 (dx) = δx0(dx) .

The extinction probability of the population with initial mass x0 is

pS(x0)
def
= PSδx0 (∃t > 0, Nt = 0) ,

where PSδx0 is the law of the process (ηSt )t≥0 under the initial condition ηS0 = δx0 . The

survival probability is then given by PSδx0 (survival) = 1− pS(x0).

We define the n-th generation as the set of individuals descended from a division of
one individual of the (n − 1)-th generation. The generation 0 corresponds to the initial
population. We denote by Zn the number of individuals at the n-th generation and we
define the extinction probability before the n-th generation as

pSn(x0)
def
= PSδx0 (Zn = 0) , n ∈ N .

It is obvious that
lim
n→∞

pSn(x0) = pS(x0) .

Let τ be the stopping time of the first event (division or death). Then at time τ the
population is given by

ηSτ
def
=

{
0 if death ,
δX1 + δX2 if division ,

(12)

with X1 = αASτ (x0) and X2 = (1 − α)ASτ (x0) where the proportion α is distributed
according to the kernel q(ASτ (x0), α) dα.

Applying the Markov property at time τ and using the independence of particles, it is
easy to prove (see Campillo et al. (2016)) that for any x ∈ [0,M ] and n ∈ N∗

pSn(x) = D

∫ ∞
0

e−D t e−
∫ t
0 b(S,A

S
u(x)) du dt+

∫ ∞
0

b(S,ASt (x)) e−
∫ t
0 b(S,A

S
u(x)) du−D t

∫ 1

0
q(ASt (x), α) pSn−1

(
αASt (x)

)
pSn−1

(
(1− α)ASt (x)

)
dα dt . (13)

with pS0 (x) = 0. It can then be deduced (Campillo et al., 2016, Proposition 3) that pS is
the minimal non negative solution of

pS(x) =

∫ ∞
0

De−D t e−
∫ t
0 b(S,A

S
u(x)) du dt

+

∫ ∞
0

b(S,ASt (x)) e−
∫ t
0 b(S,A

S
u(x)) du−D t

∫ 1

0
q(ASt (x), α) pS

(
αASt (x)

)
pS
(
(1− α)ASt (x)

)
dα dt , (14)

in the sense that for any non negative solution p̃ we have p̃ ≥ pS .
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Remark 2.3. By a change of variable, we have

pS(x) =

∫ M

x

D

g(S, y)
e
−

∫ y
x

b(S,z)+D
g(S,z)

dz
dy

+

∫ M

x

b(S, y)

g(S, y)
e
−

∫ y
x

b(S,z)+D
g(S,z)

dz
∫ 1

0
q(y, α) pS

(
α y
)
pS
(
(1− α) y

)
dα dy .

Therefore, the extinction probability is solution of

g(S, x)∂xp
S(x)+D (1−pS(x))+b(S, x)

{∫ 1

0
q(x, α) pS(αx) pS((1−α)x) dα−pS(x)

}
= 0 .

For any x ∈]0,M [ and y > 0 such that x ≤ y, let tS(x, y) be the first hitting time of y
by the flow ASt (x), i.e.

tS(x, y)
def
= inf{t ≥ 0, ASt (x) = y} =

{
Ã−1
S,x(y) , if x ≤ y < M ,

+∞ , if y ≥M ,
(15)

where Ã−1
S,x is the inverse function of the C1-diffeomorphism t 7→ ASt (x).

Campillo et al. (2016) we have made the link between the survival probability of the
stochastic process and the eigenvalue of the deterministic model, given by the theorem
below. This result was proved for a kernel q(x, .) which does not depend on x ∈ (0,M),
but it can easily be extended to our case where q(x, .) depends on the mass x at the
division time as explained below.

Theorem 2.4 (Campillo, Champagnat, Fritsch (2015)). Under Assumptions 2.1 and 2.2,
we have the following relation between the two invasion criteria

ΛS > 0 ⇐⇒ PSδx(survival) > 0 , ∀x ∈ (0,M) .

Note that, contrary to the works of Perthame and Ryzhik (2005); Doumic (2007);
Laurençot and Perthame (2009); Doumic Jauffret and Gabriel (2010); Mischler and Scher
(2016), we assume here a compact set [0,M ] of biomasses to keep things simple in the
sequel. The extension of our approach to a non-compact case would require to identify the
good assumptions at infinity for the last result to hold (the rest of our arguments should
work similarly). The last problem is not so easy because it strongly depends on the
growth at infinity of the eigenfunctions û and v̂ of Assumption 2.2. Note in addition that
the problem of existence of these eigenfunctions also requires a careful study at infinity
(see Doumic Jauffret and Gabriel (2010)).

Proof. The key argument of the proof is that the process (e−ΛS t
∑Nt

i=1 v̂S(Xi
t))t≥0 is a

PSδx-martingale such that

e−Λs t
Nt∑
i=1

v̂S(Xi
t) −−−→

t→∞
Z PSδx-a.s.

where Z is an integrable random variable (see (Campillo et al., 2016, Theorem 2 and
Lemma 3)). The arguments of Campillo et al. (2016) to prove that
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1. if ΛS > 0 then PSδx(survival) > 0 for any x ∈ (0,M)

2. if ΛS < 0 then PSδx(survival) = 0 for any x ∈ [0,M ]

can be directly applied for a kernel q(x, .) depending on the mother mass x. The first
statement is proved using that if ΛS > 0 then Z is bounded in L2 whereas the second one
comes from the inequality

Eδx(Nt) ≤ Cx eΛS t, ∀t ≥ 0

where Cx > 0 is a constant depending on the initial mass x ∈ (0,M). Its proof by Campillo
et al. (2016) is technical, but the extension to kernels q depending on x is straightforward.

The only difficulty concerns the third point of the proof of (Campillo et al., 2016,
Theorem 2) in which we prove that if ΛS = 0 then M ε

t → 0 a.s. with M ε
t the number of

individuals with mass in [ε,M − ε] at time t for 0 < ε < M
2 . Then, the fourth point of

the proof, stating that M ε
t → 0 implies extinction, follows similarly. The main idea of this

fourth step is that the number of individuals M ε
t cannot indefinitely stay in a compact

subset {1, 2, . . . , c} of N. Then either lim supt→∞M
ε
t = ∞ or M ε

t → 0 a.s. However,
lim supt→∞M

ε
t = ∞ contradicts the fact that Z is integrable if ΛS = 0, hence M ε

t → 0
a.s.

For the proof of the third point (see details in (Campillo et al., 2016)), it is sufficient
that for c > 0, there exists t0 such that

1 > γ := inf
ε≤x≤M−ε

PSδx
(
M ε
t0 ≥ c

)
> 0 . (16)

If q(x, .) = q(.) is independent of the mother mass, it is sufficient to take ε > 0 such
that x ∈ (ε,M − ε) and q ([ε/(M − 2 ε), 1/2]) > 0 to obtain (16) for one t0. In our case,
the last condition must be replaced by infε≤x≤M−ε q(x, [ε/(M − 2 ε), 1/2]) > 0 for some
ε > 0. Note that the infimum above is reached at some x0(ε) ∈ [ε,M−ε], by Assumptions
2.1-2 and 3. Therefore, we proceed by contradiction and assume that for all ε > 0, there

exists x0(ε) ∈ [ε,M − ε] such that q(x0(ε), α) = 0 for almost all α ∈
[

ε
M−2 ε ; 1

2

]
. Then,

from the sequence
(
x0

(
1
n

))
n
, we can extract a subsequence which converges towards x∗0.

By continuity of x 7→ q(x, α), we then get q(x∗0, α) = 0 for almost all α ∈ (0, 1). Hence∫ 1
0 q(x

∗
0, α) dα = 0, which contradicts Assumption 2.1-1.

3 Variations of the invasion fitnesses with respect to the
environmental variable

Our goal is to study the variation of ΛS w.r.t S. For this, we start by studying the
monotonicity properties of the survival probability in the stochastic model.

3.1 Monotonicity properties w.r.t. the initial mass and the death rate
on the stochastic model

From a biological point of view, little is known about the dependence of the division kernel
q w.r.t. x (Osella et al., 2017). Most often, it is assumed independent of x in applications.
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In order to obtain the most general result, we assume that q depends on x, and we need to
state assumptions about this parameter. Note however that the self-similar fragmentation
is included in our assumptions. Moreover, although q(x, α) is assumed to be regular w.r.t.
α, more general kernels can be consider, in particular the following results should hold for
self-similar equal mitosis.

For any x ∈ (0, 1), let Fx : [0, 1] → [0, 1] be the cumulative distribution function
associated to the law q(x, α) dα, that is for any u ∈ [0, 1]

Fx(u) =

∫ u

0
q(x, α) dα

and let F−1
x be its inverse function defined by

F−1
x (v) = inf

u∈[0,1]
{Fx(u) ≥ v} .

Assumption 3.1. The cumulative distribution function Fx satisfies, for any u ∈ (0, 1)
and any x ≤ y,

xF−1
x (u) ≤ y F−1

y (u) and (1− x)F−1
x (u) ≤ (1− y)F−1

y (u) .

As we will see in Lemma 3.4 below, this assumption corresponds to a coupling condition
on the mass of offspring born from individuals of different sizes. We need this condition
because our method can be seen as a construction of a coupling of the masses of individuals
at each generation in two stochastic processes starting from different initial masses (see
our comments below, particularly Remark 3.7).

Remark 3.2. If F−1
x is such that for any u ∈ (0, 1), x 7→ F−1

x (u) ∈ C1([0,M ]) and
satisfies for any x ∈ (0,M),

x ∂xF
−1
x (u) ∈ [−F−1

x (u), 1− F−1
x (u)] ,

then
∂x(xF−1

x (u)) = F−1
x (u) + x ∂xF

−1
x (u) ≥ 0 .

Hence xF−1
x (u) is non decreasing. In the same way, (1−x)F−1

x (u) is non decreasing too.
Therefore, Assumption 3.1 holds.

Examples 3.3. We give some examples which satisfy Assumption 3.1.

1. We consider the following division kernel,

q(x, α) =
1{l(x)≤α≤1−l(x)}

1− 2 l(x)
.

where l ∈ C1([0,M ], (0, 1/2)). Then for u ∈ (0, 1),

F−1
x (u) = (1− 2u) l(x) + u

and, by Remarks 3.2, Assumption 3.1 holds if for any x, 0 ≤ x l′(x) + l(x) ≤ 1.

10



2. We can extend the previous example considering the following function q,

q(x, α) =
(α− l(x))β(x)

C(x)
1{l(x)≤α≤1/2} +

(1− α− l(x))β(x)

C(x)
1{1/2≤α≤1−l(x)} (17)

where C(x) = 2 (1/2− l(x))β(x)+1 /(β(x) + 1) is a normalizing constant. The previ-
ous example corresponds to β(x) = 0 for any x ∈ [0,M ]. Then

Fx(u) =
1

2

(
u− l(x)
1
2 − l(x)

)β(x)+1

1{l(x)≤α≤1/2}

+

1− 1

2

(
1− u− l(x)

1
2 − l(x)

)β(x)+1
 1{1/2<α≤1−l(x)} + 1{1−l(x)<α} (18)

and for any u ∈ (0, 1)

F−1
x (u) =

((
1

2
− l(x)

)
(2u)1/(β(x)+1) + l(x)

)
1{0<u≤1/2}

+

(
1− l(x)−

(
1

2
− l(x)

)
(2 (1− u))1/(β(x)+1)

)
1{1/2<u<1} . (19)

An example of such functions is given in Figure 1.

For u ∈ (0, 1/2],

∂xF
−1
x (u) =

(
−l′(x)−

(
1

2
− l(x)

)
β′(x)

(β(x) + 1)2
ln(2u)

)
(2u)1/(β(x)+1) + l′(x)

and for u ∈ [1/2, 1),

∂xF
−1
x (u) =

(
l′(x) +

(
1

2
− l(x)

)
β′(x)

(β(x) + 1)2
ln(2 (1− u))

)
(2 (1− u))1/(β(x)+1) − l′(x)

Assumption 3.1 holds if 0 ≤ x ∂xF−1
x (u)+F−1

x (u) ≤ 1 for any u ∈ (0, 1), for example
if β is a constant function and if 0 ≤ l(x) + x l′(x) ≤ 1 for any x ∈ (0,M).

Lemma 3.4. Let f be a non-increasing function on [0,M ]. Then, under Assumption 3.1,
the function

x 7→
∫ 1

0
q(x, α) f(αx) f((1− α)x) dα

is non-increasing.

Proof. For any x ∈ (0, 1), let θx defined by θx = F−1
x (U) where U is uniformly distributed

on [0, 1]. Therefore the law of the variable θx is q(x, α) dα. By Assumption 3.1,

∂x(x θx) = θx + x ∂xF
−1
x (U) ≥ θx − F−1

x (U) = 0 a.s.

11



0.0 0.2 0.4 0.6 0.8 1.0

α

0

2

4

6

8

10

12
q(
x
,α

)

0.0 0.2 0.4 0.6 0.8 1.0

u

0.0

0.2

0.4

0.6

0.8

1.0

F
x
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

u

0.3

0.4

0.5

0.6

0.7

F
−

1
x

(u
)

Figure 1: Representation of the function q (left), Fx (center) and F−1
x (right) respectively

defined by Equations (17), (18) and (19) with l(x) = 0.25 and β(x) = 5.

and
∂x(x (1− θx)) = 1− θx − x ∂xF−1

x (U) ≥ 1− θx − (1− F−1
x (U)) = 0 .

Therefore, for any x < y we have x θx ≤ y θy a.s. and x (1− θx) ≤ y (1− θy) a.s. Hence,∫ 1

0
q(x, α) f(αx) f((1− α)x) dα = E (f(θx x) f((1− θx)x))

≤ E (f(θy y) f((1− θy) y))

=

∫ 1

0
q(y, α) f(α y) f((1− α) y) dα .

Remark 3.5. Note that the last proof makes use of a probabilistic coupling argument, since
we actually prove and use the following property: the pair of random variables (xθx, x(1−
θx)), where θx is distributed as q(x, α)dα, is stochastically increasing w.r.t. x. This means
that, for all x ≤ y, there exists a coupling of the random variables θx and θy, i.e. two
random variables θ′x and θ′y with the same laws as θx and θy can be constructed on the same
probability space, such that xθ′x ≤ yθ′y and x(1−θ′x) ≤ y(1−θ′y). Therefore, Assumption 3.1
means that the offspring masses of two individuals reproducing at respective masses x and
y can be coupled so that the masses of the offspring are in the same order as those of the
parents.

Proposition 3.6. Under Assumption 3.1, if the division rate b(S, .) is non decreasing
then the extinction probability pS : x 7→ pS(x) is non increasing.

The assumption that b increases with the mass x of an individual is biologically natural,
since a bigger total biomass usually means a bigger fraction of biomass devoted to the bio-
molecular mechanisms involved in cellular division. We give below an analytical proof of
this proposition, but it can also be proved using probabilistic arguments, as explained in
Remark 3.7 below.

12



Proof. We prove by induction that the function pSn is non increasing for any n ∈ N∗, where
pSn is given by (13). Let 0 < x < y < M . As ASu(x) < ASu(y), for any u ≥ 0,

pS1 (x) = D

∫ ∞
0

e−
∫ t
0 b(S,A

S
u(x)) du−D t dt ≥ D

∫ ∞
0

e−
∫ t
0 b(S,A

S
u(y)) du−D t dt = pS1 (y) .

Then the function pS1 is non increasing. Let n ∈ N∗, we assume that the function pSn is
non increasing.

We can write pSn+1(x) as

pSn+1(x) = pS1 (x) + PSδx
(
{extinction before the (n+ 1)-th generation} ∩

{
ηSτ 6= 0

})
,

with

PSδx
(
{extinction before the (n+ 1)-th generation} ∩

{
ηSτ 6= 0

})
=

∫ ∞
0

b(S,ASt (x)) e−
∫ t
0 b(S,A

S
u(x)) du−D t

∫ 1

0
q(ASt (x), α) pSn(αASt (x)) pSn((1− α)ASt (x)) dα dt .

The following relation holds

pSn+1(x) = pS1 (x) + pSn+1(x | ηSτ 6= 0) (1− pS1 (x))

with

pSn+1(x | ηSτ 6= 0) = PSδx(extinction before the (n+ 1)-th generation | ηSτ 6= 0) .

Since for any t ≥ 0, ASt(x,y)+t(x) = ASt (y), then, by a change of variable,∫ ∞
tS(x,y)

b(S,ASt (x)) e−
∫ t
0 b(S,A

S
u(x)) du−D t

∫ 1

0
q(ASt (x), α) pSn(αASt (x)) pSn((1− α)ASt (x)) dα dt

= e−
∫ tS(x,y)
0 b(S,AS

u(x)) du−D tS(x,y)

∫ ∞
0

b(S,ASt (y)) e−
∫ t
0 b(S,A

S
u(y)) du−D t

∫ 1

0
q(ASt (y), α) pSn(αASt (y)) pSn((1− α)ASt (y)) dα dt

= e−
∫ tS(x,y)
0 b(S,AS

u(x)) du−D tS(x,y) pSn+1(y | ηSτ 6= 0) (1− pS1 (y)) . (20)

For any t ∈ [0, tS(x, y)] we have ASt (x) ≤ y. Since we assume that the function pSn is
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non increasing, from Lemma 3.4, we then get∫ tS(x,y)

0
b(S,ASt (x)) e−

∫ t
0 b(S,A

S
u(x)) du−D t

∫ 1

0
q(ASt (x), α) pSn(αASt (x)) pSn((1− α)ASt (x)) dα dt

≥
∫ tS(x,y)

0
b(S,ASt (x)) e−

∫ t
0 b(S,A

S
u(x)) du−D t dt

∫ 1

0
q(y, α) pSn(α y) pSn((1− α) y) dα

=

(
1− e−

∫ tS(x,y)
0 b(S,AS

u(x)) du−D t(x,y) −D
∫ tS(x,y)

0
e−

∫ t
0 b(S,A

S
u(x)) du−D t dt

)

×
∫ 1

0
q(y, α) pSn(α y) pSn((1− α) y) dα . (21)

Still because the function pSn is non increasing and from Lemma 3.4,

PSδy
(
{extinction before the (n+ 1)-th generation} ∩

{
ηSτ 6= 0

})
≤
∫ ∞

0
b(S,ASt (y)) e−

∫ t
0 b(S,A

S
u(y)) du−D t dt

∫ 1

0
q(y, α) pSn(α y) pSn((1− α) y) dα

= (1− pS1 (y))

∫ 1

0
q(y, α) pSn(α y) pSn((1− α) y) dα .

Hence ∫ 1

0
q(y, α) pSn(α y) pSn((1− α) y) dα ≥ pSn+1(y | ηSτ 6= 0) .

Adding (20) and (21), and using the last inequality, we then get

pSn+1(x | ηSτ 6= 0) ≥
[

1−D
∫ tS(x,y)

0 e−
∫ t
0 b(S,A

S
u(x)) du−D t dt

1− pS1 (x)

− e−
∫ tS(x,y)
0 b(S,AS

u(x)) du−D tS(x,y) pS1 (y)

1− pS1 (x)

]
pSn+1(y|ηSτ 6= 0) .

Moreover,

pS1 (x) = D

∫ tS(x,y)

0
e−

∫ t
0 b(S,A

S
u(x)) du−D t dt+ e−

∫ tS(x,y)
0 b(S,AS

u(x)) du−D tS(x,y) pS1 (y) .

Hence,

pSn+1(x | ηSτ 6= 0) ≥ pSn+1(y | ηSτ 6= 0) .

Thus,

pSn+1(x)− pSn+1(y) = pS1 (x) + pSn+1(x | ηSτ 6= 0) (1− pS1 (x))

− pS1 (y)− pSn+1(y | ηSτ 6= 0) (1− pS1 (y))

≥ (pS1 (x)− pS1 (y)) (1− pSn+1(y | ηSτ 6= 0)) ≥ 0 .

14



This ends the induction. Passing to the limit, we finally get

pS(x)− pS(y) = lim
n→∞

(pSn(x)− pSn(y)) ≥ 0 .

Remark 3.7. The last result can also be proved by a probabilistic coupling argument
as follows. First, for all x ∈ (0,M), the time of death or division of an individual of
mass x can be constructed from an exponential random variable E with parameter 1 as
Tx = inf{t ≥ 0 :

∫ t
0 (b(S,ASs (x)) + D)ds ≥ E}. Hence, if x ≤ y then ASTx(x) ≤ ASTy(y).

Second, we observe that the probability of death given death or division occurs for an
individual of mass x, D/(D+ b(S, x)), is non-increasing as a function of x. Hence, using
Remark 3.5, given x ≤ y, we can construct a coupling between the branching processes
(ηSt , t ≥ 0) with ηS0 = δx and (η̂St , t ≥ 0) with η̂S0 = δy such that the random sets M1

and M̂1 of masses at birth of the individuals of the first generation satisfy the following
property: the cardinals |M1| and |M̂1| of M1 and M̂1 is either 0 or 2, |M̂1| = 0 implies
that |M1| = 0 and if both have cardinal 2, then M1 = {x1, x2} and M̂1 = {x̂1, x̂2} with
x1 ≤ x̂1 and x2 ≤ x̂2.

It then follows by induction that the processes (ηSt , t ≥ 0) and (η̂St , t ≥ 0) can be coupled
so that, for all n ≥ 0, the masses at birth of all the individuals of the n-th generation can
be ordered into two vectors V n = (xn1 , . . . , x

n
Gn

) and V̂ n = (x̂n1 , . . . , x̂
n
Ĝn

), where Gn and

Ĝn are the random sizes of generation n in ηS and η̂S respectively, satisfying the following
property: for all n, Gn ≤ Ĝn and for all 1 ≤ i ≤ Gn, xni ≤ x̂ni . This implies Proposition 3.6
since survival of ηS means that Gn ≥ 1 for all n and this implies that η̂S also survives.
Hence pS(x) ≥ pS(y).

We now extend the notation of the extinction probability with a dependence in D :
let pS,D(x) be the extinction probability of the population evolving in the environment
determined by S, with a death rate D and a initial individual with mass x.

Proposition 3.8. For any x ∈ [0,M ], the function D 7→ pS,D(x) is non-decreasing.

Proof. Let D′ > D.

pS,D1 (x) = D

∫ ∞
0

e−
∫ t
0 b(A

S
u(x)) du−D t = 1−

∫ ∞
0

b(ASu(x)) e−
∫ t
0 b(A

S
u(x)) du−D t

≤ 1−
∫ ∞

0
b(ASu(x)) e−

∫ t
0 b(A

S
u(x)) du−D′ t = pS,D

′

1 (x) .

Hence D 7→ pS,D1 (x) is non-decreasing. For n ∈ N∗, let assume that D 7→ pS,Dn (x) is
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non-decreasing, then

pS,Dn+1(x) = 1−
∫ ∞

0
b(ASu(x)) e−

∫ t
0 b(A

S
u(x)) du−D t[

1−
∫ 1

0
q(ASt (x), α) pD,Sn (αASt (x)) pD,Sn ((1− α)ASt (x)) dα

]
dt

≤ 1−
∫ ∞

0
b(ASu(x)) e−

∫ t
0 b(A

S
u(x)) du−D′ t[

1−
∫ 1

0
q(ASt (x), α) pD

′,S
n (αASt (x)) pD

′,S
n ((1− α)ASt (x)) dα

]
dt

= pS,D
′

n+1 (x)

Then for any n, pS,Dn (x) ≤ pS,D′n (x). Passing to the limit,

pS,D(x) = lim
n→∞

pS,Dn (x) ≤ lim
n→∞

pS,D
′

n (x) = pS,D
′
(x) .

3.2 Monotonicity properties w.r.t. S on the stochastic model

We now study the variations of the survival probability w.r.t. the environmental parameter
S. We need additional assumptions.

Assumptions 3.9. 1. The division rate function b is non decreasing in the two vari-
ables S and x.

2. The growth speed g in non decreasing in S:

g(S1, x) ≤ g(S2, x) , ∀x ∈ [0,M ], 0 < S1 < S2 .

3. For any x ∈ (0,M), the function S 7→ b(S,x)
g(S,x) is non increasing.

Assumptions 1 and 2 above are natural from the biological point of view since a bigger
total biomass means a bigger fraction of biomass devoted to division and a larger amount
of resources means a more efficient growth and division of cells. Assumption 3 means that
the growth rate increases faster in S that the division rate. This excludes that, increasing
S, a faster division produces too small individuals to grow and reproduce. Note that these
assumptions are satisfied for instance if b does not depends on the variable S and if g
is of the form g(S, x) = µ(S) g̃(x), where µ is an non decreasing function, for example a
Monod kinetics (Monod, 1949) µ(S) = µmax

S
K+S where µmax and K are constants. The

form g(S, x) = µ(S) g̃(x) means that the resource concentration S influences the speed of
growth of bacteria independently of the way x influences growth. In other words, the flow
t 7→ AS

′
t (x) is just a proportional time change of t 7→ ASt (x) for all S, S′.

Theorem 3.10. Under Assumptions 3.1 and 3.9, we have for any x ∈ (0,M)

PS1
δx

(survival) ≤ PS2
δx

(survival) , ∀ 0 < S1 ≤ S2 .
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In other words, for the chemostat model, under the assumptions of the previous theo-
rem, the higher the substrate concentration in the chemostat at the mutation time is, the
higher the survival probability is.

Remark 3.11. Following Remark 3.7, the last result could be also proved by probabilistic
coupling arguments. These arguments would actually only require to assume that, for
all x ≤ y and S1 ≤ S2, there exists a coupling between the sets Mx,S1

1 and My,S2
1 of

biomasses at birth of the individuals of the first generation in the branching processes
(ηS1
t , t ≥ 0) such that ηS1

0 = δx and (ηS2
t , t ≥ 0) such that ηS2

0 = δy respectively, satisfying

the following property: |My,S2
1 | = 0 implies |Mx,S1

1 | = 0 and when both have cardinal

2, then Mx,S1
1 = {x1, x2} and My,S2

1 = {y1, y2} with x1 ≤ y1 and x2 ≤ y2. The proof
of Theorem 3.10 given below actually consists in checking that the coupling assumption
above is implied by Assumptions 3.1 and 3.9. However, this coupling assumption is hard
to check in practice and this is why we chose to give an analytical proof based on the
Assumptions 3.1 and 3.9, which are stronger, but easier to check.

Of course, Theorem 3.10 is certainly valid under weaker assumptions, for example
if b or g are not monotonic w.r.t. S, but our probabilistic approach requires coupling
assumptions like the one stated in this remark, so the method would not extend easily to
such cases.

Proof. For any y ∈ (0,M) the function S 7→ g(S, y) is non decreasing then AS
1

u (x) ≤
AS

2

u (x) for any u ≥ 0. Moreover the function (S, x) 7→ b(S, x) is non decreasing in the two
variables S and x, then we have

pS
1

1 (x)− pS2

1 (x) = D

∫ ∞
0

e−D t

[
e−

∫ t
0 b(S

1,AS1
u (x)) du − e−

∫ t
0 b(S

2,AS2
u (x)) du

]
dt ≥ 0 .

The function S 7→ pS1 (x) is then non increasing for any x ∈ (0,M). Let n ∈ N∗, we assume
that the function S 7→ pSn(x) is non increasing for any x ∈ (0,M).

The function t 7→
∫ t

0 (b(S,ASu(x)) + D) du is a bijection from [0,∞[ to [0,∞[. Hence,

for X ≥ 0, there exists a unique TSx (X) such that X =
∫ TS

x (X)
0 (b(S,ASu(x)) + D) du. By

the change of variable X =
∫ t

0 (b(S,ASu(x)) +D) du in (13), we obtain

pSn+1(x) =

∫ ∞
0

[
D

b
(
S,AS

TS
x (X)

(x)
)

+D
+

b
(
S,AS

TS
x (X)

(x)
)

b
(
S,AS

TS
x (X)

(x)
)

+D
ΨS,x
n (X)

]
e−X dX

with

ΨS,x
n (X) =

∫ 1

0
q
(
ASTS

x (X)(x), α
)
pSn

(
αASTS

x (X)(x)
)
pSn

(
(1− α)ASTS

x (X)(x)
)

dα . (22)
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Moreover, for all X ≥ 0, for S1 ≤ S2, by the changes of variable AS
i

u (x) = y for i = 1, 2
and by Assumption 3.9-3, we have∫ AS2

TS2
x (X)

(x)

x

b(S2, y) +D

g(S2, y)
dy = X =

∫ AS1

TS1
x (X)

(x)

x

b(S1, y) +D

g(S1, y)
dy

≥
∫ AS1

TS1
x (X)

(x)

x

b(S2, y) +D

g(S2, y)
dy

therefore AS
2

TS2
x (X)

(x) ≥ AS1

TS1
x (X)

(x). We deduce from Lemma 3.4 and Proposition 3.6 that

ΨS1,x
n (X) ≥ ΨS2,x

n (X). Hence, using ΨS1,x
n (X) ≥ ΨS2,x

n (X) in the expression of pS
1

n+1,

subtracting the expression of pS
2

n+1 and factorizing the terms, we obtain

pS
1

n+1(x)− pS2

n+1(x) ≥
∫ ∞

0

[
D

b
(
S1, AS

1

TS1
x (X)

(x)
)

+D
− D

b
(
S2, AS

2

TS2
x (X)

(x)
)

+D

]

(1−ΨS2,x
n (X)) e−X dX

and as ΨS2,x
n (X) ≤ 1, by Assumptions 3.9-1, pS

1

n+1(x) ≥ pS
2

n+1(x). Finally, passing to the
limit, we get

pS
1
(x)− pS2

(x) = lim
n→∞

(pS
1

n (x)− pS2

n (x)) ≥ 0 .

3.3 Properties on the variations of the eigenvalue

Until now, we only studied the probability of survival of the branching process ηS . The un-
derlying coupling arguments require to consider the population state at each generation in
a process where generations actually overlap. This is why such an approach is hard to ap-
ply directly to the integro-differential eigenvalue problem, where the notion of generations
is difficult to define. However, the link between the stochastic and deterministic problems
stated in Theorem 2.4 allows to extend the monotonicity properties of Theorem 3.10 to the
eigenvalue ΛS , as proved below. The next corollary is a direct consequence of Theorems
2.4 and 3.10.

Corollary 3.12. Under Assumptions 3.1 and 3.9,

1. if there exists S1 > 0 such that ΛS1 > 0, then ΛS2 > 0 for any S2 > S1;

2. if there exists S1 > 0 such that ΛS1 ≤ 0, then ΛS2 ≤ 0 for any S2 < S1.

This Corollary allows to deduce the following result about variation of the eigenvalue
with respect to S.

Corollary 3.13. Under Assumptions 3.9, the function S 7→ ΛS is non decreasing.
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The monotonicity of b is important to obtain the monotonicity of the eigenvalue (and
of the survival probability). For example, one can imagine cases where a fast growth rate
g transports individuals to big masses and if the division rate is low for high values, the
monotonicity of the eigenvalue does not hold (see Calvez et al. (2012) for non monotonic
examples).

Proof. Let S∗ > 0 be fixed. We set D′ = D + ΛS∗ > 0. Let Λ′S be the eigenvalue of the
following eigenproblem:

∂x(g(S, x) û′S(x)) + (b(S, x) +D′ + Λ′S)û′S(x) = 2

∫ M

x

b(S, z)

z
q
(
z,
x

z

)
û′S(z) dz.

For S = S∗, we have Λ′S∗ = 0, then from Corollary 3.12, for any S ≤ S∗, Λ′S ≤ 0. Moreover

Λ′S = ΛS +D −D′ = ΛS − ΛS∗ .

Hence ΛS ≤ ΛS∗ .

3.4 Extensions and concluding remarks

The previous method can be applied for more general g, for which the growth in one
environment is larger than the growth in the other one for all masses. A particular case
is given in the following corollary.

Corollary 3.14. We assume that the division rate function b does not depend on the
variable S and is non decreasing in the variable x and that the growth speed g is of the
form g(S, x) = µ(S) g̃(x) , where g(S, x) > 0 for any x ∈ (0,M) and g̃ ∈ C[0,M ]∩C1(0,M)
is such that g̃(0) = g̃(M) = 0. Then, we have

PS
1

δx (survival) ≤ PS
2

δx (survival)⇐⇒ µ(S1) ≤ µ(S2)

and
ΛS1 ≤ ΛS2 ⇐⇒ µ(S1) ≤ µ(S2) .

More generally, the following result states the link between the comparison of the
survival probability and the comparison of the eigenvalue.

We extend the notations of the survival probability PS,Dδx (survival) and the eigenvalue

ΛDS with a dependence to the death rate D.

Proposition 3.15. Let S1, S2 > 0. If for any x ∈ [0,M ] and for any D > 0, we have
PS1,D
δx

(survival) ≥ PS2,D
δx

(survival), then

∀D > 0 , ΛDS1
≥ ΛDS2

.
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The condition on the survival probability stated in the previous theorem could be of
course obtained under the appropriate coupling assumptions (as in Remark 3.7), but it
seems hard to find general practical conditions on the parameters of the model ensuring
such a property. Note also that this coupling method could be applied for example to
the case where the division distribution q also depends on the variable S. The results of
Section 3.1 would remain true as, for this section, the substrate concentration is fixed.
The difficulties are in the control of the variation in S of ΨS,x

n defined by (22).

Proof. Let S1 > 0. We set D′ = D+ ΛDS1
> 0. Let Λ′S be the eigenvalue associated to the

eigenproblem

∂x(g(S, x) û′S(x)) + (b(S, x) +D′ + Λ′S)û′S(x) = 2

∫ M

x

b(S, z)

z
q
(x
z

)
û′S(z) dz .

For S = S1, Λ′S1
= 0, we then deduce, from Theorem 2.4, that PS1,D′

δx
(survival) = 0 and

then, by assumption, that PS2,D′

δx
(survival) = 0. From Theorem 2.4 Λ′S2

≤ 0. Moreover

Λ′S2
= ΛDS2

+D −D′ = ΛDS2
− ΛDS1

hence

ΛDS2
≤ ΛDS1

.
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