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MyAdChoices: Bringing Transparency and
Control to Online Advertising

Javier Parra-Arnau and Jagdish Prasad Achara and Claude Castelluccia

Abstract—The intrusiveness and the increasing invasiveness
of online advertising have, in the last few years, raised serious
concerns regarding user privacy and Web usability. As a
reaction to these concerns, we have witnessed the emergence of
a myriad of ad-blocking and anti-tracking tools, whose aim
is to return control to users over advertising. The problem
with these technologies, however, is that they are extremely
limited and radical in their approach: users can only choose
either to block or allow all ads. With around 200 million
people regularly using these tools, the economic model of
the Web —in which users get content free in return for
allowing advertisers to show them ads— is at serious peril.
In this paper, we propose a smart Web technology that aims
at bringing transparency to online advertising, so that users
can make an informed and equitable decision regarding ad
blocking. The proposed technology is implemented as a Web-
browser extension and enables users to exert fine-grained
control over advertising, thus providing them with certain
guarantees in terms of privacy and browsing experience,
while preserving the Internet economic model. Experimental
results in a real environment demonstrate the suitability and
feasibility of our approach, and provide preliminary findings
on behavioral targeting from real user browsing profiles.

Index Terms—online advertising, tracking, profiling, behav-
ioral targeting, Web transparency, ad-blocking.

I. INTRODUCTION

During the last two decades, the Internet and the World
Wide Web have been gradually integrating into people’s
daily lives, enabling new forms of communication such
as e-mail and instant messaging. The so-called network of
networks has become an essential communication channel
not only among people, but also among businesses and their
customers.

Breathing new life into traditional business activities is
precisely one of the Internet’s most relevant influences. The
Web has led to key business changes embracing the whole
value chain in almost all sectors and companies. These
changes have had an impact on how products are sold and
also, and more importantly, on how companies approach
customers in a personalized manner, taking into account
their unique preferences.

The industry of advertising, lavishly illustrated by Ya-
hoo! Advertising, Google DoubleClick and real-time bid-
ding (RTB), is a clear example of the transformation driven
by the ever-growing sophistication of Web technologies.
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In the past, ads were served directly by the Web site’s
owner following a one-size-fits-all approach. But due to
the gradual introduction of intermediary companies with
extensive capabilities to track users, Internet advertising has
become increasingly personalized and pervasive.

The ability of the online marketing industry to track
and profile users’ Web-browsing activity is therefore what
enables more effective, tailored-made advertising services.
The intrusiveness of these practices and the increasing
invasiveness of digital advertising, however, have raised
serious concerns regarding user privacy and Web usability.
According to recent surveys, two out of three Internet
users are worried about the fact that their online behavior
be scrutinized without their knowledge and consent [1].
Numerous studies in this same line reflect the growing level
of ubiquity and abuse of advertising, which is perceived
by users as a significant degradation of their browsing
experience [2], [3], [4].

In response to these concerns, recent years have wit-
nessed the rise of a myriad of ad-blocking tools whose
primary aim is to return control to users over advertising.
In essence, ad blockers monitor all network connections
that may be initiated when the browser loads a page, and
prevent those which are made with third parties1 and may
correspond to ads. To this end, ad blockers rely on blacklists
manually maintained by their developing companies and, in
some cases, by user communities.

Apart from the controversy stirred by the use of such
lists —especially after the revelation that Adblock Plus [5],
the most popular of these technologies, was getting money
from ad companies to whitelist them [6]—, the main prob-
lem with these tools is that they were conceived without
considering two key points: first, the crucial role of online
advertising as the major sustainer of the Internet “free”
services; and secondly, the social and economic benefit of
non-intrusive and rational advertising. While ad-blockers
might constitute a first attempt in this bid to regain control
over advertising, they are extremely limited and radical in
their approach: users can only choose either to block or
allow all the ads blacklisted by the ad-blocking companies.

In a half-hearted attempt to address the aforementioned
privacy and usability concerns, the Internet advertising
industry and the World Wide Web Consortium have par-
ticipated in two self-regulatory initiatives, Your Online
Choices [7] and Do Not Track (DNT) [8]. Although these

1These connections are often referred to as third-party network requests,
while those established with the page’s owner are called first-party network
requests.



2

two initiatives make opt-out easier for users —the former to
stop receiving ads tailored to their Web-browsing interests,
and the latter to stop being tracked through third-party
cookies—, the fact is that users have no control over
whether or not their advertising and tracking preferences
are honored.

With around 200 million people worldwide regularly
using ad blockers2, as well as with Apple’s recent support
for the development of such tools in its new iOS release [9],
the economic model underlying the Web is at serious
risk [4]. This has spurred a heated debate about the ethics of
these technologies and the need for a solution that strikes
a better balance among the Internet’s dominant business
model, user privacy and Web usability [10], [11], [12].

We believe that the solution necessarily implies giving
users real control over advertising, and that this can only
be achieved through technologies that enforce their actual
preferences, and not the radical, binary choices provided by
the current ad blockers. As a matter of fact, according to
a recent survey, two out of three ad-blocker users are not
against ads and would accept the trade-off that comes with
the “free” content [13]; this is provided that advertising
is a transparent process and they have control over the
personal information that is collected [14]. Trust, through
transparency, seems to be key in this regard [15]. However,
because different users may have different motivations, we
require tools that allow for such different choices regarding
ad blocking.

A. Contribution and Plan of this Paper

In this work, we investigate a smart Web technology
that can bring transparency to online advertising and help
users enforce their own choices over ads. The technology
proposed in this paper has been contrived within the project
MyRealOnlineChoices, and aims at providing ad trans-
parency on the one hand, and ad-blocking functionalities
on the other.

The main goal of this tool is, first, to let users know what
is happening behind the scenes with their Web-browsing
data; and secondly, to enable them to react accordingly, in
a flexible and non-radical way, by giving them fine-grained
control over advertising. Its ultimate aim is to provide users
with certain guarantees in terms of privacy and browsing
experience, while preserving the online publishing’s domi-
nant business model.

Next, we summarize the major contributions of this work:
• We propose a theoretical model for the investigation of

behavioral targeting, a widespread form of advertis-
ing that uses information gathered from users’ Web-
browsing behavior to serve them ads. The proposed
model aims at providing transparency to this ad-
serving process. First, by detecting such form of ad-
targeting and thus quantifying the extent to which
user-browsing interests are exploited. And secondly,

2Adblock Plus is Google Chrome’s most popular plug-in the world with
more than 50 million monthly active users, and an increase of 41 percent
in the last year.

by examining the uniqueness of the browsing profiles
compiled by the entities that participate in said pro-
cess.
The strength of the proposed model lies in its more
general and mathematically grounded approach to the
problem of detecting such form of advertising. This is
unlike previous work which relies on basic heuristics
and extremely limiting assumptions, or which over-
simplifies the ad-delivery process. The detection of
behavioral advertising is, in this work, formulated as
an optimization problem that reflects the uncertainty
in determining the information available at ad plat-
forms and trackers. The proposed model capitalizes
on fundamental results from the fields of statistical
estimation and robust optimization, the latter being
a relatively new approach to optimization problems
affected by uncertainty, but which has already proved
useful in applications like signal processing, commu-
nication networks and portfolio optimization.

• In this same line of transparency and taking this model
a step further, we propose a second detection system
that sheds light on the uniqueness of the browsing
profiles compiled by the entities that participate in
the ad-delivery process. To this end, we adopt a
quantifiable measure of user-profile uniqueness—the
Kullback-Leibler (KL) divergence or relative entropy
between the probability distribution of the user’s Web-
browsing interests and the population’s distribution,
a quantity that we justified and interpreted in [16],
[17] by leveraging on the rationale behind entropy-
maximization methods.

• We design a system architecture that implements the
two aforementioned detection systems as main trans-
parency factors, and enables smart ad blocking through
the specification of user-configurable control policies.
The system is designed to provide ad transparency and
blocking services all in real-time, without the need
of any external entity, and by relying on local Web-
content categorization and open-source optimization
libraries. The only exception is the computation of the
profile uniqueness, which requires the involvement of
an external server. A relevant aspect of our system is
that it has been conceived to work under two distinct
scenarios in terms of tracking, which allows users to
configure the ad-transparency functionality according
to their own perceptions in this respect. The proposed
system architecture is developed in the form of a Web-
browser extension for Google Chrome, and its beta
version is available under request.

• We conduct an experimental analysis from the user
data collected by this extension. Such analysis allows
us, first, to evaluate the proposed system in a real en-
vironment; and secondly, to investigate several aspects
related to behavioral advertising. The conducted exper-
iments constitute the first attempt to study behavioral
targeting from real user browsing profiles.
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The remainder of this work is organized as follows.
Sec. II provides the necessary background in online ad-
vertising. Then, Sec. III presents the theoretical model
for the detection of interest-based ads and profile unique-
ness. Sec. IV describes the main components of a system
architecture that aims at providing ad transparency and
advanced ad-blocking functionalities. Sec. V analyzes the
data collected by the proposed tool in an experiment
with 40 participants. Sec. VI reviews the state of the art
relevant to this work. Conclusions are drawn in Sec. VII.
Finally, Appendices B and A show, respectively, the linear-
program formulation of the interest-based ad detector, and
the feasibility of this optimization problem.

II. BACKGROUND IN ONLINE ADVERTISING

This section examines the online advertising ecosystem,
providing the reader with the necessary depth to understand
the technical contributions of this work. First, Sec. II-A
gives an overview of the main actors of this ecosystem.
Afterwards, Sec. II-B describes how ads are served on the
Web, and then, Sec. II-C provides a standard classification
of the targeting objectives commonly available to adver-
tisers. Finally, Sec. II-D presents one of the technologies
enabling this ad-serving process. For a detailed, complete
explanation on the subject, the reader is referred to [18].

A. Key Actors

The online advertising industry is composed by a consider-
able number of entities with very specific and complemen-
tary roles, whose ultimate aim is to display ads on Web
sites. Publishers, advertisers, ad platforms, ad agencies,
aggregators and optimizers are some of the parties involved
in the ad-delivery process [19]. Despite the enormous com-
plexity3 and constant evolution of the advertising ecosys-
tem, the process whereby ads are presented on Web sites
is usually characterized or modeled in terms of publishers,
advertisers and ad platforms [21], [22], [23], [24], [25].
Next, we provide a description of these three key actors:
• A publisher is an entity that owns a Web page (or

a Web site) and that, in exchange of some economic
compensation, is willing to place ads of other parties
in some spaces of its page (or site). An example of
publisher is The New York Times’ Web site.

• An advertiser is an entity that wants to display ads
on one of the spaces offered by a publisher, and is
disposed to pay for it. Advertisers typically engage
the services of one or several ad platforms (described
below), which are the ones responsible for display-
ing their ads on the publishers’ sites. As we shall
explain later in Sec.II-B, there exist two ad-platform
models, allowing users to have two different roles. In
the traditional albeit prevailing approach, advertisers
indicate the targeting objective/s most suitable for their
campaigns, that is, to which users they want their ads

3The intricacy of the advertising ecosystem is often illustrated in
conferences and related venues with the diagram available at [20].

to be shown. For example, an advertiser may want the
ad platform to serve its ads to an audience interested in
politics or to people living in France. Advertisers must
also specify the amount of money they are willing
to pay each time their ads are displayed, and each
time users click on them4. On the contrary, in the
recently established model of real-time bidding (RTB),
ad platforms allow advertisers to bid for each ad-
impression at the time the user’s browser loads a
page. This model enables advertisers to make their
own decisions rather than relying on an intermediary
to make decisions for them [18].

• An advertising platform or ad platform is a group
of entities that connects advertisers to publishers, i.e.,
it receives ads from advertisers and places them on
the spaces available at publishers. To this end, ad
platforms track and profile users with the aim of
targeting ads to their interests, location and other
personal data. As we shall describe in greater detail
in the next subsection, traditional ad platforms carry
out this targeting on their own, in accordance with
the campaign requirements and objectives specified
by advertisers. RTB-based ad platforms, on the other
hand, share certain user-tracking data with advertisers,
which then take charge of selecting who suits them by
deciding which user to bid for. Some examples of ad
platforms include DoubleClick, Gemini and Bing Ads,
owned respectively by Google, Yahoo! and Microsoft.

B. Ad-Serving Process

Without loss of rigor, throughout this work we shall assume
an online advertising model composed mainly of the three
entities set forth in the previous subsection. In this sim-
plified albeit comprehensive terms, the ad-delivery process
begins with publishers embedding in their sites a link to
the ad platform/s they want to work with. The upshot is
as follows: when a user retrieves one of those Web sites
and loads it, their browser is immediately directed to all
the embedded links. Then, through the use of third-party
cookies, Web fingerprinting or other tracking technologies,
the ad platform is able to track the user’s visit to this and
any other site partnering with it.

As one might guess, the ability of tracking users across
the Web is of paramount importance for ad platforms: it
enables them to learn the Web page being visited and hence
its content; the user’s location through their IP address;
and, more importantly, their Web-browsing interests. Af-
terwards, all these invaluable data about the user is what
allow ad platforms to serve targeted ads.

To carry out this task, the vast majority of ad platforms
rely on proprietary targeting algorithms [18]. The afore-
mentioned user data and the objectives and budgets of all
advertisers for displaying their ads are the inputs of these
algorithms, which are responsible for selecting which ad
will be shown in a particular ad space. Evidently, their

4In the terminology of online advertising, these quantities are referred to
as the cost-per-impression (CPI) and the cost-per-click (CPC), respectively.
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primary aim is to maximize ad-platforms’ revenues whilst
satisfying advertisers’ demand.

As anticipated in Sec. II-A, a new class of ad platforms
has recently emerged that delegates this targeting process
to external third parties, which then compete in real-time
auctions for the impression of their ads. Ad platforms
relying on this scheme usually share information about the
user with these parties so that they can decide whether
to bid or not for an ad-impression. Typically, the entities
participating in these auctions are big advertising agencies
representing small and medium advertisers5, and traditional
ad platforms wishing to sell the remnant inventory. This
ad-serving scheme is called RTB and its major advantage,
compared to the traditional ad platforms, is to enable ad-
vertisers (or others acting on their behalf) to buy individual
impressions without having to rely on the ad platform’s
targeting decision. In other words, advertisers can decide
whether a particular user is the right person to whom to
present their ads.

Finally, regardless of the type of ad platform involved
(i.e., RTB-based or not), the ad-serving process ends up by
displaying the selected ad in the user’s Web browser, a last
step that may entail a content-delivery network.

Last but not least, we would like to stress that the
advertising model described here —and considered in this
work— corresponds to indirect-sale advertising, also called
network-based or third-party advertising. This is in contrast
to the direct-sale advertisement model, where publishers
and advertisers negotiate directly, without the mediation of
ad platforms. In this latter case, we mostly find popular Web
sites selling ad space directly to large advertisers. The ads
served this way are essentially untargeted, and are often
displayed in Web sites where the products and services
advertised are related to their contents. This is mainly
because the capability of a publisher to track and profile
users is limited just to its own Web site and maybe a few
partners. For example, the New York Times’ Web site may
track users also across the International Herald Tribune,
owned by its media group. Such a tracking capability,
however, is ridiculous when we compare it with the 2
million sites reachable by Google’s ad platforms [26].

C. User-Targeting Objectives

The ads delivered through indirect-sale advertising allow
advertisers to target different aspects of a Web user. The
most popular targeting objectives include serving ads tai-
lored to the Web page they are currently visiting, their
geographic location, and their Web-browsing interests. De-
pending on the objective chosen by an advertiser, ads
are classified accordingly as contextual, location-based,
interest-based and untargeted ads. Occasionally, we shall
refer to these four type of ads as ad classes. Next, we briefly
elaborate on each them.

5A special class of these agencies are the demand-side platforms
(DSPs), which are systems that automate the purchasing of online ad-
vertising on behalf of advertisers.

• Contextual ads. Advertisers can reach their audience
through contextual and semantic advertising, by direct-
ing ads related to the content of the Web site where
they are to be displayed. An example of such targeting
strategy would be a health-insurance company wishing
to show their ads in Web sites whose content is
classified as “health & fitness”.

• Location-based ads. They are generated based on
the user’s location, for example, given by the GPS
of their smartphone or tablet, and also according to
the Wi-Fi access points and IP address of the user’s
machine or device. Geographically-targeted ads enable
advertisers to launch campaigns targeting users within
a certain geographical location. An example would
be the advertisement of a local music event to users
reporting nearby locations.

• Interest-based or profile-based ads. Advertisers can
also target users based on their Web-browsing inter-
ests. Usually, such interests are inferred from the pages
tracked by ad platforms and other tracking companies
that may share this information with the former. The
sequence of Web sites browsed by a user and effec-
tively tracked by an ad-platform or tracker is referred
to as the user’s clickstream. In current practice, this
is the information leveraged by the online advertising
industry to construct a user’s interest profile [27], [28],
[29], [22], [23], [24], [30], [18].

• Generic ads. Advertisers can also specify ad place-
ments or sections of publisher’s Web sites (among
those partnering with the ad platform) where their
ads will be displayed. Ads served through placement
targeting are not necessarily in line with the Web
site’s content, but may simply respond to some match
between the interests of the visiting users and the
products advertised. Because these ads do not rely on
any user data, we shall also refer to them as generic
ads.

An important aspect of the ad-classes described above is
that the former three are not mutually exclusive. In other
words, except for placement ads —which are considered to
be untargeted—, ads can be simultaneously directed based
on content, location and interests. Accordingly, when we
refer to interest-based ads, we shall mean that they are
targeted at least to browsing-interests data. We shall refer
to content- and location-based ads in an analogous manner.

In the terminology of online advertising, directing
interest-based ads is often called behavioral targeting.
Another quite popular ad-targeting strategy is retargeting,
which helps advertisers reach users who previously visited
their Web sites. For example, after having browsed Apple’s
Web site, a user could be shown ads about a new iPhone
release when visiting other sites, in an attempt to bring
them back.

We conclude this subsection by giving a real-world ex-
ample of how advertisers can target their ads. Fig. 1 shows
the configuration panel available at Yahoo!’s ad platform,
whereby advertisers can define their target audiences based
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Define your audience 

Locations 

Age 

Gender 

Interests 

18-24 25-34 35-44 45-54 55-64 65+ All 

Female Male All 

Credit and Debt 

Chronic Pain 

Dating 

- 

- 

- 

Browse  Browse  

France 

Add a country, state or city 

- 

Settings and budget 

Cost per click (CPC) EUR 0.79 

Campaign budget EUR 25000 Per day 

Schedule 

Set a start and end date 

Start running ads immediately 

Start Apr 3, 2015 End Apr 10, 2015 

In total 

Fig. 1: Gemini, Yahoo!’s ad platform, offers advertisers the possibility
to target ads based on a number of parameters, including the user’s
browsing interests, which are chosen from a predefined set of 281 bottom-
level categories. The categories selected in this example merely show the
sensitive, personal information involved in these transactions, and thus do
not reflect a real marketing campaign.

on location, age, gender, interests6 and context (not shown
in this figure). For each campaign, the advertiser must
configure all these variables appropriately, evidently with
a constraint on the advertising budget.

D. Cookie Matching and Real-Time Bidding

This last subsection explains in greater detail some key
operational aspects of RTB, an ad-serving scheme that
accounts for 20% of digital ad sales [18] but that is
expected to be the dominant advertising paradigm in the
next years [31].

In Sec. II-B, we mentioned that RTB-based ad platforms
share user information with certain entities, which then may
bid for the impression of their ads. The auction participants
typically include agencies representing advertisers, DSPs
and traditional ad platforms. To facilitate the sharing of
information with these bidders, RTB relies on a cookie-
matching protocol.

Generally speaking, cookie matching is a process by
which two different domains link the user IDs that they
have assigned to a same user and that they store in their
respective cookies. Typically, the process is conducted as
follows. When a user visits the former domain, this domain
redirects their browser to the latter domain, including its
user ID as a parameter in the URL. Then, upon receiving
the request, the latter domain links this ID with its own ID
for this user [32].

Cookie matching finds its most common application in
RTB, where it allows the ad platform and the bidder to
match their cookies for a particular user [33]. Usually, the

6Others platforms like Google’s allow advertisers to specify further
constraints such as the time of the day ads will be shown, their frequency
of appearance to a same user and specific ad-placements.

protocol is executed only if the bidder wins an auction
and delivers its ad to this particular user. The matching
permits the bidder to look up the user (if present) in its
own database. Also, if subsequent ad-auctions are hold for
this user, the bidder will learn that the user information
provided in those auctions refer to this same matched user.
We must emphasize that this is under the assumption that
this bidder is among the recipients of the bid requests sent
by the ad platform.

Having described the technology underlying RTB, next
we briefly examine the overall functioning of Google’s
scheme, probably the most representative. The following,
however, is also valid for other RTB-based ad platforms,
although with slight variations irrelevant to this work.

When a user visits a Web site with an ad space served
through RTB, an HTTP request is submitted to the ad
platform, which subsequently sends bid requests to po-
tential participants. We note that the number and type of
participants involved may vary on a per-auction basis, at
the ad platform’s discretion. Within the bid request, the ad
platform generally includes the following data: the URL of
the page being visited by the user; the topic category of the
page; the user’s IP address or parts of it; and other informa-
tion related to their Web browser [34]. Accompanying this
information, Google’s ad platform incorporates a bidder-
specific user ID, which implies that different bidders are
given different IDs for a same user. Other RTB-based ad
platforms, alternatively, include their own user’s cookies.

Upon receiving the bid request, the bidder may identify
the user within its own database through the cookie or
identifier. This is provided that the cookie-matching pro-
tocol has been executed previously for this user. Thanks to
such cookie or identifier, the bidder can track them across
those Web pages in which it is invited to bid. From those
tracked pages, the bidder can therefore build a profile7,
maybe complementing tracking and other personal data it
may have about the user.

The bid price is then set on the basis of the bidder’s
targeting objectives, that is, whether it aims to target users
visiting certain site categories, browsing from a given
location, and/or having some specific profile. To evaluate if
the ad-impression meets such objectives, the bidder relies
on the aforementioned profile and the information included
in the bid request. If interested, the bidder submits a price
to the ad platform, which finally, in a last step, allows
the winning bidder to deliver the ad to the user. It is
worth stressing that all this process of gathering user data,
ad bidding and delivering is conducted in just tens of
milliseconds.

III. DETECTION OF PROFILE-BASED AD-SERVING AND
PROFILE UNIQUENESS

As described in the background section, ad platforms,
tracking companies and also advertisers gather information

7DoubleClick’s guideline specifies that, unless a bidder wins a given
impression, it must not use the data for that impression to profile
users [35]. Nevertheless, because no active mechanism is enabled to
enforce this, nothing prevents a bidder from misusing such user data.
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about users (e.g., the visited pages and their location)
while they browse the Web. Later, these and other data
are leveraged to present ads targeted to the content of the
pages browsed, their current geographic location and/or
their interests. We also mentioned that ad platforms may as
well deliver placement ads, which are considered generic
or untargeted ads.

This section investigates a mathematical model that aims
at quantifying to what extent the information gathered
about a user’s browsing interests is exploited afterwards
by the online advertising industry to serve them ads. The
proposed model focuses on the detection of interest-based
ads since they are the result, and probably the cause, of
tracking and profiling users’ browsing habits throughout the
Internet, often without their knowledge [36] and consent8.
It is important to remark that the conducted analysis is
restricted to network-based advertisement, as the capability
of publishers to track and profile users is, in general, limited
to their sites.

In addition to determining if the displayed ads may have
been targeted to a browsing profile, this section addresses
another inescapable question related to profile targeting:
how unique are we seen through the eyes of the companies
displaying ads to us? As we shall elaborate on in Sec. III-C,
the risk of profiling as well as the uniqueness of the profiles
built by these companies is closely linked to the risk of
reidentification.

In the coming sections, we shall provide the conceptual
basis and fundamental operational structure of two detectors
that aim at (1) identifying profile-based ads from their
interest categories; and (2) shedding light on the uniqueness
of the profiles compiled by the entities that participate in
the ad-delivery process. In doing so, we make a preliminary
step towards studying the commercial relevance of our
browsing history and quantifying its actual impact on user
privacy. Later in Sec. IV we shall present MyAdChoices,
a Web-browser extension that capitalizes on these two
detectors to bring transparency into said process and to
enable selective and smart ad-blocking.

A. Statistical and Information-Theoretic Preliminaries

This section establishes notational aspects and recalls a key
information-theoretic concept assumed to be known in the
remainder of this paper.

The measurable space in which a random variable
(r.v.) takes on values will be called an alphabet. Without
loss of generality, we shall always assume that the alphabet
is discrete. We shall follow the convention of using upper-
case letters for r.v.’s, and lowercase letters for particular
values they take on. The probability mass function (PMF) p
of an r.v. X is a function that maps the values taken by
X to their probabilities. Conceptually, a PMF is a relative
histogram across the possible values determined by its
alphabet.

8Consistently with the recommendations of the US Federal Trade
Commission, the advertising industry has started to offer an opt-out
scheme for behavioral advertising [37].

Throughout this work, PMFs will be subindexed by their
corresponding r.v.’s in case of ambiguity risk. Accordingly,
both p(x) and pX(x) denote the value of the function
pX at x. Occasionally, we shall refer to the function p
by its value p(x). We use the notations pX|Y and p(x|y)
equivalently.

We adopt the same notation for information-theoretic
quantities used in [38]. Concordantly, the symbol D will
denote relative entropy or KL divergence. We briefly recall
this concept for the reader not intimately familiar with
information theory. All logarithms are taken to base 2.

Given two probability distributions p(x) and q(x) over
the same alphabet, the KL divergence D(p ‖ q) is defined
as

D(p ‖ q) =
∑
x

p(x) log
p(x)

q(x)
.

The KL divergence is often referred to as relative entropy,
as it may be regarded as a generalization of the Shannon’s
entropy of a distribution, relative to another.

Although the KL divergence is not a distance in the
mathematical sense of the term, because it is neither sym-
metric nor satisfies the triangle inequality, it does provide a
measure of discrepancy between distributions, in the sense
that D(p ‖ q) > 0, with equality if, and only if, p = q.

B. Detection of Profile-based Ads

One of the key functionalities of our system is the detection
of profile-based ads, that is, ads that are tailored to a user’s
browsing interests and, in addition but not necessarily, to
their location and the Web-page currently visited. This
section proposes a mathematical model for the identification
of these ads, which leverages fundamental results from
statistical estimation and robust optimization.

1) Ad-Serving Interest-Category Model: We model the
ads delivered by an ad platform (RTB-based or not) to a
particular user as independent r.v.’s taking on values on a
common finite alphabet of categories or topics, namely the
set X = {1, . . . , n} for some integer n > 1. We hasten to
stress that our model encompasses the four classes of ads,
or objectives, described in Sec. II-C. The fact that each ad
is associated with an interest category does not mean we are
considering just interest-based ads. For example, a content-
based ad displayed on the Web site www.webmd.com will
be necessarily classified into an interest category related to
health. Location-based and placement ads can evidently be
mapped to any of the n categories assumed in this work.

As commented in Sec. II-B, the ad-serving process takes
into account a wide range of variables when displaying an
ad to a user on a given ad space. These variables include
tracking and profiling data about the user in question, the
publisher being visited, the advertisers and their corre-
sponding campaigns, and, depending on the ad-platform
type, the bids of the ad-auction participants or the criteria
of the ad platform itself to maximize its revenue.

In our mathematical model, we characterize the ad-
serving process conducted by an ad platform as a black
box, whose inputs are the variables mentioned above, and
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Fig. 2: An ad selector (e.g., a traditional ad platform) displays k ads on the user’s browser when navigating the Web. The interest categories of the
delivered ads are modeled as a sequence of independent r.v.’s taking on values on n = 3 categories. The observed categories, i.e., (xi)

k
i=1, can be

seen as generated by a source that commutes between the PMFs p and q. The switching between interest-based ads (i.e., “i”, “c-i”, “l-i” and “c-l-i”)
on the one hand, and non-interest-based ads (i.e., “c”, “l”, “g” and “c-l”) on the other, is determined by a number of parameters related to the user,
publishers, advertisers and ad platform.

whose outputs are the selected ads. We explained in the
background section that traditional ad platforms are the
ones selecting the ad to be displayed, while in RTB-based
advertising the choice is made by the winning bidder, being
an advertising agency or a traditional ad platform. For the
sake of conciseness and to avoid specifying the ad-platform
model in each case, we shall henceforth use the term ad
selector to refer generically to the particular entity imposing
the selection of an ad.

For each user and for each ad space, the outputted ads
can be classified as content-, location-, and interested-based
and generic, according to the corresponding advertisers’
targeting objectives. We note that, from these four classes
of ads, we may only have eight possible combinations of
those classes. Denoting each of the ad-classes by its first
letter, the set of all such combinations is

G = {c, l, i, g, c-l, c-i, l-i, c-l-i},

where the element “c-l” represents an ad that has been
targeted based on content and location. In other words,
G includes all the combinations of targeting objectives an
advertiser may choose.

We mentioned in Sec. II-B that user profiles are essen-
tially built from clickstreams, i.e., from the Web pages
tracked. For k >> 1, let (Xi)

k
i=1 be the sequence of ads

that an ad selector (e.g., a traditional ad platform) delivers
to a particular user during several browsing sessions. Our
characterization of this ad-delivery process stems from the
intuitive observation that, if we were able to rule out all
but the interest-based ads of such sequence, the empirical
distribution [38] of the interest categories observed would
naturally resemble, to a large extent, the user’s browsing
interests, or equivalently, their clickstream.

According to this observation and without loss of gen-
erality, we model the sequence of outgoing ads, classified
into interest categories, as the output of an ad-source that
alternates between two probability distributions, namely
• an interest-category distribution p that reflects the

knowledge the ad selector has about the user’s inter-
ests;

• and another interest-category distribution q that repre-
sents the complement of the former distribution and
thus corresponds to (the interest categories of) those
ads classified as non-interest-based, that is, contextual,
location-based and generic.

Naturally, the model described above captures only one
aspect of the ad-serving process: it reflects the selection of
the ads interest-categories within the set X , a step that we
model through the distributions p and q when the ad-class
is respectively interest-based and non-interest-based. The
proposed model is supported by the reasonable assumption
that the accumulated interest categories of the interest-based
ads will very likely approximate to the user’s interests, or
more precisely, the clickstream possessed by the ad selector.

Our model does not, therefore, capture other aspects
of the ad-serving process like how a particular ad-class
combination is chosen from G . With it, however, we
reflect the simple fact that the interest categories of the
outgoing ads may be distributed according to either partial
(or complete) user browsing data, or any other information
which does not include those browsing data. This simplified
ad-serving model based on interest categories will allow us
in the next subsection to estimate the ad-class chosen by
the ad selector, or more accurately, whether the delivered
ads are classified as interest-based or not. Fig. 2 illustrates
how we model this aspect of the ad-serving process.

2) Binary Hypothesis Testing: Assuming such model
on the ad-platform’s side, on the user’s side we aim to
determine if an ad, previously classified into an interest
category, has been shown to the user based on their past
Web-browsing interests or not. Formally, we may consider
this as a binary hypothesis testing problem [38] between
two hypothesis, namely whether the data (i.e., the category
of the displayed ad) has been drawn according to the distri-
bution p or q. Next, we elaborate on these two distributions.
Further details about the practical estimation of both PMFs
are set forth in Sec. IV.

Recall that, for a particular user and ad space, the ad
selector is the entity that ultimately decides which ad
is shown to that user in that ad space. In the case of
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Fig. 3: We show how three ad selectors track a user through different Web sites. The ad selectors 1 and 2 could represent two ad platforms overlapping
their observed clickstreams. This would reflect a common situation for large ad platforms like Google AdSense and OpenX. The ad selector 3, on the
other hand, could exemplify a small advertising company. Because of its limited ability to track users on its own, this latter ad selector might decide
to acquire tracking data from the ad selector 2. Regardless of the data exchanged, however, none of the three ad selectors will be able to get the actual
clickstream.

traditional ad platforms, the ad selector is the ad platform
itself. In RTB, on the contrary, the ad selector is the
bidder that wins the auction for displaying its ad, being
an agency representing advertisers, a DSPs or a traditional
ad platform.

As described in Sec. III-B1, the PMF p represents the
knowledge that such ad selector has about the user’s brows-
ing interests. Henceforth, we shall refer to this distribution
as the user’s interest profile, bearing in mind that it is
specific to the ad selector in question.

In practice, these profiles are typically built from the
tracked Web sites or observed clickstream [27], [28], [29],
[22], [23], [24], [30], [18]. The clickstream available to an
ad selector, however, need not necessarily be the result of
a direct tracking on the user. For example, ad platforms
may track users on their own through their cookies; and
not satisfied with that, they may also wish to build upon
tracking data from other ad platforms or trackers. For the
time being, we shall not specify how, in our model, the
ad selector profiles a user from their clickstream. We shall
only assume that profiles are represented as PMFs, as many
works in the literature essentially do [28], [39], [22], [23],
[24].

Clearly, depending on the ability of the ad selector to
track users throughout the Web (on its own or not), the
profile p will resemble, to a greater or lesser extent, their
actual interests. We denote by t the interest profile resulting
from the actual clickstream, that is, all the Web sites visited
by a user. We shall occasionally refer to p and t as the
observed and actual profiles, respectively. Fig. 3 extends
the ad-targeting model depicted in Fig. 2, to reflect the fact
that p is constructed from the observed clickstream and thus
may not capture the user’s actual interest profile t.

The distinction between these two profiles will also be
employed later in Sec. IV to reflect two possible scenarios
regarding tracking and sharing of clickstream data: on the
one hand, a paranoid scenario where users are tracked on
every page they visit and such tracking data is exchanged
among all entities serving ads. And on the other hand, a
baseline scenario where p is fundamentally built from the
clickstream an ad selector may get on its own, through
cookies or other tracking technologies, without relying on
tracking data from other sources.

In order to conduct our hypothesis testing, we shall also
need to estimate the distribution q. To this end, we consider
an environment where no tracking is performed, similarly to
when users enable the Web-browser’s private mode. Recall
that this PMF is the interest-category distribution of those
ads which are not profile-based, that is, those classified as
“c”, “l”, “g” and “c-l”. Because, except for ad-placement,
these ads will depend on the user’s location and the pages
visited during this free-tracking session, q will be specific
to each particular user. To estimate this distribution on the
user side, we shall capture the category of all ads received,
under the reasonable assumption that, when users browse
in private mode, no browsing-interest data are leveraged
to target the ads. In Sec. IV-B2a, we shall describe more
specifically how this PMF will be estimated by our detector.

3) Short-Term and Long-Term Interest Profiles: In pre-
vious sections, we pointed out that user interest profiles
are mainly built from the categorization of the visited Web
sites. We also commented that profiles are modeled essen-
tially as PMFs, that is, as histograms of relative frequencies
of those visited sites across a set of interest categories. In
this subsection, we briefly examine a crucial aspect of such
user modeling, namely, we explore the importance that ad
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selectors may place on recent interests compared to those
accumulated over a long time period.

From the perspective of profile-based targeting, the need
to weight clickstreams is evident. A short recent history
may be enough to direct products which do not require
much thought, like buying a movie at Google Play. But
other kind of transactions such as enrolling for an online
university degree may need a longer browsing history to
ensure a certain probability of conversion9 [30].

Depending on the time window chosen, user profiles
can be classified as short-term and long-term profiles. The
former represent the user’s current and immediate interests,
whereas the latter capture interests which are not subject
to frequent changes [40]. In general, different interest-
based marketing systems may contemplate different time
windows for building profiles. Many commercial systems
opt for relatively long-term profiles, while others capitalize
on short, recent clickstreams. Some recent studies do not
seem to agree on that, either. For example, [30] provides
evidence that long browsing histories may lead to better
targeting of users, while others show the opposite [23].

As we shall see in Sec. III-B4a, our detection system will
capture the uncertainty associated with the time window
used by an ad selector. Since in practice it is impossible
to ascertain this parameter, we shall consider uncertainty
classes of user profiles. These classes will enable us to
characterize the distinct options an ad selector might have
chosen to create a profile, and will lead us to the design of
an optimal robust detector.

4) Optimal Detection of Interest-based Ads under Un-
certainty: In this section, we formulate the problem of
designing an interest-based ad detector as a robust minimax
optimization problem. To this end, we essentially follow the
methodology developed by [41], [42].

Let X be an r.v. modeling the category an ad belongs
to. Denote by H the r.v. representing the two possible
hypothesis about the distribution of the observed category
X . Let H = 1 indicate that the ad is profile-based (first
hypothesis), and H = 2 it is not profile-based (second
hypothesis). Said otherwise, X conditioned on H has PMF
p when H = 1 and q when H = 2. For the sake of
compactness, we denote by P ∈ Rn×2 the matrix that has
p and q as columns.

A randomized estimator or detector Ĥ of H is a
probabilistic decision rule determined by the conditional
probability of Ĥ given X , that is, pĤ|X . The interpretation
of such estimator is as follows: if X is observed to have
value j, the detector concludes H = 1 with probability
pĤ|X(1|j), and H = 2 with the complement of that
probability.

A randomized detector also admits an interpretation in
matrix terms, in particular as an R2×n matrix, where the
j-th column corresponds to the probability distribution of
Ĥ when we receive an ad belonging to the interest category
j. Throughout this section, we shall conveniently use this

9In online marketing terminology, conversion usually means the act of
converting Web site visitors into paying customers.

… 

clickstream observed by an ad selector 

latest  

page 

tracked 

time window 

… 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

first 

page 

tracked 

pmax
1

pmin
1

1 2 3 1 2 3 1 2 3 

Fig. 4: Ad selectors may create interest profiles based on the Web pages
tracked. Our detector captures all possible options an ad selector may
consider to compute those profiles from the tracked pages. All these
options are directly related to the time window/s chosen, or equivalently,
the number of pages taken from the observed clickstream. We model these
possible choices as intervals between minimum and maximum interest
values per category.

matrix notation for estimators, and denote by D the matrix
defining them.

The performance of a decision rule is usually charac-
terized in terms of its detection and error probabilities.
We may capture this performance compactly by means of
the matrix M = DP , whose element Mij gives us the
probability of deciding Ĥ = i when in fact H = j, that
is, pĤ|H(i|j). The diagonal elements of this 2 × 2 matrix
are the probabilities of correct guess. The error probabilities
are represented by the off-diagonal elements M21 and M12,
which yield the probabilities of a false negative and a
false positive, respectively. In our context, the former is
the probability of concluding that the ad is not profile-
based when actually it is; and the latter is the probability
of deciding the ad is interest-based when it is not.

Our aim is to design the matrix D that defines the
interest-based ads detector, so that certain performance
criteria are satisfied. Among other requirements, we might
be interested in minimizing (maximizing) one of the error
(detection) probabilities, with a constraint on the comple-
ment of the objective probability. Also, we could consider
minimizing both error probabilities or a convex combi-
nation of them, if some prior information about pH was
available.

a) Robust Estimation: Regardless of the criteria cho-
sen, the problem of this design is that it requires the
complete knowledge of the probability distributions defined
by P . As explained in the previous section, we may
compute a reliable estimate of q locally (i.e., on the user
side), but we cannot know how ad selectors construct the
profile p from their observed clickstream. Some ad selectors
may wish to target users based on their short-term interests,
some may rely on longer and relatively stable profiles to
this end, and others may opt for both kind of models. In
any case, the time window/s employed by an ad selector
is what determines the profile/s that will be used for ad
targeting. Because this information is unknown, having a
precise specification of the distribution p, or estimating it
reliably, is therefore infeasible.
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The problem of estimating a distribution under un-
certainty has also been encountered in other fields and
applications such as signal processing [43], portfolio op-
timization [44] and communications networks [45]. In all
these cases, the probability distributions are frequently
specified to belong to sets of distributions, typically called
uncertainty classes. In our case, the uncertainty class of p
is given by the minimum and the maximum lengths of the
time windows an ad selector may define to model short-
term and long-term interests. In practice, the maximum
length might correspond to the entire clickstream, whereas
a minimum reasonable time window for short-term profiles
might be one day [30], [24].

For i = 1, . . . , n, we denote by pmax
i the maximum

interest value pi estimated by the ad selector, over all
possible time windows ranging from one day to the whole
observed clickstream10. We define pmin

i analogously, and
intuitively model the uncertainty about the distribution p
as intervals between these upper and lower bounds. More
specifically, we define the set of possible interest profiles
as

P = {p : pmin � p � pmax,1Tp = 1, p � 0}, (1)

where the symbol “�” indicates componentwise inequality,
and the last inequality and the equality reflect the fact that
p must be a PMF.

At a conceptual level, the polyhedron P captures all
the possible profiles that an ad selector may have built
by adding incremental observations of one Web site to the
interests model. By computing the maximum and minimum
observed interests over all these incremental models, and
by defining intervals of interest values between these two
extremes, we obtain an uncertainty class that reflects any
possible decision made by the ad selector regarding the time
window. We would also like to stress that the uncertainty
class P likewise includes the possibility that an ad selector
may be using more than one profile —with different time
windows— for a same user. Fig. 4 illustrates the uncertainty
around the selected time window/s.

One possible way to devise an estimator when a prob-
ability distribution is specified to belong to an uncertainty
class is to contemplate the worst-case performance over this
class. The resulting decision rule is then said to be robust
to the uncertainties in the probability distribution [46].
Following the notation of [41], we define the worst-case
performance matrix Mw associated with a robust detector
as

Mw
ij = sup

p∈P
Mij ,

for i, j = 1, 2, with i 6= j, and

Mw
ii = inf

p∈P
Mii,

for i = 1, 2. In general terms, the off-diagonal elements
of this matrix give us the largest probability of errors over
all p ∈ P . The diagonal entries, on the other hand, yield

10In Sec. IV-B2a, we shall see that a maximum time window of 1.5
months may be sufficient.

the smallest possible detection probabilities. Based on the
latter probabilities, we may define the worst-case error
probability as Pw

i = 1−Mw
ii , which represents the largest

probability of error over the uncertainty class when H = i.
Clearly, we note that Mw

12 = M12 and Mw
22 = M22, as in

our case the uncertainly is just in p.
b) Minimax Design: In this subsection, we specify the

design of a robust interest-based ad detector, and formulate
the hypothesis test problem between H1 and H2 as a linear
program (LP).

Based on the error and detection probabilities shown in
the previous subsection, various designs can be developed.
Some classical optimality criteria are the Bayes, Neyman-
Pearson and minimax designs [42]. In this work, we con-
sider a robust minimax approach that minimizes the worst-
case error probability, over the two hypotheses. We adopt
this approach because, in our attempt to detect interest-
based ads, both error probabilities are equally important.

According to this design criterion, the proposed robust
minimax detector is given by the matrix D that solves the
optimization problem

min max
i=1,2

Pw
i . (2)

Let d̃ T be the first row of D, that is, the conditional
probabilities pĤ|X(1|j) for j = 1, . . . , n. We show in
the Appendix B that (2) is equivalent to the following
optimization problem in the variables λ, µ, d̃ ∈ Rn and
ν ∈ R:

maximize ζ

subject to µTpmin − λTpmax + ν > ζ,

1− d̃ Tq > ζ,

µ− λ+ ν1 � d̃,
λ � 0, µ � 0,

0 � d̃ � 1.

(3)

The strength of recasting (2) as an LP lies in that it allows
us to resort to extremely efficient and powerful methods to
compute the optimal detector. This is of a great practical
relevance as we aim to provide such interest-based detection
functionality on the user side, as a stand-alone software
operating in real-time, i.e., while the user browses the Web.
Sec. IV will give further details about the optimization
library used for this computation. The feasibility of this
optimization problem is shown in Appendix A.

C. Detection of Profile Uniqueness

In the previous subsection, we provided the design of
a robust interest-based detector whereby users may learn
to what extent their browsing profiles are exploited to
serve them ads. This subsection investigates another crucial
aspect related to behavioral targeting, namely, if the profiles
collected by the advertising companies might reveal unique
browsing patterns.

The importance of this aspect lies in the potential risk
of reidentification from unique, non-personally identifiable
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data, as illustrated, for example, by the AOL search data
scandal [47]11. In our context, the risk of profiling goes
hand in hand with the risk of reidentification, especially
when considered in the context of additional information
obtainable from a user such as their location, accurate
navigation timing and aspects related to the Web browser
and operating system. When the profile is added also to
the wealth of data shared across numerous information
services, which a privacy attacker could observe and cross-
reference, such attacker might eventually find out, even if
in a statistical sense, the user’s real identity.

Having motivated the risk of profile uniqueness, this
subsection describes how to detect if the ads delivered to a
user may have been generated as a result of a common
browsing pattern, or conversely, to a browsing history
that deviates from a typical behavior. To this end, we
first provide a brief justification of KL divergence as a
measure of the uniqueness of a profile, or equivalently, its
commonality. The rationale behind the use of divergence
to capture this aspect of a profile is documented in greater
detail in [16], [17]. Afterwards, we examine how to estimate
this information-theoretic quantity.

Although we mentioned in Sec. III-A that the KL di-
vergence is not a proper metric, its sense of discrepancy
between distributions allows an intuitive justification as a
measure of profile commonality. Particularly, whenever the
profile observed by an ad selector diverges too much from
the average profile of all tracked users, the ad selector will
be able to ascertain whether the interests of the user in
question are atypical, in contrast to the statistics of the
general population.

A richer justification arises from Jaynes’ celebrated
rationale on entropy maximization methods [48], [49],
which builds on the method of types [38, §11], a powerful
technique in large deviation theory. Leveraging on this
rationale, the relative entropy between an observed profile
and the population’s profile may be considered as a measure
of the uniqueness of the former distribution within such
population. The leading idea is that the method of types
establishes an approximate monotonic relationship between
the likelihood of a PMF in a stochastic system and its
divergence with respect to a reference distribution, say
the population’s. Loosely speaking and in our context,
the lower the divergence of a profile with respect to the
average profile, the more likely it is, and the more users
behave according to it. Under this interpretation, the KL
divergence is therefore interpreted as an (inverse) indicator
of the commonness of similar profiles in said population.

Having argued for the use of KL divergence as a
measure of profile commonality, next we elaborate on the
uncertainty to estimate this divergence value. Recall from
Sec. III-B3 that ad selectors may construct profiles in
multiple ways from the observed clickstream. Just as we

11AOL user No. 4417749 found this out the hard way in 2006, when
AOL released a text file intended for research purposes containing twenty
million search keywords including hers. Reporters were able to narrow
down the 62-year-old widow in Lilburn, Ga., by examining the content of
her search queries [47].

did with the design of the interest-based ad estimator, we
proceed by considering a worst-case uniqueness estimate on
the space of possible profiles built by an ad selector. Denote
by p̄ the population’s interest profile. Formally, for each
user and ad selector, we define the minimum uniqueness
over all such profiles as

umin = inf
p∈P

D(p ‖ p̄), (4)

which gives a measure of profile commonness that allows
for the uncertainty inherent in the time window used by an
ad selector.

The divergence-minimization problem above captures
a worst-case scenario regarding profile commonality. In
particular, it tells us how peculiar our interests might be,
as seen by an ad selector. For any ad selector, the value
umin (on the interval [0,∞) bits) will clearly vary over
time as the user browses the Web. From the point of view
of comprehensiveness, however, the information conveyed
each time by this absolute uniqueness value may not be
informative enough to the user.

To help the user interpret a given umin value, we consider
making it relative to a population of users. In doing so,
users can compare their profile uniqueness values with
those of other users of our Web-browser extension, and thus
gain a broader perspective of how they are profiled. Also,
users may utilize this information to define consequent
ad-blocking policies. Later in Sec. IV, we shall describe
the exchange of information between users of our system
and a central repository to estimate those relative profile-
uniqueness values.

IV. “MYADCHOICES” — AN AD TRANSPARENCY AND
BLOCKING TOOL

This section describes MyAdChoices, a prototype system
that aims to bring transparency into the ad-delivery process,
so that users can make an informed and equitable deci-
sion regarding ad blocking. The proposed system provides
two main functionalities. Enabled by the interest-based
ad detector and the profile-uniqueness estimator designed
in Sec. III, the ad-transparency functionality allows users
to understand what is happening behind the scenes with
their Web-browsing data. The ad-blocking functionality, on
the other hand, permits users to react accordingly, in a
flexible and non-radical manner. This is unlike current ad-
blocking technologies, which simply block or allow all ads.
MyAdChoices does not only consider these two extremes,
but the interesting and necessary continuum in between.
With this latter functionality, users can indicate the type of
ads they wish to receive or, said otherwise, those which they
want to block. By combining both functionalities and thus
providing transparency and fine-grained control over online
advertising, the proposed system may help preserve the
Internet’s dominant economy model, currently threatened
by the rise of simple, radical ad blockers.

This section is organized as follows. Sec. IV-A first elab-
orates on the ad transparency and blocking functionalities
provided by our system. Afterwards, Sec. IV-B describes
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the components of a system architecture that implements
these two functionalities.

A. Main Functionalities

Our system brings transparency to two central aspects of
behavioral ad-serving. On the one hand, it allows users to
know if the information gathered about their browsing in-
terests may have been utilized by the advertising industry to
target them ads. Specifically, our system lets the user know
if the received ads may have been generated according to
their browsing interests or, more accurately, to the profiles
that ad selectors may have about them. On the other hand, it
provides insight into the browsing profiles that ad selectors
may have inferred from the pages tracked. In particular,
MyAdChoices shows a worst-case, profile-uniqueness value
for each ad selector, and the interest category of the ads
received.

With regard to the ad-blocking service, our system con-
templates the following user-configurable parameters:

• Ad interest-category. We offer users the possibility
to filter ads by interest category. For example, a
user could block ads belonging to certain sensitive
categories like pornography and health.

• Ad class. This parameter enables users to block either
the interest-based ads or the non-interest-based ads,
for all ad interest-categories or for a subset of them.

• Profile uniqueness. Users may decide blocking the
ads delivered by those ad selectors that may have com-
piled very unique, and thus potentially re-identifiable,
profiles of their browsing habits.

• Retargeting. Last but not least, users can decide
to block retargeted ads, that is, ads coming from
advertisers that have been previously visited by the
user (see Sec. II-C).

1) Examples of Ad-Blocking Policies: This subsection
provides a couple of simple but insightful ad-control poli-
cies that aim to illustrate the parameters described in the
previous subsection. These examples are prefaced by a
general definition of ad-filtering policy, inspired from the
field of access control.

Definition 1 (Ad-blocking policy). A policy pol is a pair
(AC , sign), where AC is an ad constraint, and sign ∈
{+,−} models an action to be taking when an ad meets
that constraint. An ad constraint is represented by a triple
(I, i, u), where I ∈ {0, 1} indicates if an ad is interest-
based or not, i ∈ X is an interest category, and umin
denotes a requirement of minimum profile uniqueness.

An ad constraint represents the set of ads belonging to
an interest category i, which are classified as interested-
based (or not), and which have been delivered according to
a profile with minimum uniqueness given by umin. On the
other hand, sign denotes if the ad must be blocked (-), or
displayed on the user’s browser (+).

Because the support for positive and negative policies
may cause conflicts (i.e., we may have an ad constraint

satisfying both positive and negative policies), a conflict-
resolution mechanism must be enforced. The literature of
access control provides several approaches to tackle such
conflicts. A comprehensive survey on this topic is [50].
Here, for simplicity, we assume that negative policies
prevail, since this approach provides stronger guarantees
with regard to the risk of displaying unappropriate ads.
Other conflict resolution policies, however, could also be
readily integrated.

Two examples of policies are given next. In these ex-
amples, we refer to some of the interest categories used
by the proposed system (see Sec. IV for more details).
For brevity, in this section we shall denote the relevant
categories by its name. Also, for simplicity and clarity, in
the examples we shall keep using the policy formal notation
introduced in Definition 1. We note, however, that this
notation, describing how policies are actually implemented
in the system, must be made transparent in the front end
both to improve usability and to help users specify policies
reflecting as much as possible their preferences. As we shall
explained in Sec. IV-B2e, several strategies will be devised
for this purpose, e.g., the use of textual labels instead of
numeric values.

Example 2 (Policies for allowing certain personalized ads).
Alice had planned to visit New York City (NYC) for her
holidays. Some days ago she bought her flight tickets and
booked her hotel, all through the Internet. During the
following days, she visited several Web sites in search of
sightseeing tours and day trips. As she browsed the Web, the
ads displayed in her browser became increasingly related to
her upcoming trip. Alice is now fed up with ads on hotels in
NYC, so she is considering installing AdBlock Plus to block
them all. However, she appreciates the value and usefulness
of behavioral targeting, and because she has not decided
her itinerary yet, she still wants to receive personalized ads
associated with the categories 1 (“Travel\Trains”) and 2
(“Travel\Theme parks”). Consequently, Alice specifies the
following policies:

• pol1 = ((c1, 1, ·),+),
• pol2 = ((c2, 1, ·),+),

where the symbol “·” means that the value of the parameter
in question is not specified.

Example 3 (Policy for balancing personalization and pri-
vacy). Bob works in a dietetics and nutrition shop. As
part of his work, he sometimes consults pages about health
and fitness. Occasionally, and when nobody sees him, he
spends some time checking Web sites related to his recently
diagnosed fibromyalgia’s disease. Some days ago he was
shocked when a couple of ads on biological treatments for
his disease popped up while he was browsing the Web.
Since then Bob is very concerned that related ads may
be displayed when his workmates look over his monitor.
However, despite his worries, he does not wish to resort
to the typical ad-blocking plug-ins, as such personalized-
ads services also helps him keep abreast of the newest
products and trends in his work. To strike a balance
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between privacy and personalization, Bob specifies a filter
that blocks profile-based, health-related ads only when his
browsing profile reflects relatively atypical interests. In
particular, he defines the following policy:

• pol1 = ((c3, 1, πumin > 25%),−),
where the category 3 corresponds to “health & fitness”, and
πumin denotes the percentile value of umin.

Lastly, we would like to emphasize the topicality and
appropriateness of this latter example, with an extreme case
in which a cancer patient reported numerous Facebook ads
for funeral companies after having searched for his recently
diagnosed disease [51].

B. System Architecture and Implementation Details

In this section, we describe the components of a system
architecture that implements the two functionalities speci-
fied in Sec. III. The proposed system has been developed
as a Web-browser extension and is available for Google
Chrome12. It is worth emphasizing that this extension not
only provides transparency and ad-blocking services in real-
time, but also operates as a stand-alone system, i.e., it
performs all computations and operations locally, without
the need of any infrastructure or external entity to this end.
The only exception is the computation of the minimum
profile-uniqueness value, which is not done on the user
side, as it requires the average profile of the population p̄.
As we shall elaborate later on in Sec. IV-B2d, this particular
service is provided only if the user accepts sharing profile
data with the MyAdChoices server.

1) Assumptions: Before proceeding with the description
of the system architecture, we examine the assumptions
made in implementing the interest-based ad detector and
the profile-uniqueness estimator designed in Secs. III-B
and III-C.

Our first assumption is related to the impossibility of
finding out, with absolute certainty, the browsing infor-
mation that ad selectors have about users. In Sec. III-B
we called this information the observed clickstream, and
defined it more precisely as the sequence of Web pages
the ad selector knows that the user visited. By observing
the third-party network requests, our browser extension is
able to capture the pages ad platforms may track through
HTTP cookies or other more sophisticated methods like
Web-browser fingerprinting. Nevertheless, we cannot know
if this is all the information available to them, i.e., if those
pages account for their observed clickstreams or not —
ad selectors and Web trackers may also exchange their
tracking data, for example, through cookie matching, a
practice that appears to be much more common than those
direct tracking methods [52], [36], [53]. The fact that a
cookie-matching protocol is executed between two entities
does not imply, however, that they end up exchanging their
tracking data. There is an obvious incentive to aggregate
information and gain further insight into a user’s browsing

12Currently, the tool is in beta version and can be downloaded at https:
//myrealonlinechoices.inrialpes.fr under request.

history, but since this exchange does not go through the
user’s browser, we cannot safely conclude that it is made.

In the case of RTB, the bid requests sent by an ad
platform may enable the auction participants to track a
given user. Since the winning bidder (i.e., the ad selector)
is the one serving the ad, our system can easily flag the
corresponding page as being tracked by this bidder. The
problem, however, is that we cannot ascertain if this ad
selector could have received other bid requests for this
user (while visiting other pages), and thus could have
tracked them across those pages. Ad platforms typically
permit bidders to build profiles only from the auctions they
win, but, actually, nothing precludes them technically from
exploiting such tracking data. In short, because there is no
way of knowing the recipients of those requests and the use
they make of such data, our knowledge of the sites tracked
through RTB is limited to those sites where the ad selector
serves an ad.

In this work, we address all such limitations by con-
sidering two scenarios in terms of tracking and sharing of
clickstream data:
• a baseline scenario, where the system operates with the

clickstream data that, according to our observations,
the ad selector may have. That is, we assume that the
observed clickstream of an ad selector matches the
tracking data of which we are aware, and therefore
we ignore any possible sharing of tracking informa-
tion with other entities. In practical terms, our Web-
browser extension will compile this clickstream by
examining if the ad selector is present, as a third-party
domain, on the pages visited by the user. In other
words, we shall assume that all third-party domains
present on a page may track a user’s visit to such
page. By doing so, we will be able to capture the sites
where an ad selector has embedded a link (through
the corresponding publishers), and those pages where
it has won the right to serve an ad through RTB.

• a paranoid scenario in which we assume Web tracking
is ubiquitous and clickstream information is shared
among all entities participating in the ad-delivery
process. In this case, we consider that the observed
clickstream coincides with the actual clickstream, i.e.,
with the sequence of all pages a user has visited. We
acknowledge, nevertheless, that there may not be ad
companies and trackers on certain pages and thus a
complete, accurate actual profile might not be captured
in practice.

We would like to underline that the two scenarios de-
scribed above refer solely to the user-tracking data available
to ad selectors. Put differently, our system does not consider
any interests data and personal information that users could
have explicitly conveyed to these entities, and that could be
utilized for ad-targeting purposes.

Having specified the two modes of operation of our
system, next we introduce our second assumption, which
concerns the way in which ad selectors construct user
profiles from the observed clickstreams. In Sec. III-B2
we assumed that ad selectors model profiles as PMFs,
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Fig. 5: Internal components of the proposed architecture.

essentially in line with a great deal of the literature on the
field. To compute such distributions in practice, our system
assumes, with a slight loss of generality, that ad selectors
employ maximum-likelihood (ML) estimation [54]. We
would like to stress that this is, by far, the most popular
method of parameter estimation in statistics.

Our third and last assumption has to do with the topic
categorization of the Web content. We shall consider that
the categorizer used by our system coincides, to a large
degree, with the one employed by ad platforms13. This
implies that both our extension and ad platforms rely largely
on the same predefined set of interest categories and the
same categorization algorithm, so that any page visited by
the user is classified into the same category by both the
proposed system and the ad platforms tracking this visit.
We believe this is a plausible assumption since our catego-
rization algorithm builds on the standard topic taxonomy
developed by the Interactive Advertising Bureau [55], an
organization that accounts for the vast majority of online
advertising companies in the US.

2) Components: This section provides a functional de-
scription of the main components of our prototype system
architecture, justifies the design criteria, and gives some
key, low-level implementation details. Fig. 5 depicts the
implemented architecture, which consists of two main parts,
the user side and the server side. The latter is in charge of
computing the values of minimum uniqueness per ad selec-
tor. Because this requires obtaining p̄, said computation is
carried out only if the user accepts sharing their profile data
with our server. The rest of functionalities and processing
is conducted entirely on the user side. We analyze the
components of both sides in the following subsections.

a) Profiles Estimator: On the user side, this module
aims at estimating (1) the set P of possible user profiles
an ad selector may have assigned to a user; and (2)
the distribution q of the interest categories of those ads
classified as non-interest-based. It is important to stress
that, regardless of the scenario assumed (i.e., baseline or

13Ad platforms are the ones classifying the content of a page. In RTB
advertising, they typically include the category of the publisher’s page in
the bid requests.

paranoid), the estimation of q must be carried for each ad
selector. In the former scenario, the computation of p is
also necessary per ad selector. However, since the latter
scenario considers that the observed clickstreams of all
ad selectors match the user’s actual clickstream, we just
assume that p = t.

As explained in Sec. III-B2, the estimation of the PMF q
requires a browsing session where the user is not tracked.
Our current version of the plug-in implements this free-
tracking session by means of the browser’s private or
incognito mode, a browser’s feature that, among other
functionalities, prevents tracking through HTTP and Flash
cookies. We acknowledge, however, that ad selectors might
also follow users’ visits as a result of using super cookies,
respawning [56], [57], canvas fingerprinting [58] or simply
their IP addresses. Nevertheless, since these tracking mech-
anisms are either very infrequent or rather inaccurate, we
may reasonably assume that the browser’s incognito mode
closely matches an untracked session, if not completely. In
fact, recent studies indicate that the prevalence of these
more sophisticated tracking methods is just 5% on top
Alexa 100 000 sites [53]. In short, we shall therefore
consider that the PMF q estimated this way effectively
reflects the ad-topic distribution when the user is seen by
the ad selector as a new user, and thus the ads can only be
location-based, contextual and generic.

In practical terms, there is a difference between the
estimation of p and q. In the latter case, it is conducted
from the ads the browser receives during such incognito
mode. In the case of p, or equivalently P , the estimation is
carried out from the pages the ad selector is able to track,
on its own and/or through other sources of data.

One of the difficulties in estimating these two distri-
butions is that, while q requires browsing in such free-
tracking session, the PMF p must reflect the pages tracked
by any potential ad selector. An approach to dealing with
this incompatibility consists in alternating between the
incognito and the normal modes on a regular basis. The
problem with such approach, however, is that users might
be reluctant to browse in the private mode for the time
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TABLE I: Top-level interest categories.

adult economics hobbies & interests politics
agriculture education home real estate

animals family & parenting law religion
architecture fashion military science

arts & entertainment folklore news society
automotive food & drink personal finance sports

business health & fitness pets technology & computing
careers history philosophy travel

TABLE II: Subcategories corresponding to three top-level categories.

Top-level category Bottom-level category

arts & entertainment animation, celebrities, comics, design, fine art, humor, literature, movies, music, opera,
poetry, radio, television, theatre and video games.

health & fitness alternative medicine, anatomy, asthma, autism, bowel incontinence, brain tumor, cancer,
cardiac arrest, chronic pain, cold & flu, deafness, dental care, dermatology, diabetes,
dieting, epilepsy, exercise, eye care, first aid, heart disease, HIV/AIDS, medicine, men’s
health, mental depression, nutrition, orthopedics, pediatrics, physical therapy, psychology &
psychiatry, senior health, sexuality, sleeping disorders, smoking cessation, stress, substance
abuse, thyroid disease, vitamins, weight loss and women’s health.

personal finance banking, credit, debt & loans, cryptocurrencies, financial news, financial planning, insur-
ance, investing, retirement planning, stocks and tax planning.

needed to compute and update the PMFs q of a sufficient
number of ad selectors.

Motivated by this, the user-side architecture simulta-
neously estimates both distributions by revisiting, in the
incognito mode and in an automated manner, a fraction ρ
of the pages browsed by the user. In practical terms, each
revisit is made by opening a new minimized window in
the private mode. We proceed this way because we want
to avoid the tracking among different tabs in the same
incognito mode. We admit, nonetheless, that this approach
might have a non-negligible impact on these two aspects:
first, in terms of the traffic overhead incurred; and secondly,
it may penalize advertisers to some degree, since the ads
received in the free-tracking session will obviously not
be presented to the user. Currently, the proposed system
operates with a revisit ratio of ρ = 25%. Although this
reduction in the number of revisits undoubtedly comes at
the cost of inaccuracy in the estimation of q, we believe
that it may account for an acceptable overhead in terms of
traffic overhead and advertising impact. As a side note, we
would like to stress that the impact of such revisits is, from
a usability perspective, almost imperceptible.

After examining the Web-browsing conditions in which p
and q are obtained, next we describe more concrete aspects
related to the estimator of these distributions.

As mentioned in Sec. IV-B1, this work assumes that
ad selectors rely on ML estimation, a simple estimation
method widely common in many fields of engineering. Let
m denote the total amount of ads received (pages visited),
and mi the number of those ads (pages) which belong to
the interest category i. Recall that the ML estimate of a
PMF is defined as

qi =
mi

m
,

for i = 1, . . . , n.
In order to make a decision on whether the displayed ads

are interest-based or not, our ML estimator requires observ-
ing the same minimum number of pages wmin needed by

an ad selector to model short-term interests. Several studies
point out that the smallest time window that advertising
companies might use for such modeling is one day (see
Sec. III-B3). According to these studies and to the average
number of pages browsed by a user per day [59], we set
wmin = 87. On the other extreme, in line with the works
cited in that section, we consider that the largest clickstream
used to model long-term interests is 8 weeks. We then set
wmax = 3 915. To estimate q, we proceed analogously, by
establishing a sliding window of this same length.

Lastly, on the server side, our architecture aims at com-
puting, for each user willing to share profile data with the
server, the average profile and the uncertainty class of each
ad selector.

b) Web-Page Analyzer: This block aims at obtaining
certain information about (1) the Web pages browsed by
the user and (2) the ads displayed within those pages, both
in the tracked and in the incognito sessions. Specifically,
when the browser downloads a page, being it in the normal
or in the private mode, the module generates a list of all
the entities tracking this page and serving ads on them.

In addition, our system attempts to retrieve the landing
page of all ads displayed in both modes, that is, the page
of the advertiser that the browser is re-directed to when
clicking on its ad [71]. Recall that our system needs the
interest category of an ad to make a decision on whether
it is profile-based or not. In order to classify an ad into a
topic category, the categorization module (described later in
Sec. IV-B2c) requires its landing page. However, because
clicking on every ad to get this information would lead us
to commit click fraud [72], the functionalities provided by
our tool in terms of transparency and blocking are limited
to those ads where the landing-page information is available
without clicking on them. Despite this limitation, some
recent studies [71], [22] have reported an availability of
the landing page above 80%.
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Optimization library Running time [s]
average variance maximum

Coin-OR Linear Programming (CLP), v.1.16.6 [60], [61] 0.0315505 0.0000010 0.0460014
GNU Linear Programming Kit (GNULPK), v.4.48 [62] 0.0337618 0.0000055 0.0681626
Object Oriented Quadratic Programming (OOQP), v.0.99.22 [63] 0.0401395 0.0000028 0.0805860
LPSolve, v.5.5.2.0 [64] 0.0645488 0.0000024 0.0808482
C Library for Semidefinite Programming (CDSP), v.6.1 [65] 0.5878725 0.0017888 1.1033131
Dual-Scaling Semidefinite Programming (DSDP), v.5.8 [66] 2.0933280 0.0137100 4.1946620
Coin-OR Interior Point OPTimizer (IPOPT), v.3.12.3 [67], [68] 0.2014676 0.1510803 5.7872007
Limited Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS), v.3.0 [69] 0.2054921 0.1669853 6.1828331
NLopt, v.2.4.2 [70] 0.5781220 0.0010485 0.6520662

TABLE III: We tested 6 optimization libraries to compute the solution to the LP problem (3), and another 3 for the divergence-minimization problem (4).
This figure shows the average, the variance and the maximum values of running time, obtained from one thousand problem instances. Each solver is
listed along with the corresponding version number.

c) Categorizer: This module classifies the pages vis-
ited by the user as well as the landing pages of the ads
directed to them, into a predefined set of topic interests. The
module employs a 2-level hierarchical taxonomy, composed
of 32 top-level categories and 330 bottom-level categories
or subcategories. Tables I and II show the top-level cate-
gories and the subcategories corresponding to three of these
categories.

The categorization algorithm integrated into our system
is partly inspired by the methodology presented in [71] for
classifying non-textual ads into interest categories. The al-
gorithm also builds on the taxonomy available at the Firefox
Interest Dashboard plug-in [73] developed by Mozilla.

Our categorizer relies on two sources of previously-
classified data. First, a list of URLs, or more specifically,
domains and hostnames, which is consulted to determine
the page’s category. Secondly, a list of unigrams and
bigrams [74] that is used when the URL lookup fails. The
former type of data is justified by the fact that a relatively
small part of the whole Web accounts for the majority of
the visits. Also, it is evident that pre-categorized lookup
requires few computational resources on the user’s browser
and can be more precise. The latter kind of information,
on the other hand, is justified as a fall-back and allows us
to apply common natural-language heuristics to the words
available in the URL, title, keywords and content.

For almost each of the top-level categories, the current
version of the plug-in incorporates Alexa.com’s 500 top
Web sites. Also, the list of URLs includes the pages
classified by Mozilla’s plug-in (around seven thousand).
On the other hand, the number of English unigrams and
bigrams is approximately 76 000. Three additional lists,
although of a fewer number of entries, are also available for
French, Spanish and Italian14. To compile all these words
lists, we have built on the following data:

• a refined version of the categorization data provided
by the Firefox Interest Dashboard extension;

• a subset of the English terms available at WordNet
2.0 [75] for which the WordNet Domain Hierar-
chy [76], [77] provides a domain label;

• a subset of the terms available at the WordNet 3.0
Multilingual Central Repository [78], to allow the cat-

14Upcoming versions of this Web-browser extension will include more
languages.

egorization of Web sites written in the aforementioned
languages;

• and the synset-mapping data between the versions 2.0
and 3.0 of WordNet [79].

The categorizer module resorts to these lists only when
the hostname and domain are not found in the URL
database. When this happens, the algorithm endeavors to
classify the page by using the unigrams and bigrams ex-
tracted from the following data fields: URL, title, keywords
and content. Depending on the data field in question, the
categorizer assigns different weights to the corresponding
unigrams and bigrams. In doing so, we can reflect the
fact that those terms appearing in the URL, the title,
and especially the keywords specified by the publisher (if
available), are usually more descriptive and explanatory
than those included in the body of the page.

As frequently done in information retrieval and text
mining, our Web-page classifier also relies on the
term frequency-inverse document frequency (TF-IDF)
model [80]. Said otherwise, we weight the resulting cat-
egory/ies based on the frequency of occurrence of the
corresponding unigrams and bigrams, and on a measure
of their frequency within the whole Web.

For the sake of computational efficiency, the algorithm
stores the categories derived from the user’s last 500 visited
pages. This way, when the user re-visits one of those pages,
the topic categories are obtained directly without needing
to go through the process above.

In terms of storage, the whole list of unigrams, bigrams
and their corresponding IDF values occupies approximately
1 megabyte in compressed format. We believe this is an
acceptable overhead to the plug-in download size.

Lastly, a manual inspection of the categorization results
for a large collection of Web pages and ads indicates that
the algorithm is, in almost all cases, certainly precise.
Further investigation would be required, however, to eval-
uate the performance of the categorizer in a more rigorous
manner.

d) Optimization Modules: The optimization modules
incorporated in the user side and the server side are
responsible for computing the solutions to the problems (3)
and (4), and thus obtaining the robust minimax detector and
the minimum profile uniqueness, respectively. The input
parameters of the user-side module are the distribution q
and the tuples pmin and pmax. On the server side, our system
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requires the observed clickstream of each ad selector to
compute the average profile and the associated uncertainty
class. We would like to remark that the ad transparency
and blocking functionalities related to profile uniqueness
will only be provided should the user consent to convey
such clickstream data.

In the architecture implemented, both modules rely on
open-source optimization libraries. The design of such
modules required the examination and comparison of a
variety of optimization solvers to this end. Because our
system may need to compute the robust detector each time
an ad is displayed, we endeavored to prioritize efficiency
and reliability on the user side. These same requirements
were also allowed for on the server side. However, because
the minimum-uniqueness values umin are meant to be
computed for each user, we opted to lighten the processing
and computation in this part of the architecture. Particularly,
instead of processing the profile data every time there is
an update on the user side, we specify regular intervals
of 1 day (from the time the plug-in is installed) for the
exchange of information with the server. We acknowledge
that, depending on the user activity, this might have a
certain impact on the accuracy of the profile-uniqueness
data provided.

With all these requirements in mind, we performed
a benchmark analysis for the LP and divergence-
minimization problems. We employed the Matlab optimiza-
tion toolbox OPTI [81], and tested one thousand problem
instances with random —although feasible— values for the
inputs mentioned above15. For the problem (4), and when
available at the optimization software under test, we also
provided the gradient and the Hessian of the objective and
constraint functions. In addition, we reduced the complexity
of this latter problem by using a top-level representation of
p̄, pmin and pmax with only 32 categories.

The results are shown in Table III for 9 optimization
solvers. Based on our performance analysis, we selected
the CLP [60], [61] and IPOPT [67], [68] libraries, which
provide a simplex and an interior-point method [41], re-
spectively. The two solvers exhibited the lowest average
running time in our analysis, with 32 and 201 milliseconds
respectively, as well as acceptable variance values. It is
worth mentioning that all problem instances were solved
satisfactorily by the libraries tested, and that the two solvers
chosen are available under the Eclipse Public License [82].

In our system, both solvers were configured to have a
maximum allowable running time. When our extension is
installed for the first time, it runs several problem instances
to set this parameter; this is for the computation of the
robust minimax interest-based ad detector. On the server
side, the computation of the minimum value of user-profile
uniqueness is limited to 0.5 seconds.

e) Blocking Policies: The functionality of this module
is to apply the ad-blocking policies defined by the user.
Its current implementation simplifies the formal policy

15The optimization software was tested on an Intel Xeon E5620
processor, equipped with 8 GB RAM, on a 32-bit Windows 7 operating
system.

Fig. 6: The configuration panel shown in this figure allows users to
define fine-grained, ad-blocking policies. The options available to users
include filtering out ads per interest category, behavioral and retargeting
advertising. Although not displayed in this figure, users can also denote
ad-blocking conditions depending on the uniqueness of the profiles that
ad selectors might potentially build.

notation presented in Sec. IV-A1, in an attempt to provide
an easy-to-use interface and thus enhance usability.

With this aim, our extension allows users to define
policies only with negative sign . That is, instead of spec-
ifying which ads should be displayed (+) and which ones
should be blocked (-), we just enable the latter blocking
declaration, which may facilitate the definition of such
policies. In addition, the specification of percentile values
of profile-uniqueness is, in this implementation, reduced
to a binary choice: users can only decide if they wish to
block (or allow) those entities which may have compiled
“very unique” profiles of them, meaning that πumin > 90%.
Fig. 6 shows the configuration panel by which users may
configure blocking policies, as well as the scenario they
wish to assume in terms of Web tracking.

The operation of this module is described next. When a
user visits a page, the module waits for the categorizer to
send the topic category of each ad to be displayed. Then,
it receives the robust minimax interest-based ad detectors
of each of the entities delivering those ads. And finally,
it consults an internal database (i.e., on the user side) to
obtain the minimum uniqueness values associated with such
entities. With all this information, our system only needs
to verify if each ad constraint is satisfied and, accordingly,
decide whether to block the ad or not.

We must highlight that our system does not block the
ads in the same sense as current ad-blocking technologies
do. While these technologies prevent third-party network
requests16 from being sent, our Web-browser extension does
allow them. It is only when the page is completely loaded

16AdBlock Plus [5], for example, do not block all third-party network
requests but only those blacklisted [83].
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Fig. 7: We show a screenshot of the ads identified by our system in
The New York Times’ Web site. One of these ads is classified as
retargeted, another as non-interest-based, and the bottom-right one is
hidden according to the user’s blocking policy.

and thus the ads (if any) are displayed, that our system
decides to hide them or not by applying a black mask on top
of them17. To highlight this particular aspect, we refer to the
action of blocking more precisely as hiding or obfuscation.
Fig. 7 shows a screenshot of the ads processed by our tool
in a particular Web page.

The tool notifies users about the kind of ads received
through a small icon placed on the left corner of each
detected ad. The icons indicate if an ad is interest-based
(red), retargeted (red), non-interested-based (green), it is
blocked according to the user’s policy (black), or the system
cannot make a decision (orange). This latter case occurs,
for example, when the ad’s landing page is not available or
the categorizer cannot classify it; when there is insufficient
data to train the PMF models of p and q; or when the
execution of the optimization solver exceeds the maximum
allowable running time.

V. EVALUATION

In this section, we empirically evaluate the proposed system
and analyze several aspects of behavioral advertising. The
analysis of this form of advertising is conducted from the
ads as well as browsing data of 40 users of MyAdChoices.
To the best of our knowledge, this study constitutes the
first, albeit preliminary, attempt to investigate behavioral
targeting and profile uniqueness in a real environment from
real user browsing profiles.

A. Data Set

We distributed MyAdChoices to colleagues and friends and
asked them to install it and browse the Web normally for
one month. The experiment was conducted from December
2015 to January 2016. The data collected by our Web-
browser extension were sent to our servers every one hour.
On the other hand, the extension was configured for a
fraction of revisited pages of 100%. That is, every page

17On a technical note, the system might alternatively remove the ad
image.

Pw

P
ro

b
a
b
il
it

y

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25
baseline scenario
paranoid scenario

Fig. 8: PMF of the worst-case error probability for the two scenarios
assumed in this work.

browsed by a user was revisited by our system in the
incognito mode.

The participants were mostly researchers and students
based in our countries of residence, France, India and Spain.
No attempt was made to link the gathered data to the
personal identities of the volunteers. As a preprocessing
step, we removed those users who visited less than 100
sites, leaving a total of 40 users.

B. Results
1) System Performance: Evaluating an ad-transparency

tool is extremely challenging since the ground truth of
targeting decisions is unknown. The effectiveness of these
tools has been occasionally assessed through manual in-
spection [84], [85]. However, this approach has been re-
cently shown to be extremely prone to errors [86]. In this
section, we evaluate the error probability of the interest-
based ad detector bearing in mind the impossibility of
checking a detector’s decisions with the true condition of
the tested ads (i.e., whether they are actually interest-based
or not).

Before proceeding with this evaluation, we first report the
availability of categorization data in our data set. Recall
that our system classifies ads into topic categories from
their landing pages. To this end, the categorization module
makes use of the words included in the landing page’s URL,
keywords, title and content. In our series of experiments,
we found that just 0.60% of ads could not be categorized by
using this information, which represents a good availability
index. In most of the cases, the reason was the lack of
language support. As explained in Sec. IV-B2c, currently
our categorization module works only for English, French,
Spanish and Italian.

Having checked the performance of our categorizer,
now we turn to the robust minimax detector. In all the
executions of the optimization library CLP (including both
the baseline and the paranoid scenarios) no single error was
reported to our servers. That is, our system was able to
successfully compute said detector, without exceeding the
maximum allowable running time for this computation, set
to 0.5 seconds in these experiments. Likewise, the IPOPT
software did not report any error when computing the
values of minimum uniqueness.
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Fig. 9: Ad selectors. Interest-based, non-interest-based and retargeted ads for the baseline scenario.
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Fig. 10: Advertisers. Interest-based, non-interest-based and retargeted ads for the baseline scenario.

Fig. 8 shows the PMF of the probability of error of
the interest-based ad detector. In the baseline scenario, we
observe a mean and a variance of 0.1827 and 0.0105,
respectively. In the paranoid case, these two moments
yield 0.2504 and 0.0094. Two remarks are in order from
these figures. First, both cases exhibit relatively low error
probabilities, with expected values roughly lower than 1/4.
Secondly, the paranoid scenario seems to be slightly more
prone to errors in terms of interest-based ad detection. One
possible explanation for this is a greater semblance between
the distributions p and q in this scenario. Intuitively, the
more dissimilar these distributions are, the lower is the
probability of incorrectly identifying an interest-based ad.
TABLE IV: Minimum, mean and maximum percentage values of interest-
based, non-interest-based and retargeted ads over all users in our data
set.

Baseline scenario [%] Paranoid scenario [%]

min. mean max. min. mean max.

Interest-based 0 13.2 60.0 0 17.8 66.7

Non-interest-based 0 31.7 78.4 0 29.4 76.1

Retargeted 0 55.1 100 0 52.8 100

2) Behavioral and Retargeted Advertising: This section
examines several aspects of behavioral advertising and
retargeting, including an analysis of the entities delivering
such forms of advertising; the topic categories most targeted
in our experiments; the discrepancy between the baseline
and paranoid scenarios; and a preliminary study of the
relationship between interest-based advertising and profile
uniqueness.

Some general figures on behavioral and retargeted ad-
vertising are shown in Table. IV. To obtain these figures,
we computed, for each user with a minimum of 10 ads re-

ceived, the percentage of interest-based, non-interest-based
and retargeted ads. The minimum, mean and maximum
values of those percentages over all users are the values
represented in this table.

The results clearly indicate that retargeting is the most
common ad-targeting strategy, followed by non-interest-
based advertising and behavioral targeting. This order is
observed both in the baseline and in the paranoid scenario,
with small differences in the percentage values. One of the
most interesting results is the relatively small prevalence
of behavioral targeting, which accounts for one third of
retargeted ads. This is in contrast with previous work report-
ing higher average percentages of this type of advertising
for fake profiles [87], but in line with recent marketing
studies [88] which point out that retargeted ads are preferred
to interest-based ads in a proportion 3:1.

a) Ad Selectors and Advertisers: In this subsection,
we examine the ad selectors which, in our data set, were
responsible for the delivery of behavioral, non-behavioral
and retargeted advertising. We computed, to this end, the
percentage of interest-based, non-interest-based and retar-
geted ads served by each of these entities. Fig. 9 depicts the
minimum, mean and maximum values of such percentages
for each ad selector delivering a minimum of 10 ads; these
results correspond to the baseline scenario. In each of the
three diagrams, ad selectors were sorted in decreasing order
of total number of served ads, from top to bottom. The
dot vertical lines indicate average percentages over the ad
selectors displayed.

The figure in question shows only five ad selectors. In
our data set, these entities were responsible for 98.99%
of the total number of ads. Not entirely unexpectedly,
Google’s ad companies (googlesyndication.com,
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Fig. 11: We show the cosine-similarity values between the actual and the observed profiles, averaged over all users and per tracking entity.
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Fig. 12: Percentage of ads across the top 20 topic categories.

doubleclick.net and gstatic.com) were the ones
monopolizing the three ad classes. The former ad plat-
form was observed to target mostly non-interest-based and
retargeted ads, whereas DoubleClick and gstatic.com
focused on behavioral advertising and retargeting, respec-
tively. The remaining ad selectors were zedo.com and
2mdn.net. The majority of ads served by these ad com-
panies were retargeted. Lastly, the paranoid case exhibits
similar results and is omitted for the sake of brevity.

The same methodology was used to analyze the adver-
tisers of our data set, and to generate Fig. 10. This figure
shows Banco Santander, Cambridge University Press, NBA
Store and Apple as the advertisers with the highest rates of
behavioral advertising. SmartOwner, Logitravel.com, Yup-
pTV and CaixaBank, on the other hand, lead the ranking
of non-interest-based ads, and Groupon, ABA English and
Ing Direct are the companies most interested in retargeting.
Although we cannot derive a general rule from these results,
we note that large companies are more frequent in the
behavioral-targeting list than in that of non-interest-based
ads. This might be an immediate consequence of the higher
chances of such firms —for example— to win ad-auctions

at RTB, compared to companies with limited purchasing
power.

b) Baseline and Paranoid Scenarios: Next, we an-
alyze the overall percentage of coincidence between the
baseline and the paranoid scenarios in terms of interest-
based ad detection. To this end, for each ad we checked
if the decision made by the detector in the baseline mode
matched the decision made by the detector in the paranoid
case.

The percentage of matching observed in our data
set was certainly high, especially for the ad platform
gstatic.com, which yielded 97.4%. Although smaller,
the percentages of coincidence for DoubleClick (75.6%)
and googlesyndication.com (87.0%) were also re-
markable. A plausible explanation to this behavior is the
semblance of the profile p estimated in both scenarios,
which might indicate that gstatic.com relied only on its
own tracking data and thus did not enrich this information
with browsing profiles from other sources.

Precisely, the semblance of the profiles p and t is inves-
tigated in our next figure, Fig. 11. Recall that these profiles
are estimated from the observed and the actual clickstreams
respectively. To compute Fig. 11, we kept a record of
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Fig. 13: Some of the top-level interest-categories targeted in the baseline and the paranoid scenarios.

all entities tracking users’ visits; these entities were ad
platforms, advertisers and also data-analytic trackers. Then,
from said records, we calculated the percentage of pages
tracked by each of these entities, as well as the cosine
similarity between the observed and actual profiles. The
figure at hand shows these percentage and similarity values
averaged over all users.

A couple of remarks follow from this figure. First,
Google’s ad platforms are the entities with the most ex-
tensive tracking capabilities. Particularly, gstatic.com,
DoubleClick and googlesyndication.com tracked
users on 92.9%, 88.2% and 81.2% of the visited pages. An
immediate consequence of this are the high values of cosine
similarity observed. Secondly, the results are consistent
with the percentages of scenario matching provided at the
beginning of this subsection. Thirdly, the profiles p of ad
companies with limited tracking capabilities like Metrigo
and Taboola were observed to be relatively similar to the
corresponding actual profiles. Although it is not possible
to find an accurate answer for this result, the reason might
be found in the model of user profile based on relative
frequencies.

Finally, we would like to emphasize the appropriateness
of the proposed scenarios for the particular ad selectors
examined in these experiments. Recall that the baseline
scenario does not contemplate the sharing of tracking
information with other ad selectors and trackers, whereas
the paranoid case does; this latter scenario also con-
siders that tracking is ubiquitous. The results provided
throughout this experimental section build on the assump-

tion that googlesyndication.com, DoubleClick and
gstatic.com operate independently in the baseline sce-
nario. However, since they are all Google ad companies,
one might expect that these three firms would have ex-
changed information with each other. The paranoid scenario
precisely captures this possible exchange of tracking data.
Also, the ubiquitousness of tracking is justified by the fact
that these ad platforms combine for a total of 99.08% pages
tracked (i.e., they track users almost in all pages they visit).

c) Interest-Categories Targeted: Fig. 12 plots the
probability distribution of the ad-topic categories. In this
figure, we considered only those topics for which we
collected a minimum of 5 ads. The results indicate that
the most popular interest categories were “technology &
computing”, “hobbies & interests”, “travel” and “health &
fitness”, with percentages of 18.4%, 11.5%, 8.3% and 8.1%,
respectively.

Fig. 13 illustrates, on the other hand, the targeting
strategies that were observed in each of the 20 categories
represented in Fig. 12. As can be seen, very similar results
were reported for the baseline and the paranoid scenarios.
Our findings show that retargeted ads were more frequent
on categories like “automotive”, “religion”, “society” and
“travel”, which seems to be partly in accordance with some
marketing surveys [89], [90]. On the other hand, profile-
based ads were observed more predominantly on “careers”,
“education”, “news” and “politics”, and non-interest-based
ads were largely targeted to “fashion”, “economics” and
“hobbies & interests”.
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d) Behavioral Targeting and Profile Uniqueness: In
our last experiments, we briefly explore whether com-
mon browsing profiles are more likely (or not) to receive
interest-based ads. With this purpose, for each ad classified
as interest-based and non-interest-based, we analyzed the
minimum-uniqueness values of the ad selector serving it.
The probability distributions of such values are plotted in
Fig. 14.

As can be observed, the two PMFs are very similar,
which clearly means that the probability of delivering an
interest-based ad may not depend on the uniqueness of the
observed profile. In fact, the expected values of these dis-
tributions are 0.8949 bits for profile-based ads, and 0.8834
bits for non-interest-based ads; and the KL divergence (a
measure of their discrepancy) yields 0.4344 bits. On the
basis of the evidence currently available, it seems fair to
suggest that the uniqueness or commonality of a profile
is not a feature that ad selectors in general use to decide
their user-targeting strategies. Further evidence supporting
this assertion, however, would require the analysis of larger
volumes of data.

VI. RELATED WORK

This section reviews the state of the art relevant to this
work. We proceed by exploring, first, the current software
technologies aimed at blocking ads; and secondly, we
examine those approaches intended to provide transparency
to online advertising.

A. Ad Blockers

The Internet abounds with examples of ad-blocking tech-
nologies. In essence, these technologies act as firewalls
between the user’s Web browser on the one hand, and the ad
platforms and tracking companies on the other. Specifically,
ad blockers operate by preventing those HTTP requests
which are made when the browser loads a Web page, and
which are not originated by its publisher. These requests
are commonly referred to as third-party network requests,
as mentioned in the introductory section of this work.

Most of these tools are implemented as open-source
browser plug-ins, and carry out said blocking with the help

of a data base or blacklist of ad platforms and trackers.
Basically, these lists include regular expressions and rules
to filter out the third-party network requests that are consid-
ered to belong to ads or trackers. The maintenance of such
blacklists is done manually by the technologies’ developers
and in some cases by user communities. Some of the most
popular ad-blockers are Adblock Plus [5] and Adblock [91].
Within this list of blocking technologies, we also include
anti-tracking tools like Ghostery [92], Disconnect [93],
Lightbeam [94] and Privacy Badger [95], which, from an
operational point of view, work exactly as ad blockers and
thus may as well block ads.

A middle-ground approach for ad-blocking has recently
emerged that uses whitelists to allow only “acceptable
ads”. The criteria for acceptability typically comprise non-
invasiveness, silence and small size [96]. However, because
these criteria ultimately depend on the ad blockers’ devel-
opers, this approach does not signify any real advance in
the direction of returning users control over advertising.
Indeed, this “acceptable-ads” approach has caused a great
controversy in the industry, when it came to the public that
the most popular ad blocker was accepting money from
some of the whitelisted companies [6].

B. Advertising Transparency

To the best of our knowledge, in terms of transparency,
our work is the first to provide end-users with detailed
information about behavioral advertising in real-time. As
we shall see next, only a couple of previous works tackle
the problem of interest-based ad detection. The major
disadvantage of these few existing approaches, however,
is that they are not intended for end-users, i.e., they are
not designed to be used by a single user who wishes to
find out what particular ads are targeted to them. Instead,
these approaches consists in platforms aimed at collecting
and analyzing advertising data at large scale for research
purposes. In general, they allow running experiments in a
limited and controlled environment, and studying the ads
displayed to very specific and artificially-generated user
profiles.

In this subsection we shall examine these works, bearing
in mind that none of them are conceived as a tool that
users can directly and fully benefit from it. In addition, and
equally importantly, we shall see that these proposals rely
on a too simplistic, and in many cases erroneous, model of
the actual ad-delivery process. Also, they very often resort
to simple heuristics, not rigorously justified, to conduct
their measurement studies on behavioral advertising.

In contrast to these works, we propose a formal study
of this form of advertising that builds on a more general,
accurate model of the ad-serving process, which takes into
account its complexity and the new paradigm of RTB, and
which addresses the challenges others simply neglected. We
proceed by following a mathematically grounded method-
ology that capitalizes on the fields of statistical estimation
and robust optimization. Besides, compared to these works,
our analysis of behavioral targeting does not only determine
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TABLE V: Comparison between MyAdChoices and other tools that may provide transparency to behavioral advertising.

Approaches Type of tool Disadvantages

[87], [97] research platform ◦ valid for single-category profiles,
◦ transparency functionality available only on weather pages,
◦ inaccurate model of the ad-delivery process,
◦ parallel browsing in incognito mode,
◦ only paranoid scenario,
◦ multiple user-targeting objectives not allowed;

[98] research platform ◦ valid for single-category profiles,
◦ transparency functionality limited to users visiting the same pages,
◦ generic and contextual ads are omitted,
◦ only paranoid scenario;

[22] research platform ◦ only for DoubleClick,
◦ simplified model of the ad-delivery process (e.g., generic ads and RTB ignored, only
for long-term user profiles),
◦ binary decision, i.e., ads are either contextual or interest-based,
◦ inconsistent model of tracking and sharing of user data;

[84], [86], [85] research platform ◦ not scalable for Web browsing [84], [86],
◦ unacceptable network traffic and computational overhead, if intended for end
users [84], [86],
◦ may detect retargeting but not behavioral advertising;

MyAdChoices end-users tool ◦ a fraction of revisits in incognito mode.

if an ad is interest-based or not, but also it explores a
crucial aspect of the interests tracked and profiled by ad
companies, namely, the commonality of user profiles. Next,
we elaborate more on these proposals.

The first attempt to identify the challenges that may
arise when measuring different aspects of online advertising
was done in [99]. Although not particularly interested in
behavioral targeting, the authors investigated aspects like
the impact of page reloading and cookies on advertising,
and highlighted the difficulties found through some simple
experiments.

Following this work, [87], [97] proposed a platform
which automatizes the collection of certain statistics about
behavioral targeting. The proposed platform creates ar-
tificial user profiles with very specific, non-overlapping
topic categories (i.e., profiles with active categories only
in sports, only travel, and so on) by emulating the visits to
pages related to those topics. The tool in question alternates
this training browsing with visits to weather Web pages,
where they check if the categories of the received ads match
the category of the corresponding profile; the authors justify
the use of these weather-related pages by arguing that,
there, contextual ads are detected more easily. To carry
out this checking, the tool first filters out those landing
pages which may correspond to generic and contextual ads.
With this aim —and similarly to our tool—, it revisits, in
incognito mode, each visit to a weather page and keeps a
record of the ads delivered in this session. By eliminating
the landing pages common to both sessions, the authors
claim to discard the majority of untargeted and content-
based ads.

Apart for the fact that said platform is not intended for
end-users nor provides real-time ad-transparency function-
alities, the most important drawback is its extremely limited
scope of application. First, it only works for single-interest
profiles, and secondly, transparency can only be brought
in such weather pages, which provides very simplistic and

superficial insight into behavioral targeting. Nonetheless,
this is not the only limitation. To detect interest-based ads,
the authors make the mistake of oversimplifying the ad-
delivery process by assuming some sort of determinism:
they consider that most of the non-interest-based ads a user
may receive in a tracked and in a free-tracked session will
be exactly the same, which totally neglects the inherent
randomness of the ad-serving process. Besides, the authors
do not consider the particular ad platform serving an ad and
therefore implicitly assume —although they do not mention
it— a worst-case or paranoid scenario in terms of tracking
and sharing of data. This is in contrast to our work, which
in addition considers a baseline scenario for tracking.

Finally, the cited works [87], [97] evaluate their approach
by using a distance measure between the terms appearing
in the ads’ landing pages and those in the training pages.
While this quantifies the similarity between the ads’ topic
categories and profiles’ single categories, the authors do
not assess the method to detect profile-based ads. An
important consequence of this lack of evaluation is that
generic ads belonging to the profile’s active category will
always be classified as interest-based (provided that they
have not been delivered in the incognito sessions), and the
platform will not report any error on this classification.
On the contrary, MyAdChoices provides, for each ad, the
probability of error incurred in estimating its class.

Following the same spirit, [98] presents an ad-crawling
infrastructure that does not aim exactly to provide trans-
parency, but to analyze different aspects of advertising at
large scale. Among other aspects, the authors study the
average arrival rate of new ads and the distribution of the
number of ads and advertisers per page. In addition, they
briefly examine behavioral targeting by following a similar
approach to that of [87], [97]. They emulate the browsing
habits of around 300 users with single-category interests,
and try to see which ads are more targeted to which profiles
when visiting a subset of selected Web pages. Their analysis
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of profile-targeting assumes that, if an ad is shown more
frequently to a given profile than to others, then this ad is
targeted to said profile. Building on certain heuristics, the
authors compare the frequency of appearance of each ad
(for each profile) with a uniform profile, and conclude that
an ad is targeted if the result of such comparison exceeds
a certain threshold.

The proposed framework suffers from the same limita-
tions of the aforementioned two works. Besides, the authors
disregard that ads can be contextual and generic as well,
and that the frequency of appearance of ads depends on
highly dynamic factors. On the other hand, a practical
implementation of this framework on the user side would
be unfeasible as it would require that users visit the same
pages (to enable the transparency functionality), and exhibit
single-category profiles.

A similar platform is proposed in [22] that studies the
ads delivered to some artificial profiles, in this case built
from the AOL search query data set [47]. The tool is not
intended for end-users and provides a framework that aims
to study interest-based and contextual advertising at large
scale. The platform, which operates offline and is restricted
to DoubleClick ads, analyzes two data sets to this end:
the interest categories of all ads received both in a tracked
session and in an incognito-browsing mode. The authors
then use a binary classifier to decide if an ad belonging to
a certain category is interest-based or contextual.

The major limitations of this tool come from the sim-
plified and inaccurate model assumed for the ad-delivery
process. First, it does not take into account generic or
untargeted ads. Secondly, the decision is binary in the
sense that the result of an ad classification cannot be
contextual and interest-based, thus overlooking that the vast
majority of ad platforms allow the selection of multiple
user-targeting objectives. Thirdly, such classification relies
on the whole data set of ads collected in the tracked and
incognito sessions, which neglects the fact that DoubleClick
(as any ad selector) may construct short-term profiles or use
any time window to profile users’ browsing interests, not
necessarily the one that spans the whole browsing history.
Last but not least, the tool in question does not reflect the
actual operation of the ad platform it focuses on, namely,
that DoubleClick may employ modern RTB technologies
to serve ads [52], [36]. On the one hand, the authors seem
to assume a baseline scenario, as the user profile is built
just from the pages tracked by this ad platform. But on
the other hand, they completely ignore the RTB ad-serving
technology, and the fact that DoubleClick’s ad-auction
participants may not share the same profiling data. That is,
the authors seem to assume, at the same time, a paranoid
scenario, which is contradictory. We would like to stress
that our work addresses all these four issues, by modeling
the combination of multiple ad-targeting decisions, relying
on the notion of ad selector, building independent user-
profile models per ad selector, and considering any possible
time window chosen by such entities through the definition
of uncertainty class.

Another more recent work for conducting experiments
based on artificial profiles is [84], which tracks the personal
data collected by several Web services, and tries to correlate
data inputs (e.g., e-mails and search queries) with data
outputs (e.g., ads and recommended links). The proposed
platform tackles this correlation problem in a broad sense,
and is tested for the ads displayed on Gmail. The platform
relies on the maintenance of a number of shadow accounts,
that is, replicates of the original account (e.g., an e-mail
account), but which differ in a subset of inputs. All these
account instances are operated in parallel by the system and
are used to compare the outputs received. Intuitively, if an
ad is displayed more frequently on those accounts sharing
a certain input (e.g., an e-mail), and this ad never shows
up in the rest of shadow instances, then this input is likely
to be the cause of said ad.

The platform in question does not require a shadow
account for each possible combination of input data, but
a logarithmic number of such accounts in the number of
inputs, which makes it suitable for the application where
it is instantiated. However, it would be totally infeasible
to extend it so as to analyze the ads received out of this
controlled application, for example, while browsing the
Web. First, in terms of scalability. The authors claim to
support the correlation of hundreds of inputs (e-mails),
with reasonable costs in terms of shadow accounts. This
may work for a single service provider, but clearly not
when considered in the more general context of Web
advertising, with thousands of ad companies tracking users
throughout the Web [92] and around ninety pages visited on
average per day [59]. Secondly, creating equivalent shadow
browsing profiles on the user side would be impractical in
terms of network traffic and computational overhead.

On the other hand, the proposed solution checks which
particular input data or combination (with a reduced com-
bination size, to attain the scalability mentioned above)
is responsible for a given output data (e.g., an ad). As a
result, such platform may work for advertising forms like
retargeting, where a single visit may be the cause of an ad
display, and for contextual ads, which depend on the page
currently being visited. However, it does not operate on a
much coarser granularity level and hence it is not suitable
for studying behavioral targeting, where ads are typically
served on the basis of browsing histories accumulated over
long time periods.

A couple of refinements of this latter approach are [86],
[85], which respectively provide certain statistical valida-
tion of its findings and which investigate causation in text-
based ads. The cited works, however, are measurement
platforms and suffer from the same limitations in terms
of detecting behavioral targeting in a broad sense. Table V
summarizes the major conclusions of this section.

VII. CONCLUSIONS AND FUTURE WORK

In the last few years, as a result of the proliferation of
intrusive and invasive ads, the use of ad-blocking and anti-
tracking tools have become widespread. The problem with
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these technologies is that they pose a binary choice to users
and thus disregard the crucial role of advertising as the
major sustainer of the Internet’s free content.

We believe that such technologies are only a short-term
solution, and that better tools are necessary to solve this
problem in the long term. Most users are not against ads and
are actually willing to accept some ads to help Web sites.
However, this is provided that the ad-delivery process be
transparent and users can control the personal information
gathered.

Since different users may have different motivations for
using ad blockers and anti-trackers, this paper proposes a
smart Web technology that can bring transparency to online
advertising and help users enforce their own particular
choices over ads. The primary aim of this technology
is, first, to let users know how their browsing data are
exploited by ad companies; and secondly, to enable them
to react accordingly by giving them flexible control over
advertising.

The proposed technology provides transparency to be-
havioral targeting by means of two randomized estimators.
The former builds on a theoretical model of the ad-serving
process, and capitalizes on the methodology of robust
optimization to tackle the problem of modeling the profiles
available at ad platforms. The latter sheds light on these
profiles by computing a worst-case uniqueness estimate
over all possible profiles constructed by an ad platform.

These two detectors have been integrated into a system
architecture that is able to provide ad transparency and
blocking services all in real-time, and on the user side.
In terms of transparency, our tool enables users (1) to learn
if the ads delivered to them may have been targeted on the
basis of their browsing profiles, and (2) to find out whether
such profiles may be revealing unique browsing patterns. In
terms of ad blocking, the proposed system allows users to
filter out interest-based, non-interested-based and retargeted
ads per topic category, and to specify blocking conditions
based on profile uniqueness.

The proposed system has been implemented as a Web-
browser extension and assessed in an experiment with 40
participants. In terms of performance, the two estimators
exhibited running times below 0.5 seconds and reported no
errors. In addition, nearly all pages could be categorized.
We carried out an analysis of behavioral targeting based
on the ads and browsing data of those volunteers. Among
other results, our findings show that retargeting is the most
common ad-targeting strategy; that Googles ad companies
are the ones leading behavioral and retargeted advertising;
that large firms might be the advertisers mostly delivering
profile-based ads; and that profile uniqueness may not be a
widely used criterion to serve ads.

Unlike few previous work on Web transparency, our tool
is intended for end-users, departs from a more faithful,
accurate model of the ad-delivery process, allows for its
intricacy and the recently established RTB scheme, and
relies on a mathematically grounded methodology.

Among other aspects, future research should explore
possible improvements on the identification and harvesting

of ads. Currently, our extension requires the landing page of
an ad to categorize it, but we intend to use optical character
recognition technique to overcome this limitation. Another
strand of future work will investigate enhancements on
usability. The proposed tool revisits a small fraction of the
pages browsed by the user, and it proceeds by opening a
new minimized window in private mode, which might be
annoying to some users.
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APPENDIX A
FEASIBILITY PROBLEM

This appendix proves the feasibility of the optimization
problems (2) and (4). In particular, it shows that the
constraints given by the polyhedron P are consistent, or
said otherwise, that the set of points satisfying them is
nonempty. For notational simplicity, we rename the tuples
pmin and pmax simply with the symbols r and s, respectively.

For (2) and (4) to be feasible, we require
∑

i ri 6 1 and∑
i si > 1. To check this, consider the opposite. On the

one hand, having
∑

i ri > 1 and
∑

i si < 1 leads us to
a contradiction, since by definition ri � si. On the other
hand, it is straightforward to verify that, if

∑
i ri > 1, then∑

i pi > 1, and that, if
∑

i si < 1, then
∑

i pi < 1, which
contradict the fact that p is a PMF.

Next, we prove that the requirement
∑

i si > 1 is satis-
fied. The proof of the condition

∑
i ri 6 1 proceeds along

the same lines and is omitted. Recall from Sec. III-B4a
that the uncertainty class P is computed by considering
an incremental model on the clickstream. That is, each
time the user visits a Web page, a new estimate for p is
computed from all the pages visited so far. Then, based on
this newly estimated distribution, our system updates r and
s, if necessary.

The proposed system requires a minimum number of
visited pages wmin to estimate p. Following the notation
introduced in Sec. IV-B2a, we denote by mi the number
of pages that are classified into the topic category i. When
such requirement is met, the tuples r and s are initialized
to ri = si = mi

wmin
for all i = 1, . . . , n. In other words, r

and s become the MLE of p.
Let smi be the i-th component of the tuple s that results

after having visited m pages. It is immediate to check that
swmin
i 6 · · · 6 smi is a non-decreasing sequence for all i,

which implies that
∑

i si > 1. This proves the feasibility
of the problems (2) and (4).
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APPENDIX B
LINEAR-PROGRAM FORMULATION OF THE ROBUST

MINIMAX DETECTOR

Following the methodology developed by [41], [42], this
appendix shows the LP formulation of the robust minimax
design problem (2). From the definitions of Pw

i and Mw
ii ,

it is easy to verify that (2) is equivalent to

max min
i=1,2

inf
p∈P

Mii,

and hence equivalent to the optimization problem

maximize ζ

subject to inf{d̃ Tp : p ∈ P} > ζ, (5)

1− d̃ Tq > ζ,

0 � d̃ � 1.

Because the primal problem (2) is feasible, Slater’s con-
straint qualification is satisfied and therefore strong duality
holds for the Lagrange dual problem associated to the linear
program (5). The dual problem in question is

maximize µTpmin − λTpmax + ν

subject to µ− λ+ ν1 � d̃,
λ � 0, µ � 0,

where λ, µ, ν are the Lagrange multiplier vectors associated
with the minimization problem (5), and pmin, pmax determine
the polyhedron P defined in (1). Leveraging on this dual
problem, we immediately derive the LP formulation (3).
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the privacy of user profiles in personalized information systems,”
Future Gen. Comput. Syst. (FGCS), Special Issue Data, Knowl.
Eng., vol. 33, pp. 53–63, Apr. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2013.01.001

[17] D. Rebollo-Monedero, J. Parra-Arnau, and J. Forné, “An
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[76] B. Magnini and G. Cavaglià, “Integrating subject field codes into
wordnet,” in Proc. Lang. Resource, Evaluation (LREC), Jun. 2000,
pp. 1413–1418.

[77] L. Bentivogli, P. Forner, B. Magnini, and E. Pianta, “Revising
wordnet domains hierarchy: Semantics, coverage, and balancing,” in
Proc. PostCOLING Workshop Multiling. Ling. Resources, Hangzhou,
China, Aug. 2004, pp. 101–108.

[78] A. Gonzalez-Agirre, E. Laparra, and G. Rigau, “Multilingual central
repository version 3.0: upgrading a very large lexical knowledge
base,” in Proc. Global WordNet Conf., 2012.
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