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Abstract

Sequential importance sampling algorithms have been defined to estimate likelihoods in models
of ancestral population processes. However, these algorithms are based on features of the mod-
els with constant population size, and become inefficient when the population size varies in time,
making likelihood-based inferences difficult in many demographic situations. In this work, we mod-
ify a previous sequential importance sampling algorithm to improve the efficiency of the likelihood
estimation. Our procedure is still based on features of the model with constant size, but uses a resam-
pling technique with a new resampling probability distribution depending on the pairwise composite
likelihood. We tested our algorithm, called sequential importance sampling with resampling (SISR)
on simulated data sets under different demographic cases. In most cases, we divided the compu-
tational cost by two for the same accuracy of inference, in some cases even by one hundred. This
study provides the first assessment of the impact of such resampling techniques on parameter in-
ference using sequential importance sampling, and extends the range of situations where likelihood
inferences can be easily performed.

Key words Importance Sampling, resampling, jump Markov process, population genetics, demo-
graphic inference, coalescent.

1 Introduction

Under genetic neutrality, the distribution of the genetic polymorphism in a sample of individuals de-
pends on the evolution of the population size through unobserved stochastic processes. Typically, these
stochastic processes describe the evolution of the alleles at a given locus of the individuals from a popu-
lation backward to their Most Recent Common Ancestor (MRCA). When the population size is constant
and finite, Wright-Fisher models describe this evolution and the coalescent theory approximates these
models when the population size is large. In this context, the history (genealogy with mutations) of
the observed sample is a latent process. One of the major challenge to conduct a parametric inference
analysis with these models is computing the likelihood of the data at any point φ of the parametric space.
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Indeed, the likelihood at φ is the integral of the probabilities of each possible realization of the latent
process. In population genetics, the likelihood of an observed sample is an integral over the distribu-
tion of ancestral histories that may have led to this sample. In this work, we consider a class of Monte
Carlo methods based on Sequential Important Sampling (SIS) which provides an estimate of the inte-
gral. In this scheme, the important sampling distribution proposes paths of the process among those who
contribute the most to the sum defining the likelihood.

For models of panmictic population with constant size, Griffiths and Tavaré (1994b) described an
algorithm wherein a proposal distribution suggests histories of the sample by stepwise reduction of the
data set, either by coalescence of two identical genes or by removal of a mutation on a single gene lin-
eage. Stephens and Donnelly (2000, Theorem 1) characterized the optimal proposal distribution for a
large class of time homogeneous models, but not in the cases treated in this paper, that is varying popu-
lation size. However, in most cases (even in time-homogeneous models) the optimal distribution cannot
be practically computed and has to be approximated. De Iorio and Griffiths (2004a) developed a method
for constructing such approximations for any model where the mutation process can be described as a
Markov chain on gene types and De Iorio and Griffiths (2004b) extended this to subdivided population
models. These methods have been further elaborated for stepwise mutation models in a subdivided pop-
ulation by De Iorio et al. (2005). The latent process, namely the history of the data, of models with
past changes in population size exhibits inhomogeneity in time. Thus the previous theoretical arguments
which derive efficient proposal distributions in the literature are no longer applicable in this context.
Nevertheless, as shown by Leblois et al. (2014), we can adapt an importance distribution from the im-
portance distributions of models with constant size populations. But their simulation tests demonstrated
some limits of the algorithm, which most importantly are large computation times for demographic
scenarios with strong changes due to a Monte Carlo estimate of the likelihood with high variance.

Our aim in this work is to improve the accuracy of the likelihood estimation for the same compu-
tational cost. One direction could be to derive a new importance sampling proposal distribution like
Hobolth et al. (2008) did for the infinite site model. In this paper we chose another direction which
consists of resampling among the paths proposed by the importance distribution. Indeed, the major dif-
ference between the constant demographic scenario and size varying models is that the likelihood of the
latter is an integral over a space of much larger dimension, since we cannot remove the (random) times
between events in the latent process (ie. in the past history) from the integral which defines the likeli-
hood. By contrast, in constant demographic scenario, the likelihood is a sum of products of probabilities
of each event whatever their time because of the time homogeneity of the latent process. Thus, even if
the importance distribution adapted by Leblois et al. (2014) were the most efficient distribution among
a certain class of distributions, it remains that the integral we estimate with importance sampling in the
general demographic case is an integral over a space of much larger dimension and that the efficiency of
importance sampling decreases with the dimension of the integral.

We took the opportunity of the paper to present rigorously the stochastic model with general de-
mographic scenario in Section 2. In particular, Section 2.2 ends with a writing of the likelihood as an
integral in Eq. (6) where one clearly sees that the integral is of much larger dimension than in the con-
stant demographic case because we cannot remove the integrals over the random times, as explained in
Section 2.4 after presenting the sequential importance sampling (SIS) algorithm. The time inhomoge-
neous latent process is part of the folklore in the neutral population genetic literature, but has never been
written down explicitly.

The major contribution of the paper is the addition and the calibration of a resampling procedure
of Section 3 in the SIS algorithm, based on Liu et al. (2001) and Liu (2008). The novelty is mostly
in the choice of the resampling distribution that we propose in Section 3.3, which depends on both the
current weight of the latent path and the pairwise composite likelihood (PCL) of the current state of
the latent process. Section 4 presents numerical results on the likelihood estimates of simulated data
sets. These results highlight the benefit due to the proposed resampling distributions in the likelihood
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estimates. We then plug the likelihood estimates in an inference method presented in Section 5.1. The
remainder of Section 5 highlights how our proposals improve the estimate of the parameter, and the
likelihood surface around the maximum likelihood estimate to compute confidence intervals (CIs). We
can thus confirm that the gain due to resampling also benefits to the demographic parameter estimation.
We end Section 5 with a discussion on cases where the data do not hold much information regarding the
parameter of interest, leading to flat likelihood surfaces. Finally we show the relevance of our methods
by presenting numerical results on a bat data set where strong evidence for population contraction had
been already provided by Storz and Beaumont (2002). All computatiosn for this work were performed
using an updated version of the Migraine software (Rousset and Leblois, 2007, 2012, Leblois et al.,
2014).

2 The stochastic model and its likelihood

To illustrate our method we consider genetic data from individuals of a single population sampled at
time t = 0. Let N(t) be the population size, expressed in number of genes, t generations away from the
sampling time t = 0. We assume that N(t) is a parametric function of t, see Section 4.1 for examples. In
this Section we focus only on data from a given locus.

2.1 Stochastic model

Kingman (1982)’s coalescent process is the usual model to describe ancestral relationships between gene
copies of the sample under neutrality in a population of constant, but relatively large size. We superim-
pose a mutation model on the coalescent process to describe genes modifications along lineages. Since
the evolution is neutral, the coalescent is independent of the mutation process. To describe the resulting
process, we introduce a random vector Ht, indexed by the set of possible types of genes (possible alleles)
E: if A ∈ E, the component Ht(A) counts the number of genes of type A at time t (i.e., t generations
away, backward in time, from the sampling time) in the genealogy of the sample. The likelihood of the
genetic data is given by the distribution of H0, which cannot be written as an explicit function of the
parameter φ.

2.2 Markovian description of the evolution

Actually, we only have at our disposal the following description of the process Ht forward in time.
Let eA denote the vector indexed by E whose components are all equal to 0, except the A-component

which is equal to one. On one hand, the probability of a new lineage of type A in the genealogy at time
t − δ, knowing that h is the value of the process at time t, is

P
Ä
Ht−δ = h + eA

∣∣∣Ht = h
ä

=
(|h| + 1) h(A)

2 N(t)
δ + o(δ) (1)

where |h| =
∑

A∈E h(A) is the total number of lineages at time t in the genealogy and o(δ) a quantity that
is negligible in front of δ when δ→ 0. On the other hand the probability of a mutation of a gene of type
B at time t to a gene of type A at time t − δ , knowing that h is the value of the process at time t, is

P
Ä
Ht−δ = h + eA − eB

∣∣∣Ht = h
ä

= µh(B) pB, A δ + o(δ) (2)

where pB,A is the mutation probability from allele B to allele A forward in time, µ is the mutation rate per
generation per lineage, and o(δ) is a quantity that is negligible in front of δ when δ → 0. Additionally,
when there is only one lineage in the genealogy, the distribution of the gene type (the allele) is supposed
to be the stationary distribution ψ(·) of the transition matrix p = {pB,A; B, A ∈ E}:

P
Ä
Ht = eA

∣∣∣|Ht| = 1
ä

= ψ(A).
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Hence, forward in time (i.e., when t decreases), the coalescent based model Ht is a pure jump, continuous
time Markov process taking values in the set of integers vectors indexed by E, namely NE . But the
process is time inhomogeneous because the coalescence rate of Eq. (1) depends on the current date t
through the function N(t). Note that Eq. (1) and (2) can both be written

P
Ä
Ht−δ = h′

∣∣∣Ht = h
ä

= Λt(h′|h)δ + o(δ)

for any h , h′ in NE where

Λt(h′|h) =


(|h| + 1) h(A)

¿(
2 N(t)

)
if h′ = h + eA

µh(B) pB, A if h′ = h + eA − eB

0 otherwise

(3)

defines the intensity matrix of the Markov process.

We can give a more explicit description of the process since it is a pure jump process, or, in other
words, Ht is a piecewise constant function of t. We denote X0 = H0 the first value of the process at time
T0 = 0. The process Ht remains constant until (random) time T1, where it takes another value X1 = HT1 .
After T1, the process Ht stays equal to X1 until time T2 where it jumps to a another value X2, and so on.

Fig. 1 in the Supplementary Material represents a possible path of the process H. We refer to such
paths as (possible) histories of the sample (composed of three genes of type a and one gene of type b
in Fig. 1 in the supplementary material). Note that many genealogies correspond to a possible history
since, at time T1 we have chosen a genealogy with a coalescence between the two left-handmost genes,
but we could have chosen another genealogy joining any pair of genes of type a at time T1. Likewise
at time T3 we could have chosen any of the three possible pairs. Actually each genealogy leading to
the same path of the process H has the same probability because of the exchangeability of the genes
carrying the same allele.

We set ∆i = Ti+1 − Ti which is usually named the holding time at value Xi for any integer number i.
The distribution of the process is given by the density

P
Ä
Xi = hi for all i = 0, . . . , n and ∆i ∈ (δi; δi + dδi) for all i = 0, . . . , n − 1

∣∣∣Xn = hn
ä

=

n∏
i=1

Pti(hi−1|hi) ×
n−1∏
i=0

λti+δi(hi) exp
Ç
−

∫ δi

0
λti+u(hi)du

å
dδi (4)

for any δ0, . . . , δn−1 > 0, h0, . . . ,hn in NE , where t0 = 0, ti = δ0 + · · · + δi−1,

λt(h) =
∑
h′,h

Λt(h′|h) (5)

and Pt(h′|h) = Λt(h′|h)
¿
λt(h).

The term λt(h) is interpreted as the (infinitesimal) jump rate of the process H at time t, knowing that the
process takes value h at time t, namely

P
Ä
Ht−δ , h

∣∣∣Ht = h
ä

= λt(h) δ + o(δ)

when δ > 0 and o(δ) is negligible in front δ when δ→ 0. With Eq. (3), it can be computed as

λt(h) =
|h|(|h| + 1)

2N(t)
+ µ|h| =

|h|
2N(t)

((|h| + 1) + θ(t)) ,
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where θ(t) = 2µN(t) is the usual composite mutation rate parameter of population genetics. On the other
hand, Pt(h′|h) is interpreted as a transition matrix (forward in time), and gives the probability that the
new value (forward in time) of Ht′ is h′ for t′ < t knowing that the process jumps at time t and that
Ht = h.

Set τ = inf
{

t > 0 : |Ht| = 1
}

, which is the age of the most recent common ancestor (MRCA) of the
sample. Since H is a pure jump process, τ = Tσ where σ = inf

{
n > 0 : |Xn| = 1

}
. And note that the

distribution of Hτ = Xσ is known explicitly as

P(Hτ = eA) = ψ(A).

To recover the likelihood of the observed genetic data, that is to say the distribution of H0 from this
knowledge and the (forward in time) transition mechanism of Eq. (4), we have to integrate over all
possible histories from the MRCA, that is to say all possible values n of σ, h1, . . . ,hn in NE and
δ0, . . . , δn−1 > 0. Hence

P
(
H0 = h0

)
=

∞∑
n=1

∫
· · ·

∫ ∑
h1,··· ,hn

∑
A

ψ(A) 1 {hn = eA, |hn−1| > 1} ×

n∏
i=1

Pδ0+···+δi−1(hi−1|hi) ×
n−1∏
i=0

λδ0+···+δi(hi) exp
Ç
−

∫ δi

0
λδ0+···+δi−1+u(hi)du

å
dδi. (6)

The challenge to conduct a likelihood based inference in population size varying models is in computing
the multidimensional integral of Eq. (6), which cannot be computed formally. Note that, to alleviate
notations, we have dropped the dependency in the parameter of interest φ of the quantities arising in
Eq. (6) but both Pt(h′|h) and λt(h) are functions of φ, and even sometimes the stationary distribution
ψ(A).

2.3 Evaluating the likelihood with importance sampling

The trick to compute the likelihood defined in Eq. (6) is to rely on another transition matrix Qt(h|h′)
backward in time and set

Wn(h0:n; t0:n) =

n∏
i=1

Pti(hi−1|hi)
¡ n∏

i=1

Qti(hi|hi−1). (7)

Then Eq. (6) leads to

P
(
H0 = h0

)
=

∞∑
n=1

∫
· · ·

∫ ∑
h1,··· ,hn

∑
A

ψ(A)1 {hn = eA, |hn−1| > 1} ×

Wn(h0:n; t0:n) ×
n∏

i=1

Qti(hi|hi−1) ×
n−1∏
i=0

λti+δi(hi) exp
Ç
−

∫ δi

0
λti+u(hi)du

å
dδi, (8)

where ti = δ0+· · ·+δi−1 are implicit functions of the δi’s. The right hand side of Eq. (8) can be interpreted
as the expected value of

Wσ =
∑

n

∑
A

ψ(A)1 {hn = eA, |hn−1| > 1} ×Wn(h0:n; t0:n)

when h0,h1, . . . and t0, t1, . . . are the realizations of the embedded chain and the jump times of an inho-
mogeneous Markov process ‹H whose intensity matrix (backward in time) is given by‹Λt(h|h′) = λt(h′)Qt(h|h′)
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and which starts from ‹H0 = h0, the observed data. In other words,

P(H0 = h0) = Ẽ(Wσ).

Interpreting the likelihood of the data as an expected value over another distribution is the first step
toward an importance sampling estimate of the likelihood. Indeed, the Monte Carlo estimation of the
likelihood is the empirical average of Wσ computed on simulated replicates ‹H( j) (for j = 1, . . . , nH) of
the process ‹H:

P̂(H0 = h0) =
1

nH

nH∑
j=1

W( j)
σ . (9)

2.4 Practical aspects and efficiency

To sum up the above, the idea of importance sampling is to interpret the likelihood as an expected value
over a sampling distribution of histories (the distribution of the process ‹H) which may differ from the
distribution of the genuine model described in Section 2.2. We can choose this importance distribution
freely, as long as any path from the data h0 to the MRCA with positive density under the distribution of
the latent process H has also a positive density under the distribution of the importance process ‹H. But
this choice has a major impact on the efficiency of the approximation in Eq. (9) since the variance of Wσ

depends on the distribution of ‹H.

When the population size N(t) is fixed to N0 for all t, we have at our disposal an efficient sampling
distribution from the literature (Stephens and Donnelly, 2000, De Iorio and Griffiths, 2004a, De Io-
rio et al., 2005) which represents a major improvement over the first proposal of Griffiths and Tavaré
(1994a). In this simple demographic scenario, the importance sampling estimate is the most efficient
under a parent independent mutation model (which means that pBA does not depend on B) and Eq. (8)
provides an exact evaluation of the likelihood for nH = 1 replicate. In other words, the variance of
Wσ under the distribution of the efficient importance sampling distribution is zero. For other mutation
models and a constant demographic scenario, the variance of Wσ is no longer zero, but the number nH of
replicates required to get a sharp estimation of the likelihood with Eq. (9) is much smaller when relying
on the efficient importance distribution rather than on the proposal of Griffiths and Tavaré (1994a). In
the scenario where the population size varies over time, we resort to the proposal of Leblois et al. (2014)
to define the transition matrix of ‹H. That is to say that for any value of t > 0, Qt(h,h′) is the transition
matrix of the efficient importance distribution as if the population size were constant over time and fixed
to the current value of N(t). But the efficiency of this importance distribution depends on the variation
of N(t), as explained in Leblois et al. (2014).

Nevertheless, the choice of importance distribution leads to a process ‹H which is defined explicitly
as an inhomogeneous Markov process, backward in time, starting from the observed data h0. The
computation of a simulated path of ‹H, as well as of Wσ is performed with the sequential method of
Algorithm 1.

Note that, since Wσ is a product along the path of the process ‹H, its value is computed sequentially at
step 2.(b) of Algorithm 1. The update depends only on the current time t, the value of ‹H just before time
t, namely h, and the new value h′. Hence, Algorithm 1 does not have to keep track of the whole path of‹H. Moreover, drawing the holding time δ can be done either with a rejection algorithm, see Appendix B
in the Supplementary Materials, or by inverting the cumulative distribution function when possible,
e.g., see Griffiths and Tavaré (1994b). Finally, the above algorithm is run nH times to approximate the
likelihood by the average in Eq. (9).

Sadly, the decrease of efficiency of the importance sampling scheme from the constant population
size scenario to the general case (where N(t) varies over time) can be drastic, see Leblois et al. (2014).
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Algorithm 1: sequential importance sampling

1. Initialization: set h = h0, w = 1 and t = 0

2. Repeat

2.(a) Draw the holding time δ according to its density λt+δ(h) exp
Ç
−

∫ δ

0
λt+δ(h)

å
and update t = t + δ

2.(b) Draw h′ according to qt(h′|h) and update w = w × pt(h|h′)/qt(h′|h)

2.(c) Update h = h′

until |h| = 1

3. Set Wσ = w × ψ(h) and return Wσ

To understand the major difference, we recall that, when the population size N(t) is constant, neither
Λt(h′|h) nor Pt(h′|h) depend on t. In this simpler case we choose an importance distribution charac-
terized by a Qt(h|h′) which does not depend on t, and Wσ does not depend on the random jump times
T1,T2, . . . of the process ‹H. But in the varying size scenario, these random times do contribute to the
variance of Wσ.

Fig. 3 follows w, computed at line 2.(b) of Algorithm 1, over successive coalescence for one hundred
replicates of the SIS algorithm. It shows first that the variance of the final SIS weights is quite large,
second that replicates that lead to the highest final Wσ also tend to have high w throughout the sequence
of coalescence events. Moreover, Fig. 3 shows that, as the number of coalescence events undergone
increases, the range of values of w increases exponentially. This exponential increase is an evidence that
importance sampling becomes inefficient in spaces of high dimension, and that each random jump times
T1,T2, . . . has a multiplicative contribution to the overall range of Wσ.

The final approximation of the likelihood is the average of these one hundred replicates of Wσ, see
Eq. (9). The difference between the values of the final SIS weights Wσ is so huge that most of them are
negligible compared to the top ten highest ones and do not contribute to the average in Eq. (9). If we
look at Fig. 3, considerations of their trajectories further back in time show that these weights do not
rise back much. Hence, we can reduce the computing effort and increase the accuracy of the method by
ignoring the histories which give low values of w after some times through the sequence of coalescence
events and by replacing them by histories with higher values of SIS weight w. The above idea can be
seen as a correction of the proposal distribution, and the estimate will remain unbiased if the SIS weights
are accordingly corrected. In order to implement it, we rely on the resampling procedure explained in
the next Section.

3 Resampling

We derive a resampling procedure from that of Liu (2008, Section 4.1.2) that consists of pruning away
the partial histories associated with very small weights and reusing those associated with high weights
instead of restarting from scratch.

3.1 Sequential importance sampling with resampling: the algorithm

The sequential importance sampling with resampling (SISR) is as follows. We initiate nH independent
runs of Algorithm 1, hence nH draws of Wσ from the importance distribution. But we stop the repeat-
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Algorithm 2: Sequential importance sampling with resampling (SISR)

I. Initialization:
For j in 1, . . . , nH:

Set w( j) = 1, t( j) = 0 and h( j) = h0
EndFor
Set ESS− = nH

II. Repeat

II. 1 For j = 1, . . . , nH

Set ncontrol = 0
While |h( j)| > 1 and ncontrol < k:
(a) Draw the holding time δ according to its distribution

and update t( j) = t( j) + δ

(b) Draw h′ according to qt( j)(h′|h( j))
and update w( j) = w( j) × pt( j)(h( j)|h′)/qt( j)(h′|h( j))

(c) Update ncontrol according to its definition and update h( j) = h′

EndWhile
EndFor

II. 2 Compute ESS+ =

Ñ
nH∑
j=1

w( j)

é2¡ nH∑
j=1

Ä
w( j)
ä2

II. 3 If ESS+ < ESS−/10, then
Resample according to Algorithm 3
Update ESS− to the ESS of the resampled collection

EndIf

Until all |h( j)| are equal to 1

III. For j in 1, . . . , nH:
Update w( j) = w( j) × ψ(h( j))

EndFor

IV. Return the average n−1
H

nH∑
j=1

w( j)

until loop at step 2 of Algorithm 1 before hitting the MRCA. Indeed each run of Algorithm 1 is stopped
at checkpoints (stopping times of the Markov process ‹Ht); at these checkpoints we evaluate the quality
of the collection of nH partial histories and if necessary, we resample these histories. To that aim, we
propose a new resampling distribution detailed in Section 3.2.

The checkpoints at which we test whether to resample correspond either to a given number k of
events (coalescences and mutations) undergone after the previous checkpoint or to a given number k of
coalescence events undergone. Once a checkpoint is reached, we evaluate the quality of the collection of
partial histories to assess whether it is necessary to resample. The quality test is based on the Effective
Sample Size (ESS) relative to the collection of partial histories, namely

ESS =

Ñ
nH∑
j=1

w( j)

é2¡ nH∑
j=1

(w( j))2 (10)
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where w( j) is the current value of w of the j-th partial history at the checkpoint. The largest value of ESS
is nH and occurs when w(1) = · · · = w(nH); the ESS decreases when the range of values of w( j) expands.
When a single weight, w(1) say, is much larger than the other ones, the ESS is approximately equal to
1 since both numerator and denominator of Eq. (10) are approximately equal to

(
w(1))2. Actually, the

ESS assesses how the random holding times and events of the partial histories between two successive
checkpoints contribute to the variance of the estimate in Eq. (9). Thus we resample the collection of
partial histories whenever the ESS falls below a threshold value, for instance ESS−/10, where ESS− is
the value of the ESS after the last resampling.

The checkpoints are frequent when k = 1, but computing the ESS, as well as resampling the whole
collection is time consuming, so that higher values of k might be more pragmatic.

The SISR is presented in Algorithm 2, where w( j), t( j) and h( j), for j = 1, . . . , nH are arrays which
keep tracks of the values of current weight w, time t and state h of each run of Algorithm 1. Moreover,
we define ncontrol which stores the number of undergone events (either the total number of undergone
events, or the number of undergone coalescences) inbetween checkpoints.

3.2 The resampling procedure

Assume that SISR has reached a checkpoint and that the ESS is low enough to resample. At this time,
we create a new collection of nH simulated histories by drawing at random in the previous collection
of histories according to a multinomial distributionM(v, nH) where v = (v(1), . . . , v(nH)) is a resampling
probability distribution on the collection of nH partial histories, see Section 3.3 for examples of such
distributions.

Resampling is equivalent to applying a second importance sampling algorithm within the SIS. In-
deed,

nH∑
j=1

w( j) =

nH∑
j=1

w( j)

v( j)
j

v( j) (11)

and the right hand side can be interpreted as the expected value of w( j)/v( j) over the distribution of a
random j drawn from v. Thus, in order not to bias the procedure, the new weight associated to the j-th
history is w( j)/v( j) whenever this history appears in the resampled collection of histories. Algorithm 3
summarizes the procedure, with the notations of Algorithm 2.

Algorithm 3 Resampling procedure
1. For j = 1, ..., nH,

(a) Draw J′ from distribution v
(b) Set h̃( j) = h(J′) and t̃( j) = t(J′)

(c) Set w̃( j) = w(J′)/v(J′)

EndFor

2. Replace the old collection
{

(h( j), t( j),w( j))
}nH

j=1 with the new collection¶
(h̃( j), t̃( j), w̃( j))

©nH

j=1
.

3.3 The resampling distribution

Resampling introduces a new possible cause of variance, since we replace the sum of Eq. (11) with a
Monte Carlo estimate. The resampling probability distribution v = (v1, . . . , vnH ) on the collection of
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histories could be any distribution. To achieve efficiency we should pick a distribution v that reflects the
future trend of the partial histories, more precisely that sets relatively high probabilities on the partial
histories that will correspond to the highest Wσ. If the resampling distribution brings helpful information
about histories, then the mean square error (MSE) of Eq. (9) should decrease. On the contrary if the
resampling probability distribution brings useless information or no information, then the resampling
just adds noise and the MSE increases. For example a uniform v distribution that clearly does not
bring any information about the histories introduces only an additional variance in the estimation of the
likelihood.

The resampling algorithm could face two difficulties: first it does not always choose the replicates
with the highest Wσ; second, regardless of the optimal replicate, it is not perfectly predicted from an
intermediary w. However, as explained at the end of Section 2.4, the current value of w helps predicting
the contribution of the final value Wσ to the average in Eq. (9). One might thus be tempted to resample
the j-th partial history with a probability proportional to w( j), i.e. v j ∝ w( j). But this resampling
distribution v might not well choose the optimal Wσ because of the spread of the w( j)’s. Thus Liu et al.
(2001) proposed to rely on v j ∝

[
w( j)]α for some α ∈ [0; 1], with an arbitrary preference on α = 1/2.

Another possible predictor of the contribution of the j-th partial history to the average in Eq. (9) is
its current state h( j). Indeed, if the probability of h( j) under the distribution of the process defined in
Eq. (4) is large, then the final weight Wσ tends to be high, while if its probability is small, Wσ might be
negligible. Of course the probability of h( j) is intractable, but we might replace it by an easily computed
pseudo-likelihood. We propose here to rely on the pairwise composite likelihood L2(h( j)) defined in
the Appendix A in the Supplementary Materials since we can compute it very easily. But such pseudo-
likelihoods are much more contrasted than the true one and thus should be tempered by some exponent
β � 1. Hence we advocate the following resampling distribution

v( j) ∝
Ä
w( j)
äα Ä

L2(h( j))
äβ
, α, β ∈ [0, 1] , β � 1. (12)

The tuning parameters α and β are used to balance the effect of the information provided by the SIS
weight and by the composite likelihood. Section 4 provides numerical examples showing the efficiency
of the above resampling distribution for a large range of values of the tuning parameters α and β.

4 Improvements on the likelihood estimate: numerical results

4.1 The simulated demographic model

We use the model described in Sections 2.1 and 2.2 to analyze microsatellite markers under a Stepwise
Mutational Model (SMM). The set E of allele types corresponding to microsatellite markers is the set N
of non negative integers. When a mutation occurs under a SMM, the size of the allele is either increased
by 1 or decreased by 1 with the same probability (Kimura and Ohta, 1978).

As in Leblois et al. (2014) we consider a single isolated population whose size has undergone past
changes. We denote N(t) the population size expressed as the number of genes, t generations away from
the sampling time t = 0. The population size at sampling time is N(0) = N. Then, going backward
in time, the population size changes according to a deterministic function until reaching an ancestral
population size Nanc at time t = T . Then, N(t) = Nanc for all t > T . To illustrate our method we consider
an exponentially contracting population size, represented in Fig. 2 in the supplementary material, which
can be written

N(t) =

{
N × (Nanc/N)t/T if t ∈ [0; T ],
Nanc if t ≥ T.

To ensure identifiability the demographic parameters are scaled as θ = 2µN, D = T/2N and θanc =

2µNanc, where µ is the mutation rate per locus per generation. The parameter space of the model is
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thus the set of vectors φ = (θ,D, θanc). Additionally we also set θ(t) = 2µN(t), and we are sometimes
interested in the extra composite parameter Nratio = θ/θanc = N/Nanc, which is useful to characterize the
strength of the contraction.

4.2 Reduction of the MSE between the true value of the likelihood and its estimate

Numerical results of Section 4 are presented on data sets simulated under the demographic scenario
where φ = (θ,D, θanc) = (0.4, 0.25, 400) which models a recent and strong past contraction in population
size. This scenario is the most representative of our conclusions although we studied more moderate
and/or older contractions. To assess the efficiency of estimates of the likelihood at a given point of the
parameter space, we compared these estimates with a reference value L that is a sharp approximation of
the true likelihood. We have computed the reference value L by estimating the likelihood with SIS with
a huge collection of nH = 20, 000, 000 independent histories.

To evaluate the variability of the likelihood estimate returned by a given algorithm, with given values
of its tuning parameters, we first plot the empirical distribution of 100 runs of the same algorithm with
a boxplot (Fig. 4–5). We also measured the mean square error of 100 estimates “Li around the reference
value L, and averaged this MSE over 100 simulated data sets to remove the dependency on the simulated
data set (Fig. 6). Note that this last method computes an empirical mean square error that approximates
the MSE of the likelihood estimate.

To compare the efficiency of both SIS and SISR algorithms with the same computational effort of
simulating a collection of nH = 100 histories, we considered the ratio of the empirical mean square error
of SISR over that of SIS. The MSE ratio brings out the reduction of the mean square error in likelihood
estimate due to the resampling technique.

For Fig. 4–5 discussed below, we note that all the SISR calibrations lead to a smaller variation in
likelihood estimation than SIS and that the average is much closer to the reference value meaning that
resampling improve the accuracy of the likelihood estimate. This observation means that even if the
resampling procedure is not much calibrated, the likelihood inference is already better than without
resampling.

Type and frequency of checkpoints As said in Section 3.1, the checkpoints might be defined either
in term of a fixed number of events (coalescences and mutations) undergone on each partial history or in
term of a fixed number of coalescence events. Note that the total number of genes in the current state h
is determined by the size of the observed data h0 and the number of coalescence events undergone from
time t = 0 to state h. Hence the second definition of a checkpoint proposes to compare partial histories
that lead to current states h with the same number of lineages. Thus Liu (2008) advocated the second
type of checkpoints. Fig. 4 shows that resampling among histories with the same number of lineages
(that is by the number of coalescence events) is more efficient than the alternative condition. Indeed, for
a given number of events, histories with fewer lineages (more coalescences) often correspond to a low
current weight but might have a high final weight.

In Fig. 5a and 5c, we propose to resample every k = 8, 6, 2 or 1 coalescence events, which cor-
respond respectively to resampling 12, 16, 49 or 99 times during Algorithm 3 since the simulated data
set is composed of 100 genes. We observe that the variation in likelihood estimation decreases with the
frequency of the checkpoints, indicating that we should propose a resampling step as often as possible.
Fig. 6a and 6b leads to the same conclusion regarding the best calibration of k: MSE ratio comparing
SISR with k = 1 to the SIS estimate (represented by a ∗) are often the lowest MSE ratios when com-
pared to other MSE ratios with the same tuning parameters α and β. Both Fig. 6a and 6b also indicate
that the MSE ratio always decreases with the frequency of checkpoints when the resampling distribution
depends on the pairwise composite likelihood (β = 0.01).
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Calibration of the powers α and β of the resampling distribution The efficiency of the resampling
distribution of Eq. (12) greatly differs between different values of the resampling parameters α and β.
For this reason, they must be adequately chosen to balance the effect of the information provided by the
SIS weights and by the composite likelihood. First of all, we notice that the MSE Ratio is substantially
below one for all sixty (α, β) couples considered (see Fig. 6a and Fig. 6b) meaning again that resampling
improves the inference of the likelihood in terms of MSE, even when the resampling parameters are
not much calibrated. Then we observe that when the resampling distribution only depends on the SIS
weights (β = 0), the MSE Ratio globally decreases when α increases (see Fig. 6b). When resampling
is performed after each coalescence, as recommended above, we find that any α between 0.5 and 1 is
a reasonably good choice (Fig. 6c). This is further supported by Fig. 5b which represents the boxplots
obtained with k = 1, α = 0.4, 0.5, 0.6, 0.7 and 1 for three different values β = 0, 0.001 and 0.01. Indeed
the variation in likelihood estimates corresponding to α = 0.4 is larger than for other values of αwhereas
the variation in likelihood estimates corresponding to α = 0.7 is slightly reduced compared to other α
values. In the following we therefore set α = 0.7, which is higher than the arbitrary calibration α = 0.5
proposed by Liu et al. (2001). Likewise with k = 1, Fig. 6c represents the MSE ratios obtained with
β = 0 and 0.01, and different values of α. First we note that the ten values of MSE ratios are between 0.05
and 0.20, which means that the resampling reduces the MSE by a factor 5 to 20. Second the horizontal
blue line indicates that the lowest MSE ratio obtained with β = 0 is higher than the MSE ratio obtained
with five out of seven values of αwhen β = 0.01, that is when using the composite likelihood. Moreover,
this choice of β is supported by Fig. 5d which sets α = 0.7 and shows that the span of the distribution of
the likelihood estimate is smaller when β = 0.01 (and k = 1) than with other values of β.

In conclusion we can choose k = 1, α = 0.7 and β = 0.01 although other choices of tuning pa-
rameters of the SISR also lead to an improvement of the likelihood estimation. The MSE ratio for the
likelihood estimates using SIS vs. SISR is lower than 60% for most choices of the resampling parame-
ters, and below 10% when the procedure proposes to resample after every coalescence event and when
using the PCL, which allows a strong improvement of the likelihood estimation in a parameter point.

5 Improvements in the likelihood based inference of demographic pa-
rameters

The final aim of inference from a data set is not to compute the likelihood at a given point in parameter
space. Rather, it is to provide an estimate of the parameter φ = (θ,D, θanc) and confidence intervals (CI)
around each coordinates of φ, i.e, marginal CIs. Thus, we will quantify the impact of our procedures on
the performance of such inferences.

5.1 Inference method

In the numerical results below, we conduct a maximum likelihood analysis of the data. An estimate of
the parameter φ is given by the maximum likelihood estimate (MLE) φ̂(x) of a multilocus data set x. The
multilocus likelihood is the product of the likelihoods for each locus x`, ` = 1, . . . , d:

Ld(φ, x) =

d∏
`=1

L(φ, x`),

where d is the number of loci in the sample, and each term of the product can be estimated with a SIS or
a SISR algorithm. The biological assumption that permits the above writing is that the loci are distant
enough in the genome to have independent past histories.

Then we derived marginal CIs on each coordinate, from likelihood-ratio test based on the profile
likelihood (see Davison, 2003, for details). To obtain a numerical value of the marginal CIs, we rely on
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asymptotic theory which states that under H0 profile log likelihood-ratio is approximately χ2-distributed
(e.g., Severini, 2000), here with a degree of freedom equal to 1 when the size of the data set is large, i.e.,
when there is enough information on the parameter in the data.

5.2 Inference algorithm and its evaluation

As in Rousset and Leblois (2007), Rousset and Leblois (2012) and Leblois et al. (2014) we can conduct
the inference process as follow. We first define a set of parameter points through a stratified random
sample within a range of the parameter space provided by the user. Then, at each parameter point, the
multilocus likelihood is the product of the likelihoods for each locus, which are estimated through the
SIS or SISR algorithm. The likelihoods inferred at the different parameter points are then smoothed
by a Kriging scheme. After a first analysis of the smoothed likelihood surface, the algorithm can be
repeated a second time to increase the density of parameter points in the neighborhood of the first MLE.
The Kriging step removes part of the estimation error of likelihood in any given parameter point by
assuming that the likelihood is a smooth function of the parameter. In this Section, we thus conducted
numerical experiments to show that the gain of SISR over SIS in accuracy of likelihood estimates is
retained through the Kriging step.

A convenient way to evaluate numerically the whole inference procedure, and in particular the
coverage of the marginal CIs, is to check that distribution of p-value of the likelihood-ratio test of
H0 : φ1 = φ∗1 against H1 : φ1 , φ

∗
1 is uniform on the interval [0; 1] when the data set x is simulated

from the model with φ1 = φ∗1. To this end we represent the empirical cumulative distribution function
(ECDF) of the p-value on many simulated data sets x, which should be closed to the 1 : 1 diagonal.
Deviation from an uniform distribution can occur: either because the likelihood is poorly estimated or
because the exact profile log likelihood ratios do not follow the asymptotic χ2 distribution. We perform
a Kolmogorov-Smirnov test to assess the uniform distribution of the sample of p-values.

We have also computed other measures of the performance of the inference method of φ1 on many
simulated data sets xi from φ1 = φ∗1, namely

• the mean relative bias of the MLE , computed as

(observed bias on φ∗1)
φ∗1

=
1
φ∗1

Ä
meani φ̂1(xi) − φ∗1

ä
,

• and the relative root mean square error (relative RMSE) of the MLE , computed as√
MSE on φ∗1

φ∗21
=

1
φ1

…
meani

Ä
φ̂1(xi) − φ∗1

ä2
.

5.3 Numerical experiment cases and previous results

We performed numerical experiments on four different demographic scenarios, all modeled according
to the exponential contraction of Section 4.1, which are as follows.

(i) φ = (θ,D, θanc) = (0.4, 1.25, 40), which is the baseline scenario of Leblois et al. (2014): the
population size has undergone a contraction of strength Nratio = 0.01 and D = T/2N = 1.25,
where N is the size of the population at time t = 0,

(ii) φ = (θ,D, θanc) = (0.4, 1.25, 400) which differs from the baseline scenario in the strength Nratio =

0.001 of the contraction,
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(iii) φ = (θ,D, θanc) = (0.4, 0.25, 40) which differs from the baseline scenario in the speed of the
contraction, since it corresponds to a contraction of strength Nratio = 0.01 but D = T/2N = 0.25
which is five times smaller than in the baseline scenario,

(iv) φ = (θ,D, θanc) = (0.4, 0.25, 400) which represents the strongest and recentest contraction of the
four scenarios. Numerical results on the estimation of the likelihood in this last demographic
scenario have already been presented in Section 4 above.

The baseline scenario is a case where the inference procedure performs well when the likelihood of
each locus at each point of the parameter space is estimated with the sequential importance sampling on
nH = 2, 000 histories, but nH = 100 gives satisfactory results. A more careful look at the results shows
that the profile likelihoods exhibit clear peaks around the MLE for all parameters. This is a first evidence
that the data contain information regarding all parameters. And, indeed, the ECDF of the p-values are
almost aligned on the 1 : 1 diagonal (Fig. 7).

5.4 Numerical results

To analyze the performances of the inference procedure we have simulated 500 data sets for each sce-
nario, composed of 10 independent loci and 100 genes per locus.

Gain in accuracy of the MLE The numerical results regarding the relative bias and relative RMSE
are given in Table 1. We find that the resampling technique allows overall to reduce the relative RMSE
and the relative bias, mostly for the parameter θ.

(i) For the baseline scenario (θ = 0.4,D = 1.25, θanc = 40), the resampling procedure allows to
reduce the relative bias on θ by 30%, the relative bias on D by 20% and the relative bias on θanc
by 80% and also the relative RMSE on θanc by 10%, other values being similar.

(ii) In the situation (θ = 0.4,D = 1.25, θanc = 400) of a stronger contraction but not too recent, the
resampling procedure allows to reduce the relative bias on θ by 40%, and also the relative RMSE
on θ by 35%, other values being similar.

(iii) Concerning the scenario (θ = 0.4,D = 0.25, θanc = 40) of a more recent contraction than the base-
line situation but with the same strength, the resampling procedure allows to reduce the relative
bias on θ by 79% and the relative RMSE on θ by 10%. However, the relative bias and relative
RMSE on D increase by a factor of 2.5 and 1.8 respectively.

(iv) We observe the same trend with the situation (θ = 0.4,D = 0.25, θanc = 400) of a more recent
and stronger contraction than the baseline situation. Indeed, when using resampling, the relative
bias and relative RMSE on θ decrease by a factor 4.5 and 3 respectively while the relative bias and
relative RMSE on the parameter D increase by a factor 2.5 approximately.

Reducing the size of the collection of histories thanks to the resampling We compare here the
inference method relying on estimates of the likelihood either based on SIS or on SISR with a smaller
collection of histories per locus and per point of the parameter space.

We first compare both methods on the baseline situation (θ = 0.4,D = 1.25, θanc = 40) of a relatively
weak and not too recent contraction. In this case, the SIS algorithm performs well due to the large
amount of information in the genetic data (Leblois et al., 2014).

We find out that SISR with 50 ancestral histories produces comparable results to SIS with 100
ancestral histories. With the same number of ancestral histories, the relative bias and relative RMSE
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Table 1: Accuracy of the MLE with SIS and SISR algorithms

(θ,D, θanc) = (0.4, 1.25, 40) (0.4, 1.25, 400) (0.4, 0.25, 40) (0.4, 0.25, 400)

Algorithm SIS SISR SIS SISR SIS SISR SIS SISR
with nH = 100 100 2, 000 2, 000

rel. bias θ 0.17 0.12 0.56 0.34 1.07 0.23 4.9 1.1
D 0.063 0.051 −0.02 −0.017 0.23 0.571 −0.06 0.15

θanc 0.076 0.016 0.048 −0.042 0.032 0.023 0.044 −0.053

rel. RMSE θ 0.47 0.46 0.71 0.53 2 1.8 5.2 1.7
D 0.28 0.28 0.14 0.14 0.45 0.8 0.14 0.37

θanc 0.53 0.48 0.37 0.38 0.29 0.27 0.25 0.23

are lower with SISR than with SIS as explained above, and the ECDF of the p-values are closer to
the diagonal as shown in Fig. 7. We conclude that resampling improves the parameter estimation in a
situation where the SIS performs well, dividing by 2 the required number of ancestral histories.

We then compare both methods on a more difficult situation (θ = 0.4,D = 1.25, θanc = 400) of a
stronger contraction. In this situation, the SIS procedure performs less well but we obtain satisfying
results with nH = 2000 sampled histories (Leblois et al., 2014), which leads to reasonable computation
time. Indeed, for a single data set with one hundred gene copies and ten loci, analyses are carried out in
8 hours in C++ process time on average. Here we decrease the number of ancestral histories in both SIS
and SISR, in order to show that the SISR performs well when the SIS does not. For both procedures we
explored nH = 100, 200 and 400 ancestral histories per parameter point. With 400 ancestral histories,
the analyses are carried out in 1.7 hours in C++ process time on average, for a single data set with one
hundred gene copies and ten loci.

Fig. 8 shows that with the same number of explored ancestral histories, we obtain lower relative
bias and relative RMSE and also better ECDF, which means better coverage properties of the CIs. By
comparing Fig. 8c with 8b, we also find that the SISR procedure provides comparable results (relative
bias, relative RMSE and ECDF) to the SIS procedure with half of the number of explored ancestral
histories, as in the baseline scenario. The comparison of Fig. 8e with Fig. 8d shows the same results.

Improvements in more difficult situations We compare both SIS and SISR procedure on two more
difficult situations (θ = 0.4,D = 0.25, θanc = 40) and (θ = 0.4,D = 0.25, θanc = 400) of very recent con-
traction, very strong for the second case. Thus in these two cases, the proposal distribution is inefficient.
In the extreme case of (θ = 0.4,D = 0.25, θanc = 400), the SIS algorithm does not provide satisfactory
CI coverage properties, even with 200, 000 sampled histories.

We first consider the situation (θ = 0.4,D = 0.25, θanc = 40) in which the magnitude of the con-
traction is the same as the baseline case but here it occurred much more recently. In this situation, the
SIS procedure performs less well and we do not obtain satisfactory results with 2000 sampled histories
(Leblois et al., 2014). With the same number of ancestral explored ancestral histories, applying the re-
sampling technique, we obtain lower relative bias and relative RMSE for θ but higher for D. We also
obtain less good CI coverage properties for θ and D (see Fig. 9). We conclude that the method detects
the contraction, estimates the date and the ancestral size of the population but does not find enough
information in the data about the current size of the population. Indeed, the likelihood surface is quite
flat.

We then consider the extreme situation with a very recent and stronger past contraction (θ = 0.4,D =

0.25, θanc = 400). Increasing greatly the number of ancestral histories sampled per parameter point
up to 200, 000 and consequently the computation times by a factor 100, decreases relative bias and
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relative RMSE on θ but does not provide satisfactory CI coverage (Leblois et al., 2014). The resampling
technique allows us to decrease relative bias and relative RMSE of θ for a fixed number of ancestral
histories sampled and also to provide better CI coverage (see Fig. 10). Comparing Fig. 10c and 10d, we
obtain approximately the same relative bias and relative RMSE on θ and close CI coverage performance
with SISR with 100 times less histories sampled than with SIS. In this scenario as in the previous one
there is not enough information in the data and hence the likelihood surface is flat. We also face an issue
due to the strength of the contraction and the inefficiency of the proposal distribution in this situation, in
addition to the previous difficulty. The resampling technique allows a global gain, since it corrects the
inefficiency of the proposal distribution in disequilibrium situations. However, in this situation as in the
previous one, the resampling technique does not bring an improvement to the lack of information in the
data about the parameter θ when the contraction is too recent.

About flat likelihood surfaces The inference method of Section 5.1 suffers from two major defects
when the likelihood surface is flat. First any error regarding the likelihood estimate at some point of
the parameter space can lead to artificial local maxima or minima in the smoothed surface, depending
on how the Kriging method performs. Second even if we recover the true flat likelihood surface, the
distribution of the likelihood-ratio statistic is not correctly approximated by the χ2 distribution because
of the lack of information on the parameter in the data. Both defects can be seen in our numerical
studies. First the median of the SIS likelihood estimates is much lower than the reference value in Fig. 4
to 5d. It indicates that the SIS likelihood estimates are very often below the true value of the likelihood
which can lead to artificial local minimum in the smoothed likelihood surface obtained with the Kriging
algorithm. When comparing Fig. 11 (a) and (b), the SIS likelihood estimates introduce a local minimum
at θ = 2Nµ ≈ 0.001 while the more reliable SISR likelihood estimates manage to recover the flat
likelihood surface. Likewise on D = T/2N, the SIS likelihood estimates introduce a local minimum
around D ≈ 0.4, see Fig. 11 (c), while the SISR likelihood estimates recover the flat likelihood surface,
see Fig. 11 (d). The second defect can be seen on the p-value’s ECDF in Fig. 10. Even with the SISR
likelihood estimates which manage to recover the flat likelihood surface, the Figure exhibits a departure
from the uniform distribution, meaning that the χ2 approximation is not accurate. Flat likelihood surface
as in Fig. 11 and very large (even if untrustworthy) CIs, for instance the 95% CI with SISR likelihood
estimates is approximately [0.00016; 2.5] on θ = 2Nµ and [0.14; 0.72] on D = T/2N, should act as
warnings that the data do not carry much information about the parameters of interest.

6 Cynopterus sphinx data set

We applied the inference method of 5.1 on the fruit bat Cynopterus sphinx data set presented in Storz and
Beaumont (2002), consisting in allelic frequencies computed from a sample of 246 individuals, hence
492 genes, genotyped at 8 microsatellite loci. Using a coalescent-based Monte Carlo Markov chain
(MCMC) algorithm, Storz and Beaumont (2002) found a strong evidence for a pronounced population
contraction with (i) a posterior mode for Nratio, the strength of the contraction, around 0.03 (but with
large 90% highest probability density (HPD) interval of [0.0005 − 0.5]); and (ii) a mode for the scaled
time of occurrence, D = T/2N, around 0.35 with 90% HPD interval of [0.015 − 0.9].

Here, we compare their results with those obtained with our methods, with an emphasis on the gain
in precision and in computation cost using the SISR algorithm with different resampling probabilities
vs. the SIS algorithm. To assess the accuracy of the different algorithms on this real data for which we
do not have concrete expectations, we rely on the following steps.

We know from the results presented in the previous sections that both SIS ans SISR algorithms
may give inaccurate point estimate and CIs for some parameters if the number of simulated histories
is too low to infer the likelihood at each parameter point with enough precision. For this reason,
we first compared parameter estimates obtained by analyzing the data with the SIS algorithm using
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nH = 1, 000; 10, 000; 100, 000 and 1, 000, 000 sampled histories per point. Moreover, to evaluate the IS
variance of the log-likelihood estimate by the important sampling algorithm, we also considered the like-
lihood RMSE estimate from kriged duplicate points. It is computed from independent pairs of likelihood
estimates at the same parameter point for the points retained at the Kriging step.

Table 2: Evolution of the MLE with SIS when increasing the number of sampled histories per
point, on the bat data set

nH θ̂ D̂ θ̂anc ‘Nratio ln(L̂(φ̂)) lik-RMSE

1, 000 1.1 0.44 320 0.0034 −663.74 9.2
[0.76 − 1.5] [0.35 − 0.55] [180 − 560] [0.0018 − 0.0062]

10, 000 0.80 0.45 340 0.0024 −639.08 8.3
[0.53 − 1.16] [0.37 − 0.55] [205 − 553] [0.0013 − 0.0045]

100, 000 0.62 0.48 460 0.0014 −620.68 5.7
[0.38 − 0.94] [0.40 − 0.57] [254 − 492] [0.00078 − 0.0027]

1, 000, 000 0.42 0.49 380 0.0011 −606.59 4.4
[0.24 − 0.68] [0.41 − 0.59] [240 − 589] [0.00056 − 0.0022]

Our results, presented in Table 2, show a strong decrease in the MLEs of θ et Nratio, from 1.1 to 0.42
and 0.0034 to 0.00111 respectively , with an associated shift and narrowing of CIs. An opposite and
weaker trend of increase is also observed for D̂, from 0.44 to 0.49, and for θ̂anc, from 320 to 380, with a
slight shift of CIs for both parameters. As expected, increasing the number of simulated histories leads
to a decrease in the variance of the likelihood estimate at each parameter point, but more interestingly,
it also leads to an important increase of ln(L̂(φ̂)) the log-likelihood value at the MLE, from −664 to
−607. This first step implied a very high computational burden but allowed us to see a clear trend
towards an improvement of the SIS inference for each analyses with more histories. We probably did
not reach a plateau in the precision even when considering nH = 1, 000, 000 histories (which took
approximately 15000 hours in C++ process time), but considering more histories is merely unfeasible.
We thus consider the results obtained with 1, 000, 000 histories as the best result we can get with the SIS
algorithm, irrespectively of computation costs.

In a second step, we compared estimations obtained with the SIS and various versions of SISR
algorithms by playing with different resampling strategies, for a fixed and reasonable computation cost.
To this end, we fixed the number of sampled histories per parameter point nH to 1,000, leading to an
average of 15 hours in C++ process time for each analysis. Table 3 presents, for each analysis, the point
estimates and CIs for each parameter of interest, including the Nratio, as well as the log-likelihood value
estimated at the MLE ln(L̂(φ̂)) and the RMSE estimate for the log-likelihood at each parameter point
(i.e. the IS log-likelihood variance).

A first global conclusion is that all SISR analyses with different resampling probability distributions
lead to very similar results both in terms of parameter estimates and maximum log-likelihood value over
the surface. Moreover, results from SISR analyses differ from those obtained with the SIS algorithm with
the same number of sampled histories, but are closer to the best results we get with the SIS algorithm
when considering 1,000,000 histories. Our results thus show that SISR analyses on this data set lead
to more accurate inferences than SIS for similar computation costs. According to Table 3, the most
significant improvement due to resampling concerns the parameter θ, which is the most poorly estimated
by the SIS algorithm with nH = 1, 000. To a lesser extent, resampling also improves inference of the
parameter D compared to the SIS algorithm, but conclusions about the parameter θanc are less obvious,
even if almost all analyses lead to values closer to the best estimate we have than the one obtained
without resampling.
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Tackling precisely the effects of the different resampling strategies on this real data set analysis is
more difficult as we do not have in hand the true values of the different parameters and also because our
results show subtle differences among parameters for different resampling strategies. Thus, we can only
globally conclude that resampling, especially when using PCL, always lowers the likelihood estimation
variance and increases the maximum likelihood value on this data set compared to the analysis without
resampling. It should also be noted that resampling according to a distribution which does not depend
on the IS weights but only on the PCL also improves the inference precision compared to SIS in terms of
likelihood estimation variance, maximum likelihood value and parameter estimates (results not shown).

Overall, our results on this fruit bat data set analyses qualitatively agree with those of Storz and
Beaumont (2002) showing a strong evidence for a past population contraction. However, comparison
between their results and our own inferences shows important quantitative differences in point estimates
and associated CIs. First, we found an almost hundred times stronger contraction (e.g. ’Nratio around
0.0005 vs. 0.03) that occurred slightly further in the past with our D̂ being about 0.55 vs. 0.35. Moreover,
our analyses show greater precision for those parameter estimates with CIs that are much narrower than
their credibility intervals. Second, despite Storz and Beaumont (2002) do not present their results in
terms of θ and θanc, we found that our scaled estimates of current population size (i.e. θ) are congruent
with their unscaled estimates of current population sizes and mutation rates. The large differences in
the amplitude of the past contraction inferred by Storz and Beaumont (2002) thus comes mostly from
differences in past population size estimates. Our SIS and SISR analyses inferred ancestral population
sizes that are hundred times larger than their estimates. This latter result do not seem to be due to a
potential bias in our methods as ancestral population size estimates do not decrease with increasing
precision (low RMSE) of estimates of likelihood (the opposite may actually occur).

Table 3: Accuracy of the MLE with SIS and SISR algorithms on the bat data set

(α, β, k) θ̂ D̂ ”θanc ‘Nratio ln(L̂(φ̂)) lik-RMSE

SIS 1.08 0.44 320 0.0034 −663.74 9.2
[0.76 − 1.5] [0.35 − 0.55] [180 − 560] [0.0018 − 0.0062]

SISR

(1, 0, 50)
0.20 0.54 490 0.00041 −586.81 6.7

[0.085 − 0.4] [0.46 − 0.62] [270 − 490] [0.00017 − 0.00098]

(1, 0.0005, 50)
0.18 0.53 380 0.00047 −587.38 5.8

[0.073 − 0.37] [0.45 − 0.63] [240 − 500] [0.00018 − 0.0011]

(1, 0.001, 50)
0.21 0.53 390 0.00053 −586.78 5.3

[0.091 − 0.39] [0.45 − 0.62] [250 − 490] [0.00022 − 0.0011]

(0.7, 0, 50)
0.19 0.53 410 0.00046 −588.25 6.5

[0.075 − 0.40] [0.45 − 0.63] [230 − 510] [0.00016 − 0.0012]

(0.7, 0.0005, 50)
0.20 0.54 450 0.00046 −588.11 6.2

[0.084 − 0.43] [0.45 − 0.63] [250 − 490] [0.00018 − 0.0011]

(0.7, 0.001, 50)
0.22 0.53 440 0.00050 −588.25 8.0

[0.093 − 0.43] [0.45 − 0.63] [272 − 581] [0.00019 − 0.0011]

(0.5, 0, 50)
0.21 0.53 400 0.00053 −588.43 6.4

[0.088 − 0.40] [0.44 − 0.61] [240 − NA] [0.00020 − 0.0012]

(0.5, 0.0005, 50)
0.17 0.52 360 0.00048 −589.07 5.0

[0.066 − 0.38] [0.44 − −0.61] [230 − 490] [0.00017 − 0.0012]

(0.5, 0.001, 50)
0.21 0.54 490 0.00042 −588.99 7.4

[0.091 − 0.40] [0.46 − 0.61] [330 − 490] [0.00018 − 0.00089]
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7 Conclusions

In this study, we proposed to improve sequential importance sample algorithms for likelihood inference
of demographic parameters by adding a resampling procedure based on Liu et al. (2001). The new
resampling probability distribution we considered depends on the SIS weights, as proposed in Liu et al.
(2001) and Liu (2008), but also on the pairwise composite likelihood of the sample, providing additional
information about the future trend of each sampled history. To evaluate the gain in efficiency due to this
new strategy, we focused on varying population size models for which no efficient proposal distribution
is available.

We first showed using simulations that resampling allows to reduce the variance and the bias in
the likelihood estimate at a parameter point. This step allowed us to show that resampling is more
efficient when the checkpoints correspond to a number of coalescent events undergone by each history
rather than considering coalescent and mutations events together, and that checkpoints must be frequent,
more precisely after each coalescence event. This step also showed that the information provided by
the composite likelihood allows a stronger decrease in variance of the likelihood estimates than the
information provided only by the SIS weights.

Then we showed that the increased precision in estimation of likelihood also improved the likelihood-
based inferences. According to numerical results based on the analysis of simulated data sets under
various scenarios of past population size contraction with different strength and timing, we conclude
that the resampling procedure helps to correct the inefficiency of the SIS proposal distribution. Under
those time-inhomogeneous models, the stronger the population size contraction is, the less efficient the
proposal distribution is because it is computed under equilibrium hypothesis. For a similar precision
of inference, SISR provides al least a two-fold, and sometimes a much higher gain in computational
efficiency for these models. However, when the contraction is very recent, the genetic data does not
contain much information about the parameter θ, resulting in flat likelihood surfaces. Consequently, our
simulation results show that (i) when the contraction of the population size is not very recent, the resam-
pling procedure divides the computation cost by at least a factor 2; (ii) when the contraction is not very
strong but very recent, it is not obvious how the resampling improves the inference because we face an
important lack of information for the θ parameter; and finally (iii) in extreme cases of both very recent
and very strong contractions, the resampling procedure divides the computation cost by a factor 100,
partially correcting the inefficiency of the SIS proposal distribution but not the lack of information in the
data, and thus leads to potential bias in θ estimates and associated incorrect CI coverage properties.

Finally, we analyzed a fruit bat microsatellite data set previously analyzed by Storz and Beaumont
(2002) using coalescent-based MCMC algorithms and found that the SISR method allows to infer the
past demographic history of this population with computation times reduced by at least a factor one hun-
dred compared to SIS. Our results also shows a much more pronounced past contraction of population
size, with larger ancestral ancestral size, than previously found.
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A Pairwise Composite Likelihood

In this work, we propose a new resampling probability distribution v on the collection of histories. To
achieve efficiency we should pick a distribution v that reflects the future trend of the partial histories,
more precisely that sets relatively high probabilities on the partial histories that will be the most likely
at the end of the simulation.
Since the information is mainly in the dependency between individuals of the sample, we propose to
substitute the Pairwise Composite Likelihood (PCL), noted L2(h) , for the likelihood of the end of the
history h. Indeed, it is the product of the likelihoods of each pair of individuals remaining in the sample
:

L2(h; φ) =
∏

A∈E: h(A)≥2

L2((A, A); φ)h(A)(h(A)−1)/2 ×
∏

A<B∈E: h(A)≥1,h(B)≥1

L2((A, B); φ)h(A)h(B),

where L2(x, y|φ) is the likelihood of a sample of two alleles in the stepwise mutational model, known
explicitly when the scaled population size is constant equal to θanc:

∀x, y ∈ E, L2((x, y); φ) =
1

√
1 + 2θanc

ρ(θanc)|y−x| where: ρ(θanc) =
θanc

1 + θanc +
√

1 + 2θanc
.

The PCL does not approximate the likelihood but it behaves the same way. In particular, it reflects
the behavior of the remaining lineages in the history h when the population size is equal to the ancestral
size Nanc. Thus we chose to compute the PCL as an expression depending on φ only through θanc. A
judicious idea could be to derive an expression of the PCL with θ(t) depending on t. However, we are
concerned that its calculation would become too complex with respect to the expected gain.

B Simulating holding times of H and H̃

The importance sampling scheme assumes that we are always able to draw simulations from the holding
time distribution. When the process ‹H has just jumped to state h ∈ NE at time t, the distribution of the
holding time ∆ has the following density

P
(
∆ ∈ (δ; δ + dδ)

∣∣Ti = t,Xi = h
)

= λt+δ(h) exp
Ç
−

∫ δ

0
λt+u(h)du

å
dδ

and the following probability distribution function

P
(
∆ ≤ δ

∣∣Ti = t,Xi = h
)

= 1 − exp
Ç
−

∫ δ

0
λt+u(h)du

å
.

The intensity λt(h) is defined by Eq. (5) and depends on the parametric model we set on the population
size N(t). When the population size is constant, λt(h) does not depend on t and this distribution boils
down to the simple exponential distribution with rate λ(h). When we face an exponentially changing
population size, the above probability distribution function can be computed explicitly, see Griffiths
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Algorithm 4: Simulation of the holding time

1. Initialization: set t′ = t

2. Repeat
2.(a) Compute some M greater or equal to sups≥t′ λs(h)

2.(b) Draw δ0 from the exponential distribution with rate M and Set t′ = t′ + δ0

2.(c) Draw u uniformly in [0, 1)

until u ≤ λt′(h)
/

M

3. Return t′ − t

and Tavaré (1994b), and we can rely on the inverse of the probability distribution function to draw
simulations.

In the general case where N(t) can be any parametric function of t, Algorithm 4 might be interesting.
It follows the well known algorithm of Gillespie (1977) which aims at simulating pure jump Markov
processes. There is many ways to show that Algorithm 4 is correct. The simplest one is to claim that the
holding time is exactly the first point after t of a Poisson point process (Kingman, 1992) with intensity
λs(h) at any s ≥ t. And such Poisson point processes can be simulated from a first Poisson point process
with intensity M, constant over time, bounding the intensity λs(h) for any s ≥ t. To this end, we simply
takes any point T ′ from the first process with probability λT ′(h)/M. Thus, Algorithm 4 simulates the first
point t′ of Poisson point process with intensity M at step 2.(b) and rejects it until an event of probability
λt′(h)/M occurs, namely that u ≤ λt′(h)/M. Finally, note that we can easily bound from above the
intensity λs(h) at any s ≥ t by bounding from below the population size after time t, see Eq. (5).

C One-parameter profile likelihood ratios

The likelihood function depends here on three parameter (θ,D, θanc). For each fixed value of the param-
eter θ, we rewrite the likelihood estimate surface as L̂θ(D, θanc) = L̂(θ,D, θanc) that is θ is fixed and D
and θanc vary. We estimate D and θanc by maximizing L̂θ(D, θanc) with respect to D and θanc, i.e.

(D̂θ, θ̂anc θ) = argmaxD,θanc
L̂θ(D, θanc).

As θ is unknown, we evaluate (D̂θ, θ̂anc θ) for each θ. Then we estimate θ by maximizing L̂θ(D̂θ, θ̂anc,θ) :

θ̂ = argmaxθL̂(θ, D̂θ, θ̂anc,θ).

We have profiled out the parameters (D̂, θ̂anc) and the likelihood profile L̂θ(D̂θ, θ̂anc,θ) is completely in
terms of the parameter θ. Then, we represent the likelihood profile function divided by its maximum
value :

θ 7→ L̂θ(D̂θ, θ̂anc θ)/L̂(θ̂, D̂θ, θ̂anc,θ),

We also represent in the same way the profile likelihood ratio for D and the profile likelihood ratio for
θanc, estimated here with an IS algorithm.

D Figures
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a a b a

a→ b

T0 = 0

T1

T2

T3

T4

X0 = (3, 1, 0)

X1 = (2, 1, 0)

X2 = (3, 0, 0)

X3 = (2, 0, 0)

X4 = (1, 0, 0)

Figure 1: An example of path of the process H from the MRCA leading to a sample of 4 genes at time
0, when the set of gene types E = {a, b, c} is composed of three possible alleles.

Figure 2: Demographic model. Representation of the exponentially contracting population size model
used in the study. N is the current population size, Nanc is the ancestral population size (before the
demographic change), T is the time measured in generation since present, and θ is the mutation rate of
the marker used. Those four parameters are the canonical parameters of the model. θ, D, and θanc are
the inferred scaled parameters (Leblois et al. (2014)).
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Figure 3: Evolution of the current partial SIS weights as a function of the number of coalescence
events undergone by the sample, for 100 histories drawn according to the importance distribution. At
each step, the current weights are normalized by the sum of the current weights of all the histories and
represented on a logarithmic scale. In red: the 10 histories contributing the most to the overall estimate
of the likelihood.
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Figure 4: Boxplots of 100 estimates of the likelihood in a given parameter point with different
inference algorithms. The green boxes were obtained by resampling among histories with the same
number of coalescences undergone while the blue boxes were obtained by resampling among histories
with the same number of events undergone and the red box correspond to SIS estimates.
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Figure 5: Boxplots of 100 estimates of the likelihood in a given parameter point with different
inference algorithms. The red box correspond to SIS estimates. The red horizontal line represents the
reference value and the cross on each box represents the mean of the 100 estimates of this box. Each
block of three to five boxes with similar colors (pink, orange, green, bleu and mauve) corresponds to
SISR with a fixed value: (a) of α for four different values of k when β = 0.01 is fixed for all the SISR
estimations, (b) of β for five different values of α when k = 1 is fixed for all the SISR estimations, (c) of
β for four different values of k when α = 0.7 is fixed for all the SISR estimations, and (d) of k for three
different values of β when α = 0.7 is fixed for all the SISR estimations. See main text for details about
k, α and β.
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Figure 6: MSE Ratios obtained with β = 0 and 0.01. (a) and (b) both represent the same MSE ratios
but differ on the arrangement of the points. Each color corresponds to a value of α and each shape
corresponds to a value of k, (a) each vertical alignment of five points corresponds to a fixed value of
k for five different values of α, (b) each vertical alignment of six points corresponds to a fixed value
of k for six different values of α. (c) MSE Ratios obtained with k = 1 and different values of α. The
horizontal blue line represents the lower MSE Ratio obtained with k = 1 and β = 0 among different
values of α. See main text for details about k, α and β.
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(d) SISR nH = 100

Figure 7: Empirical Cumulative Distribution Functions (ECDF) of p-values of Likelihood ratio
tests for the scenario θ = 0.4, D = 1.25 and θanc = 40. Inference (a) with the SIS procedure with
nH = 50 sampled histories (b) with the SISR procedure with nH = 50 (c) SIS with nH = 100 (d) SISR
with nH = 100, on 500 simulated data sets. Relative bias and relative RMSE are also reported, and KS
indicate the p-value of the Kolmogorov-Smirnov test for departure of LRT p-values distributions from
uniformity. 28
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Figure 8: ECDF of p-values of Likelihood ratio tests for the scenario θ = 0.4, D = 1.25 and
θanc = 400. (a) and (b) with nH = 100 (c) and (d) with nH = 200 and (e) and (f) with nH = 400, on 500
data sets. See Fig. 7 for details.
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(b) SISR nH = 2000

Figure 9: ECDF of p-values of Likelihood ratio tests for the scenario θ = 0.4, D = 0.25 and
θanc = 40, with nH = 2000 sampled histories, on 200 simulated data sets. See Fig. 7 for details.
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(d) SISR nH = 2000

Figure 10: ECDF of p-values of Likelihood ratio tests for the scenario θ = 0.4, D = 0.25 and
θanc = 400. (a) SIS with nH = 2000 sampled histories (b) SIS with nH = 20000 sampled histories (c)
SIS with nH = 200000 sampled histories (d) SISR with nH = 2000 sampled histories, on 200 simulated
data sets. See Fig. 7 for details.
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(b) SISR
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(c) SIS
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(d) SISR
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(e) SIS

1e
−0

4
1e
−0

2
1e

+0
0

2Nµ on a log scale

Li
ke

lih
oo

d 
ra

tio

0.001 0.01 0.1 1

1e
−0

5
1e
−0

3
1e
−0

1

D on a log scale

Li
ke

lih
oo

d 
ra

tio

0.1 0.2 0.5 1

1e
−0

5
1e
−0

3
1e
−0

1

2Nancµ on a log scale

Li
ke

lih
oo

d 
ra

tio

10 20 50 100
1e
−0

5
1e
−0

3
1e
−0

1

N ratio on a log scale

Li
ke

lih
oo

d 
ra

tio

10−5 10−4 0.001 0.01 0.1

One−parameter likelihood ratio profiles

(f) SISR

Figure 11: One-parameter profile likelihood ratios. (a) and (b) represent the likelihood profile func-
tion divided by its maximum value θ 7→ L̂θ(D̂θ, θ̂anc θ)/L̂(θ̂, D̂θ, θ̂anc θ), (c) and (d) represent in the same
way the profile likelihood ratio for D and (e) and (f) represent the profile likelihood ratio for θanc, esti-
mated respectively with SIS (left) or with SISR (right). See Appendix. C for details on profile likelihood.
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