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Abstract: In this paper we want to show how MDE (Model Driven Engineering) 
approaches may help solving some practical engineering problems. Our view of 
MDE is not based on the usage of huge and rather monolithic modeling lan-
guages like UML 2.0 but instead on small DSLs (Domain Specific Languages) 
defined by well focused metamodels. As a consequence we use a rather "agile" 
view of MDE where each tool is characterized by one of several metamodels 
and where the interoperability between tools is implemented by specific model 
transformation operations. We base our discussion on a practical illustrative 
problem of bug-tracking in a collaborative project involving different partners 
using tools at different maturity levels. We conclude by discussing the help that 
MDE approaches may bring to solving these kinds of situations.   

1   Introduction 

Today’s software development practices rely on a dynamic set of languages, tools, 
and processes. Development teams are often geographically distributed and their work 
usually needs an integration step to form a complete product. However, before this in-
tegration is achieved the differences at the syntactical level of the created artifacts 
(e.g. different file formats, data representation schemes) and at the semantic level (dif-
ferences in the underlying conceptual models, problems with language expressive-
ness, etc.) must be reconciled. In other words, the integration problem is preceded by 
a problem of interoperability at various levels. 

One possible interoperability problem is the interoperability among tools. Cur-
rently the market offers a large set of software tools coming from various vendors for 
achieving a broadening spectrum of different purposes. The competition between 
vendors often leads to proprietary solutions or to solutions that slightly deviate from 
standards. Apart from this, a large set of partially supported or not supported legacy 
tools introduces an additional complexity to the problem. 

In general, to enable interoperation between tools, the artifacts created with one 
tool should be somehow accessible from other tools. One possible solution is to apply 
transformations between various formats employed in different artifacts. The Model 
Driven Engineering (MDE) approach prescribes the utilization of modeling practices, 



mainly models, metamodels and model transformations and should provide the re-
quired capabilities to perform such transformations. 

In this paper we focus on the tool interoperability problem in the context of soft-
ware development and more specifically on the interoperability of bug tracing sys-
tems. We use the AMMA (ATLAS Model Management Architecture) model engi-
neering platform as a means for representing various tools and their underlying 
conceptual models and to specify and execute transformations among them. The more 
general goal we pursue is to generalize the experience gained in this domain and to try 
to attack interoperability problems in other domains too. 

We have experimented with the model engineering approach to interoperability by 
using a case study in which three different tools were used for bug tracing. We devel-
oped bridges between these tools by using model transformations. The results showed 
that the approach is promising and many problems, in this particular area, can be effi-
ciently solved on the basis of MDE principles. 

All the artifacts described in this paper (mainly source of metamodels and trans-
formations) are available as open source contributions in the Eclipse GMT project [1] 
together with the transformation engine and associated development tools (ATL). 

This paper is organized as follows. In section 2 we present the motivating example 
treated in the paper. Section 3 describes our approach to interoperability based on 
model engineering. In this approach metamodels are built for every tool and transfor-
mations between the models created by the tools are defined. Section 4 presents the 
metamodels and section 5 presents the transformations. Section 6 presents a discus-
sion and a short comparison with related work. Finally, section 7 concludes the paper. 

2   Motivating Example 

Problems of tools interoperability can be found in many and various domains. Soft-
ware quality control is one of these domains because several tools are often used to 
ensure the quality of a software product. Since this is a quite wide domain, in this pa-
per we will focus on a sub-domain in order to illustrate our approach. 

We take an example of “bug-tracing” or “bug-tracking” in the case of a software 
product development. Assume that three teams are currently working on the same 
product at the same time but on different modules of this product. Teams may be geo-
graphically distributed, may have different levels of maturity of the used development 
process, may have different experience for the team members, and may consequently 
use different tools. The global situation may be described as follows: 

• Team “A” is developing the first module by using an Excel workbook with a spe-
cific format to track or trace bugs; 

• Team “B” is working on the second module and uses Bugzilla [2] which is a free 
bug-tracking system; 

• Team “C” is developing the third module and uses Mantis Bug Tracker [3] which 
is another free bug tracking system; 



A fourth team (that we name Team “D”) must integrate the various modules devel-
oped by this three teams into a complete software solution. It also has to deal with all 
the bugs that have been detected but not yet resolved for each module. 

The problem is that each team has used a different tool for keeping track of bugs. 
So in that case, how to succeed in centralizing bug-tracking, i.e. how to be able to 
interoperate from a tool to another without losing critical information about detected 
bugs? Furthermore the level of maturity of each team may dynamically evolve, each 
one learning from the global project. A given team may thus upgrade at some point in 
time its practices to those used by another one. 

The AMMA model engineering platform (ATLAS Model Management Architec-
ture) [4] offers a means of solving this type of problems by using metamodels and 
transformations between models conforming to these metamodels. 

3   Proposed Approach 

Our approach to interoperability between bug tracking tools is based on the principles 
of model engineering. In this approach we treat the information described by a bug 
tracking system as a model that conforms to a given metamodel (usually specific to 
the tool being employed). This makes it possible to use model transformations to con-
vert the description of bugs from one tool to another. The AMMA platform provides 
the capabilities to define metamodels and to define model transformations. It is built 
on top of Eclipse Modeling Framework (EMF) [5]. The general overview of the ap-
proach is presented in Figure 1. 
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Figure 1 Overview of our model engineering approach to interoperability 

In this approach, each different “bug-tracking” tool is described by a metamodel. 
Each tool’s metamodel is linked to others by the “logical” pivot: transformations 
based on these metamodels to the pivot and from the pivot to the metamodels are im-
plemented. This pivot is also a metamodel. It abstracts a certain number of general 
concepts about “bug-tracking”. Moreover, because in this example each tool uses an 



XML format to import/export data, we need to create an XML metamodel1. The aim 
of this metamodel is to make possible the injection of the content of an XML file into 
a model and the extraction of the content of a model into an XML file. Each model 
that we will have to handle will conform to one of these metamodels (tool’s, pivot’s 
or XML’s one). Thus there is a transformational bridge between each of the tools 
shown in Figure 1 and, in this manner, each of these tools can interoperate with the 
others.  

As a consequence, it is possible to easily add a new tool to the previously described 
system by: 

• creating the associated metamodel;  
• building the bridge (composed of two transformations) between this metamodel 

and the logical pivot metamodel; 
• making the XML injector/extractor for this metamodel; 

After we have set up the principles of our approach, we are able to present the 
metamodels and the transformations that have been implemented. Section 4 presents 
the metamodels and Section 5 explains the model transformations. 

4   Metamodel Support 

Metamodels (lying at the M2 level of the OMG metamodeling stack) are entities used 
to define domain specific languages (DSL) related to data formats and tools. In the 
context of the AMMA platform metamodels conform to KM3 (Kernel MetaMeta-
Model), which is a metametamodel (M3 level) close to Ecore [6] and EMOF 2.0 [7]. 
KM3 provides a textual concrete syntax quite similar to the Java notation. 

In our approach we may distinguish several kinds of metamodels: 

• Input/Output metamodels that in most of the cases describe the format of in-
put/output files such as XML files; 

• Physical metamodels that describe the domain specific languages used by tools; 
• Logical metamodels that are created to generalize a certain number of concepts 

common to several tools and thus to several DSLs; 

This section provides the descriptions of the metamodels used in our example by 
respecting the classification given above. 

4.1   The Input/Output Metamodel: XML Metamodel 

Microsoft Excel, Bugzilla, and Mantis (and a lot of tools in general) do not natively 
use XMI (the OMG standard for serializing and exchanging models and metamodels). 
Instead they use a general XML format to import/export data. It is thus necessary to 

                                                           
1 In the AMMA platform, XML is considered as a technical space with standard projectors (in-

jectors/extractors) to/from the base MDA technical space. Other different technical spaces 
(e.g. EBNF) could have been similarly considered. 



define an XML metamodel in order to be able to inject the content of XML files into 
models and to extract the content of these models into other XML files. 

The simple XML metamodel we use is described in Figure 2. 
Node

-startLine[0..1] : Integer
-startColumn[0..1] : Integer
-endLine[0..1] : Integer
-endColumn[0..1] : Integer
-name[1] : String
-value[1] : String

Element

Root

Attribute Text

-parent 0..1

-children

*

 
Figure 2 A simple XML metamodel 

In this metamodel each element is a node which is identified by its name. The root 
element is the root of an XML document. It can contain several elements which can, 
in turn, contain other elements. Moreover, each element can have a list of attributes 
and text nodes.  

4.2   The Physical Metamodels 

In our example, we have three metamodels regarded as physical metamodels. Each 
different “bug-tracking” tool or general tool used for bug-tracking (Bugzilla, Mantis 
Bug Tracker, Excel) used by a team is associated to a metamodel of this kind. This 
subsection presents in more details these three physical metamodels. 

4.2.1   SpreadsheetMLSimplified (Excel) 
Microsoft Excel uses an XML language called SpreadsheetML to import/export Excel 
workbooks in the XML format. This is a very complex XML language defined by 
several XML schemas allowing to deal with most of the information saved in the Ex-
cel binary format ‘.xls’.  Since handling of relatively small metamodels is more effi-
cient, we only use a part of this language: a sufficient subset to preserve the global 
structure of an Excel workbook and to contain the raw data. 

The simplified metamodel of Excel called SpreadsheetMLSimplified is presented in 
Figure 3. 



 
Figure 3 Simplified version of the Excel metamodel  

(SpreadsheetMLSimplified) 

According to this metamodel an Excel file is a workbook. A workbook can have 
several worksheets. Each worksheet can have a table which is composed of table ele-
ments (columns, rows and cells). A table contains columns and rows. Each row con-
sists of several cells. The cells contained in rows store the raw data of a given type. 

4.2.2   Bugzilla 
Bugzilla is a free “defect-tracking” or “bug-tracking” system originally developed by 
the Mozilla Foundation. A huge database allows it to store a large amount of informa-
tion about a lot of bugs. These data are too complex to be easily handled by SQL re-
quests. However, it is possible to use a Perl script to import/export bugs’ data in a 
simpler XML format. The data in XML files conform to a simple DTD. 

The simple Bugzilla metamodel presented in Figure 4 is inspired by this DTD. 



 
Figure 4 Simplified version of the Bugzilla metamodel 

A Bugzilla model is a set of bugs. Each bug is identified by an “id” string and con-
tains much information about the bug itself but also about the people who deals with 
it, the software product that is concerned with, etc. 

4.2.3   Mantis 
Mantis is a web-based bug-tracking system written in PHP that uses a MySQL data-
base. Once again, such as for Bugzilla, the database is described by a complex rela-
tional schema. Mantis also allows importing/exporting bug data in XML files. The 
XML files conform to an XML schema. The Mantis metamodel inspired by this 
schema is presented in Figure 5. 



 
Figure 5 Simplified version of the Mantis metamodel 

A bug in Mantis is named “issue”. Consequently, a Mantis model is a set of issues, 
each issue being identified by a unique number. Similarly to Bugzilla, an issue con-
tains much information about itself, its software product, etc. 

4.3   The “Pivot” Logical Metamodel: SoftwareQualityControl 

By looking at the Bugzilla and Mantis metamodels, we find a lot of similarities. The 
information contained in a Bugzilla “bug” or in a mantis “issue” is often based on a 
similar structure. This information is also quite similar to the one contained in the 
specific format of Excel workbook in our example. That is the reason why it is neces-
sary to create a logical metamodel which will be used as a “pivot” to facilitate the 
construction of bridges from a metamodel to another. By this skew, it will be simpler 
to improve interoperability between the various tools related to these metamodels.  

Moreover, it would be interesting to allow the management of software quality 
control in general, not only its bug-tracking aspect. So the metamodel has to be gen-
eral enough to easily allow adding of new types of software quality controls even if, 
for our example, we only need a “bug-tracking” logical metamodel. 

The logical metamodel we created is depicted in Figure 6.  
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Figure 6 Software quality control metamodel 

A software quality control model is composed of several controls. Each control is 
defined by specific information about the component and the element which are con-
cerned, about the person who is responsible for the control, the date, etc. The main in-
formation is the type of the control. It determines what kind of actions has been per-
formed and consequently what kind of data have been saved. In the case of our 
example, we only create BugTracking type but it could have a lot of other control 
types. In this type, the control consists of a set of bugs in which each bug is identified 
by a unique number. The information associated to a bug is identical to the one we 
can find in Bugzilla and Mantis.      

5   Model Transformations 

Model transformations are the second type of components in our proposed approach 
to solving problems of interoperability between several bug-tracing systems. In the 
context of AMMA platform transformations are written in ATL (ATLAS Transforma-
tion Language) [8]. ATL is a QVT-like language [9] for transformation of models 
(M1 level), which conform to metamodels (M2 level) previously written in KM3 (see 
section 4). 



5.1   Overview 

In the previous sections we described a library of small metamodels related to bug-
tracking. We can use ATL to implement bridges between the different tools of our ex-
ample which are Microsoft Excel, Bugzilla and Mantis. Several bridges are possible 
and interesting to implement. We have experimented with “Excel-to-Bugzilla” and 
“Excel-to-Mantis” bridges for this paper. These bridges are implemented as chains of 
model transformations. An overview of the bridges is given in Figure 7. 
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Figure 7 Excel-to-Bugzilla and Excel-to-Mantis bridges 

In fact we do not implement direct bridges between these tools. As was mentioned 
in section 3 we use the logical metamodel SoftwareQualityControl as a pivot and 
therefore every model used in one of the tools is transformed to an intermediary 
model conforming to the logical pivot. 

We can see that an Excel file in XML is the entry point of the two bridges. This 
file has to be injected into an XML model before being transformed into an Excel 
(SpreadsheetML) model and a SoftwareQualityControl model. Then, this Software-
QualityControl model can be transformed into Bugzilla and Mantis models. Finally, 
these two models have to be transformed into XML models in order to be extracted 
into well-formed XML documents. These files are the exit points of the two bridges. 
Next sections explain each transformation in details.   

5.2   Excel to Software Quality Control 

This transformation is common to the two bridges. Here is the point of using the logi-
cal metamodel (SoftwareQualityControl) as a pivot. In this manner, we only need one 
transformation instead of two. Moreover, the creation of a new bridge to another tool 
will be facilitated because a part of this bridge is already made.  

To make this transformation we proceed in three steps. There are detailed below. 



5.2.1   First Step: Inject XML 
Microsoft Excel is able to save its files as XML documents. So XML is the input 
metamodel of our two bridges. That is the reason why we first need to inject the con-
tent of the XML file in an XML model (conforming to the simple XML metamodel 
described in Figure 2). The XML injector is integrated into an Eclipse ATL plug-in 
from the standard ATL perspective. 

5.2.2   Second Step: XML2SpreadsheetMLSimplified 
This transformation is a simple mapping from an XML source model representing the 
content of an Excel file in the SpreadsheetML dialect to a SpreadsheetMLSimplified 
target model. As the target model has to conform to the simplified SpreadsheetML 
metamodel (Figure 3), the main work of this transformation is preserving the global 
structure of the Excel workbook in order to store only the raw data. All the informa-
tion about styles, formatting and printing options is removed in the target model.  

5.2.3   Third Step: SpreadsheetMLSimplified2SoftwareQualityControl 
Now that we have a SpreadsheetML source model, we are ready to transform the data 
contained in the Excel workbook into a SoftwareQualityControl target model (con-
forming to the metamodel described in Figure 6) which will be then used as a “pivot”. 
As the format of the Excel table contained in the source model is well-known, we can 
extract the required information quite easily from it and construct the target model. 

At the end of this step, all the necessary information stored in the Excel workbook 
has been recovered and correctly formatted into the target model.    

5.3   Software Quality Control to Bugzilla 

This transformation is specific to Bugzilla bug-tracking system. It follows the Excel-
to-SoftwareQualityControl transformation structure. Once again, it is composed of 
three steps which are detailed below. 

5.3.1   First Step: SoftwareQualityControl2Bugzilla 
The source model is the SoftwareQualityControl “pivot” model. Most elements of it, 
such as the bug number, and the bug status can easily find their equivalent in the Bug-
zilla target model. But for some other elements it is more difficult to find an equiva-
lent. This can cause a loss of information in certain cases. Moreover, some required 
attributes in Bugzilla have no equivalent in the source model so they have to be ini-
tialized with a default value.  

The aim of this transformation is to construct a valid Bugzilla model from the 
“pivot” model. So, in all cases, the generated Bugzilla model conforms to the Bugzilla 
metamodel (Figure 4).  

5.3.2   Second Step: Bugzilla2XML 
Files used to import/export Bugzilla’s data are XML documents: XML is the output 
metamodel of the “Excel-to-Bugzilla” bridge. As a consequence we need to transform 
the source Bugzilla model to an XML target model that conforms to the simple XML 



metamodel provided in Figure 2. The mapping between Bugzilla and XML is really 
obvious since the Bugzilla metamodel is based on a DTD. The content of the pro-
duced XML model conforms to the Bugzilla DTD.  

5.3.3   Third Step: XML2BugzillaText 
The produced XML model must be extracted to an XML file in order to be used by 
Bugzilla. The extractor is based on an already existing “XML2Text” transformation 
that generates a valid and well-formed XML document. 

The end of this step is the exit point of the “Excel-to-Bugzilla” bridge. 

5.4   Software Quality Control to Mantis 

This transformation is specific to Mantis Bug Tracker. It follows the “SoftwareQuali-
tyControl-to-Bugzilla” transformation structure. To make this transformation we also 
proceed in three steps which are described below. Because this transformation pre-
sents many similarities with the “SoftwareQualityControl-to-Bugzilla” one, we will 
not describe it in detail.   

5.4.1   First Step: SoftwareQualityControl2Mantis 
The observations we made for the “SoftwareQualityControl2Bugzilla” transformation 
are also valid for this one. However, it is important to note that Bugzilla and Mantis 
metamodels (Figure 4 and Figure 5) have some differences: some elements in the 
Mantis metamodel, for example “reproducibility”, do not have any equivalent in the 
Bugzilla metamodel. 

In all cases, the produced Mantis model conforms to the Mantis metamodel.  

5.4.2   Second Step: Mantis2XML 
For the same reasons as for the Bugzilla case, an XML target model is generated from 
the Mantis source model. The content of this target model conforms to the Mantis 
XML schema. 

5.4.3   Third Step: XML2MantisText 
As the “XML2BugzillaText” transformation, this one is based on the “XML2Text” 
transformation. The produced XML file is reusable by Mantis.   

The end of this step is the exit point of the “Excel-to-Mantis” bridge. 

6   Discussion & Related Work 

The problem of interoperability has been addressed by different research communi-
ties. Different levels of interoperability may be identified: syntactic interoperability 
and semantic interoperability. Here we briefly outline some of the existing work in 
this area without claiming exhaustiveness. 



In Business-to-Business electronic commerce different companies exchange elec-
tronic documents that may be written in different XML languages thus causing an in-
teroperability problem. This problem may be solved by XSLT transformations or by 
splitting the transformation task at two levels as described in [11]. This splitting sepa-
rates the syntactic and semantic mapping in two subtasks. By using only XSLT trans-
formations these tasks are performed in a single transformation program. 

A similar problem is observed in the area of knowledge representation where a 
domain may be described by different ontologies that carry the same meaning but are 
expressed in different ways. This problem has been addressed by applying transfor-
mations between ontologies [10]. 

Finally, in the area of integration of heterogeneous XML data sources a pivot con-
ceptual model is sometimes built to abstract from the syntactical differences and to 
provide a common and abstract view over different sources. The approach described 
in [12] relies on ontology language for specifiying the pivot and on XPath as a base 
for transformations from the logical pivot and the underlying XML data. 

The main difference of these approaches compared to ours is that they are usually 
performed in the context of only one technical space [13] (e.g. XML in [11] and on-
tologies in [10]), or in a fixed number of spaces. In our approach it is possible to deal 
with an arbitrary number of technical spaces and their associated tools provided that 
the metamodels employed by the tools are built and injectors of their content are de-
fined. From this point of view an MDE-based approach allows a uniform treatment of 
various technologies on the basis of MDE principles. 

Our approach allows a relatively easy addition of new tools that have to operate 
with the existing ones. The only thing that is required is to build new physical and in-
put/output metamodels. After this, bridges from these models to the ‘pivot’ model 
have to be defined. This evolution scenario may be complicated if there are signifi-
cant differences between the pivot and the newly added physical metamodel. In that 
case the pivot may need to be updated. 

7   Conclusion 

Many lessons learnt in this project may be applicable more generally to various con-
texts and goals. This section will try to outline some of them. 

In our work we have a specific bias to using "agile metamodeling" with small 
metamodels.  This contradicts many mainstream proposals that use large and pre-
defined "one size fits all" metamodels like UML 2.0. We need more experiments to 
assess the advantages and drawbacks of each of these approaches named below "agile 
modeling" and "monolithic modeling". 

Agile modeling presented here is based on the idea that a new DSL (defined by a 
metamodel) should be created (or reused) for each specific task or situation. On the 
contrary, monolithic modeling (mainly illustrated by typical UML 2.0 approaches) is 
based on the idea that a unique (or unified, or united) modeling language may be used 
for most activities. No new metamodel has thus to be defined. Instead we may possi-
bly specify that we use only some part of the language (informal restriction) or that 



we use some controlled extension to the language, by the way of UML profiles for 
example. 

The monolithic modeling approach has some apparent advantages: 
• No metamodel to create; 
• No large library of metamodels to manage and maintain; 
• One consistent language framework where all the interactions between compo-

nents (e.g. between classes, use cases, statecharts, activities, etc.) have already 
been accurately specified; 

• Only one language to learn; 
 
Each of these advantages is a drawback for the agile approach which seems much 

more demanding: 
• It needs metamodel designers, i.e. highly skilled personnel in the project; 
• It has to manage the fragmentation of all these created or reused metamodels; 
• The transformations are exogenous transformations (different source and target 

metamodels) whereas in the monolithic approach we have mainly endogenous 
transformations (i.e. UML-to-UML); 

 
Our definitive choice of the agile modeling approach is based on the experience 

accumulated in the AMMA and previous model engineering projects: 
• A transformation is more precise if the source and target metamodels closely fit the 

transformation itself. This is similar to typing issues in programming languages, 
metamodels playing the role of types and models the role of variables or parame-
ters; 

• Experimental evidence has shown that the work involved in defining a transforma-
tion is rather concentrated on the definition of the source and target metamodels. 
This is also related to the previously mentioned issue; 

 
We are well aware of the remaining difficulties of agile modeling, mainly due to 

the fragmentation issue already mentioned. However we do believe that, in the end, 
this option will prevail because of several advantages: 
• It is easier to work by modular extension, starting from small metamodels, than to 

work by restriction, masking the facilities that one does not need for a particular 
task; 

• It is easier to define with accuracy a small metamodel than a huge metamodel; 
• The work of defining a small metamodel (like Excel, Bugzilla or Mantis) consists 

mainly of explicating the understanding of various tools or situations. This work 
should have to be done anyway. Using DSLs and specific metamodels only offers a 
precise framework and notation to do it; 

• When we will have the correct infrastructure to handle vast libraries of metamod-
els, the expertise gained in projects like the one described in this paper will be effi-
ciently reusable and adaptable to similar contexts; 

 
In the present work we have mainly considered tool interoperability based on data 

stream exchange, the format and content of these streams being captured by meta-
models. A possible extension would be to deal with the dynamic behavior of these 



tools, captured by other forms of state-based or event-based metamodels. Even if this 
is more complex to handle, the general approach would still be very similar. 
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