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Abstract Logical formalisms equivalent to weighted

automata have been the topic of numerous research pa-

pers in the recent years. It started with the seminal re-

sult by Droste and Gastin on weighted logics over semi-

rings for words. It has been extended in two dimensions

by many authors. First, the weight domain has been ex-

tended to valuation monoids, valuation structures, etc.,

to capture more quantitative properties. Along another

dimension, different structures such as ranked or un-

ranked trees, nested words, Mazurkiewicz traces, etc.,

have been considered. The long and involved proofs of

equivalences in all these papers are implicitly based on

the same core arguments.

This article provides a meta-theorem which unifies

these different approaches. Towards this, we first re-

visit weighted automata by defining a new semantics
for them in two phases—an abstract semantics based on

multisets of weight structures (independent of particu-

lar weight domains) followed by a concrete semantics.

Then, we introduce a core weighted logic with a mini-

mal number of features and a simplified syntax, and lift

the new semantics to this logic. We show at the level

of the abstract semantics that weighted automata and

core weighted logic have the same expressive power. Fi-

Part of the research leading to these results was achieved
when the second author was at Université libre de Brux-
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nally, we show how previous results can be recovered

from our result by logical reasoning.

In this paper, we prove the meta-theorem for words,

ranked and unranked trees, showing the robustness of

our approach.

1 Introduction

Weighted automata are a well-studied formalism mod-

elling quantitative behaviours. Introduced by Schützen-

berger in [20], they have been applied in many areas

such as image compression [1], natural language pro-

cessing [17], verification and synthesis of programs [4],

etc. In the last years, high-level specification formalisms

of quantitative properties have received increasing in-
terest. Among other successes, the connection between

monadic second-order logic (MSO) and finite automata

established by Büchi, Elgot and Trakhtenbrot [3,15,22],

has been extended to the weighted setting.

There have been many attempts to find a suitable

extension of MSO to describe quantitative properties

which captures the expressive power of weighted au-

tomata. The considered variants differ with respect to

the structures (words, ranked or unranked trees, nested

words, etc.) and the weight domains (semirings, valua-

tion monoids, valuation structures, multi-operator mo-

noids, etc.). This article aims at revisiting the link be-

tween weighted logics and weighted automata in a uni-

form manner with regards of these two dimensions.

Our main contribution is to consider a new frag-

ment of weighted logics containing a minimal set of fea-

tures. In order to simplify the uniformity with respect

to the structures, we syntactically separate a Boolean

fragment from the weighted part: only the syntax of

Boolean formulæ depends on the structures considered.



Then, we clearly separate a small fragment able to de-

fine step functions—that we call step formulæ—from

the more general weighted logic. Because of the min-

imal set of features that it displays, we call our logic

core weighted monadic second-order logic. This sepa-

ration into three distinct layers, more or less clear in

previous works, is designed both to clarify the subse-

quent study of the expressive power, and to simplify

the use of the weighted logic.

Towards defining the semantics of this new logic,

we first revisit weighted automata by defining an al-

ternative semantics, then lifting it to formulæ. This is

done in two phases. First, an abstract semantics as-

sociates with a structure a multiset of weight labelled

structures. E.g., in the case of words, a weighted au-

tomaton/formula will map every word to a multiset of

weight words. In the setting of trees, every tree is associ-

ated with a multiset of weight trees (of the same shape

as the original tree). This abstract semantics is fully

uninterpreted and, hence, does not depend on any alge-

braic structure over the set of weights considered. This

semantics is in the spirit of a transducer. It has already

been used in similar contexts: in [16] with an operator

H(ω) which relabels trees with operations taken from a

multi-operator monoid, in [19] with a weight assignment

logic over infinite words, in [12,19] with Nivat theorems

for weighted automata over various structures. In a sec-

ond phase, a concrete semantics is given, by means of

an aggregation operator taking the abstract semantics

and aggregating every multiset of weight structures to a

single value (in a possibly different weight domain). For

instance, the usual semantics of weighted automata over

semirings can be recovered by mapping every weight

word to the product of its weights, and merging the

multiset with the addition of the semiring.

Separating the semantics in two successive phases,

both for weighted automata and logics, allows us to re-

visit the original proof of expressive equivalence of [6] in

the abstract semantics. This result has been extended

to various weight domains and/or structures (see be-

low). The proof of equivalence in all these works are

based on the same core argument which relates runs of

automata with the evaluation of formulæ. Inspired by

the above similarities, our choice of the abstract multi-

set semantics manifests this core argument. Because the

abstract semantics is fully uninterpreted, no additional

hypotheses on the weight domain is required to prove

the equivalence. We then apply the aggregation opera-

tor to obtain a concrete equivalence between weighted

automata and our core weighted logic.

Our last contribution is to show, by means of purely

logical reasoning, that our new fragment of core weigh-

ted logic is expressively equivalent to the logics pro-

posed in the previous works. Over finite words, this al-

lows us to recover the results over semirings [6], (prod-

uct) valuation monoids [10] and (product) valuation

structures [11]. Valuation monoids replace the product

operation of the semiring by a lenient valuation op-

eration, making possible to consider discounted sums,

average or more evolved combination of sequences of

weights. Valuation structures finally also replace the

sum by a more general evaluation operator, for instance

ratios of several weights computed simultaneously. As

an example, it is then possible to compute the ratio be-

tween rewards and costs, or the efficiency of use of a

primary resource under some upper bound constraint

on a secondary resource. Our unifying proof gives new

insights on the additional hypotheses (commutativity,

distributivity, etc) over the weight domains used in these

works.

After studying in full details the case of finite words,

we illustrate the uniformity of the method with respect

to structures, by considering ranked and unranked trees.

Once again, our study revisits existing works over semi-

rings [13,14], (product) valuation monoids [7], and also

multi-operator monoids [16]. The syntax of the logic in

the case of multi-operator monoids is different from the

other logics. The proof techniques used to show equiva-

lence of the two formalisms are nevertheless very close

to the original ones for semirings.

2 Preliminaries

In this section, we recall the basic notions of semirings

and multisets that we will need in the following.

A semiring is a tuple (S,+,×, 0, 1) where + and ×
are two binary operations, and 0 and 1 are two elements

of S, verifying the following:

– (S,+, 0) is a commutative monoid;

– (S,×, 1) is a monoid;

– × distributes over +;

– 0 is a zero, i.e., s× 0 = 0× s = 0 for all s ∈ S.

Classical examples of semirings are given by (Z,+,
×, 0, 1), (N∪{−∞},max,+,−∞, 0), (R∪{+∞},min,+,

+∞, 0), (P(Σ?),∪, ·, ∅, {ε}) where Σ is a finite alpha-

bet and · denotes the concatenation. More examples

can be found in, e.g., [9,18].

Multisets generalise sets by allowing several occur-

rences of the same element in a multiset. For instance,

A = {{a, a, b, b, b, c}} is a finite multiset consisting of

two occurrences of a, three occurrences of b and one

occurrence of c. Formally, a multiset A over a set X

is a (multiplicity) function A : X → N which gives for

each x ∈ X the number A(x) of occurrences of x in A.
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The size of a multiset is denoted by |A| =
∑
x∈X A(x),

and we denote by x ∈ A the fact that A(x) 6= 0.

The disjoint union of multisets, defined by the point-

wise sum (A ] B)(x) = A(x) + B(x) for all x ∈ X, is

a commutative and associative operation on multisets

with the empty multiset, denoted by ∅, as neutral el-

ement. A multiset A is finite if its support supp(A) =

{x ∈ X | A(x) 6= 0} is finite. We denote by N〈X〉 the

set of finite multisets over X. Clearly, (N〈X〉,], ∅) is a

commutative monoid.

Every operation defined on the set X can be lifted to

multisets over X. For instance, if � is a binary operation

over X then it is lifted as a binary operation over N〈X〉
by A � B = {{a � b | a ∈ A, b ∈ B}}: formally, for all

x ∈ X, we let

(A �B)(x) =
∑

(x1,x2)∈X2

x=x1�x2

A(x1)×B(x2) .

For instance, if X = N and � = × is the usual product,

we get {{1, 2, 2}} × {{3, 6}} = {{3, 6, 6, 6, 12, 12}}.
Similarly, a unary operation f : X → Y is lifted as a

unary operation from N〈X〉 to N〈Y 〉 by f(A) = {{f(a) |
a ∈ A}}: formally, for all y ∈ Y , we let(
f(A)

)
(y) =

∑
x∈X
f(x)=y

A(x) .

For instance, if X = Z, Y = N, f(x) = x2 and A =

{{−2,−1,−1, 0, 1, 3}} then f(A) = {{0, 1, 1, 1, 4, 9}}.
When (Y,+, 0) is a commutative monoid and B ∈

N〈Y 〉 then we let∑
B =

∑
y∈Y

(
y + · · ·+ y︸ ︷︷ ︸
B(y) times

)
be the sum of the elements in B (with multiplicities),

where
∑

denotes the addition in the monoid. For in-

stance, with notations of the previous example, we have∑
f(A) = 16. Note that

∑
∅ = 0.

Multisets over a monoid form a semiring. More pre-

cisely, let (M,×,1) be a monoid. Then, lifting × to

N〈M〉 yields a monoid with {{1}} as neutral element.

Moreover, × distributes over ] and ∅ is a zero for ×.

Therefore, (N〈M〉,],×, ∅, {{1}}) is a semiring.

In this paper, we will mainly use the free monoid

(R?, ·, ε) over a finite set R of weights, and the induced

semiring (N〈R?〉,], ·, ∅, {{ε}}).

3 Weighted automata

Weighted automata are a well-studied model of compu-

tation of formal power series introduced by Schützen-

berger in [20]. Originally introduced over integers, they

q1 q2 q3

a, 0

b, 0

b, 0

a, 1

b, 0

a, 0

b, 0

Fig. 1 A {0, 1}-weighted automaton over {a, b}

have afterwards been extended to more general weighted

domains. We recall here the syntax of weighted au-

tomata, and then give the semantics in various weight

structures, before revisiting this semantics with our new

abstract semantics.

3.1 Syntax of weighted automata

Formally, a weighted automaton is simply a classical

finite state automaton over a finite alphabet Σ, where

every transition is equipped with a weight taken from a

set R. Precisely, an R-weighted automaton over Σ is a

tuple A = (Q,∆,wgt, I, F ) with Q a non-empty finite

set of states, ∆ ⊆ Q × Σ × Q the set of transitions,

wgt : ∆ → R associating a weight to every transition

and I, F ⊆ Q are respectively initial and final states.

An example of a {0, 1}-weighted automaton over al-

phabet Σ = {a, b} is given in Fig. 1. It has three states

q1, q2 and q3, the first two being initial and the last two

being final. The weights of transitions are depicted on

the right of their labels: the only transition of weight

different from 0, has weight 1 and is the loop on state q2.

A run of A over a word w = a1 · · · an ∈ Σ+ is a

sequence of transitions ρ = δ1 · · · δn ∈ ∆+ with δi =

(qi, ai, q
′
i) for all 1 6 i 6 n such that q′i = qi+1 for all

1 6 i 6 n − 1. The run ρ is accepting if it starts in an

initial state (q1 ∈ I), and ends in a final state (q′n ∈ F ).

For the weighted automaton of Fig. 1, the sequence

(q1, a, q1), (q1, b, q2), (q2, a, q2), (q2, a, q2), (q2, b, q3) is an

accepting run over the word abaab.

3.2 Semantics over semirings

When the set R of weights is a subset of a semiring

(S,+,×, 0, 1), weighted automata are called weighted

automata over semirings. The usual quantitative se-

mantics on a word w ∈ Σ+ is obtained as follows.

First, we compute the value of a run ρ = δ1 · · · δn on

w using the multiplication in the semiring: Val(ρ) =

wgt(δ1) × · · · × wgt(δn). Then, the semantics of A on

w is obtained by taking the sum in the semiring of the
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values of accepting runs:

[[A]](w) =
∑
ρ

Val(ρ) (1)

where ρ ranges over all accepting runs over w.

For instance, consider the {0, 1}-weighted automa-

ton of Fig. 1 over the semiring (N∪{−∞},max,+,−∞,
0). Each run uses the loop over the state q2 to count

the length of a block of a’s in the word. Hence, we can

check that the semantics of the automaton maps every

word w to the maximal length of a block of a’s in w.

For instance, [[A]](abaaba) = 2.

3.3 Semantics over valuation monoids

Several extensions of weighted automata over semirings

have been proposed. We start here with valuation monoids

[10] and we will discuss valuation structures [11] in the

next subsection.

The motivation comes from the fact that, for certain

applications, the value of a run cannot be computed

with a product in a semiring. For instance, the value

of a run may be a discounted sum of the weights of

transitions, or the average of the weights. An idea is

to replace the product of the semiring by a valuation

function—without the conditions that the product of a

semiring must verify—which computes the value of a

sequence of weights.

A valuation monoid is a tuple (S,+, 0,Val) where

(S,+, 0) is a commutative monoid and Val : S? → S is

a function, called valuation operator, that maps each

finite sequence of elements of S to an element of S.

In the original work of [10], the valuation operator is

only defined on nonempty sequences from S+ but we

may extend it by setting Val(ε) to an arbitrary value.

Also, in the definition of [10], Val must satisfy some ad-

ditional properties, such as Val(s) = s for all s ∈ S,

and for s1 · · · sn ∈ S+ we have Val(s1 · · · sn) = 0 when-

ever si = 0 for some i. However, these additional con-

ditions are not necessary to define the semantics of

weighted automata and to obtain the equivalence be-

tween weighted automata and our weighted logic that

will be presented in Section 4.

For instance, we may use as valuation a discounted

sum Val = Discλ defined for λ ∈ (0, 1) and a sequence

of real numbers by Discλ(s1 · · · sn) = s1 + λs2 + · · · +
λn−1sn. It is also possible to consider as valuation the

average Val = Avg of a sequence of real numbers, given

by Avg(s1 · · · sn) = 1
n (s1 + · · ·+sn). In those two cases,

+ denotes the usual addition over real numbers, and

we may consider the monoid operation to be max or

min for instance, allowing us to compute optimal dis-

counted or average costs. We may also use the sum +

which is not allowed by [10] since it would not fulfil the

additional conditions given above.

We now give the semantics of R-weighted automata

with R ⊆ S, and (S,+, 0,Val) a valuation monoid: in

the following, such automata are called weighted au-

tomata over valuation monoids. LetA be anR-weighted

automaton and w = a1 · · · an ∈ Σ+. As expected, the

value of a run ρ = δ1 · · · δn on w is computed with the

valuation operator Val(ρ) = Val(wgt(δ1) · · ·wgt(δn)).

Then, the semantics of A over w is defined by (1) as

before.

As an example, consider again the {0, 1}-weighted

automaton of Fig. 1 and the valuation monoid (R ∪
{−∞},max,Discλ,−∞). Then, the semantics of the au-

tomaton on a word w ∈ Σ+ is the maximal score of

the blocks of a’s. The score of a block is computed as

λi−1 λ
`−1
λ−1 where i is the position of the first letter of the

block and ` is its length.

As another example, consider the valuation monoid

(N ∪ {∞},min,Sq,∞) where the valuation1 Sq maps

a sequence s1 · · · sn to the square of the number of

si’s which are equal to 1. Then, the semantics of the

weighted automaton of Fig. 1 is the minimum of the

squares of the lengths of a-blocks.

3.4 Semantics over valuation structures

In order to get even more flexibility in the computation

of the semantics, [11] proposed to replace the sum of

the run values which is used in (1) by a more general

evaluator function F . In addition, [11] allows the set

of weights R used in the automaton and for the value

of runs to be different from the final set of weights S
computed by the evaluator function.

Formally, a valuation structure2 is a tuple (U,Val, S,
F ) where U and S are two sets, Val : U? → U is a

valuation operator, and F : N〈U〉 → S is an evaluator

function mapping a finite multiset of weights in U to a

single weight in S.

Given an R-weighted automaton A with R ⊆ U

(that we call weighted automata over a valuation struc-

ture), we compute the value of a run as in the case

of valuation monoids: Val(ρ) = Val(wgt(δ1) · · ·wgt(δn))

when ρ = δ1 · · · δn. Then, the semantics of A over a

word w ∈ Σ+ is defined in two steps:

[[A]](w) = F ({{Val(ρ) | ρ accepting run over w}}) .

First, Val transforms the set of accepting runs over w

in a multiset of weights, which is then transformed in

the final semantics with the evaluator function.

1 This valuation does not satisfy Sq(s) = s.
2 We do not require that Val(r) = r for all r ∈ U as in [11].
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For instance, we may choose U = Z × N with the

valuation

Val
(
(x1, y1), . . . , (xn, yn)

)
=

(
n∑
i=1

xi,

n∑
i=1

yi

)
.

Then, choosing S = Q ∪ {+∞} in the valuation struc-

ture, we may compute the average of the ratios between

rewards and non-negative costs with the evaluator func-

tion defined by F (∅) = 0 and

F (A) =
1

|A|
∑

(x,y)∈A

x

y

for A ∈ N〈U〉 \ {∅}, with x
0 = +∞ by convention. We

may change the evaluator function to

F (A) = max
(x,y)∈A

x

y

to compute the maximal ratio between rewards and

costs (with −∞ added to S and max(∅) = −∞). We

may further change the evaluator function to

Fp(A) = max{x | (x, y) ∈ A ∧ y 6 p}

with p any positive number, to compute the best reward

under the given cost upper bound.

As a last example, consider the valuation structure

(N,Val,Q, F ) where the valuation Val sums the sequence

of weights, and the evaluator function F = Avg com-

putes the average of the multiset as Avg(∅) = 0 and

Avg(A) =
1

|A|
∑

A

for A 6= ∅. Then, the {0, 1}-weighted automaton of

Fig. 1 computes the average length of the a-blocks of

the word.

3.5 Abstract semantics

After recalling some existing semantics of weighted au-

tomata, we now present a unifying framework, mostly

based on weighted automata over semirings, that will

still be able to recover as special cases all previous se-

mantics.

The main idea is to split the semantics into two

phases, as already done for valuation structures, but

the separation takes place somewhere else in order to

obtain an intermediary structure with even more in-

formation. Instead of multisets of values in R, we will

use multisets of sequences in R?. Interestingly, since

(R?, ·, ε) is a monoid, we have seen in Section 2 that

(N〈R?〉,], ·, ∅, {{ε}}) is a semiring. This remark will be

useful in the following. As usual, we will not indicate

the operation · in expressions over N〈R?〉.

The abstract semantics of an R-weighted automaton

A is simply its semantics in the semiring N〈R?〉 when

we identify the weights r ∈ R occurring in A with the

singleton multisets {{r}}. Computing in the semiring

N〈R?〉, the value Val(ρ) of a run ρ = δ1 · · · δn over some

word w ∈ Σ+ is

{{wgt(δ1)}} · · · {{wgt(δn)}} = {{wgt(δ1) · · ·wgt(δn)}} .

The abstract semantics, denoted by {|A|}(w), is ob-

tained by summing (i.e., taking the disjoint union) over

all accepting runs over w:

{|A|}(w) =
⊎

ρ=δ1···δn

{{wgt(δ1) · · ·wgt(δn)}} .

Notice that {|A|}(w) is indeed a finite multiset, since A
admits only finitely many accepting runs over w.

Example 1 Consider the {0, 1}-weighted automaton of

Fig. 1. Its abstract semantics over the word abaab is

{|A|}(abaab) = {{00000, 00110, 10000}}.

Remark 2 Our abstract semantics proposes another level

of abstraction compared to the one obtained with Ni-

vat theorems for weighted automata, e.g., in [12,19].

In these Nivat-like characterisations, the behaviour of

a weighted automaton is described by its set of runs,

whereas we use the less concrete description by its multi-

set of weight structures (here, sequences of weights).

Our more abstract semantics is sufficient for our later

discussion. Also, it allows us to keep an underlying

semiring that permits to reuse initial results for weighted

automata over semirings.

From this abstract semantics, we compute the con-

crete semantics by aggregating the multiset of weight

sequences into a single weight, possibly lying in a dif-
ferent weight domain S. We do so with an aggregation

operator aggr : N〈R?〉 → S. We obtain the concrete se-

mantics [[A]](w) = aggr({|A|}(w)). The remaining of this

section is devoted to some examples, covering as special

cases the various semantics seen in Section 2.

Example 3 If R is a subset of a semiring (S,+,×, 0, 1),

we recover the usual semantics by considering the ag-

gregation operator

aggrsr(A) =
∑∏

(A)

where
∏

: S? → S maps every sequence r1 · · · rn ∈ S?
to the product r1 × · · · × rn, and is lifted over finite

multisets as explained in the preliminaries.

Example 4 The previous example can be generalised to

the case where R is a subset of a valuation monoid

(S,+, 0,Val). Using the lift of Val : S? → S to finite

multisets, the aggregation operation is now:

aggrvm(A) =
∑

Val(A) .

5



Example 5 We can also recover the semantics in a val-

uation structure (U,Val, S, F ) by considering the aggre-

gation defined by

aggrvs(A) = F (Val(A)) .

Notice that our framework is a priori more powerful

than valuation structures. Indeed, in our context, we

do not decouple the valuation and the evaluator oper-

ations. Instead, we keep a richer information, namely

the multiset of weight sequences, allowing more power-

ful aggregations.

For instance, imagine that, on the weighted automa-

ton of Fig. 1, we want to compute the discounted sum

of the length of blocks of a’s. E.g., if λ ∈ (0, 1) is the

discount factor, we would like to associate to the word

abaababaaa the weight 1 +λ · 2 +λ2 · 1 +λ3 · 3. For that

purpose, consider R to be {0, 1}, S to be R, and the ag-

gregation aggr to be defined on a multiset A ∈ N〈R?〉
by

aggr(A) =

k∑
j=1

λj−1nj

if A = {{0m11n10p1 , 0m21n20p2 , . . . , 0mk1nk0pk}} with

m1 < m2 < · · · < mk, and aggr(A) = 0 otherwise. This

aggregation cannot be obtained directly in the setting

of valuation structures, since the value of a run should

now take into account the discount factor, based on the

number of blocks of a’s previously seen: however, this

number cannot be obtained by directly looking at the

unique current run.

4 Core weighted monadic second-order logic

We now turn to the description of a new weighted logic,

that will be equivalent to weighted automata. Most ex-

isting works start with the definition of a very gen-

eral logic, and then introduce restrictions to match the

expressive power of weighted automata. We take the

opposite approach by defining a very basic weighted

logic, yet powerful enough to be expressively equivalent

to weighted automata. Our logic has three layers: the

Boolean fragment which is the classical MSO logic over

words, a step weighted fragment (step-wMSO) defin-

ing step functions (i.e., piecewise constant functions

with a finite number of pieces), and the core weighted

logic (core-wMSO) which has the full expressive power

of weighted automata. We will show in Section 5 that

core-wMSO is a fragment of the (full) weighted MSO
logic (wMSO) defined in [6]. Considering a Boolean

fragment inside a weighted logic was originally done

in [2] and followed in many articles, see, e.g., [10,16].

ϕ ::= > | Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀Xϕ (MSO)

Ψ ::= r | ϕ ?Ψ : Ψ (step-wMSO)

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

xΦ |
∑

XΦ |
∏

xΨ (core-wMSO)

with a ∈ Σ, r ∈ R, x, y first-order variables and X a second-
order variable.
Table 1 Syntax of the core weighted logic core-wMSO(Σ,R).

{|r|}V (w, σ) = {{r}}

{|ϕ ?Ψ1 : Ψ2|}V (w, σ) =

{
{|Ψ1|}V (w, σ) if w, σ |= ϕ

{|Ψ2|}V (w, σ) otherwise

Table 2 Semantics of step-wMSO

4.1 Syntax and semantics

We fix a finite alphabet Σ and we consider a set V of

first-order (x, y, . . .) and second-order (X,Y, . . .) vari-

ables. The syntax of MSO(Σ) is given in Table 1 (MSO).

We may freely use classical macros such as ⊥ = ¬>,

ϕ ∨ ϕ′ = ¬(¬ϕ ∧ ¬ϕ′), or ∃xϕ = ¬∀x¬ϕ.

We do not recall the semantics of an MSO formula ϕ

which can be defined inductively as usual. We denote

by free(ϕ) the set of free variables in ϕ. Given a word

w ∈ Σ+ and a valuation σ from a set of variables V ⊇
free(ϕ) to the (sets of) positions of w, we write w, σ |= ϕ

when (w, σ) satisfies ϕ.

We will use the classical encoding of a pair (w, σ)

consisting of a word w ∈ Σ+ and a valuation σ on V as

a word w over the extended alphabet ΣV = Σ×{0, 1}V .

A word w in Σ+
V is said to be valid if for every first-order

variable x ∈ V , the projection of w on the component

indexed by x belongs to 0?10?. In the following, we

identify a valid word w with its encoded pair (w, σ).

The syntax for step-wMSO(Σ,R) formulæ is given

in Table 1 (step-wMSO). It uses weights from a set R

and is based on the if-then-else operator ϕ ?Ψ1 : Ψ2

where the condition is an MSO formula ϕ.

The semantics of such formulæ is given in terms of

finite multisets of weights. More precisely, for a set V of

variables that contains the set free(Ψ) of free variables

of Ψ , we let {|·|}V : Σ+
V → N〈R〉 be defined by {|Ψ |}(w) =

∅ if w is not valid, and if w is the valid encoding of

(w, σ) then the semantics is given in Table 2. Notice

that {|Ψ |}(w) is either the empty multiset (if w is not

a valid encoding) or is a singleton multiset. We simply

write {|Ψ |} for {|Ψ |}free(Ψ).

Finally, the syntax of the core-wMSO(Σ,R) logic is

given in Table 1 (core-wMSO). It uses a special con-

stant 0. In addition to the if-then-else operator, there

are three sum operators whose semantics will be de-

fined using the disjoint union (sum) of multisets, and a

6



{|0|}V (w, σ) = ∅

{|ϕ ?Φ1 : Φ2|}V (w, σ) =

{
{|Φ1|}V (w, σ) if w, σ |= ϕ

{|Φ2|}V (w, σ) otherwise

{|Φ1 + Φ2|}V (w, σ) = {|Φ1|}V (w, σ) ] {|Φ2|}V (w, σ)

{|
∑

xΦ|}V (w, σ) =
⊎

i∈pos(w)

{|Φ|}V ∪{x}(w, σ[x 7→ i])

{|
∑

XΦ|}V (w, σ) =
⊎

I⊆pos(w)

{|Φ|}V ∪{X}(w, σ[X 7→ I])

{|
∏

xΨ |}V (w, σ) =
∏|w|

i=1
{|Ψ |}V ∪{x}(w, σ[x 7→ i])

where σ[x 7→ i] denotes the valuation obtained from σ by
mapping x to i and keeping the other assignments unchanged

(and similarly for second-order variables). Note that
∏|w|

i=1 is
the product in the semiring N〈R?〉.
Table 3 Semantics of core-wMSO.

product which lifts the weights defined by step-wMSO
formulæ to sequences of weights.

Remark 6 The idea of splitting the syntax into three

layers has also been used by Perevoshchikov to define

the weighted assignment logic over infinite words [19,

Chapter 6]. There, the fragment uWAL is related to our

step-wMSO and the full logic WAL allows one to apply

sums, as in our core-wMSO logic.

Formally, the semantics of core-wMSO is again de-

fined by induction on the formula. For a set V of vari-

ables that contains the set free(Φ) of free variables of Φ,

we let {| · |}V : Σ+
V → N〈R?〉 be defined by {|Φ|}(w) = ∅

if w is not valid, and if w is the valid encoding of (w, σ)

then the semantics is given in Table 3. We simply write

{|Φ|} for {|Φ|}free(Φ).

Example 7 We give a core-wMSO({a, b}, {0, 1}) formula

equivalent with the {0, 1}-weighted automaton of Fig. 1:

Φ =
∑
X

∑
yblock(X, y) ?

∏
x(x ∈ X ? 1 : 0) : 0

where the MSO formula block(X, y) defined by[
X = ∅ ∧ (first(y) ∨ last(y)) ∧ Pb(y)

]
∨
[
(last(y) ∨ Pb(y + 1)) ∧

∃x
(
x 6 y ∧ (first(x) ∨ Pb(x− 1)) ∧

∀z
(
(x 6 z 6 y ⇔ z ∈ X) ∧ (z ∈ X ⇒ Pa(z))

))]
states that X is a (possibly empty) maximal block of

consecutive a’s ending in y. Variable y enables us to

distinguish two reasons for X to be empty: either be-

cause the word starts with b, or ends with b. Notice

the use of the constant 0 ∈ R in the step-wMSO for-

mula x ∈ X ? 1 : 0, not to be confused with the atomic

formula 0 of core-wMSO. Semantically, we have

{|Φ|}(baabab) = {{000000, 011000, 000010, 000000}} .

We say that two core-wMSO formulæ Φ and Φ′ are

equivalent, written Φ ≡ Φ′, if they have the same se-

mantics: free(Φ) = free(Φ′) and {|Φ|}(w, σ) = {|Φ′|}(w, σ)

for all (w, σ) ∈ Σ+
free(Φ). The equivalence of step-wMSO

formulæ is defined similarly.

As in Section 3.5, we apply an aggregation func-

tion aggr : N〈R?〉 → S transforming a finite multiset

of weight sequences from R into a weight in a (pos-

sibly new) set S. We obtain the concrete semantics

[[Φ]](w) = aggr({|Φ|}(w)).

Remark 8 Notice that some operators of step-wMSO
and core-wMSO can be removed without affecting the

expressive power of these logics. For instance, we will

show in Lemma 18, that, in step-wMSO, Boolean for-

mulæ used in if-then-else operators can be restricted to

be of the form x ∈ X. Moreover, using
∑
X operator,

we can emulate operator + and
∑
x in core-wMSO. We

chose to keep these operators nevertheless since they al-

low for an easier model of quantitative properties, with-

out making further developments more complex.

4.2 Equivalence with weighted automata

The seminal result of [6], linking weighted automata

and wMSO formulæ, may then be rephrased as in the

following theorem.

Theorem 9 For each R-weighted automaton A over

alphabet Σ, we can effectively construct a sentence ΦA
in core-wMSO(Σ,R), such that {|A|}(w) = {|ΦA|}(w)

for all w ∈ Σ+.

For each sentence Φ in core-wMSO(Σ,R), we can

effectively construct an R-weighted automaton AΦ over

Σ such that {|Φ|}(w) = {|AΦ|}(w) for all w ∈ Σ+.

Since N〈R?〉 is a semiring and the semantics {| · |}
of weighted automata and core-wMSO is the natural

semantics in this semiring, one may think that Theo-

rem 9 is a formal corollary of [6]. This is almost true

but not entirely. Here we insist that the set of weights

used in the formula ΦA is the same as the set of weights

used in the weighted automaton A (and vice versa for

AΦ and Φ). This is not guaranteed by [6] though the

proof can be adapted to obtain Theorem 9. We give in

Section 4.5 a rather short proof of Theorem 9, which

is based on some new ideas and which ensures that the

set of weights is preserved.
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The equivalence of Theorem 9 transfers to the con-

crete semantics without any conditions on the aggrega-

tion operator.

Corollary 10 For each R-weighted automaton A over

alphabet Σ, we can effectively construct a sentence ΦA
in core-wMSO(Σ,R), such that for all w ∈ Σ+,

[[A]](w) = aggr({|A|}(w)) = aggr({|ΦA|}(w)) = [[ΦA]](w) .

For each sentence Φ in core-wMSO(Σ,R), we can

effectively construct an R-weighted automaton AΦ over

Σ such that for all w ∈ Σ+,

[[Φ]](w) = aggr({|Φ|}(w)) = aggr({|AΦ|}(w)) = [[AΦ]](w) .

Instantiating the aggregation operator with aggrsr
for semirings, aggrvm for valuation monoids, or aggrvs
for valuation structures, we obtain

Corollary 11 The expressive power of R-weighted au-

tomata and core-wMSO(Σ,R) is the same in each of

the following cases

1. R ⊆ S for a semiring (S,+,×, 0, 1),

2. R ⊆ S for a valuation monoid (S,+, 0,Val), or

3. R ⊆ U for a valuation structure (U,Val, S, F ).

Before presenting the proof of Theorem 9, we show,

in the next two subsections, the robustness of core-wMSO
by adding some useful features in it, without changing

its expressive power. Notice that the proof of equiva-

lences are fully logical, and do not make use of trans-

lations into weighted automata: in particular, they do

not require the use of Theorem 9.

4.3 Adding 0 and sum to step-wMSO

It may be convenient to use a sum operator Ψ1 + Ψ2

and constant 0 at the level of step-wMSO, as allowed

for core-wMSO. We denote by 0-step-wMSO(Σ,R) the

fragment allowing the constant 0

Ψ ::= 0 | r | ϕ ?Ψ : Ψ

and +-0-step-wMSO(Σ,R) the fragment allowing the

constant 0 as well as the sum operator

Ψ ::= 0 | r | ϕ ?Ψ : Ψ | Ψ + Ψ .

The inductive semantics of Table 2 is enriched with

{|0|}V (w, σ) = ∅

and

{|Ψ1 + Ψ2|}V (w, σ) = {|Ψ1|}V (w, σ) ] {|Ψ2|}V (w, σ) .

Formulæ Ψ in +-0-step-wMSO(Σ,R) allow for more

concise specification of properties, and their semantics

{|Ψ |} ∈ N〈R〉 is now a finite multiset of weights instead

of simply a singleton or the empty multiset. Notice that

the semantics of a formula
∏
xΨ is still well-defined.

Lemma 12 The expressive power of core-wMSO(Σ,R)

does not change if we replace step-wMSO(Σ,R) for-

mulæ by 0-step-wMSO(Σ,R) formulæ.

Proof Consider a formula Ψ of 0-step-wMSO(Σ,R). We

have to show that the formula
∏
xΨ can be expressed

in core-wMSO. First, we construct an MSO formula ϕΨ
such that for all valid (w, σ) ∈ Σ+

V , {|Ψ |}V (w, σ) = ∅ if

and only if w, σ |= ϕΨ . We build ϕΨ by induction on

the formula Ψ :

0Ψ = > , rΨ = ⊥
and ϕ ?Ψ1 : Ψ2 = (ϕ ∧ ϕΨ1

) ∨ (¬ϕ ∧ ϕΨ2
) .

It is immediate to verify the correctness of this con-

struction.

Then, let Ψ̃ be the step-wMSO(Σ,R) formula ob-

tained from Ψ by replacing every occurrence of 0 with

an arbitrary constant r of R. We can prove that for all

valid (w, σ) ∈ Σ+
V such that {|Ψ |}V (w, σ) 6= ∅, we have

{|Ψ |}V (w, σ) = {|Ψ̃ |}V (w, σ). This implies that
∏
xΨ is

equivalent to the core-wMSO(Σ,R) formula

(∃xϕΨ ) ?0 :
∏
xΨ̃ . ut

Using the previous result, we finally show how to

add sums in step formulæ.

Lemma 13 The expressive power of core-wMSO(Σ,R)

does not change if we replace step-wMSO(Σ,R) for-

mulæ by +-0-step-wMSO(Σ,R) formulæ.

Proof Removing sums is done in two steps. First, we

can easily check that

ϕ ? (Ψ1 + Ψ2) : Ψ3 ≡ (ϕ ?Ψ1 : Ψ3) + (ϕ ?Ψ2 : 0)

ϕ ?Ψ1 : (Ψ2 + Ψ3) ≡ (ϕ ?Ψ1 : Ψ2) + (ϕ ?0 : Ψ3) .

Hence, for each formula Ψ of +-0-step-wMSO(Σ,R) we

can construct an equivalent formula Ψ1+ · · ·+Ψn where

the Ψi are in 0-step-wMSO(Σ,R).

For the second step, we let X = (X1, . . . , Xn) be

a tuple of second-order variables. We simply write
∑
X

instead of
∑
X1
· · ·
∑
Xn

. We also let partition(X) be an

MSO formula stating that the sets associated with vari-

ables X1, . . . , Xn form a partition of the positions. Let

Ψ ′ = x ∈ X1 ?Ψ1 : · · ·x ∈ Xn ?Ψn : 0. Notice that Ψ ′ is

in 0-step-wMSO(Σ,R). We claim that the core-wMSO
formulæ

Φ =
∏
x(Ψ1 + · · ·+ Ψn)

Φ′ =
∑
X partition(X) ?

[∏
x Ψ
′] : 0

8



are equivalent. The proof that Φ ≡ Φ′ relies on the

distributivity of the semiring N〈R?〉. Details are left

to the reader. We finally obtain the result by applying

Lemma 12 to the formula
∏
xΨ
′. ut

4.4 Adding new binary operators

For certain modelling applications, it might be use-

ful to enhance our core logic with extra operators, for

instance binary operators. In particular, the classical

wMSO logic (see Section 5) allows a quantitative exten-

sion of the conjunction operator, though in a restricted

manner. Extra operators also allow to define quantita-

tive properties compositionally.

Example 14 Let us denote by Φa the core-wMSO for-

mula of Example 7 computing the maximal length of

blocks of a’s when concretely evaluated in the semiring

(N∪{−∞},max,+,−∞, 0). If we want to compute the

sum of the maximal length of blocks of a’s and of the

maximal length of blocks of b’s in a word, it seems natu-

ral to authorise the use of the binary sum to decompose

this objective in two distinct ones. Then, we could use

formula Φa � Φb (where Φb is obtained by inverting the

roles of a and b in Φa), denoting by � the new binary

operator allowing to compute binary sums.

We now show how to add binary operators to the

logic without changing its expressive power. Indeed, we

can proceed in the same way to add operators with

other arities.

Let � : R2 → R be an arbitrary binary operation
over R. It naturally extends to a partial binary opera-

tion over R? by setting for all sequences α = r1 · · · rn
and α′ = r′1 · · · r′n of same length

α � α′ = (r1 � r′1) · · · (rn � r′n) .

The operator is not defined on sequences of different

lengths. Then, as explained in the preliminaries, this

binary operation extends to finite multisets in N〈R〉 or

in N〈R?〉.
We enrich the syntax defined in Table 1 with Ψ1 �Ψ2

for step-wMSO and with Φ1 � Φ2 for core-wMSO. The

semantics defined in Tables 2 and 3 are also enriched

with

{|Ψ1 � Ψ2|}V (w, σ) = {|Ψ1|}V (w, σ) � {|Ψ2|}V (w, σ)

{|Φ1 � Φ2|}V (w, σ) = {|Φ1|}V (w, σ) � {|Φ2|}V (w, σ) .

Example 15 When � is interpreted as +, the formula

Φa � Φb of Example 14 has the following abstract se-

mantics over w = baaba:

{|Φa|}(w) = {{00000, 01100, 00001}}
{|Φb|}(w) = {{10000, 00010, 00000}}

{|Φa � Φb|}(w) = {{10000, 00010, 00000, 11100, 01110,

01100, 10001, 00011, 00001}} .

Notice that its concrete semantics in the semiring (N∪
{−∞},max,+,−∞, 0) is 3 which is indeed the sum of

the maximal length of blocks of a’s and b’s.

We now show that adding such a binary operator

does not increase the expressive power of step-wMSO
and core-wMSO respectively. To that extent, let us de-

note by �-step-wMSO the logic step-wMSO enriched with

the diamond operator. We also write �-core-wMSO for

core-wMSO enriched with the diamond operator.

Proposition 16 The expressive power of step-wMSO
(respectively, core-wMSO) does not change if we add

formulæ Ψ1 �Ψ2 in step-wMSO (respectively, Φ1 �Φ2 in

core-wMSO).

Proof Let Ψ1, Ψ2, Ψ3 be �-step-wMSO formulæ. By case

splitting it is clear that

(ϕ ?Ψ1 : Ψ2) � Ψ3 ≡ ϕ ? (Ψ1 � Ψ3) : (Ψ2 � Ψ3)

Ψ3 � (ϕ ?Ψ1 : Ψ2) ≡ ϕ ? (Ψ3 � Ψ1) : (Ψ3 � Ψ2) .

By applying inductively the above equivalences, we can

rewrite any �-step-wMSO formula until the � operator is

only applied to constants from R. Now, for r1, r2 ∈ R,

we have r1 � r2 ∈ R which is a legal step-wMSO for-

mula. Therefore, we have proved that any formula in

�-step-wMSO can be rewritten in a semantically equiv-

alent step-wMSO formula.

Since � distributes over ] in the semiring N〈R?〉 we

deduce that � distributes (left and right) over the sum

operators of core-wMSO (we only give equations for left

distributivity below):

Φ1 � (Φ2 + Φ3) ≡ (Φ1 � Φ2) + (Φ1 � Φ3)

Φ1 �
∑
xΦ2 ≡

∑
x(Φ1 � Φ2)

Φ1 �
∑
XΦ2 ≡

∑
X(Φ1 � Φ2) .

By case splitting, we also get as above that � distributes

over the if-then-else operator. Note also that 0 � Φ ≡
0 ≡ Φ�0. Hence, applying inductively the above equiv-

alences, we can rewrite any �-core-wMSO formula un-

til the � operator is only applied to products (
∏
xΨ) �

(
∏
xΨ
′) (up to renaming, we may assume that the same

variable x is used in both products). We claim that

(
∏
xΨ) � (

∏
xΨ
′) ≡

∏
x(Ψ � Ψ ′) . (2)
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Let w ∈ Σ+ be a word of length n and σ be a valuation

of the variables in V ⊇ (free(Ψ) ∪ free(Ψ ′)) \ {x} (the

semantical equivalence is trivially verified on invalid en-

codings w ∈ Σ+
V ). Since Ψ and Ψ ′ are step-wMSO for-

mulæ, for all 1 6 i 6 n we have,

Ai = {|Ψ |}V ∪{x}(w, σ[x 7→ i]) ∈ N〈R〉
Bi = {|Ψ ′|}V ∪{x}(w, σ[x 7→ i]) ∈ N〈R〉

Ai �Bi = {|Ψ � Ψ ′|}V ∪{x}(w, σ[x 7→ i]) ∈ N〈R〉

and these multisets are singletons. Using this fact, we

can easily check that3

(A1 · · ·An) � (B1 · · ·Bn) = (A1 �B1) · · · (An �Bn) . (3)

We obtain (2) since

{|
∏
xΨ |}V (w, σ) = A1 · · ·An

{|
∏
xΨ
′|}V (w, σ) = B1 · · ·Bn

{|
∏
xΨ � Ψ ′|}V (w, σ) = (A1 �B1) · · · (An �Bn) .

This concludes the proof since Ψ �Ψ ′ can be translated

into an equivalent step-wMSO formula. ut

Consider the concrete semantics [[·]] = aggr({| · |})
defined with an aggregation aggr : N〈R?〉 → S. Assume

also that � : S2 → S is defined on S. We say that �
distributes over aggr if for all n > 0 and A,B ∈ N〈Rn〉,
we have

aggr(A �B) = aggr(A) � aggr(B) .

In this case, we can easily check that the concrete se-

mantics is compositional : for all w ∈ Σ+
V , we have

[[Φ1 � Φ2]](w) = [[Φ1]](w) � [[Φ2]](w).

Example 17 In the case of a semiring (S,+,×, 0, 1), the

aggregation is
∑∏

(as defined in Example 3). We may

easily check that for commutative semirings, the con-

crete semantics is compositional with respect to the

product ×.

4.5 Proof of Theorem 9

We show first that we can restrict step-wMSO to a

smaller fragment without changing the expressive power

of core-wMSO. The syntax of set-step-wMSO(R) is given

by

Ψ ::= r | x ∈ X ?Ψ : Ψ (set-step-wMSO)

where x is a fixed first-order variable, X ranges over

monadic second-order variables and r ranges over R.

This restriction has also been considered previously. For

3 Actually, (3) holds for arbitrary multisets Ai, Bj ∈ N〈R〉.

instance, in the weighted timed setting [12], Droste and

Perevoshchikov translate weighted (timed) automata

into weighted sentences where Boolean formulæ inside

the universal quantification are of the form x ∈ X

only. In our context, it means only set-step-wMSO in-

side a product
∏
x. Similarly, in the context of trees

[16], Fülöp, Stüber, and Vogler use an operation H(ω)

which renames every node of the input tree with an

operator from some family ω (coming from a multi-

operator monoid). Again, the renaming is described by

means of formulæ of the form x ∈ X only, and not by

more general MSO formulæ.

Lemma 18 The expressive power of core-wMSO(Σ,R)

does not change if we replace step-wMSO(Σ,R) for-

mulæ by set-step-wMSO(R) formulæ.

Proof We start with a core-wMSO formula Φ =
∏
x Ψ

where Ψ is a step-wMSO(Σ,R) formula. Let ϕ1, . . . , ϕn
be the MSO formulæ occurring in Ψ as conditions of

the if-then-else operator. We let X = (X1, . . . , Xn) be a

tuple of fresh second-order variables. Let also Ψ ′ be the

formula obtained from Ψ by replacing every occurrence

of ϕi by x ∈ Xi, for all 1 6 i 6 n. Notice that Ψ ′ is a

set-step-wMSO(R) formula. We claim that Φ =
∏
x Ψ is

equivalent to the formula

Φ′ =
∑
X

(∧
i ∀x (x ∈ Xi ↔ ϕi)

)
?
(∏

x Ψ
′
)

: 0 .

Indeed, let V = free(Φ) = free(
∏
x Ψ) and V ′ = V ∪

{X1, . . . , Xn}. For every valid (w, σ) ∈ Σ+
V there is a

unique (w, σ′) ∈ Σ+
V ′ such that σ′|V = σ and w, σ′ |=∧

i ∀x (x ∈ Xi ↔ ϕi). For all 1 6 i 6 n, we have

σ′(Xi) = {j ∈ pos(w) | w, σ[x 7→ j] |= ϕi}. We ob-

tain {|Φ′|}(w, σ) = {|
∏
x Ψ
′|}(w, σ′). Then, it is easy to

check by induction on Ψ that for all j ∈ pos(w) we have

{|Ψ |}(w, σ[x 7→ j]) = {|Ψ ′|}(w, σ′[x 7→ j]). We deduce

that {|Φ′|}(w, σ) = {|
∏
x Ψ
′|}(w, σ′) = {|

∏
x Ψ |}(w, σ) =

{|Φ|}(w, σ) for all valid (w, σ) ∈ Σ+
V . ut

Proof (of Theorem 9) Let A = (Q,∆,wgt, I, F ) be a

weighted automaton. We use a set variable Xδ for each

transition δ ∈ ∆ and we let X = (Xδ)δ∈∆. Intuitively,

the tuple X encodes a run of A over a word w when

each set variable Xδ is interpreted as the set of positions

at which transition δ is used in that run.

We can easily write an MSO formula run(X) which

evaluates to true on some word w if and only if X en-

codes a run of A on w starting from I and ending in F .

First, we state that X is a partition on the positions

of w. Then we request that if the first position of w

is in Xδ then δ ∈ I × Σ × Q is initial. Similarly, the

transition of the last position should be final. Finally,

if δ = (p, a, q) and δ′ = (p′, a′, q′) are the transitions of
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two consecutive positions of w then q = p′. It is routine

to write all these requirements in MSO (even in FO3).

Assuming that run(X) holds, we let weight(x,X) be

the set-step-wMSO formula which evaluates to wgt(δ)
where δ ∈ ∆ is the unique transition such that x ∈
Xδ. Formally, if ∆ = {δ1, δ2, . . . , δn} then we define

weight(x,X) as

x ∈ Xδ1 ? wgt(δ1) : · · ·x ∈ Xδn−1
? wgt(δn−1) : wgt(δn)

and

ΦA =
∑
X run(X) ?

(∏
xweight(x,X)

)
: 0 .

We can easily check that for all words w ∈ Σ+ we have

{|A|}(w) = {|Φ|}(w).

Conversely, we proceed by induction on Φ, hence we

have to deal with free variables. So we construct for each

formula Φ a weighted automaton AΦ over the alphabet

Σfree(Φ) = Σ×{0, 1}free(Φ) such that for all w ∈ Σ+
free(Φ)

we have {|Φ|}(w) = {|AΦ|}(w).

It is folklore that we may increase the set of vari-

ables encoded in the alphabet whenever needed, e.g.,

to deal with sum or if-then-else. Formally, if V ⊆ V ′

then we can lift an automaton AV defined on the al-

phabet ΣV to an automaton AV ′ defined on ΣV ′ such

that for all valid (w, σ) ∈ Σ+
V ′ we have {|AV ′ |}(w, σ) =

{|AV |}(w, σ|V ).

The automaton A0 has a single state which is initial

but not final and has no transitions.

We recall the classical constructions for the additive

operators of core-wMSO: +,
∑
x and

∑
X .

If Φ = Φ1 + Φ2 then AΦ is obtained as the disjoint

union of AΦ1
and AΦ2

, both lifted to ΣΦ.

If Φ =
∑
XΦ1 then AΦ is obtained via a variant4 of

the projection construction starting from AΦ1
. Assume

that AΦ1
= (Q,∆,wgt, I, F ). We define AΦ = (Q ×

{0, 1}, ∆′,wgt′, I×{0}, F×{0, 1}) over alphabet Σfree(Φ)

by letting

((p, i), a, (q, j)) ∈ ∆′ iff (p, (a, j), q) ∈ ∆

where (a, j) denotes the letter in Σfree(Φ)∪{X} where the

value of the X-component is given by j and the remain-

ing Σfree(Φ)-components (different from X) are given

by a. We also let

wgt′((p, i), a, (q, j)) = wgt(p, (a, j), q) .

This transfer of the alphabet component for X to the

state of AΦ allows us to define a bijection between the

4 As already noticed in [10], a simple projection does not
work. Indeed, it would result in transition labels that are
multisets of weights, which is not possible since our theorem
requires the same set of weights for the automaton and the
formula.

accepting runs of AΦ1 and the accepting runs of AΦ,

preserving sequences of weights. Then, we deduce easily

that {|AΦ|} = {|Φ|} over alphabet Σfree(Φ).

If Φ =
∑
xΦ1, the construction is almost the same.

In the definition of AΦ, the set of accepting states is

F × {1} and the transitions are given by

((p, 0), a, (q, j)) ∈ ∆′ iff (p, (a, j), q) ∈ ∆
((p, 1), a, (q, 1)) ∈ ∆′ iff (p, (a, 0), q) ∈ ∆

with weights inherited as before

wgt′((p, 0), a, (q, j)) = wgt(p, (a, j), q)

wgt′((p, 1), a, (q, 1)) = wgt(p, (a, 0), q) .

We turn now to the more interesting cases: if-then-

else and
∏
x. Noticed that ϕ ?Φ1 : Φ2 is equivalent

to (ϕ ?Φ1 : 0) + (¬ϕ ?Φ2 : 0), hence we only need

to construct an automaton for Φ = ϕ ?Φ1 : 0. Let

V = free(Φ) = free(ϕ)∪ free(Φ1). Since ϕ is a (Boolean)

MSO formula, by [3,15,22], we can construct a deter-

ministic5 automaton Aϕ over the alphabet ΣV which

accepts a word w ∈ Σ+
V if and only if it is a valid encod-

ing w = (w, σ) satisfying ϕ. Now, by induction, we have

an automaton AΦ1
over ΣV which is equivalent to Φ1:

for all w ∈ Σ+
V , {|Φ1|}(w) = {|AΦ1 |}(w). The automaton

AΦ is obtained as the “intersection” of Aϕ and AΦ1
(see

the formal construction below). Now, let w ∈ Σ+
V . If w

is not valid or w = (w, σ) is valid and does not satisfy

ϕ then Aϕ (hence also AΦ) has no accepting run on w

and we obtain {|AΦ|}(w) = ∅ = {|Φ|}(w). On the other

hand, assume that w = (w, σ) is valid and satisfy ϕ.

Since Aϕ is deterministic, there is a bijection between

the accepting runs of AΦ and the accepting runs of AΦ1
.

By construction of AΦ, this bijection preserves the se-

quence of weights associated with a run. We deduce

that {|AΦ|}(w, σ) = {|AΦ1
|}(w, σ) = {|Φ|}(w, σ).

We give now the formal definition of AΦ. Let AΦ1
=

(Q1, ∆1,wgt1, I1, F1) be the weighted automaton over

ΣV for Φ1. Let Aϕ = (Q2, ∆2, I2, F2) be the determin-

istic automaton over ΣV for ϕ. Then, we define AΦ =

(Q,∆,wgt, I, F ) with Q = Q1 × Q2, I = I1 × I2, F =

F1 × F2, ∆ is the set of triples δ = ((p1, p2), a, (q1, q2))

such that δ1 = (p1, a, q1) ∈ ∆1 and (p2, a, q2) ∈ ∆2, and

wgt(δ) = wgt(δ1).

Finally, it remains to deal with the case Φ =
∏
xΨ .

By Lemma 18, we may assume that Ψ is a formula in

set-step-wMSO(R). So free(Ψ) = {x,X1, . . . , Xn} and

the tests in Ψ are of the form x ∈ Xi for some i ∈
{1, . . . , n}. Also, free(Φ) = {X1, . . . , Xn} consists of

second-order variables only, so every word w ∈ Σ+
free(Φ)

is valid.

5 We could also use an unambiguous automaton for Aϕ.
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For every τ ∈ {0, 1}n, we define the evaluation Ψ(τ)

inductively as follows: r(τ) = r and

(x ∈ Xi ?Ψ1 : Ψ2)(τ) =

{
Ψ1(τ) if τi = 1

Ψ2(τ) otherwise.

Let w = (a1, τ1) · · · (ak, τk) ∈ Σ+
free(Φ) with aj ∈ Σ

and τj ∈ {0, 1}free(Φ) for all 1 6 j 6 k. We can eas-

ily check that {|Φ|}(w) = {{Ψ(τ1) · · ·Ψ(τk)}}. Define

AΦ = (Q,∆,wgt, I, F ) with a single state which is

both initial and final (Q = I = F = {q}) and for

every a ∈ Σ and τ ∈ {0, 1}free(Φ), there is a transition

δ = (q, (a, τ), q) ∈ ∆ with wgt(δ) = Ψ(τ). It is clear

that for every word w = (a1, τ1) · · · (ak, τk) ∈ Σ+
free(Φ),

the automatonAΦ has a single run on w whose sequence

of weights is Ψ(τ1) · · ·Ψ(τk). Therefore, {|AΦ|}(w) =

{|Φ|}(w), which concludes the proof. ut

5 Restricted weighted MSO logic

We now present the syntax and semantics of the full

wMSO logic that has been studied over semirings [6],

valuation monoids [10] and valuation structures [11].

The syntax used in these previous works is different.

Also, there is no separate semantics for the Boolean

fragment, instead, it is obtained as a special case of

the quantitative semantics. As we will see, this choice

requires some additional conditions on the weight do-

main, called hypothesis (01) below. In order to obtain

the same expressive power as weighted automata, we

also have to restrict the usage of conjunction and uni-

versal quantifications in wMSO.

We present effective translations in both directions

relating restricted wMSO with core-wMSO, and the con-

ditions that the weight domain has to fulfil in different

settings. Using Corollary 11, we obtain a purely logical

proof of the equivalence between restricted wMSO and

weighted automata, using core-wMSO as an intermedi-

ary, simple and elegant, logical formalism.

5.1 wMSO over semirings and valuation monoids

For a set R of weights, the logic wMSO(Σ,R) studied

in [6] and [10] is given by the following grammar

Ξ ::= r | ϕ | Ξ ∨Ξ | Ξ ∧Ξ | ∃xΞ | ∀xΞ | ∃X Ξ

where x and y are first-order variables, X is a second-

order variable, ϕ ∈ MSO(Σ) and r ∈ R.

Defining the semantics of the conjunction operator

requires the introduction of an additional binary op-

erator �. Expressing the semantics of Boolean formulæ

[[r]]V (w, σ) = r

[[β]]V (w, σ) =

{
1 if w, σ |= β

0 otherwise

[[¬ϕ]]V (w, σ) =

{
1 if [[ϕ]]V (w, σ) = 0

0 otherwise

[[ξ ∨ ξ′]]V (w, σ) = [[ξ]]V (w, σ) + [[ξ′]]V (w, σ)

[[ξ ∧ ξ′]]V (w, σ) = [[ξ]]V (w, σ) � [[ξ′]]V (w, σ)

[[∃x ξ]]V (w, σ) =
∑

i∈pos(w)

[[ξ]]V ∪{x}(w, σ[x 7→ i])

[[∀x ξ]]V (w, σ) = Val(([[ξ]]V ∪{x}(w, σ[x 7→ i]))i∈pos(w))

[[∃X ξ]]V (w, σ) =
∑

I⊆pos(w)

[[ξ]]V ∪{X}(w, σ[X 7→ I])

[[∀X ϕ]]V (w, σ) = Val(([[ϕ]]V ∪{X}(w, σ[X 7→ I]))I⊆pos(w)) .

Table 4 Semantics of wMSO over product valuation monoids.
β stands for an atomic formula among Pa(x), x 6 y, x ∈ X.

with the quantitative semantics of weighted formulæ re-

quires special elements 0 and 1. A semiring is naturally

equipped with such objects, the multiplication and its

zero and unit elements. A valuation monoid equipped

with such objects is called a product valuation monoid.

More formally, a product valuation monoid is a tuple

(S,+, 0,Val, �, 1) with (S,+, 0) a commutative monoid,

Val : S? → S, � : S2 → S, and 1 ∈ S. In [10], addi-

tional conditions are given in the definition of prod-

uct valuation monoids. We will highlight these condi-

tions in the following. Semirings are a special case of

product valuation monoids. In this section, we assume

that {0, 1} ⊆ R ⊆ S is a subset of a product valuation

monoid (S,+, 0,Val, �, 1).

The semantics of a Boolean formula ξ = ϕ or a

weighted formula ξ = Ξ is defined uniformly. Let w ∈
Σ+
V with free(ξ) ⊆ V . We define [[ξ]]V (w) = 0 if w is

not valid. If w is the valid encoding of (w, σ) then the

semantics is given in Table 4.

To relate wMSO with core-wMSO, we introduce an

intermediary logic wMSO′ which semantically separates

the Boolean fragment from the quantitative one. The

syntax of wMSO′(Σ,R) is given by the grammar

Ξ ::= r | ϕ ?Ξ : Ξ | Ξ ∨Ξ | Ξ ∧Ξ | ∃xΞ | ∀xΞ | ∃X Ξ

where x and y are first-order variables, X is a second-

order variable, ϕ ∈ MSO(Σ) and r ∈ R. Notice that

a Boolean formula is no more a weighted formula. In-

stead, the if-then-else construct is used in wMSO′.

The semantics of wMSO′ is defined as in Table 4, re-

moving the cases β, ¬ϕ and ∀X ϕ, restricting the other

cases to weighted formulæ ξ = Ξ, and using the case-
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splitting semantics for the if-then-else operator:

[[ϕ ?Ξ : Ξ ′]]V (w, σ) =

{
[[Ξ]]V (w, σ) if w, σ |= ϕ

[[Ξ ′]]V (w, σ) otherwise.

Let us now give a list of properties that the product

valuation monoid should fulfil in order for wMSO and

wMSO′ to be expressively equivalent:

– 0 � s = s � 0 = 0 for all s ∈ S,

– 1 � s = s � 1 = s for all s ∈ S,

– Val(s1 · · · sn) = 0 for all s1 · · · sn ∈ S+ such that

si = 0 for some i,

– and Val(1 · · · 1) = 1.

In the following, we call this list of hypotheses (01).

Lemma 19 Under hypothesis (01), wMSO(Σ,R) and

wMSO′(Σ,R) have the same expressive power.

Proof We first show by induction that, if ϕ ∈ MSO is a

Boolean formula then the semantics of wMSO gives for

a valid word w = (w, σ)

[[ϕ]]V (w, σ) =

{
1 if w, σ |= ϕ

0 otherwise.
(4)

The property holds for atomic formulæ by definition

of the semantics in Table 4. It is also trivial by induc-

tion for negation. For conjunction, the property follows

from the first two items of hypothesis (01) (only used

with s ∈ {0, 1}), and for the universal quantifications,

it follows from the last two items.

Then, the translation of Ξ ∈ wMSO to Ξ ′ ∈ wMSO′

only replaces maximal Boolean subformulæ ϕ in Ξ with

ϕ ? 1 : 0. An occurrence of a Boolean subformula is

maximal in Ξ if it is not a strict subformula of another

Boolean subformula in Ξ. The equality between both

semantics is a direct consequence of (4).

In the other direction, we simply replace formulæ

ϕ ?Ξ1 : Ξ2 with (ϕ∧Ξ1)∨(¬ϕ∧Ξ2). Then, the equality

between both semantics is a consequence of (4) and the

first two items of hypothesis (01), used here with all

possible values of s. ut

In [10], several fragments of wMSO are studied. For

instance, almost Boolean formulæ of wMSO is the frag-

ment containing all constants r ∈ R, all Boolean for-

mulæ ϕ, and which is closed under disjunction and con-

junction. In contrast, in wMSO′, we define step formulæ

as the fragment containing all constants r ∈ R and

closed under the if-then-else operator. Notice that step

formulæ of wMSO′ correspond to step-wMSO formulæ.

We now show the relationship between the two frag-

ments.

Lemma 20 For every almost Boolean formula Ξ of

wMSO(Σ,R) we can construct an equivalent step for-

mula Ξ ′ of wMSO′(Σ,S). Conversely, under hypothe-

sis (01), every step formula Ξ ′ of wMSO′(Σ,R) can be

translated into an equivalent almost Boolean formula Ξ

of wMSO(Σ,R).

Proof Let {ϕ1, . . . , ϕn} be the set of maximal MSO for-

mulæ occurring in Ξ. The proof is by induction on n.

When n = 0, Ξ is a positive Boolean combination of

constants. Replacing ∧ with � and ∨ with +, we obtain

an expression which evaluates to a new constant s ∈ S
(not necessarily in R). Then, Ξ ′ = s is a step formula

which is equivalent to Ξ.

Assume now that n > 0. Consider the formulae

Ξ[ϕn/1] and Ξ[ϕn/0] obtained by substituting maxi-

mal occurrences of ϕn with 1 and 0 respectively. These

are almost Boolean formulæ with n−1 maximal Boolean

formula. By induction, there are equivalent step for-

mulæ Ξ ′1 and Ξ ′0 of wMSO′. Moreover, by (4), we can

show by induction that for a valid word w = (w, σ)

[[Ξ]]V (w, σ) =

{
[[Ξ[ϕn/1]]]V (w, σ) if w, σ |= ϕ

[[Ξ[ϕn/0]]]V (w, σ) otherwise.

Then, formula Ξ ′ = ϕn ?Ξ ′1 : Ξ ′0 is a step formula

equivalent to Ξ.

Conversely, the translation from wMSO′ to wMSO
shown in Lemma 19, if applied to a step formula, pro-

duces an almost Boolean formula. ut

Notice that the translation from almost Boolean for-

mulæ in wMSO to step formulæ in wMSO′, not only

modifies the set of constants used in the logic, but also

expands exponentially the size of the formulæ.

Other fragments of wMSO are studied in [10]. A

formula Ξ ∈ wMSO is ∀-restricted if every subformula

∀x ξ is such that ξ is almost Boolean. The formula Ξ

is ∧-restricted6 if every subformula ξ ∧ ξ′ is such that

both ξ and ξ′ are almost Boolean, or ξ or ξ′ is Boolean.

We will relate these fragments with corresponding

ones in wMSO′. A formula Ξ ∈ wMSO′ is ∀-restricted if

every subformula ∀x ξ is such that ξ is a step formula.

Formula Ξ is ∧-restricted if ∧ is used only in Boolean

subformulæ.

Remark 21 Under hypothesis (01), thanks to the trans-

lation of Lemma 19, ∀-restricted (respectively, ∧-restric-

ted) formulæ of wMSO′ translate into equivalent ∀-
restricted (respectively, ∧-restricted) formulæ of wMSO.

Conversely, using the translation of Lemma 20 for al-

most Boolean formulæ occurring just below a universal

6 These formulæ are call strongly ∧-restricted in [10],
in contrast with a slightly less restrained fragment of ∧-
restricted formulæ.
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quantification, we can translate ∀-restricted formulæ of

wMSO into ∀-restricted formulæ of wMSO′. Moreover,

starting from a ∧-restricted formula Ξ of wMSO, we

first apply the transformation of Lemma 20 to maxi-

mal almost Boolean formulæ which are not Boolean.

We obtain a new formula Ξ ′ in which the remaining

conjunctions which are not inside a Boolean subformula

are of the form ϕ∧Ξ1 or Ξ1 ∧ϕ with ϕ a Boolean for-

mula. We translate these formulæ into ϕ ?Ξ1 : 0. We

may still have some maximal Boolean subformulæ ϕ

which are not guards of an if-then-else operator. We

replace these with ϕ ? 1 : 0. We obtain an equivalent

∧-restricted formula Ξ ′′ of wMSO′.

We now establish the relationship between core-wMSO
and these fragments of wMSO′. The first direction does

not require any additional hypotheses.

The semantic equivalence between a formula Φ ∈
core-wMSO and a formula Ξ in wMSO′ or wMSO, de-

noted Φ ≡ Ξ, is defined by free(Φ) = free(Ξ) = V and

aggrsv({|Φ|}V (w)) = [[Ξ]]V (w) for all w ∈ Σ+
V .

Proposition 22 Every formula Φ of core-wMSO(Σ,R)

can be translated into an equivalent ∀- and ∧-restricted

formula Φ̃ of wMSO′(Σ,R).

Proof Since step-wMSO formulæ are syntactically iden-

tical with step formulæ of wMSO′, we simply set Ψ̃ = Ψ .

For core-wMSO formulæ Φ, the translation is performed

inductively by

˜ϕ ?Φ1 : Φ2 = ϕ ? Φ̃1 : Φ̃2 0̃ = 0

Φ̃1 + Φ2 = Φ̃1 ∨ Φ̃2

∑̃
xΦ1 = ∃x Φ̃1∑̃

XΦ1 = ∃X Φ̃1

∏̃
xΨ = ∀x Ψ̃ .

Notice that 0 ∈ R so that Φ̃ is always a ∀- and ∧-

restricted formula of wMSO′(Σ,R). Let Φ in core-wMSO
and let w ∈ Σ+

V with free(Φ) ⊆ V . If w is not valid

then {|Φ|}V (w) = ∅ and [[Φ̃]]V (w) = 0. We conclude

with aggrvm(∅) = 0. We assume now that w = (w, σ) is

valid. We show by induction that aggrsv({|Φ|}V (w, σ)) =

[[Φ̃]]V (w, σ).

The case Φ = ϕ ?Φ1 : Φ2 is trivial. For 0, +,
∑
x

and
∑
X , the result follows from the fact that the aggre-

gation operator aggrvm =
∑

Val is a monoid morphism

from (N〈R?〉,], ∅) to (S,+, 0), i.e., aggrvm(∅) = 0 and

for all multisets A,B ∈ N〈R?〉, we have

aggrvm(A ]B) = aggrvm(A) + aggrvm(B) .

Finally, assume that Φ =
∏
xΨ and pos(w) = {1, . . . , n}.

For every position i ∈ pos(w), there exists a constant

ri = [[Ψ̃ ]]V ∪{x}(w, σ[x 7→ i]) ∈ S such that the abstract

semantics is {|Ψ |}V ∪{x}(w, σ[x 7→ i]) = {{ri}}. We ob-

tain

aggrvm
(
{|
∏
xΨ |}V (w, σ)

)
=
∑

Val
(
{{r1 · · · rn}}

)
= Val(r1 · · · rn)

= [[∀x Ψ̃ ]]V (w, σ) . ut

We now consider the reverse translation from wMSO′

to core-wMSO. We first define the hypothesis on the

weight domain allowing us to obtain the result.

A subset R of a product valuation monoid (S,+, 0,

Val, �, 1) is said to be regular if for every weight r ∈ R,

there exists a sentence Φr of core-wMSO(Σ,S) such that

aggrvm({|Φr|}(w)) = r

for every w ∈ Σ+.7 Notice that the formula Φr may use

all possible constants in S, and not only the ones in R.

Example 23 In case of a valuation that is a λ-discounted

sum, we may use the formula

Φr =
∏
xfirst(x) ? r : 0

with first(x) the MSO formula stating that x is the first

position of the word. Indeed, Φr maps a word w of

length n to r+λ ·0 +λ2 ·0 + · · ·+λn−1 ·0 = r. Another

example is when the valuation takes the average of the

weights. Then, the formula

Φr =
∏
xr

is appropriate. Indeed, it maps w to r+···+r
n = r. As

last example, in every semiring S, S is a regular subset

using the formula

Φr =
∏
xfirst(x) ? r : 1

and the fact that 1 is a unit for multiplication.

Proposition 24 If the set R is regular in S, each ∀-
and ∧-restricted formula Ξ ∈ wMSO′(Σ,R) can be trans-

lated into an equivalent formula Ξ̃ ∈ core-wMSO(Σ,S).

Proof Using the regularity of R, we give a translation

of ∀- and ∧-restricted formulæ of wMSO′(Σ,R) into

core-wMSO(Σ,S):

r̃ = Φr ˜ϕ ?Ξ1 : Ξ2 = ϕ ? Ξ̃1 : Ξ̃2

Ξ̃ ∨Ξ ′ = Ξ̃ + Ξ̃ ′ ∀̃xΞ =
∏
xΞ

∃̃xΞ =
∑
xΞ̃ ∃̃XΞ =

∑
XΞ̃

Notice again that a step formula in wMSO′ is already a

step-wMSO formula and does not require any transla-

tion. Using a proof by induction as in Proposition 22, it

is immediate to check that Ξ and Ξ̃ are equivalent. ut
7 In [10], the regularity is defined with respect to some

weighted automata. Here, we prefer to use a purely logical
definition. However, using Corollary 11-2., those two defini-
tions are equivalent.
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We will now translate the ∀-restricted fragment of

wMSO′ into core-wMSO (no restriction on ∧). To this

end, we first define on weight domains the hypothe-

sis (DC) which states that � distributes over +, i.e.,

r � (s + t) = r � s + r � t and (s + t) � r = s � r +

t � r for all r, s, t ∈ S, and � is Val-commutative, i.e.,

Val(r1 · · · rn) �Val(s1 · · · sn) = Val((r1 � s1) · · · (rn � sn))

for all r1, . . . , rn, s1, . . . , sn ∈ S.

Proposition 25 If the set R is regular in S and un-

der hypothesis (DC), every ∀-restricted formula Ξ of

wMSO′(Σ,R) can be translated into an equivalent for-

mula Ξ̃ of core-wMSO(Σ,S).

Proof We use the translation of Proposition 24, adding

the following rule to translate conjunctions:

Ξ̃ ∧Ξ ′ = Ξ̃ � Ξ̃ ′ .

For all ∀-restricted formula Ξ of wMSO′, Ξ̃ is now a

formula of �-core-wMSO, as introduced in Section 4.4.

Checking that Ξ and Ξ̃ are equivalent is performed as

in Proposition 24 for all constructs but the conjunction.

For the conjunction, we have to show that

aggrvm{|Φ1 � Φ2|}(w, σ)

= aggrvm{|Φ1|}(w, σ) � aggrvm{|Φ2|}(w, σ)

i.e., that the semantics of � is compositional. This holds

since, for all n > 0 and A,B ∈ N〈Sn〉, we have

aggrvm(A �B)

=
∑
{{Val(γ) | γ ∈ A �B}}

=
∑
{{Val(α � β) | α ∈ A, β ∈ B}}

=
∑
{{Val(α) � Val(β) | α ∈ A, β ∈ B}}

= (
∑
{{Val(α) | α ∈ A}}) � (

∑
{{Val(β) | β ∈ B}})

= aggrvm(A) � aggrvm(B) .

By Proposition 16, we may finally translate the �-
core-wMSO formula Ξ̃ into an equivalent core-wMSO
formula. ut

Finally using Corollary 10, the previous proposi-

tions and Remark 21 linking fragments of wMSO and

wMSO′, we obtain

Theorem 26 Suppose that S is regular. The following

formalisms are expressively equivalent:

– S-weighted automata over alphabet Σ;

– core-wMSO(Σ,S);

– ∀- and ∧-restricted wMSO′(Σ,S)

– ∀-restricted wMSO′(Σ,S) if (DC);

– ∀- and ∧-restricted wMSO(Σ,S) if (01);

– ∀-restricted wMSO(Σ,S) if (DC) and (01).

Notice that the sets of constants in logics and au-

tomata is always taken to be S in order to simplify the

statements. For the same reason, the regularity condi-

tion is on the full set of weights S. Previous propositions

give more precise results on how the set of constants

change along the translations.

5.2 wMSO over valuation structures

The syntax of the logic wMSO over valuation structures

[11] is the same as for valuation monoids defined before.

The difference comes only from the semantics. Consider

a valuation structure (U,Val, S, F ). As previously, a bi-

nary operator � : U2 → U , as well as a constant 1 in R,

are necessary to define the semantics of conjunction and

of the Boolean formulæ. Such a tuple (U,Val, S, F, �, 1)

is called a product valuation structure. Notice that, con-

trary to product valuation monoids, the element 1 lies

in U and not in S.

The easiest way to define the semantics in that case

is to rely on the case of product valuation monoids.

Indeed, notice that (N〈U〉,], ∅,Val, �, {{1}}) is a prod-

uct valuation monoid. The diamond operator is lifted

from the valuation structure to multisets pointwisely.

The valuation of a sequence (Ai)16i6n of multisets is

the multiset {{Val(a1 · · · an) | ai ∈ Ai}}. Hence, this al-

lows us to define the semantics of formulæ Ξ of wMSO
in two steps. First, a semantics 〈Ξ〉V (w) in the prod-

uct valuation monoid N〈U〉 as defined in Table 4. Then,

the final interpretation F (〈Ξ〉V (w)) given by F . Notice

the difference between the semi-interpreted semantics

〈·〉V (w) and our abstract semantics {| · |}V (w) in the

case of universal quantifications.

Theorem 26 also holds for product valuation struc-

tures with the hypotheses simplified as follows:

– the regularity condition on N〈U〉 is fulfilled when

for every constant r ∈ U , there exists a sentence Φr
of core-wMSO(Σ,U) such that {|Φr|}(w) = {{r}} for

all w ∈ Σ+;

– hypothesis (01) is fulfilled when 1 � r = r � 1 = r

for all r ∈ U , and Val(1 · · · 1) = 1. In particular,

conditions on the zero element ∅ ∈ N〈U〉 are trivially

verified because of the pointwise definition of � and

Val over multisets;

– hypothesis (DC) is fulfilled when Val(r1 · · · rn) �
Val(s1 · · · sn) = Val((r1 � s1) · · · (rn � sn)) for all

r1, . . . , rn, s1, . . . , sn ∈ U . In particular, � always

distributes over ] in N〈U〉.

Indeed, Theorem 26 for product valuation structures

is obtained by first applying Theorem 26 to the prod-

uct valuation monoid N〈U〉 and by then applying the

evaluator function F .
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6 Extensions to ranked and unranked trees

In this section, we show how to extend the equivalence

between weighted automata and core-wMSO to other

structures, namely ranked and unranked trees. We will

primarily use a semantics in multisets of weight trees

(instead of weight sequences). Then, we may apply an

aggregation operator to recover a more concrete seman-

tics. This approach allows us to infer results for semi-

rings [13,14] and also for tree valuation monoids [7].

There are two main ingredients allowing us to prove

the equivalence between core-wMSO and weighted au-

tomata. First, in the Boolean case, we should have an

equivalence between unambiguous (or deterministic) au-

tomata and MSO logic. This equivalence is known for

many structures such as words [3,15,22], ranked trees

[21], unranked trees [5], etc. Second, the computation of

the weight of a run ρ of an automaton, and the evalua-

tion of a product formula
∏
xΨ should be based on the

same mechanism. For words and valuation monoids (or

valuation structures), it is the valuation of a sequence

of weights. This is why we used an abstract semantics

in the semiring of multisets of weight sequences. For

trees and tree valuation monoids, the valuation takes

a tree of weights as input and returns a value in the

monoid. Hence, we use multisets of weight trees as ab-

stract semantics. Note that, multisets of weight trees

form a monoid but not a semiring.8

6.1 Ranked and unranked trees

Let P = {1, 2, . . .} be the set of positive natural num-

bers and P? be the set of finite words over P. A tree

domain B is a finite, nonempty subset of P? such that

if u · i ∈ B with u ∈ P? and i ∈ P, then we have

u, u · 1, . . . , u · (i− 1) ∈ B. An unranked tree over a set

Σ of labels (Σ-tree) is a partial mapping t : P? → Σ

with a dom(t) ⊆ P? being a tree domain. The arity of a

node u ∈ dom(t) is ar(u) = max{i ∈ P | u · i ∈ dom(t)},
with max ∅ = 0. We denote by UTΣ the set of unranked

Σ-trees.

A ranked alphabet is a pair (Σ, rk) with Σ a finite

alphabet and rk : Σ → N giving the rank of each symbol

in Σ. For each rank m, we denote by Σ(m) the set of

symbol a ∈ Σ with rk(a) = m. A ranked tree over

(Σ, rk) is a Σ-tree t such that for each u ∈ dom(t) we

have ar(u) = rk(t(u)).

An (unranked) tree automaton over Σ is a tupleA =

(Q,∆,F ) with Q a nonempty finite set of states, F ⊆ Q

8 The product in the semiring of weight sequences is based
on the concatenation of sequences. There is no natural coun-
terpart for trees.

the set of accepting states, and ∆ ⊆ Reg(Q?)×Σ ×Q
a finite set of transitions, where Reg(Q?) denotes the

set of regular languages over alphabet Q. Here we may

(finitely) represent regular languages by finite-state au-

tomata or regular expressions over the alphabet Q.

A run of A over a Σ-tree t is a ∆-tree ρ with domain

dom(ρ) = dom(t) and such that for all u ∈ dom(t) we

have ρ(u) = (L(u), t(u), q(u)) ∈ ∆ and q(u · 1) · · · q(u ·
ar(u)) ∈ L(u). The run is accepting if q(ε) ∈ F .9

The language L(A) accepted by the tree automaton

A is the set of Σ-trees on which there exists at least

one accepting run.

Remark 27 In case of a ranked alphabet, we recover

the classical ranked tree automata with ∆ ⊆
⋃
mQ

m×
Σ(m) ×Q.

A tree automaton A is said to be deterministic if for

all distinct transitions (L, a, q) and (L′, a, q′) in ∆, we

have L ∩ L′ = ∅. Equivalently, for every word π ∈ Q?
and a ∈ Σ, there is at most one transition (L, a, q) ∈ ∆
such that π ∈ L. Hence, every tree t admits at most

one run. It is well known that tree automata can be

determinised (see, e.g., [5]).

6.2 Weighted automata over trees

An R-weighted (unranked) tree automaton over Σ is a

tuple A = (Q,∆,wgt, F ) with (Q,∆,F ) a tree automa-

ton and wgt : ∆→ R associating a weight to every tran-

sition.

The weight tree arising from a run ρ of A over a

Σ-tree t is the R-tree wgt ◦ ρ mapping each u ∈ dom(t)

to wgt(ρ(u)) ∈ R. The abstract semantics of an R-
weighted tree automaton A is a multiset of weight trees.

For all trees t ∈ UTΣ , we define

{|A|}(t) = {{wgt ◦ ρ | ρ is an accepting run of A on t}} .

Hence, our abstract semantics lives in the commutative

monoid N〈UTR〉 of multisets of R-trees. Then, we may

use an aggregation operator aggr : N〈UTR〉 → S to ob-

tain a concrete semantics in a possibly different weight

structure S:

[[A]](t) = aggr({|A|}(t)) .

Example 28 (Weighted automata over semirings) In the

classical setting, the set R of weights is a subset of

a semiring (S,+,×, 0, 1). The value of a run ρ of A
9 Equivalently, we may assume that transitions are disjoint:

if (L, a, q), (L′, a, q) ∈ ∆ then L = L′ or L∩L′ = ∅. In this case,
a run can be defined as a simpler Q-tree ρ with dom(ρ) =
dom(t) and such that for all u ∈ dom(t) there is a (unique)
transition (L, t(u), ρ(u)) ∈ ∆ with ρ(u · 1) · · · ρ(u · ar(u)) ∈ L.
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over a Σ-tree t is the product of the weights in the

R-tree wgt ◦ ρ. Since the semiring is not necessarily

commutative, we have to specify the order in which

this product is computed. Classically, we choose the

postfix order. Formally, given an R-tree ν, the prod-

uct
∏

(ν) = Prod(ν, ε) is computed bottom-up: for all

u ∈ dom(ν) we set

Prod(ν, u) = Prod(ν, u·1)×· · ·×Prod(ν, u·ar(u))×ν(u) .

Note that, if u is a leaf then Prod(ν, u) = ν(u). As for

words, the mapping
∏

: UTR → S can be lifted to a

mapping
∏

: N〈UTR〉 → N〈S〉. Then, the semantics is

defined as always by summing the values of the accept-

ing runs: [[A]](t) =
∑
ρ

∏
(wgt(ρ)) where the sum ranges

over accepting runs ρ of A over the Σ-tree t. Therefore,

the classical case of semirings is obtained from the ab-

stract semantics with the aggregation operator

aggrsr(A) =
∑∏

(A) =
∑
ν∈A

∏
(ν) .

In the case of a ranked alphabet, we recover the def-

inition of [13] of weighted tree automata. The compar-

ison with the weighted unranked tree automata of [14]

is not as easy, at least over non-commutative semirings.

We believe that over commutative semirings, our model

is equivalent to the weighted unranked tree automata

of [14]. The situation is different over non-commutative

semirings. Our definition is best motivated by consider-

ing words as special cases of trees. There are two ways to

inject words in unranked trees, as shown in Fig. 2: either

in a horizontal way (a root with children representing

the word from left to right), or a vertical way (unary

nodes followed by a leaf, the word being read from bot-

tom to top). With some easy encodings, we may see

that our model of weighted unranked tree automata is

a conservative extension of weighted word automata,

both for the horizontal and the vertical injections of

words. Moreover, our approach allows us to obtain the

equivalence between automata and logic for arbitrary

semirings (even non-commutative ones), as stated in

Theorem 30.

In contrast, the model of [14] is not a conservative

extension of weighted word automata for the horizon-

tal injection. This is witnessed by an example given

in [14, Theorem 6.10], that we now recall. In the (non-

commutative) semiring (P({p, q}?),∪, ·, ∅, {ε}), with two

distinct letters p and q, we consider f : UTΣ → P({p, q}?)
the tree series mapping every tree t composed of a root

directly followed by n children (n ∈ N) to the lan-

guage {pnqn}, and every other tree to ∅. The model

of weighted unranked tree automata we have chosen

can not recognise this tree series. However, the model

of automata described in [14] is able to recognise this

a b a b b

#

b

b

a

b

a

#

Fig. 2 Horizontal and vertical injection of the word ababb into
trees

tree series. The main difference between the two mod-

els, that explains this discrepancy, is the way weights

are assigned during the computation of the automaton.

Whereas we have decided to assign weights to transi-

tions of the unranked tree automaton, keeping a Boolean

regular (hedge) language to determine whether a tran-

sition is enabled, Droste and Vogler decided instead to

use a weighted (hedge) automaton when reading the

sequence of states of the children. Then, to each po-

sition in the tree domain is associated the weight of

the (hedge) automaton reading the sequence of states

of the children. The semantics over a tree is given by a

depth-first left-to-right product of those weights (first

the weight of the children from left to right, and then

the weight of the parent).

Example 29 (Tree valuation monoids) As for words, ex-

tensions of weighted automata to more general weight

domains have been considered. Following [7], a tree val-

uation monoid is a tuple (S,+, 0,Val) where (S,+, 0) is

a commutative monoid and Val : UTS → S is a valua-

tion function from S-trees to S. The value of a run ρ
is now computed by applying this valuation function to

the R-tree wgt ◦ ρ. The final semantics is obtained as

above by summing the values of accepting runs. There-

fore, the semantics in tree valuation monoids is obtained

from the abstract semantics with the aggregation oper-

ator

aggrvm(A) =
∑

Val(A) =
∑
ν∈A

Val(ν) .

For instance, when (S,+,×, 0, 1) is a semiring, we ob-

tain a tree valuation monoid with the postfix product∏
defined in Example 28. We refer to [7] for other ex-

amples of weighted ranked tree automata, including the

interesting case of multi-operator monoids which is also

studied in [16]. A further extension for unranked trees

has recently been considered in [8].

Further extensions like tree valuation structures—

where the sum in tree valuation monoids is replaced

by a more general operator F as for words—are also
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possible, though not considered in the literature so far.

Our results will apply in this context as well.

6.3 core-wMSO over trees

There are only very few changes needed to lift the logic

core-wMSO defined in Section 4 to ranked or unranked

trees.

On one hand, we need to change the atomic predi-

cates of the Boolean fragment MSO to the correspond-

ing ones over trees. For unranked trees, we use child(x, y)

which says that under the current valuation σ we have

σ(y) = σ(x) · i for some i ∈ P, and nextsibling(x, y) for

σ(x) = u · i and σ(y) = u · (i+ 1) for some u ∈ P? and

i ∈ P. For ranked trees, we only use childi(x, y) which

means that y is the ith child of x (σ(y) = σ(x) · i).
Thanks to [21] for ranked trees and [5] for unranked

trees, we know that MSO has the same expressive power

as deterministic (bottom-up) tree automata.

On the other hand, we need to give the semantics of

core-wMSO formulæ in the setting of trees. Once again,

we will use the classical encoding of a pair (t, σ) con-

sisting of a Σ-tree t and a valuation σ from a set V

of variables to the domain of t, as a ΣV -tree t. The

notion of validity of such a ΣV -tree t is defined as for

words. The semantics of formulæ of step-wMSO maps

ΣV -trees to N〈R〉, and is defined as in Table 2 using

t, σ |= ϕ for MSO formulæ ϕ. For core-wMSO, in case

of a valid ΣV -tree t = (t, σ), the semantics is defined as

in Table 3 except for the operator
∏
x for which we let

{|
∏
xΨ |}V (t, σ) = {{t′}}

where t′ is the R-tree with the same domain as t such

that for all u ∈ dom(t) we have {|Ψ |}V (t, σ[x 7→ u]) =

{{t′(u)}}.
Then, we obtain the following result:

Theorem 30 For each R-weighted tree automaton A
over alphabet Σ, we can effectively construct a sentence

ΦA in core-wMSO(Σ,R), such that {|A|}(t) = {|ΦA|}(t)
for all Σ-trees t.

For each sentence Φ in core-wMSO(Σ,R), we can

effectively construct an R-weighted tree automaton AΦ
over Σ such that {|Φ|}(t) = {|AΦ|}(t) for all Σ-trees t.

Proof The proof of Theorem 9 given in Section 4.5 may

easily be adapted to the case of trees. In particular,

Lemma 18 can be proved mutatis mutandis.

Then, in the translation from automata to the logic,

only the formula run(X) has to be modified to check

that X encodes a run of A over a given tree t. For that

formula, we still have to check that X is a partition of

the positions of t, that the root is labelled with a tran-

sition δ ∈ Reg(Q?) × Σ × F , and that for each node u

of t labelled with transition δ = (L, a, q), the sequence

q1 · · · qar(u) ∈ L where (Li, ai, qi) is the transition asso-

ciated with the child u · i of u. This last condition is

checked with the help of an MSO formula over words

equivalent to the regular language L, replacing the lin-

ear order 6 over words with the reflexive and transitive

closure of the sibling relation nextsibling(x, y).10 Notice

also that the subformula
∏
xweight(x,X) in ΦA cor-

rectly computes {{wgt ◦ ρ}} where ρ is the run encoded

by X.

For the translation from logic to automata, there

are also some minor adaptations to tree automata. For

the projection, let us explain how to construct an au-

tomaton AΦ from AΦ1
where Φ =

∑
XΦ1. As for the

word case, we transfer the alphabet component for X of

AΦ1
in the state of AΦ. We denote by π1 the projection

from Q × {0, 1} to Q. Then, if AΦ1
= (Q,∆,wgt, F )

then AΦ = (Q× {0, 1}, ∆′,wgt′, F × {0, 1}) with

(π−11 (L), a, (q, j)) ∈ ∆′ iff (L, (a, j), q) ∈ ∆

with weights inherited by

wgt′(π−11 (L), a, (q, j)) = wgt(L, (a, j), q) .

A similar modification is made for
∑
x in order to check

during the computation that exactly one 1 appears in

the x component. We use the second projection π2 from

Q× {0, 1} to {0, 1}. Then, transitions are given by

(π−11 (L) ∩ π−12 (0?), a, (q, j)) ∈ ∆′ if (L, (a, j), q) ∈ ∆
(π−11 (L) ∩ π−12 (0?10?), a, (q, 1)) ∈ ∆′ if (L, (a, 0), q) ∈ ∆

and weights are inherited as before.

Next, for the if-then-else operator, we use the trans-

lation of a Boolean MSO formula into a deterministic

tree automaton [5]. The cartesian product of a deter-

ministic tree automaton and a weighted tree automaton

can be adapted easily.

Finally, the construction for Φ =
∏
xΨ can be eas-

ily adapted. Again, we assume that Ψ is a formula in

set-step-wMSO. The tree automaton AΦ has a single

state q which is accepting. For every letter (a, τ) ∈
Σfree(Φ) there is a transition ({q}?, (a, τ), q) with weight

Ψ(τ). The automatonAΦ is deterministic and complete.

It has a single run ρ on each Σfree(Φ)-tree t = (t, σ) and

for all nodes u ∈ dom(t) we have {|Ψ |}(t, σ[x 7→ u]) =

{{wgt(ρ(u))}}. We deduce that {|AΦ|}(t) = {{wgt◦ρ}} =

{|Φ|}(t). ut
10 An even simpler formula can be obtained in the simpler
setting of ranked trees.
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7 Conclusion

We proved the meta-theorem relating weighted auto-

mata and core-wMSO at the level of multisets of weight

structures for words and trees. However, the defini-

tions and techniques developed in this article can eas-

ily be adapted for other structures like nested words,

Mazurkiewicz traces, etc. The logical equivalence be-

tween restricted wMSO and core-wMSO at the concrete

level is established for words in Section 5. An analogous

result can be obtained for trees with a similar logical

reasoning. In particular, this allows for an extension to

trees of the valuation structures of [11].

In this article, our meta-theorem is only stated and

proved for finite structures. At the level of the concrete

semantics, equivalences between weighted automata and

weighted logics have been extended to infinite struc-

tures, such as words or trees over semirings [6], valua-

tion monoids [10] or valuation structures [11]. An ex-

tension of our meta-theorem to infinite structures cap-

turing these results is a natural open problem. Finite

multisets of weight structures are not adequate anymore

since automata may exhibit infinitely many runs on a

given input structure. The abstract semantics should

ideally distinguish between countably many runs or un-

countably many runs.
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