
HAL Id: hal-01274035
https://hal.inria.fr/hal-01274035

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automatic Test Framework for Interactive Music
Systems

Florent Jacquemard, Clément Poncelet

To cite this version:
Florent Jacquemard, Clément Poncelet. An Automatic Test Framework for Interactive Music Systems.
Journal of New Music Research, Taylor & Francis (Routledge), 2016, 45 (2), pp.18. �hal-01274035�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49419704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01274035
https://hal.archives-ouvertes.fr

An Automatic Test Framework for Interactive Music Systems ∗

Florent Jacquemard and Clement Poncelet
Sorbonne Universités, Inria, UPMC Univ Paris 06, IRCAM – CNRS UMR SMTS, Paris, France

Abstract

Score-Based Interactive Music Systems are
involved in live performances with human
musicians, reacting in realtime to audio sig-
nals and asynchronous incoming events ac-
cording to a pre-specified timed scenario
called mixed score. Building such a system is
a difficult challenge implying strong require-
ments of reliability and robustness to unfore-
seen errors in input.

We present the application to an automatic
accompaniment system of formal methods for
conformance testing of critical embedded sys-
tems. Our approach is fully automatic and
based on formal models constructed directly
from mixed scores, specifying the behavior
expected from the system when playing with
musicians. It has been applied to real mixed
scores and the results obtained have permit-
ted to identify bugs in the tested system.

Keywords: model based conformance
testing, realtime systems, score based inter-
active music systems, generation of artificial
music performances.

∗This work has been partly supported by a DGA-
MRIS scholarship and the project Inedit (ANR-12-
CORD-009).

Introduction

Interactive music systems (IMS) [23] play in
live music performances with human musi-
cians. They work by coupling functionalities
of artificial listening, for score following and
tempo detection, and of reactive systems, for
coordinating their outputs with musician in-
puts. In the case of score-based IMS, all these
activities are performed in realtime, following
a pre-specified timed scenario called a mixed
score, written in a Domain Specific Language
(DSL). It defines the parts of human musi-
cians (input) together with electronic parts
(output) and their synchronization.

During an instrumental performance, when
a musician does a mistake, the piece must and
will continue. However, IMS practitioners
know that a misbehavior of an IMS can jeop-
ardize a mixed instrumental-electronic per-
formance. In order to built reliable IMS and
meet listeners’ expectations, it is important
to be able to explore, statically, the IMS re-
actions to as many as possible musician’s in-
terpretations, and check that these reactions
conform to the behavior specified in the given
mixed score. This difficult task is compli-
cated by high unpredictability of musicians’
inputs and hard temporal constraints (due in
particular to the strong requirements of audio
computing platforms).

A traditional manual approach consists in

2 C. Poncelet and F. Jacquemard.2 C. Poncelet and F. Jacquemard.2 C. Poncelet and F. Jacquemard.

rehearsing with musicians. However time is
precious during a rehearsal, whose purpose is
usually more to solve musical problems than
to fix bugs. It is also possible for develop-
ers to listen to recordings of an IMS play-
ing with some musicians, checking a poste-
riori that the result sounds satisfiable. The
problem with this approach is that, on the
one hand, the test input is not complete (it
just represents one or a few particular perfor-
mances) and has to be played entirely, so such
a testing procedure is tedious and time con-
suming. On the other hand the verification
of the outcome is not rigorous.

This paper presents a study of the applica-
tion of Model-Based Testing (MBT) meth-
ods to the score based IMS Antescofo, de-
veloped at Ircam and used regularly in con-
certs. This system shares several character-
istics with the critical systems traditionally
targeted by MBT, such as reactivity and re-
altime semantics.

The main originality of our contribution is
the automatic construction of a formal model
M of the system’s IO behavior from a given
mixed score, using a front-end compiler into
an ad hoc intermediate representation (IR).
In this approach, the score is seen as a spec-
ification of the expected system’s behavior.
This is in contrast with usual MBT case stud-
ies where the model has to be built manually
by an expert. On the base of the constructed
model, we address the following issues:

(i) exhaustive generation of test data for in-
put, including timing values (artificial per-
formances), following covering criteria, and
applying model-checking techniques to M,

(ii) computation of the corresponding ex-
pected output data, according to the input
and the model, hence the mixed score,

(iii) black-box execution of the generated test
data using virtual clocks in order to play
in a fast-forward mode. The outcome of the
system is then compared formally to the ex-
pected outputs to check a Relativized Timed
Input/Output Conformance relation (rtioco)
between traces and a user readable verdict is
produced.

Although the paper present an application
to a specific IMS, our framework is based on
a generic model (the IR), and could therefore
be applied to other score-based IMS using,
like Antescofo, a reactive DSL (relating dis-
crete output to discrete input, with time val-
ues). Providing a compiler from a DSL into
our IR (such as our adhoc front-end compiler
from Antescofo DSL into IR), one could reuse
our framework for the above steps (i) and (ii)
without modifications. Note also that the
steps of our workflow are independent, and
linked using a generic timed trace format.

Structure of the paper. In the first part
of the paper (Section 1), we present our
model-based testing approach from the point
of view of the user, considered as an exter-
nal observer. We first present briefly our tar-
get system Antescofo and its DSL for writing
mixed scores (1.1, 1.2). Then we define the
format of the test data (traces), in input and
output (1.4), and describe our testing work-
flow (1.3, 1.5, 1.6).

The second part (Section 2) details the in-
ternals of our test procedure, i.e. the mod-
els of the system’s behavior (2.1) and how
they are used to generate test data. We
use the symbolic model checker Uppaal [14]
and its extension CoVer [6], both based on
the standard model of Timed Automata [3],
for the production of test input and output
data, with some covering criteria (2.2). We
also propose alternative techniques for pro-
ducing test input data: fuzzing of an ideal
trace using performance models of the liter-
ature (2.3), and the generation of input data
from audio recordings (2.4).

Finally, we present (Section 3) some rele-
vant experimental case studies, the first one
based on a benchmark of several hundreds of
small mixed scores, and the other based on
an extract of the real piece of mixed music
Einspielung by Emmanuel Nunes.

Related Work. Some tools exists for au-
tomating the test of IMS, like for instance
the max-test package [18] for testing MAX

An Automatic Test Framework for Interactive Music Systems 3An Automatic Test Framework for Interactive Music Systems 3An Automatic Test Framework for Interactive Music Systems 3

musicians

mixed score

audio
software

Listening
Machine

Reactive
Engine

audio or

MIDI stream tempo

pos.
messages

Figure 1: Architecture of Antescofo

patches through assertions. These systems
conveniently provide sophisticated tools for
automating execution of test data and re-
porting. But they generally do not offer pro-
cedures for generating test data, hence the
user must compute some input test data and
the expected corresponding output by other
means. Our approach ([19, 20]) in contrast
focus on the generation of test data, based
on formal models, and in this respect the two
approaches can been seen as complementary.

Other work has addressed the formal verifi-
cation of multimedia systems based on Timed
Automata models, such as for instance the
verification of a lip-synchronisation protocol
(synchronization of audio and video streams)
in [7]. Timed Automata Networks, Uppaal,
as well as timed Petri nets, are used in i-
Score [5], a framework for composition, verifi-
cation and real-time performance of Multime-
dia Interactive Scenarios. To our knowledge,
no other work has applied such formal models
to the test of Interactive Music Systems.

1 IMS Test Framework

We introduce in this section our case study,
the score follower Antescofo (1.1), its domain
specific language (DSL) for writing mixed
scores (1.2), our Model-Based Testing (MBT)
workflow (1.3), whose main steps are the gen-
eration of test cases, the execution on the sys-
tem under test (1.5) and test verdict (1.6).
Test cases are timed traces, which is the for-
mat for data exchange in our test frame-
work (1.4). Their generation from models is
presented in Section 2.

1.1 The IMS Antescofo

Figure 1 describes roughly the architecture of
Antescofo, which is made of two main mod-
ules. A listening machine (LM) decodes an
audio or midi stream incoming from a musi-
cian and infers in realtime: (i) the musician’s
position in the given mixed score, (ii) the mu-
sician’s instantaneous pace (tempo, in beats
per minute) [8]. These values are sent to the
second module: a reactive engine (RE) which
schedules the electronic actions to be played,
as specified in the mixed score. The actions
are messages (i.e. instructions) emitted on
time to an audio environment: a realtime au-
dio software such as MAX/MSP [21] or Pure
Data [22], in which Antescofo is embedded as
a patch.

Therefore, from a behavioral point of view,
the RE can be seen as a reactive system re-
ceiving and sending discrete events: some in-
put events sent by the LM to the RE and
output events sent by the RE to the environ-
ment. We propose a uniform format for these
events in Section 1.4.

1.2 Domain Specific Language

The mixed scores of Antescofo are written in
a textual language allowing the description of
the electronic accompaniment in reaction to
the detected instrumental events. A simpli-
fied extract of the score of Einspielung I 1 by
Emmanuel Nunes is presented in Figure 2.
This piece for violin and electronics will be
used as a running example in this paper.

1http://brahms.ircam.fr/works/work/32409/

http://brahms.ircam.fr/works/work/32409/

4 C. Poncelet and F. Jacquemard.4 C. Poncelet and F. Jacquemard.4 C. Poncelet and F. Jacquemard.

Example 1. Figure 2 displays the first bar
of Einspielung’s mixed score in Antescofo
DSL. The violin part is represented in com-
mon western music notation in Figure 3. The
keywords note and chord in Figure 2 are
used to represent the input events expected
from the violin (chords represent double
stops). They are followed by a note pitch
(or list of pitches), a duration (always 1

7 in
the example) and a label (e1, . . . , e7). The
electronic part is specified with actions and
sequences of actions called groups. Each ac-
tion is expressed with a delay (time to wait
before throwing action) followed by a message
(abstract symbols a0, . . . , a7 in the example).
A group is expressed with a delay, a label
(s2 in the example) followed by a sequence of
actions or nested groups.

The interleaving of notes/chords and se-
quences of actions and groups specifies the
coordination between input events and out-
put actions: a sequence of actions (a0, s2 . . .)
is triggered by the previous note (e1 in the
example). A zero delay between a trigger-
ing note and the first triggered action means
simultaneity: for instance both a0 and the
group s2 are started (in this order) as soon as
e1 is detected. Note that the total duration
of the group s2 is bigger than the duration
of the triggering event e1 (1 vs 1

7). It means

bpm 144
note D4 1/7 e1

0 a0
group 0 s2 @loose @global
{

0 a1
1/7 a2
1/7 a3
1/7 a4
1/7 a5
1/7 a6
1/7 a7

}
chord (B3[D4) 1/7 e2
chord (E4 D4) 1/7 e3
chord (D5] D4) 1/7 e4
chord (A4 D4) 1/7 e5
chord (C4[D4) 1/7 e6
chord (G4 D4) 1/7 e7

Figure 2: The first bar of Einspielung’s
mixed score in Antescofo DSL (simplified).

Figure 3: The first bar of Einspielung’s
violin part in common western notation.

BPM 144
evt(e1, 1/7, s1);
evt(e2, 1/7, []);
evt(e3, 1/7, []);
evt(e4, 1/7, []);
evt(e5, 1/7, []);
evt(e6, 1/7, []);
evt(e7, 1/7, []) where

s1 = act(0, [a0], []);
act(0, s2, [loose; global])

s2 = act(0, [a1], []);
act(1/7, [a2], []);
act(1/7, [a3], []);
act(1/7, [a4], []);
act(1/7, [a5], []);
act(1/7, [a6], []);
act(1/7, [a7], [])

Figure 4: Abstract syntax for the mixed
score of Figure 2.

that the execution of this group will continue
in concurrence with the detection of the next
events e2, . . . , e7. ♦

The DSL of Antescofo offers an important
set of features described in [12]. Composers
can use different strategies of synchroniza-
tion with the musicians’ inputs for accom-
paniment, and different errors management
strategies etc. We present here a simplified
abstract syntax corresponding to a fragment
of this language, in order to illustrate our test
framework.

Let O be a set of output messages (also
called action symbols and denoted a) which
can be emitted by the system and let I be a
set, disjoint from O, of event symbols (de-
noted e) to be detected by the LM (i.e.
positions in score). An action is a term
act(d, s, al) where d is the delay before start-
ing the action, s is either an atom in O or a
finite sequence of actions, and al is a list of
attributes. A mixed score is a finite sequence
of input events of the form evt(e, d, s) where

An Automatic Test Framework for Interactive Music Systems 5An Automatic Test Framework for Interactive Music Systems 5An Automatic Test Framework for Interactive Music Systems 5

e ∈ I, d is a duration and s is the top-level
group triggered by e. Sequences are denoted
with square brackets [,] and the empty se-
quence is denoted []. Figure 4 depicts the
running example in the abstract syntax.

The high-level attributes attached to an
action act(d, s, al) are indications regarding
musical expressiveness [9, 12]. We consider
here four attributes for illustration purpose,
two attributes are used to express the syn-
chronization of the group s to the musician’s
part: loose (synchronization on tempo) and
tight (synchronization on events) and two at-
tributes describe strategies for handling er-
rors in input: local (skip actions) and global
(play actions immediately at the detection of
an error).

We define an error as an event of the score
missing during the performance, either be-
cause the musician played a wrong note, did
not play it at all or because it was not de-
tected by the LM.

Example 2. Figure 11 illustrates An-
tescofo’s behavior for various combinations
of attributes for the group s2 of our running
example. Note that in Figures 2 and 4, the
attributes loose and global are selected. ♦

Allowing the user to express error handling
strategies and different degrees of smooth-
ness for the system reactions are interesting
features in a context of music composition
but can complicate the understanding of the

Figure 5: Reactions for various
combinations of attributes for s2, when the

events e1 and e4 are missed.

mixed scores and their validation.

1.3 Test Workflow

A mixed-score is seen in our case as a specifi-
cation describing precisely the timed behav-
ior expected from the system during a per-
formance. It expresses the durations of input
events (from the musician) corresponding to
an ideal performance. In practice, real per-
formances are not (and should not be) ideal:
the tempo of the musician will be fluctuating,
some notes’ durations can be shifted and ac-
cidents can also occur (missing notes). The
set of real performances is then infinite and
no two performances will be the same. The
purpose of a good test procedure is to assess
the response of the system to a representative
set of performances, as covering as possible.

Several formal methods have been devel-
oped for automatic conformance testing of
critical embedded software, see e.g. [17]. Here
we follow a Model-Based Testing (MBT) ap-
proach, where a formal model is used to con-
struct representative performances and ex-
pected system’s answers. Tests are executed
with a real implementation under test (IUT),
seen as a black-box (the source code of the
IUT is not known and only the inputs and
outputs are observed).

More precisely, in conformance MBT
methods, a formal model M of the system
is needed. In general it is written manually
by an expert. In our case however, it is ob-
tained automatically by compilation of the
mixed score, which is assumed to contain suf-
ficiently information about the behavior ex-
pected from the system. Indeed, by essence,

mixed score

specification S

perf. info
E or data

input traces

expected output traces

simulation

real output traces

comparison

verdict

compilation

generation execution

Figure 6: MBT workflow for IMS.

6 C. Poncelet and F. Jacquemard.6 C. Poncelet and F. Jacquemard.6 C. Poncelet and F. Jacquemard.

a mixed score describes precisely the relation
between the outputs of the system and musi-
cian’s events, with timing information. Such
a scenario is very convenient in a context of
assistance to composers of musical produc-
tions, who are usually subject to strict calen-
dar constraints.

The model (see Section 2.1) is composed
of two parts: S the specification, describing
the behavior expected for the IUT, and E
the environment, defining the inputs possible
during the tests. The Model is used (Fig-
ure 6 and Section 2.2) to generate automati-
cally some relevant test data: the input trace
tin, sent to the IUT, which must conform
to E , and the theoretically expected output
trace tout, computed from tin by simulation
using S. On the other hand, an execution of
the IUT on tin permits to monitor real output
trace t′out, which is then compared to tout in
order to produce a test verdict.

1.4 Input and Output Test Data

For realtime systems such as communication
protocols, transportation control etc, as for
IMS, time is a semantic issue, not just a
measure of efficiency. Therefore, the test
traces tin and tout must be timestamped.

We consider two time units here: physi-
cal time, in seconds, and musical time, ex-
pressed in number of beats relatively to a
tempo. Let us assume a tempo curve τ as-
sociating an instant tempo value, in beats
per minute (bpm), to each date t (in phys-
ical time). The conversion of a duration d
from musical time into physical time is ob-
tained by integration in [0, d] of the inverse
of τ . Here, we shall always consider tempo
curves which stay constant between the oc-
currences of two events. This corresponds to
the assumption (used in Antescofo LM) that
we infer tempo variations only at the arrival
of events, and not in-between.

A timed trace is a sequence of triples
〈ai, ti, pi〉 made of a symbol ai ∈ I ∪ O,
a timestamp ti ∈ R+ (onset), expressed in
musical time, and a tempo value pi in bpm,

such that for all i, ti ≤ ti+1 and if ti = ti+1

then pi+1 = pi. The tempo curve τ associ-
ated to such a trace is defined by τ(t) = pi
iff ti ≤ t < ti+1. A trace containing sym-
bols exclusively in I (resp. O) is called an
input trace (resp. an output trace). We de-
note below Tin (resp. Tout) the set of input
(respectively output) traces with timestamps
in musical time (tbeat). The ideal trace for a
mixed score S is the input trace of Tin con-
sisting in the projection of all input events
in S with their date (accumulated duration)
and the tempo given in S.

Example 3. The ideal trace for the score
in Figure 2 is:
〈e1, 0, 144〉·〈e2, 17 , 144〉· . . . ·〈e6, 57 , 144〉·〈e7, 67 , 144〉.

♦

Let us consider the two parts of model de-
fined above E as a set of possible input traces
and S as a simulation function from input
traces to output traces. A test case is a pair
〈tin, tout〉 ∈ Tin × Tout where tin ∈ E is an
input trace (an artificial performance) and
tout = S(tin) is the corresponding expected
system’s reaction. The automatic and cov-
ering generation of input traces tin and ex-
pected output traces tout from scores is the
topic of Section 2.

Example 4. Let us consider the three fol-
lowing input traces for the piece in Figure 2.
t1in = 〈e1, 0, 114〉 · 〈e2, 17 , 117〉 · 〈e3, 27 , 120〉·

〈e4, 37 , 117〉 · 〈e5, 47 , 114〉 · 〈e6, 57 , 111〉·
〈e7, 67 , 114〉.

t2in = 〈e1, 0, 114〉 · 〈e3, 3
14 , 120〉 · 〈e4, 6

14 , 117〉·
〈e6, 9

14 , 111〉 · 〈e7, 1214 , 114〉.
t3in = 〈e1, 0, 114〉 · 〈e2, 9

70 , 117〉 · 〈e3, 1870 , 120〉·
〈e4, 2770 , 117〉 · 〈e5, 3670 , 114〉·
〈e6, 4570 , 111〉 · 〈e7, 5470 , 114〉.

In trace t1in the durations are those of the
mixed score but the tempo diverges from the
ideal tempo (unlike Example 3). In t2in, the
onsets are shifted (to play the events a bit
earlier or later) and events e2, e5 are missed.
In the last trace t3in all events are played 10%
earlier than in t1in. ♦

An Automatic Test Framework for Interactive Music Systems 7An Automatic Test Framework for Interactive Music Systems 7An Automatic Test Framework for Interactive Music Systems 7

Figure 7: Input traces t1in, t2in and t3in, physical values according relative ones.

1.5 Test Execution

Having defined a format for timed traces, the
next question is: How can we observe the re-
action of the system to a given input?

The execution of an input trace tin is some-
how a monitored simulation of a performance.
It consists in sending the events in tin to the
IUT, at the specified dates, and collect a real
output trace t′out by monitoring and time-
stamping all output emitted by the system
during the execution.

The problem can be complex due to the
data flow in Antescofo, its modular nature
(Figure 1) and the variety of time units that
can be used in timed traces. We present
below several scenarios for testing different
parts of the system corresponding to differ-
ent boundaries for the black box tested.

1.5.1 Testing the Reactive Engine

This scenario is performed with a standalone
version of Antescofo equipped with an inter-
nal test adapter module. The adapter itera-
tively reads elements 〈ai, ti, pi〉 of tin in a file.
The duration dmu

i = ti+1 − ti of the event ei
(in musical time) is converted into physical

Antescofo Standalone

Event
trace tin

Internal
adapter

Listening
Machine

Reactive
Engine

〈a, t, p〉

tempo

x

pos.

x Real
output t′out

Expected
output tout

compare

Figure 8: Testing scenario of Section 1.5.1.

time by:

dphi =
dmu
i .60

pi
(1)

The adapter then waits for dphi seconds before
sending ei+1 and pi+1 to the RE.

More precisely, it does not physically wait,
but instead notifies a virtual clock in the RE
that the time has flown by dphi seconds. This
way the test does not need to be executed
in realtime but can be done in a fast-forward
mode. This is very important for batch exe-
cution of huge sets of test cases.

The messages sent by the RE are logged
in t′out, with timestamps in physical time (i.e.
with a tempo of 60bpm). In this scenario, the

8 C. Poncelet and F. Jacquemard.8 C. Poncelet and F. Jacquemard.8 C. Poncelet and F. Jacquemard.

IUT is the RE (the LM is idle).

1.5.2 RE with Tempo Detection

In this second scenario, tempo values pi read
in tin are ignored by the adapter, which in-
stead uses the tempo values inferred by the
LM (the adapter is calling an appropriate
method of the LM) in order to compute the

events’ durations dphi . The rest of the sce-
nario is similar to Section 1.5.1. The values of
tempo inferred by Antescofo’s LM are stored
by the adapter and used later to convert the
timestamps in the expected output trace tout
from musical to physical time, in order to
be able to compare it with the real output
trace t′out. In this case, the IUT consists in
the RE plus the part of the LM in charge of
tempo inference. The LM infers the tempo
based on the shift between durations in tin
and in the mixed score [8]. It might result in
a tempo increasing exponentially when dura-
tions in tin are too short.

Example 5. Let us see how the detected
tempo can increase by executing our trace
t3in via this scenario. The duration of e1 is
computed with the timestamp of e2 found in
t3in: dmu

1 = 9
70 − 0. Then we obtain a phys-

ical value of dphy1 = 0.05357 seconds with a
tempo of 144 (score value by default). The
detection of e2 is earlier than expected (since
the relative time is shorter than 10%), An-
tescofo’s LM modifies its current tempo to
146bpm. The computation of the same rela-

Antescofo Standalone

Event
trace tin

Internal
adapter

Listening
Machine

Reactive
Engine

〈a, t〉

tempo pos.

x Real
output t′out

Expected
output tout

compare

Figure 9: Testing scenario of Section 1.5.2.

tive duration for the next event is done with
a faster tempo and gives dphy2 = 0.05283 sec,
the event is earlier so the next tempo is faster
than 146bpm and so on. In this very short ex-
ample (and with small shifted durations), we
reach at the end a tempo of 150.3bpm, that
is 6.3bpm more than the score tempo in 0.4
seconds of a performance. ♦

1.5.3 Testing the Whole System

This scenario is the most general. It is exe-
cuted with a version of Antescofo embedded
in MAX (as a MAX patch), using an adapter
which is another MAX patch. The adapter
iteratively reads triples 〈ai, ti, pi〉 in a file
containing tin, and converts them into MIDI
events, with durations dphi casted into phys-
ical time using (1). The events are played
by the MAX patch midisynth˜ and the audio
stream generated is sent to the LM. The out-
put of the RE is then traced in t′out as before.

Note that here, the RE uses the tempo
values detected by the LM, which may dif-
fer from the tempo values in tin. The de-
tected tempo values are saved by the adapter
(in MAX the detected tempo is available as
an outlet of the antescofo˜ patch). They
are used later to convert the dates in tout
from musical into physical time, like in Sec-
tion 1.5.2. In this realistic scenario, the IUT
is therefore the whole Antescofo system.

In an alternative scenario, the adapter uses
the tempo values pi in tin for computing the
events’ durations dphi , like in Section 1.5.1.

Event
trace
tin

External
adapter
(MAX

patch)

Listening
Machine

Reactive
Engine

audio stream

tempo

pos.
Real

output t′out

Expected
output tout

compare

Figure 10: Testing scenarios of
Section 1.5.3.

An Automatic Test Framework for Interactive Music Systems 9An Automatic Test Framework for Interactive Music Systems 9An Automatic Test Framework for Interactive Music Systems 9

Note that in both scenarios of this section,
the tests are executed in real-time and not
in a fast-forward mode like in Sections 1.5.1
and 1.5.2. However an audio file of the se-
quence of MIDI sounds can be recorded and
sent later to the standalone in fast-forward
mode.

1.6 Comparison and Verdict

How can we check that the real output trace
t′out is correct? When the expected output
trace tout is not precisely defined, we are left
to listen to the execution of the IMS on tin,
in extenso, for instance using the framework
presented in Section 1.5.3, and decide subjec-
tively whether we are satisfied with it. This
manual solution is not precise and also te-
dious when one needs to consider many dif-
ferent tin for covering purposes.

In our approach, we compute tout from tin,
as described in Section 2, and the verdicts
are produced offline by a tool comparing the
expected output trace tout to the monitored
output trace t′out (after conversion of times-
tamps into physical time as described above).

One difficulty for the comparison of traces
is that some messages might be missing in
t′out or the order of close messages might be
inverted. We do not use a simple componen-
twise comparison between tout and t′out, but
instead compares the respective dates of each
symbol in these two output traces. For the
comparison we use a fixed tolerance bound δ,
for dealing with latency. In the reported ex-
periments, we have used δ = 0.1ms.

Example 6. A running example is done
to present an error case seen during an
Antescofo’s test. Let us consider the input
trace t4in derived from t3in with the first
event missing and the tempo divided by
two. The beginning of the corresponding
expected and real output traces (respec-
tively t4out and t′4out) are reported below
and the verdict is depicted in Figure 12.
t4in = 〈e2, 0, 62〉 · 〈e3, 9

70 , 64〉 · 〈e4, 1870 , 60〉·
〈e5, 2770 , 58〉 · 〈e6, 3670 , 56〉 · 〈e7, 4570 , 58〉.

t4out = 〈e2, 0, 62〉 · 〈a0, 0, 62〉 · 〈a1, 0, 62〉·
〈a2, 0, 62〉 · 〈e3, 0.12856, 64〉·
〈a3, 0.14285, 64〉 . . .

t′4out = 〈a0, 0, 60〉 · 〈a1, 0, 60〉 · 〈e2, 0, 60〉·
〈e3, 0.12442, 60〉 · 〈a2, 0.13781, 60〉·
〈e4, 0.24495, 60〉 · 〈a3, 0.27353, 60〉 . . .

In the expected trace t4out, the tempo values
are copied from the input trace t4in. Since the
event e1 is missed in t4in, and according to
the group attributes in Figure 3, a0, a1 and
a2 are sent immediately when e1 is detected
as missing i.e. at the detection of e2. The
delays in the real trace t′4out are in physical
time (60 bpm). Note that in this trace,
a0 and a1 are before e2, contradicting the
order in t4out. However this does not alter
the conformance because all these events are
synchronous (time-stamp 0s). In contrast,
the action a2 is at 0 in t4out and not in t′4out,
this is reported as an error in the verdict
(Figure 12): the real trace t′4out is not conform
to t4out, indicating a bug in Antescofo. ♦

2 Models and Automatic
Test Cases Generation

It remains to see how to generate the test
cases 〈tin, tout〉. We present below several ap-
proaches based on models built from a given
mixed score for creating a relevant and cover-
ing set of input traces tin and computing the
corresponding expected output traces tout.

2.1 Models of Computation

The principle of MBT approaches is to rely
on a formal modelM specifying the good be-
havior of the IUT. This model acts as an ora-
cle computing the good outputs from a given
input trace. As observed in Section 1.3, a
mixed score describes formally the outputs of
the system following musician’s events (with
timing information). Therefore, it is used in
order to create automatically the model M
at the heart of our approach. More precisely,
M is constructed from an Abstract Syntax
Tree (Figure 4), itself obtained by parsing a
program in Antescofo DSL (Figure 2).

10 C. Poncelet and F. Jacquemard.10 C. Poncelet and F. Jacquemard.10 C. Poncelet and F. Jacquemard.

Figure 11: Traces t4in, t4out and t′4out, physical values according relative ones.

2.1.1 Intermediate Representation

We use an Intermediate Representation (IR)
for defining the formal models M of our
MBT framework. An IR program is a finite
set (called network) of Finite State Machines
(FSM) with durations, communicating syn-
chronously with some symbols taken from a
finite alphabet. Formally, an FSM is a tu-
ple S = 〈Σin,Σout, L, `0, T 〉 where Σin and
Σout are finite sets of respectively input and
output symbols (they may have a non-empty
intersection), L is a finite set of locations,
`0 ∈ L is the initial location, T ⊆ L × L
is a set of transitions labeled with one of:

σ! with σ ∈ Σout – emission of a symbol,

τ? with τ ∈ Σin – reception of a symbol,

[d, d′] where d, d′ ∈ R+ are expressed in the
same time unit (musical or physical) –
wait for a delay between d and d′.

A branch is made of a location ` ∈ L and
the set of transitions outgoing from `. A
FSM is called deterministic iff it contains no
branch with more than one emit transition
and for every wait transition labeled [d, d′],
it holds that d = d′ (in this case, we simply
write d instead of [d, d]).

The execution of an IR program is based on
a notion of logical time. Initially, the logical
time is set to 0 and every FSM of the IR
program is in its initial location `0.

Activating in a FSM a transition tr labeled
with [d, d′] makes the logical time advance by
a duration between d and d′. More precisely,
if the current logical instant is t ∈ R+, ` is
the source location of tr and the logical time
already spent in ` is γ, then the logical time
can be advanced to the new current logical
instant t+ γ + δ if γ + δ ∈ [d, d′].

Activating a transition labeled with σ! does
not change the current logical instant (such
a transition is considered as instantaneous).
The symbol σ is recorded in a store and will
be readable during the current logical instant,
but not after: the activation of a transition
labeled with [d, d′] flushes the store.

A transition labeled with τ? can be acti-
vated if τ is present in the store. Such a
transition does not change the current logi-
cal instant and neither changes the store.

Some examples of IR and their executions
are given in Section 2.1.2.

An Automatic Test Framework for Interactive Music Systems 11An Automatic Test Framework for Interactive Music Systems 11An Automatic Test Framework for Interactive Music Systems 11

|- Antescofo Trace | Expected Trace -|

|- label now [rnow] |label comp. timestamp [ref beat] -|

|---|

| a0 0 [0.142857] | a0 0 [0] |

| a1 0 [0.142857] | a1 0 [0] |

| e2 0 [0.142857] | e2 0 [0] |* 62BPM

+ 0.124423 (0.142857 * 62) > 0.124413 (0.12856 * 62)

| e3 0.124423 [0.285714] | e3 0.124413 [0.12856] |* 64BPM

+ 0.0133942 (0.0142871 * 64) > -0.124413 (-0.12856 * 64)

x a2 0.137817 [0.300001] x a2 0 [0] delta:0.137817

+ 0.10714 (0.12857 * 64) > 0.107128 (0.11427 * 64)

| e4 0.244957 [0.428571] | e4 0.244938 [0.25712] |* 60BPM

+ 0.0285743 (0.0285743 * 60) > -0.107128 (-0.11427 * 60)

x a3 0.273531 [0.457146] x a3 0.13781 [0.14285] delta:0.135721

[...]

+ 0.0857229 (0.0857229 * 60) > -0.0591 (-0.05713 * 60)

|-------------------------END TIMESTAMP OF REF TRACE------------------------|

x a7 0.86301 [1.08572] x a7 0.718148 [0.71425] delta:0.144863

|---|

Error :: Test KO

Figure 12: Part of a verdict for the comparison of t4out with t′4out. The mark ’+’ indicates a
new logical instant (see Section 2.1). The differences between the ideal trace and the input

trace are shown with ’<’, ’>’ and ’==’. The mark ’x’ indicates an error.

2.1.2 Compiling Mixed Score into IR

For the sake of conciseness, we shall not de-
scribe in details the construction of models
from mixed scores. We will instead explain
its principles on some examples. The formal
model M is made of two parts: a FSM E
defining the possible behaviors of the envi-
ronment (subset of Tin, see Section 1.4), and
a network S specifying the behavior expected
from the system (function from Tin into Tout).
The sets of O and I are those of Section 1.2.
We assume in addition a set Sigs of symbols
of internal signals, disjoint from O and I.

Environment. The environment E is
a non-deterministic FSM of the form
〈O, I, Le, `0, Te〉.

Example 7. Figure 13 presents an exam-
ple of environment model E for the three first
events of the piece in Figure 4. It models a
musician which, in `0, will possibly play the
first note e1, or miss it (upper edge labeled
with e2! targeted to `3) or miss e1 and e2

(edge labeled with e3! targeted to `5). When

`0 `1 `2 `3 `4 `5
e1!

[0.1, 0.2]

e2!
[0.1, 0.16]?

e3!

e2!
e3 !

Figure 13: FSM for an environment E
modeling the 3 first events of the piece.

e1 is not missed, this note must have a dura-
tion between 0.1 and 0.2 t.u. These bounds
define a tolerance for negative or positive
shifts to the duration of 1

7 in the score. ♦

For a given score, there are several options
regarding missed notes and duration bounds
(which will be source of non-determinism
in E). They are given by users in the com-
mand for compiling.

Error Proxy. In Section 1.2, we have de-
fined the errors as missed events. An FSM of
the form 〈I,Sigs, Lp, `0, Tp〉, called a proxy, is
in charge of signaling such errors, using one
internal signal ei ∈ Sigs for each input event
ei ∈ I. These signals are then handled by the
other FSMs of S.

12 C. Poncelet and F. Jacquemard.12 C. Poncelet and F. Jacquemard.12 C. Poncelet and F. Jacquemard.

`0 `1 `2 `3

`1

`2 `3

e1? e2? e3?

e2?
e1!

e3
?

e1!
e
2 !

e 3
?

Figure 14: Proxy FSM P with 3 events.

Example 8. In the proxy P displayed in
Figure 14, in location `0, at the detection of
e2 (instead of e1), the signal e1 is sent. And
at the detection of e3, the signals e1 and e2

are sent. ♦

The use of this proxy FSM will simplify
the complex task of specifying error handling
in the other FSMs of the model S. In par-
ticular, such a modular approach permits to
change the definition of errors without having
to change the rest of the specification S.

FSM for Groups. Finally, we associate
several FSM to the mixed score, one for each
group. The FSM for a group s has the form
Gs = 〈I ∪ Sigs,O ∪ Sigs, Ls, `0, Ts〉. It means
that Gs will receive input events and inter-
nal signals and send, in reaction, output mes-
sages and other internal signals.

Example 9. Figure 15 presents the FSM
Gs1 associated to the top-level group s1 trig-
gered by the event e1 in the mixed score of
our running example Figure 4. The FSM Gs1
is started by the reception of one of the input
symbol e1 ∈ I or the internal signal e1 ∈ Sigs.
In the first case, the FSM continues in a nor-
mal mode (location `1). Otherwise it contin-
ues in an error mode (location `1). The FSM
Gs2 corresponding to the nested group s2 (see
Example 10) is started by the emission of one
of the internal signals s2 or s2. ♦

Example 10. Figures 16 and 17 show the
FSM Gs2 obtained from the group s2 in
Figure 4, for two different synchronization
strategies (resp. loose and tight). Those mod-
els are constructed by iteratively traversing
the sequence of actions in s2. The parts built

`0

`1

`1

`2

`2

`3

`3

e 1
?

e
1 ?

a0!

a0!

s2!

s2!

Figure 15: The FSM Gs1 for the group s1.

`0

`1

`1

`2

`2

`3

`3

`4

`4

`13

`13

`14

`14

s 2
?

s
2 ?

a1!

a1!

1
7

e 2
?

e2?

a2!

a2!

1
7

e 7
?

e7?

a7!

a7!

Ts2 Ga1 Ga2 Ga7 F

Figure 16: The FSM Gs2 for the group s2

with attributes loose, global.

at each step are framed and annotated as
Tg (start of the group, triggered by one of
the internal signals s2 and s2), Ga (for han-
dling one atomic action a), or F (end of the
group). The dashed transitions indicate a
missing part of the representation (too long
for being presented entirely).

In Figure 16 (attributes loose, global), the
top part of the IR (locations `1, ..., `14) de-
scribes a mode with a normal behavior (ab-
sence of errors). It consists in sending suc-
cessively the actions after waiting for their
respective delay (in musical time unit). The
bottom part of the IR (locations `1, ..., `14)
describes the behavior in case of error: send
instantaneously all actions (without delay)
until the next detected event (in `2, `4).

`0

`1

`1

`2

`2

`3

`e2

`e2

`4

`4

`5

`5

s 2
?

s
2 ?

a1!

a1!

1
7

e
2 ?e

2 ?

a2!

a2!

a2!

a2!

e2?

e
2 ?

e 2
?

e2?

1
7

a3!

e
3 ?e

3 ?

Ts2 Ga1

Ga2

Ga3

Figure 17: The FSM Gs2 for the group s2

with attributes tight, global.

An Automatic Test Framework for Interactive Music Systems 13An Automatic Test Framework for Interactive Music Systems 13An Automatic Test Framework for Interactive Music Systems 13

In Figure 17 (attributes tight, global), the
top and bottom parts also describe respec-
tively normal and error modes. There is a
possible switch (location `4) from the normal
to the error mode if a missed event is de-
tected. Also, in location `2, if the event e2

(or a signal e2 signifying its absence) is de-
tected earlier than expected, then there is a
switch to an intermediate mode, in location
`e2 (respectively location `e2). ♦

The translation of the two strategies loose
and tight of Antescofo DSL into FSMs are de-
scribed here for illustration purpose. The ap-
proach is however more general: The target
IR used for score compiling is quite generic,
and should permit to compile other synchro-
nization strategies (even from other DSLs).

Example 11. The simulation of the IR net-
work E‖P‖Gs1‖Gs2 , with Gs2 from Figure 17,
for the input trace tin = 〈e1, 0.1, 60〉, 〈e3, , 60〉
is presented as the following sequence of log-
ical times separated by transitions:
0 −−→e1!

0 −−→e1?
0 −−→a0!

0 −−→s2!
0 −−→s2?

0 −−→a1!

0 −−→0.1
0.1 −−→e3!

0.1 −−→e3?
0.1 −−→e2!

0.1 −−→e2?

0.1 −−→a2!
0.1 −−→a3!

0.1.
The expected output trace tout is: 〈a0, 0, 60〉
· 〈a1, 0, 60〉 · 〈a2, 0.1, 60〉 · 〈a3, 0.1, 60〉. ♦

2.2 Covering Test Case Generation

We use the model checker Uppaal in order
to generate relevant test cases automatically
from the IR models. The generation is guided
by the part E of the model which specifies the
possible set of performances in the tests.

2.2.1 Timed Automata

Uppaal2 is a symbolic model checker enabling
to write, simulate and verify Timed Automa-
ton Networks. Timed automata (TA) [3] are
finite state automata extended with a finite
set of real-valued variables called clocks. Ev-
ery TA transition is labeled by a symbol (in
a finite alphabet), and a linear constraint

2http://www.uppaal.org

(guard) on the clock values: the transition
can be fired only if the current values of
the clocks satisfy the associated constraint.
Moreover, every clock can be independently
reset to 0 during a transition and keeps track
of the elapsed time since the last reset. Some
linear constraints on the clock values called
invariants can also be attached to states.
Such a constraint must be satisfied as long
as the control stays in the associated state.
In a TA, all the clock values are expressed in
a unique abstract time unit, the model time
unit (mtu), i.e. all the clocks evolve at the
same rate.

The set of configurations of a TA A is infi-
nite (it is the Cartesian product of the finite
set of states of A and the infinite set of valu-
ations of the clocks of A). However, it is pos-
sible to transform a TA into a finite state au-
tomaton recognizing the same (untimed) se-
quences of symbols, using a finite equivalence
on configurations (region construction) [3].
This fundamental technique gives a PSPACE
algorithm for deciding reachability proper-
ties, implemented efficiently in Uppaal.

From IR into TA. The above IR pro-
grams E‖S can be translated into an equiva-
lent TA network AE‖AS . However, because
of differences in semantics, the translation is
not totally immediate, and some adaptations
were necessary to handle the synchronization
of symbols during a logical instant.

The IR semantics was defined in order
to conform to the semantics of Antescofo
DSL [11, 12] and slightly differ from TA se-
mantics. Indeed, thanks to the use of a store
(Section 2.1.1), all the symbols emitted dur-
ing a logical instant in an IR can be received
afterwards during the same logical instant.
This way, the reception of a symbol is not
necessary synchronous with its emission. In
contrast, in a TA network, two transitions
labelled with the same symbol must be fired
simultaneously. In order to simulate with TA
the delayed reception of IR, some locations
and transitions have to be added during the
conversion.

http://www.uppaal.org

14 C. Poncelet and F. Jacquemard.14 C. Poncelet and F. Jacquemard.14 C. Poncelet and F. Jacquemard.

2.2.2 Generation of Input Traces

We use the Uppaal extension called CoVer [14]
to generate automatically suites of test cases,
for certain E and S, according to some cov-
erage criteria. These criteria are defined by
a finite state automaton Obs called observer
monitoring the parallel execution of the TA
network AE‖AS . Every transition of Obs
is labeled by a predicate checking whether
a transition of AE‖AS is fired. The model
checker Uppaal is used by CoVer to gener-
ate the set of input traces tin ∈ Tin result-
ing from an execution of the Cartesian prod-
uct of AE‖AS with Obs reaching a final state
of Obs.

For instance, we can design an observer in
charge of visiting all transitions correspond-
ing to a missed event in the proxy, or visiting
all the transitions of a particular group that
we want to debug.

For loop-free IR S and E , with an observer
checking that all transitions of AE‖AS are
fired, CoVer will return a test suite T refu-
tationaly complete for conformance, in the
sense that: if there exists an input trace
tin ∈ E such that t′out = IUT(tin) and tout =
S(tin) differ, then T will contain such an in-
put trace. Note that the IR produced by the
fragment of the DSL of Section 1.2, are loop-
free. However this is not true for the general
DSL which allows e.g. jump to label.

In practice, we avoid state explosion with
appropriate restrictions on E , such as de-
scribed in Section 2.1.2 (number of missed
notes, bounds on event’s durations). This
way we generate a suite of tests cases cov-
ering the maximum of theModel transitions
according to environment model’s bounds.

2.2.3 Computing Expected Output

The computation of the expected output
trace tout = S(tin) is done by simulation with
Uppaal, using the translation of the IR into
TA described Section 2.2.1.

More precisely, given tin we first generate
a deterministic FSM Etin which will strictly
follow the input trace. This FSM is con-

verted into a deterministic TA Atin . The sim-
ulation of the TA network is then performed
by traversing the TA Atin and sending event
symbols to the rest of the Model AS . Uppaal
offers options to trace the result in tout.

2.3 Fuzzing Ideal Performances

We consider techniques for building artificial
performances for test purposes (i.e. create
test input traces tin) by fuzzing ideal traces
using models of performance defined in for-
mer works [1, 2, 10, 4, 15, 16].

2.3.1 Models of Performances

We have seen in Section 1.5 that we can con-
vert an input trace tin into a performance, i.e.
a sequence of real durations, as follows. First,
we extract from the third components of the
triples in tin a tempo curve τ , as described
in Section 1.4. Second, we convert the dura-
tions, expressed in musical time in the second
component of tin’s triples, into real durations
(in physical time) using τ . Note that when
the two first components of triples in tin corre-
sponds to the events and durations specified
in the score, the above performance is com-
pletely defined by the tempo curve τ .

Some works in musical cognitive research
have proposed more accurate representation
of musical performances. Time-maps by
Jaffe [1], time-warps by Dannenberg [2], or
time-deformations by Anderson and Kuiv-
ila [4] are monotonically non-decreasing func-
tions mapping score durations (in musical
time) into performed durations (in physical
time). In [10], Dannenberg gives two special
cases of such functions called shift and stretch
operators. The first express operations such
as delay, rest or pause and the second deals
with the tempo variations.

In [15, 16], Honing proposes Timing Func-
tions (TIF) which combine two time-warps: a
tempo curve f× and a time-shift function f+,
defining variations of events’ durations, inde-
pendently of the tempo changes. Although
tempo variations induce changes of durations

An Automatic Test Framework for Interactive Music Systems 15An Automatic Test Framework for Interactive Music Systems 15An Automatic Test Framework for Interactive Music Systems 15

tbeat

tphy(s)

2

4

6

0.1500.3000.451

114BPM

T2

T3

Trel

t(score)

tbeat(y/7)

1
7

2
7

3
7

4
7

5
7

6
7

2

4

6
ideal
trace

t2in

t3in

Figure 18: Input traces using TIFs. From the bottom right to the bottom left, the picture
presents the application of two functions (the left one is rotated to 90o to the left to take in

input the output of the first-right function). The three traces are so first shifted by the related
color function and the shifted values are next translated with a tempo curve function.

and reciprocally, Honing outlines the interest
of considering independently tempo curves
and time-shifts for defining musical perfor-
mances. They have indeed two well dis-
tinct musical significance. Roughly, the first
describes global continuous changes of du-
rations, and the second local changes (like
swing notes).

2.3.2 Generation of Inputs Traces

In our MBT method, we construct input test
traces using an extended TIF model that will
transform (fuzz) the ideal trace associated
to the given mixed score (as defined in Sec-
tion 1.4) into an artificial performance tin,
see Figure 19. More precisely, the transfor-
mation applies the function f+ which mod-
ifies the durations, then the tempo curve
f×, and finally choose some missed events.
This latter step is an addition of the models
of [16, 10].

mixed score

specification S

ideal trace

compilation

input traces

expected output traces

simulation

real output traces

comparison

verdict

generation
fuzzing execution

Figure 19: Fuzz testing workflow.

Example 12. We show in Figure 18 the
given input traces of the previous section with
TIFs. The gray data depicts ideal values, the
blue t2in and the red t3in trace. ♦

The implemented fuzzing function takes in
input an ideal trace and three parameters for
bounding the deviations on the time-shifts,
the tempo values and the number of miss-
ing notes. It generates some random values
within theses limits and applies them to re-
turn an input trace tin from the ideal trace.

An interesting open question in this con-
text is the definition of TIFs for the genera-
tion of covering test suites following criteria
similar to those of Section 2.2.2.

2.3.3 Computing Expected Outputs

The above method only provides input test
data traces tin. In order to compute the cor-
responding expected output traces tout and
carry out the test method described in Sec-
tion 1, we still rely on the models of Sec-
tion 2.1. and simulation techniques presented
in Section 2.2.3.

2.4 Testing from an audio file

We have considered a third alternative for
the generation of test input traces, based on
an audio recording. The developers of the
IMS Antescofo use to work with sound files

16 C. Poncelet and F. Jacquemard.16 C. Poncelet and F. Jacquemard.16 C. Poncelet and F. Jacquemard.

mixed score

specification S

audio file

compilation

input trace

expected output trace

simulation

real output traces

comparison

verdict

translation execution

Figure 20: Audio file workflow.

case c. miss nb score nb trace time (s)
0 582 1843 140

B 3 582 5718 334
6 582 6387 405

Table 1: Results for the Benchmark.

in order e.g. to analyse a specific perfor-
mance that causes errors. Such sound file
can be translated into an input trace simply
by marking the dates of event’s onsets. We
can do that manually or using softwares, e.g.
Antescofo itself, which can trace the events
triggered when the listening machine detects
them from the audio file.

As in the previous cases, we still rely on
the models of Section 2.1 and simulation tech-
niques presented in Section 2.3.3 in order to
compute the expected output trace tout.

3 Experiments

In this section we present the application of
our MBT framework to two case studies: B, a
benchmark made of hundreds of little mixed
scores, covering many features of Antescofo’s
DSL and EIN , a real mixed score of the piece
of Einspielung by Emmanuel Nunes 3.

Each case study is processed three times,
with different numbers of possible consecu-
tive missing events (0, 3 and 6 events) and a
bound of 5% for the variation of the duration
in the interpretation of each event.

3.1 Benchmarks

We have developed a benchmark of small
scores useful to the development (debugging

3http://brahms.ircam.fr/works/work/32409/

and regression tests) of the system Antescofo.
It aims at covering the IUT’s DSL functional-
ity and checking the reactions of the system.

A script creates the IR and TA models,
generates test suites (using CoVer), executes
them according to the first scenario presented
above (Section 1.5.1) and compares the out-
come to test cases. Table 1 summarizes the
results for the Benchmark B, reporting the
number of traces generated by CoVer and the
time taken by the whole test. Note that the
number of traces increases with the number
of missed events.

3.2 Einspielung

This second case study is a long real test
case, for evaluating the scalability of our test
method. It is composed of two extracts: the
first 4 bars (22 events and 112 actions) and
14 bars (72 events and 389 actions) of the
mixed score of Einspielung. Table 2 summa-
rizes the results, with the number of IR loca-
tions, traces and testing time for each extract.
CoVer did not succeed to generate the input
traces for the 14 bars extract in the case of 6
possible missed events.

3.3 Feedbacks

Despite CoVer scalability problems (that can
be bypassed with other scenarios), the suites
of traces generated are relevant for testing
the reaction of the IUT to an exhaustive set
of possible performances. Some bugs in An-
tescofo were detected (as e.g. depicted in the
verdict Figure 12) for specific performances,
which are not easy to find manually.

We have seen that CoVer generates input
test traces with minimum durations (satisfy-
ing a given reachability property), and this

case c. miss locations nb trace time (s)
0 400/1394 7/35 1/24

EIN 3 518/1812 36/50 3/198
6 771/2815 67/NA 97/400

Table 2: Results of experiments on
Einspielung

http://brahms.ircam.fr/works/work/32409/

An Automatic Test Framework for Interactive Music Systems 17An Automatic Test Framework for Interactive Music Systems 17An Automatic Test Framework for Interactive Music Systems 17

may cause a problem of exponential tempo
acceleration described in the example t3in Sec-
tion 1.5.2. Unfortunately it is impossible to
change the choice of durations during the test
input generation with CoVer.

Moreover Uppaal and its underlying model
of timed automata networks also have some
limitations. In particular, they cannot deal
with multiple time-units, a feature of An-
tescofo’s DSL. CoVer requires to express in
extenso in E all the observable messages (with
a? transitions), which causes an explosion in
size of the environment model. The extension
to patterns in the labels of transition (e.g.
catch all symbols beginning by a) could help
reducing the size of E .

Conclusion and Further Work

Thanks to an ad’hoc intermediate representa-
tion for mixed scores, and a conversion into
timed automata, we have developed a fully
automatic offline model-based testing proce-
dure applied to the interactive music system
Antescofo, increasing the guarantee on reli-
ability of this system. Alternative methods
for the generation of test input data allow to
use this test framework for different purposes,
either for debugging the IMS, preparing con-
certs or for assistance to composition. For
the latter application, we are planing an in-
tegration into the environment Ascograph for
the edition of Antescofo mixed scores, with a
graphical presentation of the test input and
outcome.

Acknowledgments

We wish to especially thank the Uppaal’s
team member for their help.

References

[1] D. A. Jaffe. Ensemble Timing in Com-
puter Music. ICMC, 1983.

[2] R. Dannenberg. Music Representation:
A Position Paper. ICMC, 1989.

[3] R. Alur and D. L. Dill. A theory of timed
automata. Theorretical Computer Sci-
ence 126:183–235, 1994.

[4] D. P. Anderson and R. Kuivila. A sys-
tem for computer music performance. J-
TOCS 8:56–82, 1990.

[5] J. Arias, M. Desainte-Catherine and
C. Rueda. A Framework for Composi-
tion, Verification and Real-Time Perfor-
mance of Multimedia Interactive Scenar-
ios. ACSD, 2015.

[6] J. Blom, A. Hessel, B. Jonsson and
P. Pettersson. Specifying and generat-
ing test cases using observer automata.
FATES, 2004.

[7] H. Bowman, G. Faconti, J.-P. Katoen,
D. Latella and M. Massink. Automatic
verification of a lip synchronisation algo-
rithm using Uppaal. FMICS, 1998.

[8] A. Cont. A coupled duration-focused
architecture for realtime music to score
alignment. IEEE TPAMI 32(6):974–987,
2010.

[9] A. Cont, J. Echeveste, J.-L. Giavitto,
F. Jacquemard. Correct automatic ac-
companiment despite machine listening
or human errors in antescofo. ICMC,
2012.

[10] R. B. Dannenberg. Abstract time warp-
ing of compound events and signals.
Comp. Music Journal 21(3):61–70, 1997.

[11] J. Echeveste, A. Cont, J.-L. Giavitto,
F. Jacquemard. Operational Seman-
tics of a Domain Specific Language for
Real Time Musician–Computer Interac-
tion. JDEDS 23(4):343–383, 2011.

[12] J. Echeveste. Un language de program-
mation pour composer l’interaction mu-
sicale. PhD thesis, 2015.

[13] H. Henkjan. From time to time: The
representation of timing and tempo.
Computer Music Journal 35(3), 2001.

18 C. Poncelet and F. Jacquemard.18 C. Poncelet and F. Jacquemard.18 C. Poncelet and F. Jacquemard.

[14] A. Hessel, K. G. Larsen, M. Mikucio-
nis, B. Nielsen, P. Pettersson and Skou.
Testing real-time systems using Uppaal.
Formal Methods and Testing, Springer
LNCS 4949:77–117, 2008.

[15] H. Honing. From time to time: The rep-
resentation of timing and tempo. Com-
puter Music Journal 25(3):50–61, 2001.

[16] H. Honing. Structure and interpretation
of rhythm and timing. Dutch Journal of
Music Theory 7(3):227–232, 2002.

[17] M. Krichen and S. Tripakis. Black-box
conformance testing for real-time sys-
tems. SPIN, Springer LNCS 2989:109–
126, 2004.

[18] N. Peters, T. Lossius and T. Place. An
automated testing suite for computer
music environments. SMC, 2012.

[19] C. Poncelet and F. Jacquemard. Model
Based Testing of an Interactive Music
System. ACM SAC , 2015.

[20] C. Poncelet and F. Jacquemard. Test
Methods for Score-Based Interactive
Music Systems. ICMC SMC, 2014.

[21] M. Puckette. Combining event and sig-
nal processing in the max graphical pro-
gramming environment. Computer Mu-
sic Journal 15:68–77, 1991.

[22] M. Puckette. Pure data: Recent
progress. Third Intercollege Computer
Music Festival 1–4, 1997.

[23] R. Rowe. Interactive Music Sys-
tems: Machine Listening and Compos-
ing. AAAI Press, 1993.

	IMS Test Framework
	The IMS Antescofo
	Domain Specific Language
	Test Workflow
	Input and Output Test Data
	Test Execution
	Testing the Reactive Engine
	RE with Tempo Detection
	Testing the Whole System

	Comparison and Verdict

	Models and Automatic Test Cases Generation
	Models of Computation
	Intermediate Representation
	Compiling Mixed Score into IR

	Covering Test Case Generation
	Timed Automata
	Generation of Input Traces
	Computing Expected Output

	Fuzzing Ideal Performances
	Models of Performances
	Generation of Inputs Traces
	Computing Expected Outputs

	Testing from an audio file

	Experiments
	Benchmarks
	Einspielung
	Feedbacks

