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Abstract—Service composition is a widely used method in
ubiquitous computing that enables accomplishing complex tasks
required by users based on elementary (hardware and software)
services available in ubiquitous environments. To ensure that users
experience the best Quality of Service (QoS) with respect to their
quality needs, service composition has to be QoS-aware. Establishing
QoS-aware service compositions entails efficient service selection
taking into account the QoS requirements of users. A challenging
issue towards this purpose is to consider service selection under
global QoS requirements (i.e., requirements imposed by the user on
the whole task), which is of high computational cost. This challenge
is even more relevant when we consider the dynamics, limited
computational resources and timeliness constraints of ubiquitous
environments.

To cope with the above challenge, in this paper we present
QASSA, an efficient service selection algorithm that provides the
appropriate ground for QoS-aware service composition in ubiquitous
environments. The contribution of QASSA is three-fold. First, it
formulates service selection under global QoS requirements as a set-
based optimisation problem, benefiting from recent proposals in the
domain of multi-objective optimisation. Second, QASSA resolves this
problem in an efficient way using clustering techniques, namely the
K-Means algorithm. Third, QASSA is devised in two versions, viz.,
centralised and distributed versions, so that it can be executed on top
of centralised and decentralised infrastructures in ubiquitous envi-
ronments. Results of experimental studies are presented to illustrate
the timeliness and optimality of QASSA.

I. Introduction

Ubiquitous (computing) environments enable integrating and
composing, on the fly, services that are offered by (hardware and
software) resources available in the environment in order to fulfil
complex tasks required by users. Nevertheless, fulfilling the user’s
tasks from the functional point of view only is not enough to
gain user satisfaction. Users further require a certain Quality of
Service (QoS) when exerting their tasks. For this reason, a lot of
research efforts in ubiquitous computing have been devoted to the
composition of services under the user’s QoS requirements, which
is known as QoS-aware service composition. QoS-aware service
composition is a broad topic. At the core of this topic is the
issue of QoS-aware service selection, which allows determining
services available in ubiquitous environments and able to meet
the user’s QoS requirements. The problem arises when dealing
with complex user tasks formed of multiple (abstract) activities,
and each activity can be achieved using several services that are
functionally equivalent, but providing different QoS levels. The
question to be asked is then: “what are the services that should
be selected for each activity in the user’s task in order to meet
the user’s QoS requirements and produce the highest QoS?”

Addressing the above question is even more complicated when
considering the challenges entailed by the characteristics of
ubiquitous computing. These challenges are mainly about: (i)
timeliness (i.e., achieving service composition in a timely manner
with respect to on-the-fly interaction with users in ubiquitous

environments), (ii) considering QoS variations at run-time, notably
during the time elapsing between services’ selection and services
enactment, (iii) adaptation support, and (iv) supporting both cen-
tralised and distributed infrastructures in ubiquitous environments.

To cope with the above challenges, we introduce an efficient
service selection algorithm called QASSA (Qos-Aware Service
Selection Algorithm). Compared to existing solutions, QASSA
presents the following contributions:

1) It models QoS-aware service selection under global QoS
requirements in a novel way benefiting from recent math-
ematical proposals that define multi-objective optimisation
as a set-based selection problem [1];

2) Thanks to its underlying model, QASSA resolves QoS-
aware service selection efficiently using clustering tech-
niques, thus executing in a timely manner (on top of
both resource-enabled and resource-limited devices) while
achieving a nice optimality (further details are given in
Section IV);

3) Based on clustering techniques, QASSA can distinguish
several classes of services that represent different tradeoffs
between QoS properties, hence enabling fine-grained man-
agement of these tradeoffs with respect to user preferences;

4) QASSA selects several alternative service compositions (in-
stead of only one). That is, it selects several interchangeable
services for each activity in the user task, thus enabling
service substitution (and accordingly adaptation support) at
run-time;

5) QASSA is devised in both centralised and distributed fash-
ions, which makes it suitable for both infrastructure-enabled
and infrastructure-less ubiquitous environments.

Next, we start by presenting the design rationale of QASSA,
its underlying problem definition, as well as its both phases,
viz., local and global selection phases (Section II). After that,
we introduce a distributed version of QASSA that is able to
execute in infrastructure-less ubiquitous environments (Section
III). Finally, we give the results of experimental studies illustrating
the efficiency of QASSA in terms of timeliness and optimality
(Section IV), and we conclude in Section VI.

II. The QASSA Algorithm

A. Notations and Basic Assumptions

QASSA is initialised by taking as input a user request R,
which is defined as a quadruple R = (T ,U,P,W), where T
refers to the required task and U refers to global QoS constraints
U = 〈u1, .., un〉 imposed by the user on a set of QoS properties
P = 〈p1, .., pn〉. For each constraint, the user has to specify the
relative importance of its associated QoS property by giving a
set of weights W = 〈w1, ..,wn〉, where wi is the weight of QoS
property pi. It is worth noting that the sum of all the weights must
be equal to 1, i.e.,

∑n
i=1 wi = 1.



For a user task T , its structure is specified as a set of activities
T = 〈A1, ..Az〉 coordinated by composition patterns. To each
activity Ai in T is associated a set of concrete service candidates
S = {si,1, si,2, .., si,mi } that are able to realise Ai. Each service si,k

(1 ≤ k ≤ mi) is represented by its QoS vector QoS si,k = 〈q1, .., qn〉,
where q j is the advertised value of QoS property p j (1 ≤ j ≤ n).

In this paper, we do not deal with the way QoS is specified,
rather we recall the QoS model presented in our previous work
[2] to define QoS properties and preferences, as well as QoS
aggregation formulae. Additionally, we consider stateless services
that can be bound to one or more abstract activities in the
composition. The QoS values advertised by these service are
supposed to be specified by the service providers based on the
previous executions of the services.

B. Design Rationale

QoS-aware service selection algorithms fall under two broad
classes with respect to their selection techniques. On the one hand,
local selection (i.e., greedy selection) proceeds by selecting the
best service in terms of QoS for each activity in the user task
separately. This technique has a low computational cost but it
can not guarantee meeting global QoS requirements. On the other
hand, global selection covers the scope of the whole composition
and ensures meeting global QoS requirements. However, it is of
high computational complexity.

QASSA combines local and global selection techniques in order
to handle the complexity of service selection under global QoS
requirements. Specifically, QASSA follows the bi-level optimisa-
tion model [3], which is a hierarchy of two optimisation problems
(upper-level or leader, and lower-level or follower problems). Each
problem is optimised separately without considering the objective
of the other one. However the decision made at the upper-level
problem affects the objective space of the lower-level as well as
the decision space.

In accordance with the bi-level optimisation model, QASSA
proceeds through two main steps: (1) local selection (representing
the upper-level optimisation problem), which aims at selecting
services with the highest QoS for each activity in the user task,
and (2) global selection (representing the lower-level optimisation
problem), which aims at selecting near-optimal compositions of
services resulting from the local selection. QASSA further selects
several alternative near-optimal compositions. Indeed, selecting
only one service composition brings about several shortcomings
such as the lack of choices for the user, the overload of hot services
(i.e., services with high QoS) [4], and the lack of adaptation
support [5] (i.e., deferred final selection and dynamic binding at
run-time).

C. Local Selection Phase

We express the local selection as a multi-objective optimisation
problem, since it involves numerous optimisation objectives, such
as the cost and the delay of services. Additionally, we focus on
resolving this problem while producing several solutions (and not
a single solution) to enable the global selection phase and allow
adaptation at run-time.

1) Problem definition: A recent proposal by Zitzler et al. [1]
defines multi-objective optimisation as a set problem having as
goal to identify the Pareto optimal set (i.e., the best solution
set) among several solution sets, each set reflecting a specific
tradeoff between the optimisation objectives [6]. Determining
the Pareto optimal set is typically exponential in the size of

the problem instance [7]. Therefore, resolving set-based multi-
objective optimisation is often reduced to identifying a good
Pareto set approximation.

In accordance with Zitzler’s proposal, we define the local se-
lection problem as a set-based multi-objective optimisation. Con-
sider the optimisation of the QoS vector P = 〈p1, ..., pn〉 : S → �n

where all QoS properties pi are, without loss of generality, to
be maximised. Here, S denotes the feasible set of solutions, i.e.,
the set of service candidates of a given activity in the user task.
A single service s ∈ S will be denoted as a decision vector or
solution (s = 〈q1, ..., qn〉) where qi = pi(s).

We define the search space S by the set of feasible sets
of services (and not single services). In the context of QoS
optimisation, an element (i.e., a service-set) in S is called QoS
Class, and denoted QC ∈ S. A QoS class represents a set of
services having roughly the same QoS and reflecting the same
tradeoff between QoS properties.

To enable the comparison of QoS classes, a set preference
relation must be defined over S. A set preference relation provides
the information on the basis of which the selection is carried out; it
says whether a QoS class is better (in terms of QoS) than another
one, or not. The set preference relation can be defined in terms
of a quality indicator (such as the hypervolume indicator [7]).
The quality indicator is a function that assigns, to each solution-
set, a scalar value reflecting its quality according to a particular
goal, i.e., a fitness function defined over sets. In this paper, we
need to define a quality indicator Iq that is specific to our QoS
optimisation problem (see Equation 2). Our objective is then to
find a solution-set that maximises the value of Iq as defined below
(the operator argmax returns the QoS class for which Iq attains
its maximum value):

argmax
(
Iq(QC)

)
where QC ∈ S (1)

Solving this problem consists in determining S and its underly-
ing QoS Classes QC ∈ S, as well as defining the quality indicator
Iq. Towards this purpose, we propose investigating clustering
techniques, notably the K-means algorithm. Clustering techniques
allow for grouping a set of data into several clusters with respect to
given criteria. If we apply the same principle to our purpose (i.e.,
QoS-aware service selection), we can group service candidates
associated with an activity into several clusters according to their
QoS values. Each cluster includes services having roughly the
same QoS. We can further define a quality indicator on these
clusters of services based on their respective QoS properties. Next,
we show how to solve the local selection problem (defined as a
set-based multi-objective optimisation) using K-means, further in-
troducing the formal definition of QoS Class and quality indicator.

2) Local selection in QASSA: To select a set of services
providing high values for all QoS properties, we perform one-
dimensional clustering applied n times (once per QoS property).
That is, we cluster service candidates (i.e., associated with each
activity in the composition) for each QoS property separately.
Thus, for each QoS property p j we obtain several clusters
C = 〈c1, j, .., cg, j〉, going from the cluster c1, j of services having
the lowest values of p j to the cluster cg, j of services with the
highest values for the same property (respecting the definitions of
positive and negative QoS properties). After that, by considering
the intersection of the clusters with the highest values associated
with each QoS property, we obtain the service-set providing
high values for all QoS properties jointly. To formally explain



Fig. 1. Local selection in QASSA

the local selection in QASSA, we introduce the concept of QoS
Level and QoS Class.

The concept of QoS Level is used to group together service
clusters having roughly the same quality level for all QoS
properties. The number of QoS levels corresponds to the number
of clusters for each QoS property denoted g. For instance, in
Figure 1 we cluster candidate services into 3 clusters, thus
obtaining 3 QoS levels (1, 2 and 3) corresponding to the clusters
of services having respectively ‘low’, ‘medium’ and ‘high’ QoS
values for all QoS properties. As we have 4 QoS properties, each
QoS level comprehends 4 clusters. Below, we formally define
the QoS level concept.

Definition 1: Given a set of QoS properties P = 〈p1, .., pn〉 and
a set of services S = {si,1, si,2, .., si,mi } associated to activity Ai

and grouped into g clusters 〈c1, j, .., cg, j〉 for each QoS property p j

(where c1, j is the cluster of services with the lowest values of p j

and cg, j is the cluster of services with the highest values of p j),
we define a QoS level QLl = {cl,1, .., cl,n} as the set of clusters
associated with each QoS property p j and having the same level
l (1 ≤ l ≤ g).

As stated above, a QoS level QLl is used to group clusters with
the same level l together, thus we can perform their intersection
and determine services with QoS values in this level. In particular,
we are interested in the best QoS level QLg = {cg,1, .., cg,n} which
groups clusters with the highest QoS values. The intersection of
these clusters yields services with the highest QoS values for all
QoS properties. However, if the intersection produces an empty
set, we investigate other combinations (i.e., intersections) of
clusters within QLg. To do so, we introduce the concept of QoS
Class, which represents different intersections of clusters within
a given QoS level. The QoS class concept is formally defined as
follows.

Definition 2: Given a QoS level QLl = {cl,1, .., cl,n}, we define
a QoS class QCl,e (1 ≤ e ≤ n) as the intersection of e clusters
among QLl. Consequently, a QoS level QLl comprehends several

QoS classes (e.g., {QCl,1,..,QCl,n}).

Literally, a QoS class QCl,e represents the set of services having
exactly e QoS properties out of n at the QoS level l. According
to this, the QoS class QCg,n groups the best set of services in
terms of QoS, since they have all their n QoS properties in
the highest QoS level QLg. If QCg,n is an empty set (i.e., there
are no services with high values for all QoS properties), we
try to find the next best QoS class in terms of QoS (e.g., QCg,n−1).

Nevertheless, we may obtain several QoS classes having the
same level and the same number of QoS properties (e.g., selecting
n−1 QoS properties out of n). To determine the best QoS class, we
use the quality indicator Iq (already introduced in Section II-C1).
Iq is defined based on the level l and the number of QoS properties
e of the considered QoS class, as well as the weights w j associated
with these QoS properties. That is, the quality indicator Iq of the
QoS class QCl,e is higher (i.e., it includes services with better
QoS) when: (i) it is associated with a QoS level QLl of a higher
level l, (ii) it comprehends a higher number of QoS properties e
in that level, and (iii) the weights w j associated with these QoS
properties are more important for the user. Iq is formally defined
as follows:

Iq(QCl,e) = l × e ×
e∑

j=1

w j w j ∈ {W : cl, j ∈ QCl,e} (2)

Finally, it is worth noting that QASSA implements the local
selection using a variant of K-means called K-means++ [8], which
takes as input only the number of clusters (in opposition to K-
means which takes as input the number of centroids and their
initial coordinates). The number of clusters is determined before-
hand by learning from the previous executions of the considered
activity using existing techniques in the literature (viz., the Davies-
Bouldin index [9]) that determine whether a given integer g is the
most appropriate number of clusters for classifying a fixed data
set. The Davies-Bouldin index mainly uses the distance separating
the clusters as a metric for evaluating g. The overall execution of
the local selection phase of QASSA is described in Algorithm 1.

D. Global Selection Phase

The global selection phase aims at composing locally selected
services and determining near-optimal service compositions, i.e.,
service compositions that: (i) satisfy the global QoS requirements,
and (ii) maximise the QoS offered to the user. In our approach,
we focus on selecting several alternative service compositions (and
not a single composition). Specifically, we aim at selecting many
services for each activity in the user task, such that, no matter
what is the service finally executed for each activity, the resulting
composition satisfies the global QoS requirements imposed by the
user on the task.

When dealing with global optimisation problems with multiple
objectives and a large number of potential solutions, heuristic
algorithms are the only possible choice [10]. We focus on us-
ing population-based heuristics (e.g., genetic algorithms (GA),
differential evolution (DE) algorithms [11]) to solve QoS-aware
service selection under global QoS requirements. This class of
algorithms consists in recursively optimising an initial solution
using operators such as crossover/mutation. Starting from the fact
that our local selection approach is highly selective in the sense
that it selects few services having a high QoS level (which reduces
considerably the number of services to be investigated), we argue



input : A set of activities T = {A1, .., Az} of size z;
A set of services Si = {si,1, .., si,mi } of size mi for each activity Ai

(i ∈ {1, .., z});
A set of QoS properties P = {p1, .., pn} of size n;
A set of weights on QoS properties W = {w1, ..,wn} of size n;
A QoS vector QoS si,k = 〈q1, .., qn〉 for each service si,k (k ∈ {1, ..,mi}).

output: A QoS class for each activity Ai

begin
foreach Ai ∈ T do

// Services’ clustering
foreach p j ∈ P do

(Step 1) Apply K-means++ to group the services S i into g
clusters w.r.t. their values for p j
K-means++(Si, g)⇒ {c1, j, .., cg, j};

end

// Services’ selection
for l = g downto 1 do

for e = n downto 1 do

(Step 2) Build QLl as the set of n clusters of level l for all
the QoS properties
QLl = {cl,1, cl,2, .., cl,n};

(Step 3) Select a combination Ce
|QLl |

of e clusters among
those of QLl
foreach Ce

|QLl |
do

(Step 4) Build QoS class e of the level l as the
intersection of the clusters belonging to Ce

|QLl |
QCl,e = {si,k : si,k ∈

⋂
Ce
|QLl |
};

(Step 5) Initialise the QoS class to be selected and its
quality indicator
Result = ∅;
Result Iq = 0;

(Step 6) Select the QoS class with the highest quality
indicator
if QCl,e , ∅ then

Iq = r × e ×
∑y

j=1 w j;

if Iq > Result Iq then
Result Iq = Iq;
Result = QCl,e;

end
end

end
end

end
return Result;

end
end

Algorithm 1: The local selection algorithm

that a population-based heuristic can quickly produce near-optimal
service compositions.

In accordance with the above, we adopt a population-based
approach to solve the global selection phase of QASSA, viz.,
the Controlled Random Search (CRS) algorithm, which is a
population-based global optimisation heuristic like GA and DE.
The choice of CRS is motivated by the fact that it is a simple
algorithm capable of global optimisation, subject to inequality
constraints [12]. CRS initially builds a preliminary service com-
position by selecting a service (among those resulting from the
local selection phase) for each abstract activity in the user task.
The global QoS of the composition is then computed with respect
to the structure of the composition and QoS aggregation formulae
(as detailed in our previous work [2]. If the global QoS meets
the user requirements, the composition is then considered as a
solution. The global QoS of the composition is then gradually
enhanced by replacing the current worst service in it with a better
service.

E. Computational Complexity Analysis

We analyse the computational complexity of the local and
global selection phases of QASSA. Concerning the local selection
phase, we do not consider the complexity of computing the
Davies-Bouldin index (which is used to decide about the number
of clusters, see Section II-C2), since the computation is performed
off-line, i.e., after executing QASSA.

As already explained, the local selection phase is performed
using the K-means++ algorithm, the complexity of which is of
O(log(K)) [8] where K denotes the number of clusters. As we
cluster services (i.e., execute K-means++) for each QoS property
and for all the activities in the user task, the overall complexity of
local selection is then of O(Z.N.log(K)), where Z and N denote
the number of activities in the user task and the number of QoS
properties, respectively. Therefore, the local selection phase runs
in a linearithmic time.

Concerning the global selection phase, its computational com-
plexity can be determined based on the fact that we proceed
similarly to the CRS algorithm [12]. That is, when iteratively
checking service compositions, we replace a single service per
composition in each iteration. In accordance with this, we first
compose Z services (one service per activity) to build the initial
service composition, then we iterate on checking the remaining
T − Z services (one service per iteration), where T denotes the
total number of services associated with all the activities in the
user task. Therefore, the total number of compositions to check
(i.e., more specifically the number of iterations) is T − Z + 1.
Additionally, for each composition, we execute Z.N arithmetic in-
structions to aggregate the N QoS values of the Z services forming
the composition. Then, we execute N comparison instructions to
determine whether the N QoS values of the composition satisfy
the global QoS requirements of the user. The global selection
phase runs then in quadratic time of O((Z.N+N)(T−Z+1)).

Based on the above results, we state that QASSA executes
in quadratic time, thus it reduces considerably the computational
complexity of service selection under global QoS requirements,
known to be NP-hard [13].

III. Distributing QASSA

The version of QASSA presented in Section II assumes the
presence of a centralised and stationary infrastructure supporting
QoS-aware service composition. Nevertheless, this infrastructure
presents several drawbacks, mainly dealing with scalability, fault-
tolerance, and privacy [14]. Additionally, within ubiquitous envi-
ronments, it is not always possible to assume the support of such
an infrastructure. QoS-aware service composition in ubiquitous
environments (i.e., more specifically selection algorithms) should
rather rely on ad hoc topologies with no infrastructure support.
For this reason, we present a distributed version of QASSA, which
is capable of operating on top of ad hoc infrastructures formed
of mobile and resource-constrained devices.

Distributed QASSA enables accomplishing service selection as
a synergistic interaction between the user device (referred to as
requester) and other devices available in the environment (referred
to as helpers). As described in Algorithm 2, the main idea of our
distributed QASSA is to perform local selection for each activity
in the user task using a helper, thus enabling to execute the whole
local selection phase using several helpers simultaneously. After
that, the requester collects the local selection results and performs
the global selection phase on the user device.



The global service selection is difficult to carry out in a
distributed way because it requires a global vision of QoS infor-
mation and the structure of the composition [15]. Additionally, it
typically requires a resource-rich device, given the computational
complexity of the problem. As detailed in Section II-E, our global
service selection algorithm has a low computational complexity;
thus it can be carried out using only the resource-constrained
device of the requester. The timeliness of our distributed algorithm
is further validated by experimental results detailed in the next
section.

input : A set of activities T = {A1, .., Az} of size z;
A set of services Si = {si,1, .., si,mi } of size mi for each activity Ai

(i ∈ {1, .., z});
A set of QoS properties P = {p1, .., pn} of size n;
A set of weights on QoS properties W = {w1, ..,wn} of size n;
A QoS vector QoS si,k = 〈q1, .., qn〉 for each service si,k (k ∈ {1, ..,mi}).

output: A set of service compositions.

begin
(Step 1) Splitting the user request into a set E of elementary requests
foreach Ai ∈ T do

ei = (Ai, Si, P,W);
E = E ∪ ei;

end
(Step 2) Broadcasting help message and getting helpers
broadcast (help message);
foreach device d favorably replying to the help message do

helpers = helpers ∪ d;
end
while E , ∅ do

(Step 3) Scheduling elementary requests to helpers
foreach ei ∈ E do

ei = d (d ∈ helpers);
end
(Step 4) Fulfilling the local selection phase
while Timeout Session do

Helper Side : execute local selection (Algorithm 1) given
ei as input;

end
(Step 5) Getting the results of elementary requests
foreach ei ∈ E do

if result (ei) , null then
Selected services for Ai = result (ei);

end
else Break;
E = E \{ei};

end
end
(Step 6) Fulfilling the global selection phase
execute the CRS algorithm given the selected services for T ;

end

Algorithm 2: Overview of distributed QASSA from the
requester point of view. The coloured box concerns the
execution at the helper side.

IV. Experimental Evaluation

We conducted a set of experiments to assess the centralised and
distributed versions of QASSA. Table I describes the experimental
set up used in our experiments. It worth noting that we use basic
setup (with limited computational and memory resources) that can
be readily assumed in the context of ubiquitous environments. For
the evaluation of QASSA, we are interested in two metrics:

• Execution time: It measures the timeliness of QASSA with
respect to the size of the selection problem in terms of the
number of activities and the number of candidate services
per activity.

Centralized algorithm Distributed algorithm
- Machine: Dell - Machine: HTC Desire
- Processor: AMD Athlon 1.80GHz - Processor: Qualcomm QSBD8250 1GHz
- RAM: 1.8 GB - RAM: 576 Mo
- OS: Windows XP - OS: Android 2.2 (Froyo)
- Programming language: J2SE 1.6 - Programming language: Android

SDK 2.2 (based on J2SE 1.5)

TABLE I
Experimental set up

• Optimality: It measures how optimal is the QoS utility
provided by QASSA. This is determined by the ratio of the
QoS utility resulting from QASSA over the optimal QoS
utility given by a brute-force algorithm. The optimality metric
is then given by the following formula:

Optimality = F/Fopt (3)

where F is the QoS utility given by our heuristic algorithm,
and Fopt is the optimal QoS utility given by the IBM ILOG
CPLEX Optimiser1.

For the purpose of our experiments, we developed a Composi-
tion Generator, which randomly generates service compositions
used for experimenting with QASSA. The Composition Generator
takes as parameters the number of activities a and the number
of candidate services per activity k, and it proceeds through
two steps: (i) yielding an abstract service composition which
comprehends a activities structured with respect to randomly
chosen composition patterns, (ii) binding k concrete services to
each activity in the composition. QoS values associated with these
services are acquired from the QWS dataset available online2. This
dataset consists of 5000 real Web services, each with a set of 9
QoS properties measured using commercial benchmark tools [16].
Further details about the implementation of QASSA are given in
[17].

A. Performance of QASSA (the centralised version)

In this section, we present the experimental evaluation of the
centralised version of QASSA (using the experimental setup
detailed in the left column of Table I). For the sake of precision,
we execute each experiment 20 times and we calculate the mean
value of the obtained results.

Figure 2 (a) depicts the execution time of QASSA with respect
to the number of services per activity. We fix the number of QoS
constraints to 5, vary the number of activities between 10 and 50,
and vary the number of services per activity between 50 and 200.
The obtained results show that the execution time of our algorithm
increases (up to 89ms) along with the number of services, which
is an expected result.

Figure 2 (b) depicts the execution time of QASSA with respect
to the number of QoS constraints. We fix the number of services
per activity to 200 and vary QoS constraints between 2 and 5. The
obtained results show that the execution time of our algorithm
increases (up to 89ms) along with the number of QoS constraints,
which is also an expected result, i.e., a higher number of QoS
constraints requires more computational effort, hence a longer
execution time.

Both figures show that the execution time of our algorithm
increases almost linearly along with the number of activities

1http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/about/?S CMP=rnav

2http://www.uoguelph.ca/v qmahmoud/qws/index.html



Fig. 2. Execution time while varying (a) the number of services per
activity, and (b) the number of QoS constraints

in the composition. In general, our algorithm executes in a
timely manner (i.e., less than 0.09s) with respect to spontaneous
interaction with users aimed at by ubiquitous computing. Indeed,
guidelines for response time in interactive applications specify that
1s is the limit to keep the user’s flow of thought seamless [18].

To have a more accurate idea about the efficiency of QASSA
in terms of timeliness, we compare the above obtained results to
those published in [13], which is a recent work that also combines
local and global selection techniques for service selection under
global QoS constraints. The authors study the same dataset (i.e.,
QWS), as well as the same parameters as in our experiments.
Although that the considered work uses an experimental setup
(a HP ProLiant DL380 G3 machine with 2 Intel Xeon 2.80GHz
processors and 6 GB RAM) that is more powerful than the setup
used for evaluating QASSA, both works have roughly the same
execution time (between ≈10 ms and ≈90 ms).

Concerning the optimality of QASSA, we measure it while
varying the number of activities between 5 and 10. Figure 3 (a)
depicts the optimality of QASSA while fixing the number of QoS
constraints to 5, varying the number of activities between 5 and
10 and varying the number of services per activity between 50
and 200. It shows that the optimality of QASSA is generally
more than 90%, and it can reach 100%. However, for the specific
case of 5 activities and 50 services per activity, the optimality
decreases to 60%, which can be explained by the fact that when
the number of services decreases, the probability to find services
with a satisfactory value for all QoS properties decreases also,
hence yielding a low optimality.

Additionally, we measure the optimality of QASSA while fixing
the number of services to 200, varying the number of activities
between 5 and 10 and varying the number of QoS constraints
between 2 and 5. Figure 3 (b) shows that the optimality of our
algorithm is generally satisfactory (more than 90%) and it can
reach 100%. Overall, both figures show that the optimality of our
algorithm varies between 90% and 100% independently from the
number of services and the number of QoS constraints, except for
low service populations.

Comparing the optimality of QASSA to the optimality of [13],
for the same configuration (as both works use different ranges of
values), e.g., a user task of 10 activities each having 200 candidate
services to be selected under 5 global QoS constraints, both works
produce nearly the same optimality (≈ 100%).

Fig. 3. Optimality measurements while (a) varying the number of
services, and (b) the number of QoS constraints

B. Performance of QASSA (the distributed version)

We now evaluate the distributed version of QASSA using the
experimental setup detailed in the right column of Table I. The
distributed design of QASSA changes two main factors compared
with the centralised version, notably: (i) the communication cost
between the devices participating in fulfilling the user task, and (ii)
the hardware setup underpinning the execution of the algorithm.
Both features do not impact the optimality of QASSA, thus the
following experiments focus only on the execution time metric.
Additionally, we assume that the communication cost is negligible
compared to the overall execution time of the algorithm (further
details about the network delay can be found in, e.g., [19]). Thus,
the execution time presented in these experiments concerns only



Fig. 4. Execution time of the (a) local selection and (b) global selection
of our distributed QoS-aware service selection algorithm

the local and global selection phases of the distributed version
of QASSA (see Figure 4). For the local selection, the execution
time is measured for only one activity (indeed, each helper device
processes in parallel local selection for a single activity in the user
task). We fix the number of QoS constraints to 5 and vary the
number of services between 50 and 200. Whereas for the global
selection, we fix the number of QoS constraints to 5, the number
of services to 200, and we vary the number of activities in the
user task between 10 and 50.

Despite the relatively limited hardware resources used in these
experiments, QASSA shows satisfactory timeliness with respect
to on-the-fly service composition in ubiquitous environments.
Indeed, the local selection is executed in at most 25 ms, whereas
the global selection is executed in at most 1.2 s, thus the overall
algorithm can be accomplished in less than 1.5s, depending on
the size of the user task and the number of services per activity
[18].

V. RelatedWork

Surveying QoS-aware service selection algorithms represents
a broad topic. In this section, we focus on algorithms in line
with the recent trend of combining local and global selection
techniques. A first research effort in this direction is proposed by
Alrifai et al. [20]. The authors present a selection algorithm that
starts from the global level and resolves the selection problem at
the local level. Indeed, they proceed by decomposing global QoS
constraints (i.e., imposed by the user on the whole composition)
into a set of local constraints (i.e., for individual sub-tasks, parts
of the whole composition). To do so, they use MILP techniques to
find the best decomposition of global QoS constraints. The main
drawback of this approach is that it relies on a greedy method for
the decomposition of QoS constraints, which produces strict local

QoS constraints that discard a lot of service candidates. In a more
recent work [13], the authors attempt to enhance their approach
by relaxing the local QoS constraints as much as possible while
not violating the global constraints. While their recent approach
may improve the obtained results, conceptually it does not resolve
the problem of discriminating potential service candidates.

To cope with this issue, the same authors present another ap-
proach [21] combining local and global selection techniques, but
in another way. The authors start by the local selection phase. They
use two techniques to reduce the number of services investigated
for each activity in the user task. First, they use the skyline concept
[22] as a technique to determine the most interesting services in
terms of QoS. Once skyline services are determined, the authors
cluster them into several clusters using K-means, and then they
select a representative service for each cluster. At the global level,
the authors compose the representative services selected at the
local level, and check whether the composition meets global QoS
requirements using MILP. This approach also presents several
drawbacks. Concerning the algorithm itself, the authors claim
finding the optimal service composition, because they assume that
skyline services are the best services in terms of QoS, which is
not true. Indeed, a skyline service is a service that has the highest
(i.e., the best) value for one or more QoS properties, whereas
for the remaining QoS properties it may have very low values.
Regarding this definition, it is possible that a non-skyline service
with high values (and not the highest) for all QoS properties
yields a higher overall QoS than a skyline service. Concerning the
performance of the algorithm, during the local selection phase the
authors execute K-means Z.(T/2) times (where Z is the number
of activities in the user task, and T is the number of service
candidates investigated for a given activity), which represents a
high number of iterations, especially when it deals with a large
number of service candidates. In our approach, we execute K-
means++ (which already outperforms K-means) Z.N times where
N is the number of QoS properties. The complexity of our local
selection phase is then reduced compared to [21], since the number
of QoS properties is always limited compared to the number of
service candidates. Additionally, at the global selection phase, the
authors execute MILP iteratively until a near-optimal composition
is found. In each iteration, the set of representative services with
the highest QoS utilities is investigated. This approach may end up
executing MILP α times, where α is the number of representative
services, which means also a high number of iterations when it
deals with a large number of representative services.

Another approach combining local and global selection tech-
niques is presented by [15]. Similar to [20], the authors decompose
global QoS constraints into local constraints using MILP. Based
on the local QoS constraints, they select services for each activity
in the user task. Then, they compose the locally selected services
and check whether the composition meets global QoS constraints,
using MILP again. The main advantage of this approach is that
it executes local selection in a distributed way similarly to our
approach. However, they decompose the global QoS constraint
imposed on a given QoS property into the average values of that
property associated with the services of each activity, which is not
accurate and may discriminate a number of service candidates.
A similar approach is presented by Jin et al. [23]. The authors
decompose global QoS constraints into local constraints using
MILP, then they perform local selection. The main shortcoming
of this approach is that it does not guarantee meeting global QoS
requirements.



An interesting approach is presented by Liu et al. [24]. The
authors propose a QoS-aware service selection algorithm which
also combines local and global selection techniques. They use
the convex hull concept [25] as a local selection technique. At the
global level, the authors randomly establish an initial composition,
and they try to enhance it using services selected by the convex
hull. The main drawback of this approach is that it closely depends
on the initial composition.

VI. Conclusion

This paper introduces QASSA, a QoS-aware service selection
algorithm. Conceptually, QASSA defines service selection under
global QoS requirements as a set-based bi-level optimisation
problem, which represents a mathematical model for the problem.
Additionally, QASSA handles the complexity of the problem by
combining local and global selection techniques, and solves the
local selection problem using service clustering in a novel way
(i.e., intersection of one-dimensional service clusters). Moreover,
QASSA considers jointly: (i) centralised and distributed design
fashions, and (ii) support for adaptation at run-time by selecting
several alternative service compositions instead of only one. In
practise, QASSA shows satisfactory timeliness and optimality,
hence representing an efficient mean for building complex user
tasks in ubiquitous environments.
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