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Identification of individual demands from market

data under uncertainty∗

Andrés Carvajal † Alvaro Riascos ‡

Topics in Theoretical Economics, forthcoming

Abstract

We show that, even under incomplete markets, the equilibrium manifold

identifies individual demands everywhere in their domains. Under partial ob-

servation of the manifold, we determine maximal subsets of the domains on

which identification holds. For this, we assume conditions of smoothness, inte-

riority and regularity. It is crucial that there be date-zero consumption. As a

by-product, we develop some duality theory under incomplete markets.

Keywords: Identification; Equilibrium manifold; Incomplete Markets.

JEL classification numbers: D52, D12

Under the hypothesis of general equilibrium, the aggregate demand function can-

not be assumed to be observed: while at equilibrium prices aggregate demand is,

by definition, equal to aggregate endowment, demand, either individual or aggre-

gate, cannot be observed for out-of-equilibrium prices. One can observe, however,
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equilibrium prices and individual incomes. In this paper we address the problem

of identifying aggregate and individual demands from the equilibrium manifold of a

two-period economy with financial markets.

For the standard Arrow-Debreu model, positive results have been obtained by

Balasko (2004), Chiappori et al. (2002 and 2004), Matzkin (2005) and Carvajal and

Riascos (2005). Balasko has been criticized for making very strong observational

assumptions: that one can observe equilibrium prices in situations in which the en-

dowment is zero for all individuals but one. Under regularity assumptions, Chiappori

et al. obtain local identification of individual demands, but their argument has been

criticized by Balasko, who has pointed out that it requires extreme smoothness as-

sumptions. Matzkin determines the largest class of fundamentals for which identifica-

tion is possible, by excluding translations of the income expansion paths of individual

demands. Carvajal and Riascos obtains local (maximal) and global identification of

individual demands, by combining the methods of Balasko and Chiappori et al. in a

way that avoids their weaknesses: it does not use boundary information, nor does it

require analyticity of preferences.

The case of uncertainty is more cumbersome. Under the assumption of additively

separable preferences, Kübler et al. (2002) extend the results of Chiappori et al.

(2002): they use the implicit function theorem to identify individual demands (locally)

from the equilibrium correspondence, and then use Geanakoplos and Polemarchakis

(1990) to identify preferences from individual demand functions.1

We extend the results of Carvajal and Riascos (2005) -and hence of Balasko (2004)

and Chiappori et al. (2002)- to the case of uncertainty. We assume an economy with

numèraire assets and show that we can identify individual demands locally. As a

corollary, it follows that identification holds globally, if there is global equilibrium

information. We extend the idea of Balasko (2004) on how to recover the aggregate

demand function from the equilibrium manifold to the case of (possibly incomplete)

asset markets, hence we avoid using the implicit function theorem. We then use a

slightly different argument from Kübler et al. (2002) to identify individual demands

from the aggregate demand function and we also avoid the strong observational as-

sumption of Balasko. In contrast to Kübler et al., our results do not assume that

preferences are additively separable across states. If that assumption is made, how-
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ever, our result suffices to imply, by Geanakoplos and Polemarchakis (1990), that

the equilibrium manifold locally identifies individual preferences. As a necessary by-

product, we develop some basic duality theory for incomplete markets.2

The paper is organized as follows. The next section defines the economy and

its equilibria, and introduces the basic assumptions. After that, we introduce the

concepts of identification: we first define identification of the aggregate demand from

the equilibrium manifold, and then define identification of the profile of individual

demands from the aggregate demand. The third section is auxiliary: it gives an

alternative setting for the problem and extends the main results of Carvajal and

Riascos (2005) to that setting. Section 4 then exploits the auxiliary results to obtain

identification of aggregate and individual demands from the equilibrium manofold.

The paper contains two appendices: one for the more technical arguments, in the

form of lemmata, and one where we extend the standard duality theory to the case

of a consumer facing incomplete financial markets.

1 The economy and the concept of equilibrium

1.1 A two-period economy with numèraire assets

Consider the canonical two-period exchange economy with financial assets. In the

second period, there are S states of nature that can realize, s = 1, . . . , S, while state

s = 0 is used to denote the first period of the economy. There are L ≥ 2 commodities,

l = 1, . . . , L, that can be consumed in nonnegative amounts in each state of nature

(including the first period of the economy); we use the notation N = L(S + 1), so

that we can define the commodity space simply as RN
+ .

There is a finite number of individuals, which we denote by i = 1, . . . , I. Individual

i has preferences over consumption plans, which are represented by the utility function

ui : RN
+ → R. Throughout the paper, we restrict preferences to lie within a basic

class, according to the following assumption:

Assumption 1. Each utility function ui is continuous, monotone and strongly quasi-

concave, and has interior upper-contour sets: for all x ∈ RN
++, {x̃ ∈ RN

+ |ui(x̃) ≥
ui(x)} ⊆ RN

++.3
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There is a finite number, J , of numèraire assets in the economy, which we index

by j = 1, . . . , J . Asset j is a contract that promises delivery of an amount vj
s of

commodity 1, contingent on the realization of state of nature s = 1, . . . , S; formally,

the asset is a vector vj ∈ RS, so the matrix of income transfers expressed in units of

commodity 1 is

V =


V1

...

VS

 =


v1

1 · · · vJ
1

...
. . .

...

v1
S · · · vJ

S

 .

The price of commodity l in state s is ps,l, the vector of commodity prices at state

s is ps = (ps,l)
L
l=1, and we denote by p = (ps)

S
s=0, the vector of commodity prices

across states. For simplicity, future commodity prices are denoted by p1 = (ps)
S
s=1.

The matrix of (nominal) income transfers is, therefore,

V (p1) =


V1(p1,1)

...

VS(pS,1)

 =


p1,1 · · · 0
...

. . .
...

0 · · · pS,1

V,

and the space of income transfers is the column span of the matrix of income transfers,

〈V (p1)〉. By our assumption that assets pay only in one commodity, for strictly

positive commodity prices the dimension of the space of income transfers is always

equal to the rank of matrix V . For simplicity, we impose the following condition:

Assumption 2. There are no redundant assets: matrix V has full column rank.

1.2 Equilibrium in financial markets

Let q ∈ RJ be the price vector at which assets can be bought in the first period

of the economy. For an individual with state-contingent endowment of commodities

wi = (wi
s)

S
s=0, which we assume to be strictly positive, define the budget set

B(p, q, wi) = {x|∃z ∈ RJ : p0 · (x0 − wi
0) ≤ −qz and p1 � (x1 − wi

1) = V (p1)z},

where x1 = (xs)
S
s=1 and wi

1 = (wi
s)

S
s=1 are future consumption and wealth, respectively,

and the notation

ρ � ∆ =


ρ1 ·∆1

...

ρS ·∆S
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stands for any pair of vectors ρ and ∆ in RLS.

Since there are S + 1 degrees of nominal indeterminacy, we normalize commodity

prices, in each state, to lie in SL−1 = {ps ∈ RL
++|ps,1 = 1}, so that commodity 1 acts

as numèraire in all states. In this space of prices, it is immediate that the matrix of

nominal asset returns is simply V .

A vector of asset prices q allows no arbitrage opportunities if V z > 0 implies

q · z > 0. With strictly positive commodity prices, it is well known that no-arbitrage

is a necessary and sufficient condition for the existence of a maximizer of a continuous

and monotone utility function over B(·). Also, it is well known that q is a no-arbitrage

price vector if, and only if, πV = q for some π ∈ RS
++.

Let Q denote the set (positive cone) of no-arbitrage price vectors. We define

individual demand functions

f i : (SL−1)S+1 ×Q× RN
++ → RN

++,

by

f i(p, q, w) = argmaxui(x) : x ∈ B(p, q, w),

and the aggregate demand function

F : (SL−1)S+1 ×Q× RNI
++ → RN

++

by F(p, q, w) =
∑

i f
i(p, q, wi).

An economy is completely defined by a profile of preferences, a profile of en-

dowments, and a financial market. A financial markets equilibrium for an economy

is a triple consisting of an allocation of consumption plans, a vector of commodity

prices and a vector of asset prices, such that all consumption plans are individually

rational at the given prices, and all markets clear: : given a profile of preferences

u = (u1, . . . , uI) and a financial market V , the financial markets equilibrium

manifold (henceforth simply the equilibrium manifold) is

M = {(p, q, w)|F(p, q, w) =
∑

i

wi}.

2 The concepts of identification

We assume that all the individual preferences and the financial market are invariant,

and study the response of equilibrium prices to variations on individual endowments.
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We also assume that some subset of the equilibrium manifold is observed. We study

whether unobserved variables can be uniquely determined (identified) from the ob-

served subset of the manifold.4 Since, under assumptions 2 and 1, equilibrium exists

for every profile of preferences and endowments, our observational assumption is not

vacuous.

We first study whether the equilibrium manifold identifies aggregate demand, and

whether the aggregate demand identifies the profile of individual demands.

2.1 Identification of the aggregate demand from the equilib-

rium manifold

Our goal is to prove that for any function that could be the aggregate demand, given

that it satisfies the properties of an aggregate demand and is consistent with market

clearing on the observed equilibria, it is true that it is equal to the actual aggregate

demand (over some part of its domain, at least).

For a function that maps prices and a profile of (strictly positive) individual en-

dowments into quantities of all commodities in all states

Φ : (SL−1)S+1 ×Q× RNI
++ → RN

++,

define the following properties:

1. it satisfies Walras’s law and financial feasibility if for every triple (p, q, w)

there exists a portfolio of assets z such that

p0 · (Φ0(p, q, w)−
∑

i

wi
0) = −qz

and

p1 � (Φ1(p, q, w)−
∑

i

wi
1) = V z;

2. it satisfies budget determinacy if Φ(p, q, w) = Φ(p̃, q̃, w̃) whenever B(p, q, wi) =

B(p̃, q̃, w̃i) for every individual i;

3. it is consistent with E ⊆ M, if

{(p, q, w)|Φ(p, q, w) =
∑

i

wi} ⊇ E.
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The intuition is that function Φ is a “candidate” to be (identified as) the aggre-

gate demand of the economy, and these properties are requirements that one such

candidate must satisfy. Walras’s law, financial feasibility and budget determinacy are

immediate implications of the definition of an aggregate demand (for the class of pref-

erences under consideration); function Φ is said to be admissible if it is continuous

and satisfies these properties. The last property is one of consistency with observed

data: if one has observed a set of equilibria E, which is a subset of the equilibrium

manifold defined by the profile of preferences u and the financial market V , it should

not be that some markets do not clear (according to the candidate Φ).

By condition 1, the real aggregate demand function, F, is admissible and is consis-

tent with any E ⊆ M. We will say that a subset of the manifold identifies aggregate

demand, over some subset of its domain, if all the candidates that satisfy the admis-

sibility and consistency conditions coincide with the real aggregate demand over the

given subset of their domains: we say that E ⊆ M identifies F over

D ⊆ (SL−1)S+1 ×Q× RNI
++,

if Φ|D = F|D for every admissible function Φ that is consistent with E.

2.2 Identification of individual demands from the aggregate

demand

Again, our goal is to show that any profile of functions that could be the individual

demands of the economy must be equal to the actual profile of demands, at least over

some part of their domains. For a profile of functions

φi : (SL−1)S+1 ×Q× RN
++ → RN

++, for i = 1, . . . , I,

define the following, analogous, conditions:

1. the profile satisfies Walras’s law and financial feasibility if for every in-

dividual i and every triple (p, q, wi), there exists a portfolio of assets zi such

that

p0 · (φi
0(p, q, w

i)− wi
0) = −qzi
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and

p1 � (φi
1(p, q, w

i)− wi
1) = V zi;

2. it satisfies budget determinacy if φi(p, q, wi) = φi(p̃, q̃, w̃i) whenever B(p, q, wi) =

B(p̃, q̃, w̃i);

3. it is consistent with F over D ⊆ (SL−1)S+1 × Q × RNI
++, if

∑
i φ

i(p, wi) =

F(p, q, w) at every (p, q, w) ∈ D.

As before, we think of the profile of functions (φ1, . . . , φI) as a candidate to be

(identified as) the real profile of individual demands, and we say that the observation

of the aggregate demand identifies individual demands, over some subsets of their

domains, if all plausible candidates coincide with the real demand functions over

those subsets. Again, plausibility comes from theoretical considerations and from the

contrast of a candidate with observed data. The latter contrast is the consistency

requirement: for the data at hand, the candidate individual demands should aggregate

to the observed aggregate demand.

The theoretical considerations in this case, however, are more than before: in

addition to Walras’s law, financial feasibility and budget determinacy, we will need

to impose a differential condition on the form of Slutsky symmetry. This, we do as

follows: given a candidate profile, define associated functions

ϕ(p, wi; φi) = φi

(
(

1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w
i

)
,

which have as domain the set {p ∈ RN
++|p0,1 = 1} × RN

++; we say that the candidate

profile satisfies Slutsky symmetry if, for every individual, it is true that ϕ(·; φi) ∈
C3 and that

∂ϕs,l(·; φi)

∂ps′,l′
+(ϕs′,l′(·; φi)−ws′,l′)

∂ϕs,l(·; φi)

∂w0,1

=
∂ϕs′,l′(·; φi)

∂ps,l

+(ϕs,l(·; φi)−ws,l)
∂ϕs′,l′(·; φi)

∂w0,1

,

for every pair of commodity-state pairs (s, l), (s′, l′) 6= (0, 1).5

For differentiable preferences this condition is standard when financial markets

are complete, but it is not obvious when markets are incomplete. When needed, we

impose the following smoothness condition on preferences:
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Assumption 3. For every individual i, ui ∈ C4(RN
++) and is differentiably strictly

monotone and differentiably strongly concave.

Under this assumption, the fact that f i ∈ C3 follows from Duffie and Shafer

(1995), while the symmetry of derivatives follows from propositions 2 and 3 in Ap-

pendix 2, as we will see in theorem 5 below. Given this, we say that a profile

(φ1, . . . , φI) is admissible if it satisfies Walras’s law, financial feasibility, budget

determinacy and Slutsky symmetry.

The actual profile of demands (f1, . . . , f I) is admissible and is consistent with F

over any set D. Thus, given a set D, we say that aggregate demand over D

identifies individual demands over the profile of sets

Di ⊆ (SL−1)S+1 ×Q× RN
++, for i = 1, . . . , I,

if, for each individual i, φi
|Di = f i

|Di for every admissible profile of functions (φ1, . . . , φI)

that is consistent with F over D.

3 Auxiliary concepts and results

The next section will contain the main results of the paper: the equilibrium manifold

identifies the aggregate demand function, which in turn identifies individual demands.

We obtain those results by first extending the results of Carvajal and Riascos (2005)

to the case of uncertainty, in a setting in which all individual budgets are expressed

in present value (using no-arbitrage considerations). Since this setting deals with

prices that are not (directly) observable in real life, we consider this extension as an

intermediary step for the results in the next section.

3.1 No-arbitrage equilibrium

Take p to denote present-value prices of all commodities at all states, as defined,

for instance, in Magill and Shafer (1991). Given an individual’s strictly positive

endowment of commodities wi, define the budget set

B(p, w) = {x|p · (x− w) ≤ 0 and p1 � (x1 − w1) ∈ 〈V (p1)〉}.

9



Since in this formulation there is only one degree of nominal indeterminacy, here we

normalize prices to lie in SN−1 = {p ∈ RN
++|p0,1 = 1}, so that the first commodity

in the first period acts as numèraire of the economy. Individual i’s optimal demand

for commodities in this setting is f i(p, wi) = argmaxB(p,wi)u
i(x), and the aggregate

demand function is F (p, w) =
∑

i f
i(p, wi).6 The no-arbitrage equilibrium man-

ifold is M = {(p, w)|F (p, w) =
∑

i w
i}.

3.2 Regularity

We will show that in this no-arbitrage setting, under a regularity assumption, aggre-

gate demand identifies individual demands locally. Our proof is somewhat similar to

the one presented by Kübler et al. (2002), but simpler: it does not require separa-

bility of preferences; it does not require us to claim uniqueness of the solution to a

system of partial differential equations; and it requires a weaker regularity condition

than the one used by Kübler et al.:

Assumption 4. For every individual i, and for every pair (p, w), there exists a pair

of state-commodity pairs (s, l), (s′, l′) 6= (0, 1), such that

∂2Fs,l

∂(wi
0,1)

2
(p, w) 6= 0

and ∣∣∣∣∣∣
∂2Fs,l

∂(wi
0,1)2

(p, w)
∂2Fs′,l′

∂(wi
0,1)2

(p, w)

∂3Fs,l

∂(wi
0,1)3

(p, w)
∂3Fs′l′

∂(wi
0,1)3

(p, w)

∣∣∣∣∣∣ 6= 0.

This assumption is weaker than its analogous used in Kübler et al. (2002), because

it is not assumed state-by-state, and because it is not assumed for asset demands.

What the assumption requires is that income effects be different enough for at least

two commodity-dates, in the sense that the vectors of second and third derivatives

are linearly independent. This is necessary, because it will be the combination of

Slutsky symmetry and this linear independence what allows us to pin down individual

demands from the variation of aggregate demand with respect to endowments.7
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3.3 From the equilibrium manifold to aggregate demand un-

der no arbitrage

3.3.1 Definition of identification

For any function Φ : SN−1 × RNI
++ → RN

++, we again define the standard conditions:

1. it is admissible if it is continuous and satisfies:

(a) Walras’s law: p · Φ(p, w) = p ·
∑

i w
i;

(b) financial feasibility: p1 � (Φ1(p, w)−
∑

i w
i
1) ∈ 〈V (p1)〉;

(c) budget determinacy: Φ(p, w) = Φ(p̂, ŵ) whenever B(p, wi) = B(p̂, ŵi)

for every individual i.

2. it is consistent with E ⊆ M , if {(p, w)|Φ(p, w) =
∑

i w
i} ⊇ E.

Under assumption 1, function F is admissible and is consistent with any E ⊆ M .

Hence, given D ⊆ SN−1×RNI
++, we say that E ⊆ M identifies F over D if Φ|D = F|D

for every admissible function Φ that is consistent with E.

3.3.2 Identification results

For any E ⊆ M , define

DE = {(p, w)|∃(p̃, tildew) ∈ E : B(p, wi) = B(p̃, w̃i) for all i}.

The first auxiliary generalizes the idea of Balasko (2004) to less-than-global ob-

servation under uncertainty.

Theorem 1. Under assumptions 1 and 2,

1. local identification holds: set E ⊆ M identifies F over any D ⊆ DE;

2. global identification holds: M identifies F over SN−1 × RNI
++;

3. if E ⊆ M is compact and identifies F over D, then D ⊆ DE.
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Proof. The proofs of the first two parts are as in Carvajal and Riascos (2005), theorem

2 and corollary 1, and are therefore omitted.

For the third part, the argument of theorem 4 in Carvajal and Riascos (2005) does

not apply when markets are incomplete, se we include the proof here.8 By lemma 2

in Appendix 2, DE is closed. Define

δ(p, w) = min
(p̃,w̃)∈E

||(p, w)− (p̃, w̃)||,

the distance-to-E function;9 by closedness of DE, it follows that δ(p, w) = 0 if, and

only if, (p, w) ∈ E. Define also

D(p, w) = {(p̃, w̃) ∈ SN−1 × RNI
++|B(p̃, w̃i) = B(p, wi) for all i},

and let

∆(p, w) = min{ inf
D(p,w)

δ(p̃, w̃), 1},

which is continuous (because δ is continuous), and satisfies the following properties:

if B(p, wi) = B(p̃, w̃i) for all i, then ∆(p, w) = ∆(p̃, w̃); if ∆(p, w) = 0, then (p, w) ∈
DE; 10 and if (p, w) ∈ DE, then ∆(p, w) = 0. These properties imply that function

Φ(p, w) = F (p, w) + ∆(p, w)
F0,2(p, w)

2



p0,2

−1

0
...

0


is admissible11 and is consistent with E. Now, suppose that D * DE and let (p̄, w̄) ∈
D \ DE. By identification over D, Φ(p̄, w̄) = F (p̄, w̄) , so ∆(p̄, w̄) = 0 and, hence,

(p̄, w̄) ∈ DE, a contradiction.

3.4 From aggregate demand to individual demands under no

arbitrage

3.4.1 Definition of identification

For a profile of functions ϕi : SN−1×RN
++ → RN

++, for i = 1, . . . , I, define the following

conditions:

12



1. it is admissible if it satisfies:

(a) Walras’s law and financial feasibility: p · ϕi(p, wi) = p · wi and p1 �

(ϕi
1(p, w

i)− wi
1) ∈ 〈V (p1)〉, for every individual i;

(b) budget determinacy: ϕi(p, wi) = ϕi(p̃, w̃i) whenever B(p, wi) = B(p̃, w̃i).

(c) Slutsky symmetry: for every individual i, ϕi ∈ C3, and

∂ϕi
s,l

∂ps′,l′
(·) + (ϕi

s′,l′(·)− ws′,l′)
∂ϕi

s,l

∂w0,1

(·) =
∂ϕi

s′,l′

∂ps,l

(·) + (ϕi
s,l(·)− ws,l)

∂ϕi
s′,l′

∂w0,1

(·),

for every pair of commodity-state pairs (s, l), (s′, l′) 6= (0, 1);12

2. it is consistent with F over D ⊆ SN−1 × RNI
++ if

∑
i ϕ

i(p, wi) = F (p, w) at

every (p, w) ∈ D.

Profile (f 1, . . . , f I) satisfies Walras’s law, financial feasibility and budget determi-

nacy; under assumption 3, it follows from propositions 2 and 3 in Appendix 1 that

the profile also satisfies Slutsky symmetry and is, therefore, admissible. It is also

immediate that (f 1, . . . , f I) is consistent with F over any D. As before, we say that

aggregate demand over D identifies individual demands over the profile of

sets

Di ⊆ SN−1 × RN
++, for i = 1, . . . , I,

if ϕi
|Di = f i

|Di , for each individual i, for every admissible profile of functions (ϕ1, . . . , ϕI)

that is consistent with F over D.

3.4.2 Identification results

Theorem 2. Under assumptions 1, 2, 3 and 4,

1. local identification holds: given D, denote, for each i,

Di = {(p, wi)|∃(p̃, w̃) ∈ D0 : B(p̃, w̃i) = B(p, wi)},

where D0 is the interior of D; then, aggregate demand over D identifies indi-

vidual demands over (D̄1, . . . , D̄I);
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2. global identification holds: aggregate demand over the whole of its domain iden-

tifies individual demands over the whole of theirs.

Proof. The proof follows the same argument as in Carvajal and Riascos (2005), the-

orems 5 and 6, so details are omitted.

It is important to notice, however, that in the proofs of theorems 5 and 6 in

Carvajal and Riascos (2005), for a given p, one does only need matrix ∆(s,l),(s′,l′) to be

nonsingular at some wi in the relevant domain (because γi depends on prices only).

In this sense, assumption 4 is stronger than needed.

4 Identification results

We now use the identification results obtained for the no-arbitrage formulation to get

identification results in the (observable) setting of current-value commodity prices and

asset prices. The technique we use is to translate objects between the two settings

using an equivalence identity for budget sets: it is well known that if p ∈ RN
++ and

π = (π0, π1) ∈ {1} × RS
++, then

B(p, π1V (p1), w) = B((πsps)
S
s=0, w).

By substitution, then, for every p ∈ SN−1 and π = (π0, π1) ∈ {1} × RS
++, one has

that

B((π−1
s ps)

S
s=0,1

TV (p1), w) = B(p, w).

An immediate implication of this equivalence is that, for all individuals, ϕ(·; f i) =

f i. Similarly, if for every function

Φ : (SL−1)S+1 ×Q× RNI
++ → RN

++,

we define

Φ(p, w;Φ) = Φ((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w),

then the equivalence implies that Φ(·,F) = F .

14



4.1 From the equilibrium manifold to the aggregate demand

We follow the same strategy as before: we first show that the equilibrium manifold

identifies the aggregate demand function.

Theorem 3. Under assumptions 1 and 2,

1. local identification holds: let E ⊆ M and define

DE = {(p, q, w)|∃(p̃, q̃, w̃) ∈ E : B(p, q, wi) = B(p̃, q̃, w̃i) for all i};

then, E identifies F over DE;

2. global identification holds: the equilibrium manifold, M, identifies F over the

whole of its domain.

Proof. For the first part, by continuity, it suffices to prove that E identifies F over

DE. Let Φ be admissible and consistent with E. Fix (p, q, w) ∈ DE. By definition,

there exists (p̃, q̃, w̃) ∈ E such that B(p, q, wi) = B(p̃, q̃, w̃i), for all i. Define

EE = {(p, w)|(( 1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ E}.

Since q ∈ Q, for some π ∈ {1}×RS
++ it is true that q̃ = π1V and, then, ((πsp̃s)

S
s=0, w̃) ∈

EE. By lemmas 3 and 4 and the first part of theorem 1, it follows that Φ((πsp̃s)
S
s=0, w̃;Φ) =

F ((πsp̃s)
S
s=0, w̃). Now,

Φ(p, q, w) = Φ(p̃, q̃, w̃) = Φ((πsp̃s)
S
s=0, w̃;Φ)

and

F(p, q, w) = F(p̃, q̃, w̃) = F ((πsp̃s)
S
s=0, w̃),

so Φ(p, q, w) = F(p, q, w).

For the second part, it suffices to show that DM ⊇ (SL−1)S+1×Q×RNI
++. Fix any

(p, q, w), and define (p̃, q̃, w̃) = (p, q, (f i(p, q, wi))I
i=1). It is immediate that (p̃, q̃, w̃) ∈

M and B(p, q, wi) = B(p̃, q̃, w̃i) for every i, so (p, q, w) ∈ DM.

We now identify the largest domain on which, given E ⊆ M, identification is

possible.

15



Theorem 4. Under assumptions 1 and 2, if E ⊆ M is compact and identifies F over

D, then D ⊆ DE.

Proof. By lemma 6, we only need to show that D ⊆ DE. Define on Q the correspon-

dence

Π(q) = {π ∈ {1} × RS
++|π1V = q},

and let π be a continuous selection from Π.13 Let EE be defined as in the proof of

theorem 3. By lemma 3, EE ⊆ M . Now, for every admissible (in the no-arbitrage

sense) function Φ that is consistent with EE, define

Φ(p, q, w; Φ) = Φ((πs(q)ps)
S
s=0, w),

which is admissible in the setting of financial markets. Also, for (p, q, w) ∈ E, by

definition, one has that ((πs(q)ps)
S
s=0, w) ∈ EE, so

Φ(p, q, w; Φ) = Φ((πs(q)ps)
S
s=0, w) =

∑
i

wi,

which implies that Φ(·; Φ) is consistent with E.

Since E identifies F over D, it follows that Φ|D(·; Φ) = F|D. Now, let

D = {(p, w)|(( 1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ D},

and let (p, w) ∈ D. By construction,

Φ((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w; Φ) = F((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w).

Since π1(
∑S

s=1 Vs(ps,1))V =
∑S

s=1 Vs(ps,1),

B(p, wi) = B((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w
i)

= B((
1

ps,1

ps)
S
s=0, π1(

S∑
s=1

Vs(ps,1))V, wi)

= B((πs(
S∑

s=1

Vs(ps,1))
1

ps,1

ps)
S
s=0, w

i),

16



so

Φ(p, w) = Φ((πs(
S∑

s=1

Vs(ps,1))
1

ps,1

ps)
S
s=0, w)

= Φ((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w; Φ)

= F((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)

= F (p, w),

which means that EE identifies F over D.

By part 3 of theorem 1 and lemma 6, it follows that D ⊆ DEE
, so if (p, q, w) ∈ D

then ((πs(q)ps)
S
s=0, w) ∈ DEE

, which implies that B((πs(q)ps)
S
s=0, w

i) = B(p̃, w̃i), for

all i, for some (p̃, w̃) ∈ EE. Since (p̃, w̃) ∈ EE, it is also true that

((
1

p̃s,1

p̃s)
S
s=0,

S∑
s=1

Vs(p̃s,1), w̃) ∈ E.

But, then,

B(p, q, wi) = B((πs(q)ps)
S
s=0, w

i) = B(p̃, w̃i) = B((
1

p̃s,1

p̃s)
S
s=0,

S∑
s=1

Vs(p̃s,1), w̃
i),

so (p, q, w) ∈ DE.

4.2 From aggregate demand to individual demands

We first argue that the imposition of Slutsky symmetry as one of the theoretical con-

ditions that have to be satisfied by profiles of candidates to be identified as individual

demands is correct.

Theorem 5. Under assumptions 1 and 3, the profile of individual demand functions,

(f1, . . . , f I), satisfies Slustky symmetry.

Proof. This follows from propositions 2 and 3 in Appendix 1, given the equivalence

ϕ(·; f i) = f i.

Theorem 6. Under assumptions 1, 2, 3 and 4,

17



1. local identification holds: aggregate demand over D identifies individual de-

mands over the profile of sets

Di = {(p, q, wi)|∃(p̃, q̃, w̃) ∈ D0 : B(p̃, q̃, w̃i) = B(p, q, wi)}, for i = 1, . . . , I,

where D0 denotes the interior of D;

2. global identification holds: aggregate demand over the whole of its domain iden-

tifies individual demands over the whole of theirs.

Proof. Suppose that the first part is not true. Then, we can find an admissible profile

(φ1, . . . , φI), an individual, i′, and a point (p̄, q̄, w̄i′) ∈ Di′ such that the profile is

consistent with F over D, and, still, φi′(p̄, q̄, w̄i′) 6= f i′(p̄, q̄, w̄i′). By definition, then,

we can find (p̃, q̃, w̃) ∈ D0 such that B(p̃, q̃, w̃i′) = B(p̄, q̄, w̄i′), which implies that

φi′(p̃, q̃, w̃i′) 6= f i′(p̃, q̃, w̃i′); if we let π ∈ {1} × RS
++ be such that π1V = q̃, then,

ϕ((π−1
s p̃s)

S
s=0, w̃

i′ ; φi′) 6= f i′((π−1
s p̃s)

S
s=0, w̃

i′).

Consider now the profile of functions (ϕ(·; φ1), . . . , ϕ(·; φI)), each of which is contin-

uously defined over SN−1 ×RN
++ into RN

++. By lemma 7 in appendix 1, this profile is

admissible and consistent with

D = {(p, w)|(( 1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ D}.

By construction, ((π−1
s p̃s)

S
s=0, w̃) ∈ D0, which implies, by the first part of theorem 2,

that

ϕ((π−1
s p̃s)

S
s=0, w̃

i′ ; φi′) = f i′((π−1
s p̃s)

S
s=0, w̃

i′),

a contradiction.

The second part follows from the first part, for D = (SL−1)S+1 ×Q× RLI
++.

5 Concluding remarks

We have shown that, under the equilibrium hypothesis, enough information on how

prices respond to income shocks can pin down, in a unique manner, unobserved

individual information.
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When there is global information about the equilibria, given unobserved prefer-

ences and observed asset structure, one can identify the aggregate demand function

globally. It is a remarkable property of the competitive model that under mild as-

sumptions the roots of a function (the aggregate excess demand) contain as much

information as the function itself. Less than global knowledge will, obviously, give

less comprehensive information about the aggregate demand. These results obtain

as a consequence of simple properties of the model, namely (i) Walras’s law, (ii) the

fact that identical profiles of budget sets imply identical aggregate demand, and (iii)

no-trade equilibria immediately inform about aggregate demand.

Then we show that aggregate demand can be used to recover, uniquely, individual

demands. This requires that income effects be different across commodities, which

in turn requires that observed domains allow for perturbations of all possible en-

dowments, which is indeed a restrictive assumption (in particular, as it requires that

some income effects do not vanish). Again, local information gives local identification,

while the same is true for global information.

These results do not require that preferences be separable across states, but, if one

is willing to assume that they are, then they imply that equilibrium prices contain

the same information as the profile of individual preferences (by Geanakoplos and

Polemarchakis, 1990). Namely, when going from preferences to equilibrium prices,

we first optimize, then aggregate and then solve for market clearing; the results imply

that after all these transformations we still have essentially the same information as

at the beginning, which contrasts with the anything-goes intuition that was derived

from the Sonnenschein-Mantel-Debreu literature.

From a more practical perspective, identification results are important for the un-

ambiguous determination of the welfare effects of economic policy, something that is

desirable (see Geanakoplos and Polemarchakis 1986) but far from obvious. Identifi-

cation of Pareto improving policies has been shown to fail when price effects across

commodities are unknown (see Geanakoplos and Polemarchakis 1990) and when only

a finite data set is available for a nonstationary economy (see Carvajal and Polemar-

chakis, 2008). Also, identification, or lack thereof, in the presence of production, or

for stationary economies, remains an open problem.
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Appendix 1: Duality in Incomplete Markets

For the purposes of this appendix, we maintain an individual fixed, assume that her

preferences satisfy assumptions 1 and 3, but ignore her superindex for simplicity.

Let U be the range of function u. For each second-period wealth w1 and a feasible

utility level µ ∈ U , define the sets

D(w1, µ) = {p ∈ SN−1|∃x ∈ RN
++ : u(x) = µ and p1 � (x1 − w1) ∈ 〈V (p1)〉}

and

D(w1) = {(p, m) ∈ SN−1×R++|∃x ∈ RN
++ :

S∑
s=0

ps·xs ≤ m and p1�(x1−w1) ∈ 〈V (p1)〉}.

Notice that D(w1, µ) is diffeomorphic to the set strictly positive, non-numéraire prices,

((p0,2, . . . , p0,L), p1) ∈ RN−1
++ , for which one can find a consumption plan x ∈ RN

++ such

that u(x) = µ and p1 � (x1 − w1) ∈ 〈V (p1); moreover, by assumption 3, the implicit

function theorem guarantees that the latter set is open. Also, D(w1) is diffeomorphic

to the set of pairs of strictly positive non-numéraire prices and nominal income levels,

(((p0,2, . . . , p0,L), p1), m) ∈ RN−1
++ × R++, for which there exists x ∈ RN

++ such that∑S
s=0 ps · xs ≤ m and p1 � (x1 − w1) ∈ 〈V (p1), which is nonempty and open.

For (w1, µ) such that D(w1, µ) 6= ∅, define the Hicksian demand function

h(p; w1, µ) = argminp · x : u(x) ≥ µ and p1 � (x1 − w1) ∈ 〈V (p1)〉,

and the expenditure function e(p; w1, µ) = p · h(p; w1, µ), both over the domain

D(w1, µ). By assumption 1, h(p; w1, µ) is well defined into RN
++. Also, define the

conditional individual demand function

f̃(p, m; w1) = argmaxu(x) : p · x ≤ m and p1 � (x1 − w1) ∈ 〈V (p1)〉,

with domain D(w1).
14

Proposition 1 (Duality). Under condition 1

1. for every w and every p, it is true that u(f(p, w)) ∈ U , p ∈ D(w1, u(f(p, w)))

and h(p; w1, u(f(p, w))) = f(p, w);

2. for every p ∈ D(w1, µ), f(p, h(p; w1, µ)) = h(p; w1, µ);

3. for every p ∈ D(w1, µ), (p, e(p, w, µ)) ∈ D(w1) and f̃(p, e(p, w, µ); w1) =

h(p; w1, µ).

20



Proof. Part 1 is straightforward, by strict monotonicity of u. Given that u is contin-

uous, for parts 2 and 3 it suffices to prove that u(h(p; w1, µ)) = µ. For this, suppose

not: u(h(p; w1, µ)) > µ. Let x = h(p; w1, µ)− (ε, 0, . . . , 0), where ε > 0. By construc-

tion, x1 = h1(p; w1, µ), from where p1 � (x1 − w1) ∈ 〈V (p1)〉, and p · x < e(p; w1, µ),

whereas for ε small enough x ∈ RN
+ and, by continuity, u(x) > µ, which is a contra-

diction.

Proposition 2 (Shepard’s Lemma). Under conditions 1 and 3, for every pair (w1, µ)

function e(·; w1, µ) is differentiable and ∂pe(p; w1, µ) = h(p; w1, µ).

Proof. This is an immediate consequence of the Duality Theorem (see Mas-Colell et

al., 1995, proposition 3.F.1), since set

{x|ui(x) ≥ µ and p1 � (x1 − w1) ∈ 〈V (p1)〉}

is closed and has function e(p; w1, µ) as support.

Under conditions 1 and 3, it can be argued in the same way as fact 5 in Duffie

and Shafer (1985) that every conditional demand function f̃(·; w1) is differentiable.

Proposition 3 (Slutsky Equation in incomplete markets). Assume conditions 1 and

3. Fix (p, w) ∈ SN−1 ×RN
+ , and let µ = u(f(p, w)). Then, h(·; w1, µ) is differentiable

and
∂hs,l(p; w1, µ)

∂ps′,l′
=

∂fs,l(p, w)

∂ps′,l′
+

∂fs,l(p, w)

∂w0,1

(fs′,l′(p, w)− ws′,l′)

for every pair of commodity-state pairs (s, l), (s′, l′) 6= (0, 1).

Proof. That h(·; w1, µ) is differentiable follows from proposition 1, since f̃(·; w1) is dif-

ferentiable. Also from proposition 1, we have that h(p; w1, µ) = f̃(p, e(p; w1, µ); w1),

which implies that

∂hs,l(p; w1, µ)

∂ps′,l′
=

∂f̃s,l(p, e(p; w1, µ); w1)

∂ps′,l′
+

∂f̃s,l(p, e(p; w1, µ); w1)

∂m

∂e(p; w1, µ)

∂ps′,l′
.

By proposition 2, then,

∂hs,l(p; w1, µ)

∂ps′,l′
=

∂f̃s,l(p, e(p; w1, µ); w1)

∂ps′,l′
+

∂f̃s,l(p, e(p; w1, µ); w1)

∂m
hs′,l′(p; w1, µ),

while, since f(p, w) = f̃(p, p · w; w1), then

∂fs,l(p, w)

∂ps′,l′
=

∂f̃s,l(p, p · w; w1)

∂ps′,l′
+

∂f̃s,l(p, p · w; w1)

∂m
ws′,l′ .
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Under monotonicity, at µ = ui(f i(p, w)), one has that e(p; w1, µ) = p · w and, hence,

that
∂fs,l(p, w)

∂ps′,l′
=

∂f̃s,l(p, e(p; w1, µ); w1)

∂ps′,l′
+

∂f̃s,l(p, e(p; w1, µ); w1)

∂m
ws′,l′ .

Substitution gives that

∂hs,l(p; w1, µ)

∂ps′,l′
=

∂fs,l(p, w)

∂ps′,l′
+

∂f̃s,l(p, e(p; w1, µ); w1)

∂m
(hs′,l′(p; w1, µ)− ws′,l′).

By proposition 1, since µ = u(f(p, w)),

∂hs,l(p; w1, µ)

∂ps′,l′
=

∂fs,l(p, w)

∂ps′,l′
+

∂f̃s,l(p, p · w; w1)

∂m
(fs′,l′(p, w)− ws′,l′).

Also, notice that
∂fs,l(p, w)

∂w0,1

=
∂f̃s,l(p, p · w; w1)

∂m
,

so substitution completes the proof.

Appendix 2: lemmata

Lemma 1. The budget correspondence in the no-arbitrage setting, B : SN−1×RN
++ ⇒

RN
+ , is continuous.

Proof. That B is upper hemicontinuous follows from the fact that the rank of every

submatrix of V (p1) is equal to the rank of the corresponding submatrix of V . For

lower hemicontinuity, notice that the correspondence defined by B(p, w) ∩ RN
++ is

lower hemicontinuous, and, hence, that B is lower hemicontinuous, by proposition

2.3 in Michael (1956).

Lemma 2. If E ⊆ M is compact, then DE is closed.15

Proof. Take a sequence (pn, wn)∞n=1 in DE that converges to some (p, w) ∈ SN−1 ×
RNI

++. By definition, there exists a sequence (p̃n, w̃n)∞n=1 in E such that, B(pn, w
i
n) =

B(p̃n, w̃
i
n) for all individuals. Since E is compact, there is a convergent subsequence

(p̃n(k), ŵn(k))
∞
k=1 that converges to some (p̃, w̃) ∈ E ⊆ SN−1 × RNI

++. 16

By lower hemicontinuity of B (lemma 1), for every x ∈ B(p, wi) there exists

a sequence (xn)∞n=1 in RN
+ such that, xn ∈ B(pn, w

i
n) and xn → x. It follows by

construction that xn ∈ B(p̃n, w̃
i
n) and, hence, by upper hemicontinuity, x ∈ B(p̃, w̃i)

and B(p, wi) ⊆ B(p̃, w̃i). A similar analysis yields B(p̃, w̃i) ⊆ B(p, wi), which implies

that B(p̃, w̃i) = B(p, wi). Since the latter is true for all individuals, it follows that

(p, w) ∈ DE.
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Lemma 3. For E ⊆ M, let EE be defined as in the proof of theorem 3. Then,

EE ⊆ M , and, moreover, EM = M .

Proof. Let (p, w) ∈ EE. By definition,

((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ E.

Define π = (1, (ps,1)
S
s=1), and notice that

∑
i

wi =
∑

i

f i((π−1
s ps)

S
s=0,

S∑
s=1

Vs(ps,1)), w
i) =

∑
i

f i(p, wi) = F (p, w),

which shows that (p, w) ∈ M . To see that EM = M , it now suffices to show that

M ⊆ EM. Let (p, w) ∈ M . By construction,∑
i

wi =
∑

i

f i(p, wi)

=
∑

i

f i((
1

ps,1

ps)
S
s=0, (

S∑
s=1

Vs(ps,1)), w
i)

= F((
1

ps,1

ps)
S
s=0, (

S∑
s=1

Vs(ps,1)), w).

Lemma 4. For any function Φ,

1. if it is admissible (in financial markets), then so is Φ(·;Φ) (in the no-arbitrage

setting);

2. if it is consistent with E ⊆ M, then Φ(·;Φ) is consistent with EE.

Proof. For the first part, continuity and budget determinacy are immediate. Now,

let (p, w) ∈ SN−1 × RN
++. Since Φ satisfies Walras’s law and financial feasibility, we

can fix some z such that

p0 · (Φ0((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)−
∑

i

wi
0) = −(

S∑
s=1

Vs(ps,1))z.

and

(
1

ps,1

ps)
S
s=1 � (Φ1((

1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)−
∑

i

wi
1) = V z.
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The latter implies that

p1 � (Φ1((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)−
∑

i

wi
1) = V (p1)z,

so summing up over s gives

p · (Φ((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)−
∑

i

wi) = 0,

which means that Φ(·;Φ) satisfies Walras’s law. Now, by definition,

p1 � (Φ1(p, w;Φ)−
∑

i

wi
1) = p1 � (Φ1((

1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)−
∑

i

wi
1),

so Φ(·;Φ) satisfies financial feasibility.

For the second part, let (p, w) ∈ EE. It is immediate that

((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ E,

and then, since Φ is consistent with E, we have that

Φ((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) =
∑

i

wi.

Lemma 5. The budget correspondence B : (SL−1
++ )(S + 1) × Q × RN

++ ⇒ RN
+ , is

continuous.

Proof. Define the function π as in the proof of theorem 4. Upper hemicontinuity,

follows again from the fact that the rank of every submatrix of V (pn,1) is constant.

For lower hemicontinuity, fix (p, q, w), x ∈ B(p, q, w) and a sequence (pn, qn, wn)∞n=1

that converges to (p, q, w); then, x ∈ B((πs(q)ps)
S
s=0, w) and ((πs(qn)pn,s)

S
s=0, wn) con-

verges to ((πs(q)ps)
S
s=0, w), so, by lower hemicontinuity of B, there exists a sequence

(xn)∞n=1 such that xn ∈ B((πs(qn)pn,s)
S
s=0, wn) and xn → x; it follows that B is lower

hrmicontinuous, since B((πs(qn)pn,s)
S
s=0, wn) = B(pn, qn, wn).

Lemma 6. Given E ⊆ M, let EE be as in the proof of theorem 3. If E is compact,

then EE ⊆ M is compact and DE is closed.
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Proof. That EE is compact is straightforward. For closedness of DE, let (pn, qn, wn)∞n=1

in DE converge to (p, q, w). By definition, there exists a sequence (p̃n, q̃n, w̃n)∞n=1

in E such that B(pn, qn, w
i
n) = B(p̃n, q̃n, w̃

i
n) for all individuals. Since E is com-

pact, some subsequence (p̃n(k), q̃n(k), w̃n(k))
∞
k=1 converges to some (p̃, q̃, w̃) ∈ E. Let

x ∈ B(p, q, wi). By lower hemicontinuity, there exists a sequence (xn(k))
∞
k=1 such

that xn(k) ∈ B(pn(k), qn(k), w
i
n(k)) and which converges to x. By construction, xn(k)) ∈

B(p̃n(k), q̃n(k), w̃
i
n(k)), and then, by upper hemicontinuity, (xn(k))

∞
k=1 has further sub-

sequence that converges to some x̄ ∈ B(p̃, q̃, w̃i). Since xn(k) itself converges to

x, it follows that x ∈ B(p̃, q̃, w̃i), and hence that B(p, q, wi) ⊆ B(p̃, q̃, w̃i). That

B(p̃, q̃, w̃i) ⊆ B(p, q, wi) follows by a similar argument, so B(p, q, wi) = B(p̃, q̃, w̃i))

for all individuals, which implies that (p, q, w) ∈ DE.

Lemma 7. For any candidate profile of functions (φ1, . . . , φI),

1. if it is admissible (in the no-arbitrage setting), then so is the profile (ϕ(·; φ1), . . . ,

ϕ(·; φI)) (in the financial markets setting);

2. if it is consistent with F over D, then the profile (ϕ(·; φ1), . . . , ϕ(·; φI)) is con-

sistent with F over

{(p, w)|(( 1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w) ∈ D}.

Proof. For the first part, Slutsky symmetry is by definition, while the other properties

are as the first part of lemma 4, so details are omitted. For the second part, notice

that, over D,

∑
i

ϕ(p, wi; φi) =
∑

i

φi((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w
i)

= F((
1

ps,1

ps)
S
s=0,

S∑
s=1

Vs(ps,1), w)

= F (p, w).
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Notes
1This is important since, when there exist uninsurable risks, competitive equilibrium is typically

inefficient in a strong sense: a planner could use the existing insurance possibilities to make every
individual better off (see Geanakoplos and Polemarchakis, 1986). The question immediately arises of
how much information a planner needs to have in order to figure out an improving policy intervention:
the transfer paradox, first pointed out by Leontief, illustrates how ambiguous the welfare effects of
a policy can be when the fundamentals of the economy are unknown (see, for instance, Geanakoplos
and Heal, 1983, or Donsimoni and Polemarchakis, 1994).

2Also obtained in independent work by Sergio Turner.
3This condition excludes additively separable preferences of the form ui(x) =

∑
s ui

s(xs). In this
case, our analysis still holds under the following assumption: for every s and every sequence (xn)∞n=1

defined in RL
++, if it converges to some x in ∂RL

+, then it is true that ||Dui
s(xn)||−1Dui

s(xn) ·xn → 0
and ||Dui

s(xn)||−1 →∞.
4So our question is one of identification and not one of testability or refutability, which has been

dealt with elsewhere: for the standard Arrow-Debreu model, see Brown and Matzkin (1996); for the
case of uncertainty, see Kübler (2003). For a survey of this literature, see Carvajal et al. (2004).

5The argument of the function and its derivatives is omitted in the expression; the condition is
to hold at every (p, w) ∈ {p ∈ RN

++|p0,1 = 1} × RN
++.

6Functions f i : SN−1×RN
++ → RN

++ and F : SN−1×RNI
++ → RN

++ are well defined, by assumption
1 guarantees that the range of f i is contained in RN

++.
7Carvajal and Riascos (2005) give an example of a demand system of rank 3 (in the sense of

Blanks et al. (1997) and Lewbel (2003)) that satisfies the regularity conditions in the case of
complete markets; this example can be extended to incomplete markets.

8In fact, for the case of complete markets the argument here strengthens the theorem of Carvajal
and Riascos (2005), since closedness, rather than compactness, suffices for the result when markets
are complete.

9Formally, we define δ only on the domain SN−1 × RNI++. Since E is closed, this function is
well defined.

10To see this, notice that if ∆(p, w) = 0, then there exists a sequence (p̃n, w̃n)∞n=1 such that
B(p̃n, w̃i

n) = B(p, wi) and δ(p̃n, w̃n) → 0. By definition of δ, there exists a sequence (p̂n, ŵn)∞n=1

in E, such that δ(p̃n, w̃n) = ||(p̂n, ŵn) − (p̃n, w̃n)||. Since E is compact, (p̂n, ŵn) has a con-
vergent subsequence (p̂n(k), ŵn(k))∞k=1 → (p̂, ŵ) ∈ E, and, since δ(p̃n, w̃n) → 0, it follows that
(p̃n(k), w̃n(k)) → (p̂, ŵ) ∈ E. By lemma 1, it follows that B(p, wi) = B(p̂, ŵi) for all i, and hence
that (p, w) ∈ DE

11For budget determinacy, observe that if B(p, wi) = B(p̃, w̃i) for all i, then p0,2 = p̃0,2. To see this,
fix some i and define x∗0,1 = maxx∈B(p,wi) x0,1, x∗0,2 = maxx∈B(p,wi) x0,2, x̃∗0,1 = maxx∈B(p̃,w̃i) x0,1

and x̂∗0,2 = maxx∈B(p̃,w̃i) x0,2. Then, p0,2 = x∗0,1
x∗0,2

and p̃0,2 = x̃∗0,1
x̃∗0,2

, and, since B(p, wi) = B(p̃, w̃i),
x∗0,1 = x̃∗0,1 and x∗0,2 = x̃∗0,2.

12Again, the condition is to hold at every (p, w) ∈ SN−1 × RN
++.

13For example, let v : RN
++ → R be continuous, C1(RN

++), monotone, strongly quasi-concave,
differentiable strictly monotone and differentiable strictly concave, and such that for all x ∈ RN

++,
{x′ ∈ RN

+ |v(x′) ≥ v(x)} ⊆ RN
++; let φ : Q → RN

++ be defined by φ(q) = arg maxx∈B(p̄,q,w̄) v(x), for
given (p̄, w̄); and let

π(q) = ((
∂v

∂x0,1
(φ(q)))−1 ∂v

∂xs,1
(φ(q)))S

s=0.

26



14Obviously, f̃(p, p · w;w1) = f(p, w).
15We only need E to be closed, to have closure in SN−1 ×RNI

+ contained in SN−1 ×RNI
++, and to

have a bounded projection into the space of p.
16Regardless of compactness of E, if E is closed, the closure of E in SN−1 × RNI

+ is contained in
SN−1

++ × RNI
+ , and the projection of E into the space of p is bounded, the conclusion follows: since

(pn, wn) is bounded, (pn) is bounded away from zero, and w̃i
n ∈ B(pn, wi

n), it follows that (w̃n) is
itself bounded; if (p̃n) is also bounded, then there is subsequence that converges to (p̃, w̃). Also, the
closure of E in SN−1

++ × RNI
+ is contained in SN−1

++ × RNI
++, so (p̃, w̃) ∈ SN−1

++ × RNI
++, and, since E is

closed (in SN−1
++ × RNI

++), (p̃, w̃) ∈ E.
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