
HAL Id: hal-01228519
https://hal.inria.fr/hal-01228519v2

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast hierarchical algorithms for generating Gaussian
random fields

Pierre Blanchard, Olivier Coulaud, Eric Darve

To cite this version:
Pierre Blanchard, Olivier Coulaud, Eric Darve. Fast hierarchical algorithms for generating Gaussian
random fields. [Research Report] 8811, Inria Bordeaux Sud-Ouest. 2015. �hal-01228519v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49418075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01228519v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

11
--

FR
+E

N
G

RESEARCH
REPORT
N° 8811
December 2015

Project-Teams Hiepacs

Fast hierarchical
algorithms for generating
Gaussian random fields.
Pierre Blanchard, Olivier Coulaud, Eric Darve

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Fast hierarchical algorithms for generating

Gaussian random �elds.

Pierre Blanchard∗, Olivier Coulaud∗, Eric Darve†

Project-Teams Hiepacs

Research Report n° 8811 � December 2015 � 32 pages

Abstract: Low-rank approximation (LRA) techniques have become crucial tools in scienti�c
computing in order to reduce the cost of storing matrices and compute usual matrix operations.
Since standard techniques like the SVD do not scale well with the problem size N , there has been
recently a growing interest for alternative methods like randomized LRAs. These methods are
usually cheap, easy to implement and optimize, since they involve only very basic operations like
Matrix Vector Products (MVPs) or orthogonalizations. More precisely, randomization allows for
reducing the cubic cost required to perform a standard matrix factorization to the quadratic cost
required to apply a few MVPs, namely O(r×N2) operations where r is the numerical rank of the
matrix. First of all, we present a new e�cient algorithm for performing MVPs in O(N) operations
called the Uniform FMM (ufmm). It is based on a hierarchical (data sparse) representation of
a kernel matrix combined with polynomial interpolation of the kernel on equispaced grids. The
latter feature allows for FFT -acceleration and consequently reduce both running time and memory
footprint but has implications on accuracy and stability. Then, the ufmm is used to speed-up the
MVPs involved in the randomized SVD , thus reducing its cost to O(r2 ×N) and exhibiting very
competitive performance when the distribution of points is large and highly heterogeneous. Finally,
we make use of this algorithm to e�ciently generate spatially correlated multivariate Gaussian
random variables.

Key-words: H2-methods, FMM , FFT , randomized SVD , covariance kernel matrices, multivari-
ate Gaussian random variables.

∗ Inria, Hiepacs Project, 350 cours de la Libération, 33400 Talence, France. Email: Surname.Name@Inria.fr
† Mechanical Engineering Department, Institute for Computational and Mathematical Engineering, Stanford

University, 452 Escondido Mall, Building 520, Room 125, Stanford, CA 94305, USA. Email: darve@stanford.edu

Algorithmes hiérarchiques rapides pour la génération de

champs aléatoires Gaussiens.

Résumé : Les approximations de rang faible (LRA) sont devenus des outils fondamentaux en
calcul scienti�que en vue de réduire les coûts liés au stockage et aux opérations matricielles. Le
coût des méthodes standards comme la SVD croît très rapidement avec la taille du problème
N , c'est pourquoi des méthodes alternatives comme les approches aléatoires (i.e. basées sur la
projection ou la sélection de colonnes/l'échantillonnage aléatoire) se popularisent. Ces méthodes
sont en général peu coûteuses et facile à implémenter et optimiser, car elles ne mettent en oeuvre
que des opérations matricielles simples comme des produits ou des orthogonalisations. Plus
précisemment, les LRA aléatoires permettent de réduire le coût cubique en N des méthodes
standards de factorisation au coût quadratique nécessaire à la réalisation de quelques produits
matrices vecteurs, i.e., O(r × N2) opérations où r est le rang numérique de la matrice. Dans
un premier temps, nous présentons un algorithme e�cace pour réaliser des MVPs en O(N)
opérations, que nous appelons Uniform FMM (ufmm). Il est basé sur la combinaison d'une
représentation hiérachique d'une matrice noyau et l'interpolation polynomiale du noyau associé
sur une grille régulière (uniforme). Cette dernière propriété permet une accélération par FFT
réduisant ainsi le temps de calcul et la consommation mémoire mais a des répercussions sur la
précision et la stabilité de l'algorithme. Ensuite, la ufmm est utilisée pour accélerer les MVPs
intervenants dans la SVD aléatoire (i.e. SVD par projection aléatoire) diminuant son coût
asymptotique à O(r2 ×N). La méthode est particulièrement compétitive pour des distributions
de points hétérogènes. En�n, nous utilisons cet algorithme pour générer des champs de variables
Gaussiens de manière e�cace.

Mots-clés : Méthodes H2, FMM , FFT , randomized SVD , matrices de covariance, champs
aléatoires Gaussiens.

Fast hierarchical algorithms for generating Gaussian random �elds. 3

1 Introduction

Generating realizations of Gaussian Random Fields (GRFs) is a key issue in numerous scienti�c
research �elds such as cosmology [42, 7, 14], geostatistics [28, 30], hydrogeology [43, 6], brownian
dynamics [5],. . . A GRF is a multivariate Gaussian random variable, i.e., a vector Y ∈ RN of cor-
related Gaussian random variables each associated with the points of a grid denoted {xi}i=1...N .
In the present work we will only consider spatial grids, i.e., xi ∈ R3. In order to accurately repre-
sent the statistic of the problem, GRFs usually need to be generated in large ensembles, e.g., we
need O(105) realizations to reach errors between 1 and 10% in term of experimental mean E(Y)
and covariance E(YYT). Therefore, e�ciently generating many realizations of a GRF given a
large spatial grid, i.e., N = O(106), can rapidly become problematic even on modern computers.

Correlation kernels We use the terminology Y ∼ µ(0,C) to de�ne a GRF Y with mean 0
and covariance C ∈ RN×N . The covariance can be prescribed as a kernel matrix, i.e.,

C = {k(rij)}i,j=1...N (1)

, where rij = |xi − xj | and k is a correlation kernel such as

k1/2(r) = e−|r|` = e−r/` (Exponential decay)

k∞(r) = e−|r|
2
`/2 = e−r

2/2`2 (Gaussian decay)

These functions are the extreme cases of Matérn functions kν , where the length scale ` character-
izes the decreasing speed of the correlation. Covariance matrices are symmetric positive de�nite
(spd) by de�nition of correlation kernels. Therefore C admits a square root A, i.e.,

C = AAT (2)

A standard approach Realizations of a correlated GRF Y ∼ µ(0,C) can be obtained by
applying A to a white noise X ∼ µ(0, IN), i.e., a Gaussian random �eld X verifying E(X) = 0 and
E(XXT) = IN. There exists numerous approaches for generating GRFs, that usually di�er by the
way the square root A is precomputed. Approaches based on standard matrix decompositions
such as the Cholesky Decomposition (CD) [16] are the most popular ones, since they provide
exact square roots and rely on well understood and robust algorithms that apply to any spd
matrix C. They can also provide fast (i.e., O(N)) approximate methods to generate GRFs, if the
decomposition is truncated at a prescribed numerical rank, i.e., A ∈ RN×r. However standard
factorization algorithms involve O(N3) operations and thus become computationally prohibitiv
for large N , i.e., N over a few thousands. Alternative methods are often considered such as the
sequential simulation method [27], the moving average methods [40], the turning bands method
[28, 36], continuous [45] or discrete [25, 43] spectral methods , combinations of spectral methods
with the turning bands [35] or with moving average [30], improved matrix decomposition [15]. . .
They usually provide approximate square roots but most importantly they do not always extend
(well or at all) to 3D grids.

FFT approach A popular alternative based on matrix decomposition, often referred to as
the FFT approach (or Circulant Embedding), was introduced in 1993 by Dietrich and Newsam
[18] and simultaneously developed by Wood and Chan [51]. It provides an exact method for
computing the product Y = AX, that has a O(N) cost in both running time and storage. The
square root A is assembled in Fourier domain in O(N logN) operations. However it presents
some signi�cant numerical limitations especially in 3D as explained in [18], not to mention that
it only applies to equispaced grids.

RR n° 8811

4 Blanchard & Coulaud & Darve

1.1 Randomized LRA

Randomized algorithms for the low-rank approximation (LRA) of matrices, a.k.a., randomized
LRA algorithms, usually provide powerful alternatives to standard matrix factorizations for
matrices of relatively low-rank. Recently, they have gained popularity in the numerical linear
algebra community because they are easy to implement, highly parallelizable and most of all they
achieve very competitive performance within reasonable accuracy. Moreover, these algorithms
often involve very basic matrix computations thus leaving signi�cant room for improvement.
They have drawn much attention in scienti�c �elds such as geostatistics [29, 17], machine learning
[19, 50], genetics [34],. . . For further references on their applications to data analysis please refer
to Mahoney [33]. Randomized algorithms divide in 2 classes: random sampling- and random
projection-based algorithms.

Random projection In the present paper we focus on the randomized SVD , a very popular
random projection-based LRA algorithm introduced and further enhanced in a series of papers
[38, 32, 53]. A comprehensive review of the method, extensions to other factorizations such as
CD or Interpolative Decompositon (ID), as well as fast variants can be found in Halko et al. [26].
Let us simply recall that the randomized SVD of a symmetric matrix C ∈ RN×N is a 2-stage
process:

� A randomized range approximation: Form an approximate basis Q ∈ RN×r for the range of
C using a Gaussian random projection, i.e., application of C to a N -by-r Gaussian random
matrix Ω

Y = CΩ (3)

and a subsequent orthogonalization, e.g., a QR decomposition (QRD). Thus, we get a
low-rank representation of C in the form

Cr = QQTCQQT (4)

� The second stage consists in factorizing Cr in SVD form: Cr = UΣUT. We start by
assembling the small r-by-r matrix

B = QTCQ (5)

then perform an SVD , i.e., B = UBΣBUT
B.

Finally, an approximate SVD of C is obtained by forming U = QUB and Σ = ΣB. Alterna-
tively, if C is symmetric positive semi-de�nite (spsd), a square root is obtained as

A = QB1/2 (6)

with B1/2 = UBΣ1/2. Since the overall cost of the randomized SVD is dominated by the cost
of the matrix multiplication required in each stage, the algorithm has a O(N2 × r) asymptotic
complexity where r represents the prescribed numerical rank. In the context of GRF simulations,
Dehdari and Deutsch [17] used the randomized SVD in order to accelerate the precomputation
of A in low-rank form and thus e�ciently generate realizations of GRF at a O(N × r) cost in
running time. This approach stillrequire C to be fully assembled

1.2 Contributions: a randomized SVD powered by a new H2-method

In the present paper we describe a new approach for precomputing low-rank square roots of
covariance kernel matrices. It combines the randomized SVD with a new e�cient hierarchical
matrix-multiplication algorithm.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 5

An FFT -accelerated H2-method: ufmm Our �rst contribution, introduced in the pre-
liminary section 2, consists in an highly e�cient FFT -accelerated H2-method for computing
Matrix-to-Vector Products (MVPs) with kernel matrices in linear time called the Uniform FMM
or ufmm1. This polynomial interpolation-based H2-method, derived from the black-box FMM
(bbfmm) by Fong and Darve [21], relies on equispaced interpolation grids which dramatically
decreases the amount of data to be stored and allows for FFT -acceleration. The accuracy of the
associated interpolation scheme is expected to be slightly worse than the bbfmm; however, in
most cases of interest including the one studied here, this loss of accuracy is o�set by performance
of the FFT . The algorithm is implemented within the ScalFMM package, an open-source generic
parallel FMM library available online at http://scalfmm-public.gforge.inria.fr/doc/2, along with
several other schemes including the original FMM [23, 24] and the bbfmm schemes [21, 39].

A randomized SVD powered by ufmm Our second contribution, described in Section 3,
consists in using the ufmm to perform the matrix multiplications involved in the randomized
SVD . This provides an algorithm for approximating the square root of a covariance kernel ma-
trix in O(r2 × N) operations instead of the original O(r × N2). The resulting approach is
matrix-free, thus reducing the complexity to O(r × N) in terms of memory requirements and
allowing very large grids to be handled. Furthermore, exploiting the hierarchical structure of
the matrix allows highly heterogeneous grids to be computed faster. The accuracy of the square
root algorithm remains unchanged if the extra error introduced by the ufmm is carefuly moni-
tored. Since our approach is fairly generic, it extends to other randomized matrix factorization
(e.g., CD , ID) and more generally to any dense random projection based LRA algorithm, as
long as the input matrix C is suited for H2-methods. The algorithm is implemented within the
FMR package, an open-source library for computing fast randomized LRAs available online at
https://gforge.inria.fr/projects/fmr. The package provides both standard and fast techniques
for generating GRF based on matrix decomposition, namely FFT , CD , SVD , RandSVD and
Nystrom method.

Numerical benchmarks The accuracy and the sequential performance of the algorithm were
tested on numerical benchmarks. Results are presented in Section 4 in order to con�rm the
theoretical linear complexity of our algorithm and compare the performance with the original
randomized SVD . Finally, we verify that the method accurately generates GRFs on various
arti�cial test cases.

1.3 Related works

Various aspects of our algorithms relate to other existing works in the �elds of deterministic and
randomized LRA. These relations are summarized and discussed in this section.

1.3.1 FFT conversion of an H2-method

An FFT conversion of the original Fast Multipole Algorithm (FMA) was originally proposed
in a technical report by Greengard et al. [24], and later implemented and improved by Elliott
et al. [20]. For an e�cient parallel implementation of this approach please refer to Pan et

1In order to stay consistent with the terminology used in our implementations and past publications, we decided
to keep the name Uniform FMM although Lagrange FMM might seem more consistent with related methods
such as Chebyshev FMM . Moreover, the terminology Uniform FMM emphasizes the regularity of the equispaced
interpolation grid that allows for FFT -acceleration.

2A complete documentation is provided online along with links to associated publications, see [8, 3, 2] for
further information on the package.

RR n° 8811

http://scalfmm-public.gforge.inria.fr/doc/
https://gforge.inria.fr/projects/fmr

6 Blanchard & Coulaud & Darve

al. [41]. The general idea of the original FFT conversion proposed in these papers consists
in rewritting the M2L operations in the form of a 2D linear convolution, then converting it to
a 2D circular convolution (using zero-padding) in order to �nally perform the M2L operations
in Fourier domain at a lower cost using FFT . This approach di�ers from our method since it
is based on expanding the kernel 1/r in spherical harmonics while our method relies on kernel-
independent polynomial interpolations. On the other hand, both variants require zero-padding for
the conversion to circular convolution. The FFT conversion of the FMA algorithm additionally
su�ers from smearing e�ects, i.e., some entries are arti�cially not zeroed out due to the conversion
to circular convolution form. While our method su�ers from the Runge phenomenon due to the
interpolation on an equispaced grid, the original variant su�ers from various sources of instability.
The �rst occurs when a coe�cient with strong variations in magnitude is warped in order to
rewrite the expansion as a linear convolution. The second instability results from a scaling
problem that ampli�es during the FFT operations. Stabilization techniques were proposed in
[24] and further discussed and improved in [20]. In the present paper, we also suggest methods
in order to defeat the Runge phenomenon that may occur in our method.

1.3.2 Fast randomized LRA

The acceleration of randomized LRA algorithms based on random projection usually relies on
the ability to apply fast Matrix-to-Matrix Products (MMPs), hence most research works in this
area focus on exploiting the structure and the sparsity of the input matrix C and the random
matrix Ω.

Random matrix Random projection algorithms exploiting the nature of the random matrix
are presented by Woodru� [52] in a comprehensive survey within the general framework of ma-
trix sketching. While Sarlós [44] �rst mentioned the idea of using structured random (sketching)
matrices such as Fast Johnson-Lindenstrauss Transforms (FJLT), Ailon et al. [4] described
the FJLT algorithm in full details. The idea is based upon Achlioptas's work [1] that aimed
at developing sparse sketching for more e�cient random projection. Woolfe et al. [53] subse-
quently designed an FJLT algorithm based on the Discrete Fourier Transform (DFT), namely
the Subsampled Randomized Fourier Transform (SRFT). The ability to compute such trans-
form in quasi-linear time allowed for reducing the computational cost of the random projection
from O(N2 × r) to O(N2 × log r). Such method can be used to compute LRAs of matrices,
in fact in Liberty et al. [32] the SRFT is used to speedup the randomized ID introduced in
Martinsson et al. [38]. However, it is not clear yet if there exists a �xed accuracy variant for fast
transform based projection schemes. Various e�cient algorithms for performing dense random
projection are studied in Liberty's thesis [31] such as the general FJLT , the SRFT , the SRHT
(based on the Discrete Walsh-Hadamard Transform) as well as the Mailman algorithm for matrix
multiplication. Recently, Tropp [47] provided an improved analysis for the SRHT .

Input matrix To our knowledge, only very few papers address fast matrix multiplication for
Gaussian random projection-based algorithm applied to dense structured input matrices. In the
context of low-rank approximations of matrices, Martinsson [37] describes a way to build HSS
matrices using a FMM -powered Gaussian random projection algorithm. The FMM is used there
in order to accelerate the projection stage, i.e., the product between the input matrix and the
Gaussian random matrix (Eq. 3). Then, the factorization in HSS form is handled by ID. In the
present paper, we use FMM -accelerated MMPs in order to speedup the projection (Eq. 3) but
also to build the matrix B (Eq. 5) e�ciently.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 7

Random sampling Random sampling techniques are particularly well suited for LRA appli-
cations requiring relatively low accuracy. The most widely used random sampling algorithm for
spd matrices is the Nyström method, see [19, 22, 54]. Applications of the Nyström method to
the LRA of covariance kernel matrices can be found in Wang et al. [48]. An improved variant
of the original Nyström method introduced in Si et al. [46] exploiting the block structure of
kernel matrices is known as the MEKA. It relies on a preclustering of the data and a block-wise
LRA. Very recently, Wang et al. [49] provided an algorithm based on a similar idea and called
the Block Basis Factorization (BBF), that does not have stability issues and exhibits smaller
standard deviation than the MEKA. Such method can provide low-rank matrix square roots for
covariance kernel matrices in O(N) operations with a low dependence on the ambiant dimension.
Since it is taylored for the high dimensions involved in machine learning applications, the BBF
should perform worse in 3D applications than our analytical interpolation schemes. Finally, [48]
introduces its own O(N) randomized SVD , namely a subsampled randomized SVD .

2 Preliminary: An FFT -accelerated H2-method, the ufmm

In this section we present a new variant of the black-box FMM [21] (or bbfmm) where the
interpolation is done on a uniform (i.e., equispaced) grid and the scheme is accelerated by FFT ,
we call this new method the uniform FMM or ufmm. We also propose adjustements to the
original algorithm in order to increase its e�ciency for globally smooth kernels. The algorithms
of the bbfmm 2 and the ufmm 3 are given in Appendix 6.

2.1 A new interpolation based H2-method

Let us consider a system of N particles interacting with each other. We want to e�ciently
compute the contributions of all N source particles on each target particle i = 1, . . . , N , i.e.,
in less than O(N2) operations. If we denote xi the position of particle i, then its potential
f(xi) = fi due to the densities w(xj) = wj can be expressed as follows

f(xi) =

N∑
j=1

k(xi,xj)w(xj) (7)

where k(·, ·) represents the kernel of interactions.

Hierarchical clustering The bbfmm is a H2-method for computing sums like (7) based on a
hierarchical partitionning of the domain using a cluster tree structure, namely an octree. The
root cluster C(0) of the tree is the smallest cube enclosing all particles. At the level L of the
octree we subdivide all parent cells C(L) in 8 cubes of equal size to get all child cells C(L+1) at
level L + 1. This recursive partition is stopped at the leaf level L̄ once a suitable criterion is
reached (e.g., minimum or average number of particles per leaf cell, minimum leaf cell size).

Interaction list The method relies on an octree in order to partition the domain in clusters
and then identi�es admissible cluster pairs, i.e., clusters of particles whose interactions can be
approximated using a low-rank approach. More precisely, two cells of width ω distant from D
form an admissible cell pair if they satisfy the admissibility criterion D ≥ γω, where γ can be
prescribed (γ = 2 in the original bbfmm). Let C(L) denote an arbitrary cell at level L. Cells
that form admissible pairs with C(L) are also said to be in far�eld interactions with C(L), while
the other are in near�eld interactions with C(L). The neighbor list N (C(L)) is de�ned as the

RR n° 8811

8 Blanchard & Coulaud & Darve

set of cells in near�eld interactions with C(L). The interaction list I(C(L)
x) is de�ned as the

set of non-empty cells C(L)
y in far�eld interactions with C(L)

x such that the parent of C(L)
x and

C(L)
y are in near�eld interactions. The latter condition ensures that all contributions are only
computed once during the hierarchical summation scheme. Figure 1 illustrates how interaction
and neighbor lists are built on the last two levels of a 1D tree structure.

(L̄− 1)

(L̄)
x yaybyc

C(L̄)
x

C(L̄−1)
x

C(L̄)
yaC(L̄)

yb

C(L̄−1)
yc

D
(L̄−1)
xyc

ω(L̄−1)

Figure 1: Portion of a 1D tree at level L̄ and L̄ − 1. The interaction lists I(C(L)
x) (green) and

neighbor lists N (C(L)
x) (red) of a target particle x is represented for γ = 2. The contribution of

the source particle ya is computed analytically as part of the near�ed while contributions of yb

and yc are approximated as part of the far�eld at level L̄ and L̄− 1 respectively.

A general interpolation scheme The LRA technique involved in the bbfmm is a general
interpolation scheme based on Chebyshev polynomials. While most LRA methods discussed in
this paper are purely algebraic, this approach requires the kernel k(·, ·) to be known explicitly.
However, as opposed to methods relying on kernel-speci�c expansions like the spherical harmonics
for k(r) = 1/r, methods based on general interpolation schemes are kernel-independent. For any
source y and target x lying in admissible clusters, the kernel k(x,y) can be approximated using
the following polynomial interpolation formula

k(x,y) ≈
∑
|α|≤p

Spα(x)
∑
|β|≤p

KαβS
p
β(y) (8)

where Spα is referred to as a 3D polynomial interpolator (of order p) and Kαβ denotes the
evaluation of k(·, ·) at interpolation points x̄α for targets and ȳβ for sources. The multi-index
notations is de�ned as follows

α = (α1, α2, α3), with αi = 0, . . . , p and |α| = max
i≤3

(αi)

Error bounds for (8) are provided in [21]. The sum (7) can thus be approximated by

f(xi) ≈
∑
|α|≤p

Spα(xi)
∑
|β|≤p

Kαβ

N∑
j=1

Spβ(xj)w(xj)

with Spα = Spα1
× Spα2

× Spα3
where Spn is a 1D polynomial interpolator.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 9

Computational cost Algorithm 2 presents the original bbfmm summation scheme as intro-
duced by Fong and Darve [21]. The cost of both storing and applying the (p + 1)3 × (p + 1)3

matrices K̄ = {Kαβ}|α|,|β|≤p (a.k.a., M2L operators) to the expansions is O(p6). Moreover these

matrices must be applied a potentially large number of times (max. 189 interactions per cell
per level), which usually makes the M2L step the most computationally expensive step of any
Fast Multipole scheme. In order to accelerate the bbfmm Messner et al. [39] described several
optimizations based on compressing the M2L operators and exploiting their symmetries.

2.2 Acceleration by Fast Fourier Transform (FFT)

In this paper, we present a new optimized hierarchical summation scheme based on a Lagrange
polynomial interpolation in place of Chebyshev. This scheme is described in Algo. 3 and will
now be referred to as the Uniform FMM or ufmm. As described in the present section, Lagrange
interpolation combined with the Fast Fourier Transform (FFT) allows for dramatically decreas-
ing the memory footprint and the computational cost of the M2L operators, namely from O(p6)
to O(p3 log p). In 1D, the Lagrange interpolators Spn take the following form

Spn(x) = Lpn(x) =

p∏
m=0
m6=n

x− x̄m
x̄n − x̄m

, ∀x ∈ [−1, 1]

for n = 0, . . . , p where x̄m = −1 + 2m/p for m = 0, . . . , p. In our implementations we actually
used a slightly di�erent form that reads as

Spn(x) =
(−1)p−n

2pn!(p− n)!

p∏
m=0
m 6=n

(p(x+ 1)− 2m) , ∀x ∈ [−1, 1]

in order to reduce the e�ects of round-o� errors.

Addressing Runge phenomenon Interpolation schemes based on equispaced grids usually
become unstable for high orders of interpolation p (Runge phenomenon), however as described
in a review by Boyd et al. [11] e�cient regularization methods have already been introduced.
They are for instance based on optimization (for Tikhonov regularization see [9]), series expan-
sions (for Gegenbauer regularization see [10]), subsampling (for overdetermined least-squares
and Mock-Chebyshev interpolation see [13]) or even multi-domain approaches (see [12]). These
methods defeat Runge phenomenon while preserving subgeometric convergence. In our approach
divergence is not likely to occur since we use interpolation on multiple subdomains and the value
of p remains relatively low (p < 20) in almost all cases of interest. In particular, machine accu-
racy has been reached with our algorithm for a wide range of non-oscillatory kernels, e.g., 1/r,
1/r2, correlations (Matérn functions, spherical model) and various isotropic elastostatic Green's
functions.

Structure of the M2L operators On the other hand, performing the interpolation on an
equispaced (uniform) grid allows for an easy conversion of the algorithm to Fourier domain and
thus leading to a faster scheme. Indeed when k(·, ·) is evaluated on a uniform 1D grid then K̄
is a Toeplitz matrix, i.e., each diagonal contains constant values. This is a consequence of the
fact that the entries of K̄ only depend on the distance between the corresponding particles, i.e.,
k(xi, xj) = k(xi − xj). In the case of 2D grids the resulting matrix is block Toeplitz, i.e., the
matrix is composed of constant blocks over its diagonals while each block is itself Toeplitz. In 3D

RR n° 8811

10 Blanchard & Coulaud & Darve

we include an extra level of blocking meaning that the constant diagonal blocks are now block
Toeplitz.

Circulant embedding Dietrich [18] and Wood [51] almost simultaneously proposed a scheme
in which a Toeplitz matrices is embedded in a larger circulant matrix and then applied as
a convolution in Fourier space. We brie�y recall this method in the case of a 1-dimensional
Toeplitz M2L operator K̄ of order p. For the sake of clarity let us consider the case where K̄ is
symmetric, then K̄ is fully de�ned by its �rst row

R = (ρ0, . . . , ρp)
t ∈ Rp+1, with ρi = k(x̄0, x̄i) for i = 0, . . . , p

This row can be embedded into the �rst row R̃ of a (symmetric) circulant matrix Ē ∈ Rp̃×p̃ with
p̃ = p+ 1 + p− 1 = 2p such that

R̃ = (ρ0, . . . , ρp, ρp−1, . . . , ρ1)
t

= (R, ρp−1, . . . , ρ1)
t ∈ Rp̃

By construction K̄ is embedded in the upper left corner of Ē, i.e., the application of both matrices
is equivalent if the last p− 1 columns and rows of Ē are masked. In the non-symmetric case the
embedding is slightly larger, namely p̃ = p+ 1 + p = 2p+ 1, i.e., the number of components that
fully de�ne the non-symmetric matrix K̄.

Conversion to Fourier domain The discrete convolution theorem implies that the set of
eigenvectors of any circulant matrix Ē forms the Discrete Fourier Transform (DFT) operator,
i.e., F =

{
p̃−1/2e−2iπmn/p̃

}
m,n=0,...,p̃

, while the vector Λ containing the eigenvalues is known

to be the DFT of the �rst column of Ē , i.e., Λ = FR̃. Let us consider a multipole expansion
M ∈ Rp+1 and a resulting local expansion L = K̄M ∈ Rp+1. If M̃ denotes the expansion
obtained after padding M with p− 1 zeros, then for i = 0, . . . , p we have

(L)i =
(
ĒM̃

)
i

=
(
F∗diag(Λ)FM̃

)
i

=
(
F∗
[
Λ� FM̃

])
i

=
(
F∗
[
FR̃� FM̃

])
i

Hence, the matrix vector product L = K̄M can be performed in Fourier space in the form of an
entrywise product FR̃ � FM̃. Transfers back and forth between Fourier and physical domains
are done by FFT resulting in an asymptotic overall cost of O(pd log p) for precomputation and
O(pd) for application, where d denotes the ambiant dimension.

Numerical complexity The theoretical complexities of the bbfmm and ufmm algorithms are
given in Table 1. They are not only given in term of computational cost but also in term
of memory footprint for the M2L (always precomputed) and the P2P (precomputed if matrix
to matrix operations are considered). In the ufmm the precomputation of the M2L operators
requires O(p3 log p) operations (i.e., the cost of an FFT) while their application requires only
O(p3) operations (i.e., the cost of an entrywise product). All algorithms scale linearly in N but
they optimize the interpolation steps di�erently in particular during the most expensive step of
the method, namely the M2L step. In fact, the cost of storing and applying M2L operators scales
like O(p3) in the ufmm and O(p6) in the bbfmm, therefore we expect signi�cant di�erences in
memory requirements and computational times.

2.3 A block low-rank algorithm for smooth kernels: smooth-ufmm

The Fast Multipole Method (FMM) introduced by Greengard et al. [23] was originally developed
for kernels with a strong singularity at the origin, e.g., k(x, y) = 1/|x−y|. This property leads to

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 11

bbfmm ufmm smooth-ufmm

P2P (CPU/memory) n0 ×N n0 ×N 0

P2M/L2P (CPU) p3 ×N p3 ×N + p3 log (p)×N/n0 p3 ×N + p3 log (p)×N/n0

M2M/L2L (CPU) p4 p4 + p3 log (p) p4 + p3 log (p)
build M2L (CPU) p6 p3 log (p) p3 log (p)
apply M2L (CPU) p6 p3 p3

M2L (memory) p6 p3 p3

Table 1: Asymptotic complexities of the algorithms. The complexities of the M2L and M2M/L2L

are given per level and per non empty cell, they should be multiplied by the number of non-empty
cells (O(23L)) and then summed over levels. For the P2P and P2M/L2P the complexities are given
globally. The constant n0 = N/23L̄ denotes the average number of particles per leaf.

the design of a multilevel scheme that allowed for approximating a larger part of the �eld without
ever reaching the singularity. Most correlation kernels do not present any strong singularity (e.g.,
Matérn family) and the Gaussian k∞ is even perfectly smooth. More precisely, the larger is ν
the smoother is kν near the origin.

ufmm

(L̄)
x

k1/2(|x− .|)

smooth-ufmm

(L̄)
x

k∞(|x− .|)

Figure 2: Schematic view of both ufmm variants on a 1D tree. The target particle x (blue) lies
in the leaf cell CL̄x . The interaction list I(CLx) at a given level L is represented in green, while the
near�eld N (CLx) is represented in red.

smooth-ufmm Provided the kernel is su�ciently smooth near the origin we want to consider
a summation scheme where the near�eld interactions are approximated as well and thus no
direct interaction is ever computed. An algorithm of this nature can be derived from the ufmm
algorithm by changing the admissibility criterion γ(L̄) at the leaf level from 2 to 0. While in
the ufmm well-separation of leaves (γ(L̄) = 2) is imposed, in the new variant coinciding leaves
form admissible pairs as well (γ(L̄) = 0). In fact, since the kernel is su�ciently smooth at the
origin then the diagonal subblocks of the kernel matrix associated with coincident and adjacent
cell pairs are relatively low-rank. The interaction list of a given leaf now includes the direct
neighbors (and the leaf itself), which means that all interactions will be transferred by means of
M2L operations and thus no interaction needs to be computed at the P2P step. This variant is
denoted smooth-ufmm and can be seen as a block low-rank approximation technique. Figure 2

RR n° 8811

12 Blanchard & Coulaud & Darve

illustrates the di�erence between both variants in terms of interaction lists. In the smooth variant
the interaction list at the leaf level I(CL̄x) includes all leaf cells whose parent is a direct neighbor
of the target parent cell CL̄−1

x and consequently N (CL̄x) = ∅, whereas in the standard variant the
direct neighbors of the target leaf cell form the near�eld.

Optimal setup Since the P2P and the M2L do not compete anymore in the smooth-ufmm, these
steps do not have to be balanced. Consequently, the concept of level is not relevant anymore and
the actual tuning parameter becomes the width of the leaf cells. More precisely, having bypassed
the P2P step, we only need to minimize the cost of the M2L step by using the fewest number of
clusters, i.e., the largest leaf cells. However, as our algorithm remains a multi-level scheme, the
depth for the octree is still used to control the width of the leaves. The optimal setup for the
algorithm is the lowest tree depth leading to a similar accuracy as the original ufmm scheme.

Computational cost Due to the extension of the interaction list, the maximum number of
M2L operators to store and apply at the leaf level increases from 189 to 189 + 27 = 216 in 3D.
However, as shown in the numerical benchmarks presented in Section 4.1, for a given accuracy
the number of level is usually lower than the level required for the standard ufmm. Moreover,
since no direct computation is involved, the computational time of the smooth-ufmm is expected
to be lower than for the ufmm. These algorithms are used here for computing MMPs; so, it
is crucial to precompute and store the P2P operators. Therefore, the smooth-ufmm requires a
signi�cantly lower amount of memory than the ufmm (see memory requirements in Table 1).

3 A fast randomized algorithm for generating GRFs

In this section we present our new algorithm for e�ciently generating GRFs on large spatial grids
given a correlation kernel. We start by describing the original randomized SVD approach. Then,
we explain how to setup some parameters in order to get optimal performance in the desired
range of accuracy. Finally, we present our new fast algorithm, for approximating a square root
A of a covariance matrix C, namely the H2-powered randomized SVD (Algorithm 1).

3.1 Precomputation of C1/2 via randomized SVD

The original randomized SVD As explained in section 1, a random projection-based LRA
such as the randomized SVD [26] is a 2-stage process: a randomized range approximation based
on dense Gaussian random projection followed by a factorization in standard form, namely
an SVD . The Randomized Subspace Iterations (RSI , Algorithm 4.4 in [26]) can be used to
approximate the range given a prescribed rank r. However, since in our case the rank is not
known in advance and accuracy has to be monitored, we prefer to use an adaptive-rank or �xed
accuracy variant such as the Adaptive Randomized Range Finder (ARRF , Algorithm 4.1 in [26]).
Indeed the ARRF returns a near-optimal range approximation given a prescribed accuracy ε.
Due to their random nature these algorithms have a non-zero chance to fail, however error bounds
such as 9 generally hold with high probability, e.g., at least 1−N × 10−r for the RSI algorithm.

Tune-up parameters and accuracy In order to improve the accuracy of the range approxi-
mation the projection can be performed on a slightly larger subspace, namely using a N -by-(r+s)
random matrix Ω where s is called the oversampling parameter, and �nally keeping the �rst r
columns of Q. Furthermore, the original algorithm does not apply well to matrices that have slow
decreasing (or �at) spectrum because it fails to identify the most important singular values. A

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 13

common alternative is to stretch this spectrum by using q subspace iterations, i.e., by projecting
(CC∗)qC instead of C. The resulting Cr (Eq. 4) approximates C within well-established and
controlled error bounds, that can be expressed in Frobenius norm as

E(‖C−Cr‖F) ≤ fF (r, s, q)‖C−Cr‖opt.F (9)

The deterministic lower bound ‖C−Cr‖opt.F , a.k.a., the baseline in [26], reads as

‖C−Cr‖opt.F =

(
N∑

i=r+1

σ2
i (C)

)1/2

(10)

where fF is a polynomial function of the rank r that ensures tighter error bounds in average
Frobenius norm as s and q grow, see [26] for a comprehensive discussion on error bounds.

3.2 Reaching near-optimal accuracy

Oversampling Figure 3 illustrates the bene�t of using oversampling on the Gaussian kernel
k∞. No power iteration is required, since the Gaussian correlation has a fast decreasing spectrum.
Hence, we set q = 0 and analyze the e�ect of the oversampling. First of all, the results show
that the �xed rank approach works well for matrices of relatively low rank, e.g. for ` ≥ 0.50. For
instance, on the unit sphere with N = 2000, r = 100 (i.e., r/N ≈ 5%) and s = 5, if ` ≥ 0.50 then
the relative error in Frobenius norm is below 2%. Moreover, as shown on Figure 3, increasing
the oversampling signi�cantly improves the accuracy and even provide near-optimal accuracy
on this particular test case. In fact, for ` ≥ 0.5, the error for s = 50 almost coincides with the
theoretical lower bound ‖C−Cr‖opt.F .

Subspace iterations On the other hand, Figure 4 illustrates the bene�t of using power itera-
tions on the exponential kernel, i.e., k1/2, that exhibits a relatively �at spectrum. In particular,
it shows that with an oversampling of s = 50 the accuracy is still far from the optimal but
near-optimal accuracy can be reached with a few (q = 2) power iterations. Since in this case the
matrix is not low-rank, it only produces a raw approximation of C in the desired range of com-
pression, i.e., below 10%. Hence, we will not consider this kernel in the numerical benchmarks
presented in Section 4.

3.3 An H2-powered randomized SVD

Algorithm & complexity The overall cost of the original randomized SVD is quadratic in
N as it is dominated by the matrix-to-matrix products (MMPs) involved in each stage, namely
CΩ for the random projection (Equation 3) and CQ for the factorization (Equation 5). Since
C is given as a kernel matrix it can be applied to another matrix at a linear cost in N without
ever assembling the full matrix using a H2-method like the ufmm (or bbfmm). The resulting
approach remains a dense random projection as Ω stays dense, but it bene�ts from a data sparse
representation of C. Algorithm 1 presents our H2-powered randomized SVD and indicates
the asymptotic complexity of each stage. The resulting algorithm has an overall O(r2 × N)
computational cost.

Managing accuracy H2-methods provide approximate matrix multiplications, therefore they
introduce extra errors in each stage of the algorithm. The accuracy of the H2-method needs to
be carefuly monitored in order to avoid perturbing the approximation of the range and the �nal

RR n° 8811

14 Blanchard & Coulaud & Darve

2 3 4 5 6 7 8 9 10

10−11

10−9

10−7

10−5

10−3

10−1

` 1.0 0.5 0.1

s = 5

s = 50

‖C − Cr‖
opt.
F

compression rate: r/N (%)

re
la
ti
v
e
er
ro
r:
‖C
−

C
r
‖ F

,r
e
l

Gaussian decay: k∞

Figure 3: Accuracy of the �xed rank RandSVD w.r.t. the compression rate for a Gaussian
correlation (N = 2000 and r = 20 . . . 200). We analyze the e�ects of the oversampling s alone
(q = 0). Observations: The Gaussian kernel is smooth, therefore its spectrum decreases fast
and C is relatively low-rank. Consequently, the RandSVD performs well even without power
iterations and with low oversampling (s = 5). An oversampling of s = 50 leads to a near optimal
error. Note that C becomes high-rank for small `, e.g., ` = 0.1.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 15

2 3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

` 1.0 0.5 0.1

q = 0

q = 2

‖C − Cr‖
opt.
F

compression rate: r/N (%)

re
la
ti
v
e
er
ro
r:
‖C
−

C
r
‖ F

,r
e
l

Exponential decay: k1/2

Figure 4: Accuracy of the �xed rank RandSVD w.r.t. the compression rate for an exponential
correlation (N = 2000 and r = 20 . . . 200). We analyze the e�ects of q power iterations using
a �xed oversampling of s = 50. Observations: The exponential correlation k1/2 is not smooth,
therefore its spectrum is relatively �at. A few power iterations lead to a near optimal error but
the rank remains relatively high. C becomes high-rank for small `, e.g., ` = 0.1.

Algorithm 1: H2-powered Randomized SVD

Input: Correlation kernel k(., .), grid size N , Positions x, rank r or accuracy ε, number of power
iterations q, oversampling parameter s, interpolation order p, octree depth h

Output: [U,Σ] approximate SV D of C = {k(xi, xj)}i,j<N

// Stage I: Approximate the range of C
if accuracy ε is prescribed then

[Q, r] = ARRF (k, x,N, p, h, q, s, ε) using H2-MVPs. O(r2 ×N)

if rank r is prescribed then

[Q, ε] = RSI(k, x,N, p, h, q, s, r) using H2-MVPs. (idem)

// Stage II: Decompose Cr = Q(QTCQ)QT ≈ C as UΣUT

Build B = QTCQ ∈ Rr×r using H2-MVPs. O(r2 ×N)
Perform SV D of B = UBΣBUT

B O(r3)
Form U = QUB and Σ = ΣB O(N × r2)

// Compute square-root A = C
1/2
r ≈ C1/2 as UΣ1/2

B1/2 = UBΣ
1/2
B O(N × r2)

A = QB1/2 O(N × r2)

accuracy of the low-rank representation. The optimal order of the interpolation is determined
so that it does not signi�cantly a�ect the output rank of the ARRF or the accuracy of the RSI .
More precisely, we found that enforcing one order of magnitude between the error on a fast MVP
εufmm = ‖fufmm −Kw‖2,rel and the prescribed accuracy ε, i.e.,

ε = 10εufmm (11)

RR n° 8811

16 Blanchard & Coulaud & Darve

preserves the accuracy of the original method while still providing signi�cantly better perfor-
mance.

E�cient implementation We use the ScalFMM library to perform the fast matrix multipli-
cations involved in the algorithm. Since ScalFMM's kernels were originally designed to perform
fast MVPs, we made use of the multi right-hand-side feature to apply MMPs one block after
another. The amount of column vectors applied at once to the matrix C can be set to any
value nrhs. In the present work, we used nrhs = 10 in order to limit the memory required
to store the multipole and local expansions. As a result, we need about 1GBytes in order to
store the expansions at the leaf level for a tree height of h = 5 and p = 5 (in double precison
arithmetic). Furthermore, the near�eld interactions (a.k.a., P2P operators) are assembled and
stored in memory in order to be applied faster using level 3 BLAS routines. This can a�ect the
storage signi�cantly for large N , i.e., above 106 particles, therefore the trade-o� between memory
consumption and running time has to be adressed with great care. In our implementation, if
the memory required by the P2P exceeds a certain limit then we recommend using a larger tree
height h. On the other hand, if the smooth-ufmm is used then we only need to store the M2L
operators and the expansions.

4 Numerical benchmarks

In this section, we compare the performance of our fast algorithm compared to the RandSVD
in order to con�rm the theoretical complexities and measure the actual speedup of the method.
We �rst do a comparative analysis between various interpolation based H2-methods. Then, we
con�rm the complexity of the ufmm-powered RandSVD . Finally, we generate large ensemble of
GRFs in order to verify the accuracy of the approach and discuss the running times.

Test cases We only consider the Gaussian correlation kernel, i.e., k = k∞, since its smooth-
ness allows for using the very e�cient smooth-ufmm and since it provides relatively low-rank
covariance matrices. The particles are either distributed on the surface of the unit sphere (het-
erogeneous distribution, hence many cells of the octree are empty) or inside a 2 × 2 × 2 cube
(homogeneous distribution, hence octree is densely populated). Both distributions share a com-
mon root bounding box of width w0 = 2. See Appendix 7 for more heterogeneous distributions
of particles. All experiments were conducted in double precision arithmetic (ScalFMM and FMR
also implements single precision).

4.1 Comparison of H2-methods for fast matrix multiplication

We �rst compare the relative accuracy and numerical performance of the bbfmm and the ufmm
on MVPs for k(x, y) = 1/|x− y|. Then, we compare the ufmm with the smooth-ufmm on MMPs
for a Gaussian correlation kernel k = k∞ with ` = 0.5.

bbfmm vs ufmm The comparative cost of the bbfmm, with or without compression of the M2L
operators (see [39]), and the ufmm is represented Fig. 5. The ufmm outperforms the unoptimized
bbfmm in terms of both computational time and memory requirements. Let us recall that
the symmetric bbfmm is taylored for symmetric kernels allowing for a massive reduction of
the interaction list and that it involves individual compression of the M2L operators, while the
compressed bbfmm only involves a global compression of the M2L operators. As expected the ufmm

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 17

is slightly less accurate than the bbfmm (due to the near minimax property of the Chebyshev
interpolation) but still performs better for a given precision. As shown on the graphs the ufmm
and the symmetric bbfmm have similar performance though the ufmm applies to any kernel.
More precisely the ufmm is faster in terms of computational times but requires a little more
memory than the symmetric bbfmm.

4 6 8 10 12

10−13

10−11

10−9

10−7

10−5

10−3

interpolation order: p

re
la
ti
v
e
er
ro
r:
‖f

F
M

M
−

K
w
‖ 2

,r
e
l

Accuracy

bbfmm

compressed bbfmm

symmetric bbfmm

ufmm

4 6 8 10 12

105

106

107

108

109

interpolation order: p

m
em

o
ry

(B
y
te
s)

Memory requirements (M2L)

bbfmm

compressed bbfmm

symmetric bbfmm

ufmm

4 6 8 10 12
10−3

10−2

10−1

100

101

102

103

interpolation order: p

ti
m
e
(s
)

Precomputation

bbfmm

compressed bbfmm

symmetric bbfmm

ufmm

4 6 8 10 12

10−1

100

101

102

interpolation order: p

ti
m
e
(s
)

Matrix Vector Product (MVP)

bbfmm

compressed bbfmm

symmetric bbfmm

ufmm

Figure 5: Accuracy and performance of the ufmm and variants of the bbfmm with respect to the
interpolation order p. We used k(x, y) = 1/|x− y| and 20, 000 particles randomly distributed in
the 2× 2× 2 cube. Observations: For a given accuracy, the ufmm performs better than generic
variants of bbfmm in terms of both computational time and memory footprint. Its performance
are close to the bbfmm optimized for symmetric kernels. Machine: desktop computer - Intel Core
i7-3520M CPU @ 2.90GHz x 4 with 8GB ram.

ufmm vs smooth-ufmm In the graphs Fig. 6 we compare the relative performance of the
ufmm and the smooth-ufmm for a given accuracy of about 10−3. The smooth-ufmm unsurpris-

RR n° 8811

18 Blanchard & Coulaud & Darve

ingly has better performance than the ufmm, since the cost of approximating the near�eld must
become cheaper as N increases compare to the ufmm with an increasing tree depth.

global �t The smooth-ufmm with h = 1 boils down to an FFT -accelerated Lagrange interpo-
lation on the bounding box. It is referred to as the global �t as it generalizes the idea of FFT
on an arbitrary grid. Therefore, for a given bounding box, the performance of the global �t are
independent of the shape of the distribution. As shown on Fig. 6, even in this range of accu-
racy, the global approach is almost always slower than the hierarchical variants that furthermore
bene�t from the heterogeneity of the distribution. Figures shown in Appendix 7 con�rm these
observations for a �xed N and a varying accuracy.

104 105 106
10−3

10−2

10−1

100

101

O
(N

2)

O(N
)

(3)

(4)

(5)

(6)

number of particles: N

ti
m
e
p
er

M
V
P
(s
)

Cube

MKL Blas::gemm()

ufmm (h ∝ logN, p = 4)

smooth-ufmm (h = 4, p = 4)

global �t (p = 11)

104 105 106
10−3

10−2

10−1

100

101

O
(N

2)

O(N
)

(3)

(4)

(5)

(6)

(7)

number of particles: N

ti
m
e
p
er

M
V
P
(s
)

Unit Sphere

Figure 6: Time per MVP for a total of 10 MVPs using either ufmm (with pre-assembled P2P

operators) or smooth-ufmm. We choose p such that the relative L2 error is below 10−3. Particles
are either randomly distributed in the 2×2×2 cube (left) or on the unit sphere (right). The tree
depth h of the ufmm (written below blue circles) ensures a relatively constant average number of
particles per leaf: n0 = 74 (left) and n0 = 62 (right). The correlation is Gaussian with ` = 0.5.
Machine: plafrim/riri - Deca-core Intel Xeon E7-4870 @ 2.40GHz with 1TB ram and 30MB L3
Cache.

4.2 performance of the H2-powered RandSVD

The accuracy and the O(N) complexity of the H2-powered RandSVD are now illustrated for a
Gaussian correlation with ` = 0.5 and particles distributed on the unit sphere.

Optimal setup As shown by Figure 3 the covariance matrix can be represented by a matrix
of rank r ≈ 70 with a precision of about ε = 10−2 in Frobenius norm using a conventional
RandSVD . In this case, our experiments showed that the smallest interpolation order that does
not a�ect the randomized algorithm is p = 4 for the ufmm, i.e., εufmm < 10−3. If the desired
accuracy equals ε = 10−3 then r ≈ 100 and p = 5 was found optimal, i.e., εufmm < 10−4. This
con�rms the optimal setup rule proposed in Equation 11.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 19

Complexity Figure 7 shows the time required to build an approximate square root of C within
an accuracy of 10−2 in Frobenius norm. It con�rms the theoretical asymptotic complexities of
all approaches. As mentioned in [26], we observe that the running times of the �xed rank and
�xed accuracy variants are very close to each other. Moreover, the H2 variants (ufmm and
smooth-ufmm) are faster than the original RandSVD for N ≥ 104. Not only do these variants
allow computation to be performed with N up to a few millions but they also provide signi�cant
speedup, e.g., they would be about 10× faster for N = 105 if only the dense computation was
a�ordable. This acceleration is even more pronounced for smooth kernels and heterogenous grids
as explained in Section 4.1.

102 103 104 105 106
10−3

10−2

10−1

100

101

102

103

O(N3)

O(N2)

O(N)

RandSVD RandSVD SVD

ε = 10−2 r = 70

dense

ufmm

smooth-ufmm

number of particles: N

co
m
p
u
ta
ti
o
n
a
l
ti
m
e
(s
)

Figure 7: Time for computing a randomized SVD using either the �xed rank or �xed accuracy
algorithm with q = 0 and s = 10. MMPs are computed either in a dense way (�lled black squares)
or by means of the ufmm (empty squares) or smooth-ufmm (empty circles) with p = 4, particles
are randomly distributed on the unit sphere and the correlation is Gaussian with ` = 0.5. Dense
MMPs, SVD and QRD are performed using sequential MKL Blas routines. Observations: As
expected, both �xed rank and �xed accuracy variants exhibit similar performance. On the other
hand, the graphs con�rm the theoretical asymptotic costs (linear in blue, quadratic in black and
cubic in red). Machine: plafrim/riri - Deca-core Intel Xeon E7-4870 @ 2.40GHz with 1TB ram
and 30MB L3 Cache.

4.3 Realizations of Gaussian Random Fields

Gaussian Random Fields were simulated on particles distributed on the unit sphere using Gaus-
sian correlations with varying length scales `. The approximation is done by mean of a �xed
precision (ε = 10−2) RandSVD with ufmm-accelerated MVPs. Realizations are displayed on
Figure 8 for various length scales.

Accuracy The sample covariance matrix C̃, computed from the realizations as

C̃ =
1

nreal

nreal∑
i=1

(Yi − E(Yi))(Yi − E(Yi))
t (12)

RR n° 8811

20 Blanchard & Coulaud & Darve

provides a good approximation of the experimental covariance. Therefore we analyze the accuracy
of the method using the error between C̃ and the actual covariance matrix C. In order to limit the
computational cost required by veri�cations, the error is computed on a subset of the matrices.
The accuracy of the method w.r.t. the number of realizations nreal is presented in Table 2. They
show that ufmm- and smooth-ufmm-accelerated RandSVD provide square roots that generate
correlated random �elds with similar accuracies and a convergence rate that is close to the
theoretical 1/2.

Running times As shown by �gure 6, for a Gaussian correlation with ` = 0.50, building an
approximate square root with N = 72k, r = 70 takes about 20 seconds with the ufmm, 8 seconds
with the smooth-ufmm while it would take about 5 minutes with dense MMPs. For ` = 0.25, the
rank r and the computational times are about 3 times larger.

Gaussian k∞ with ` = 0.25 Gaussian k∞ with ` = 0.50

Figure 8: Realization of a Gaussian random �eld on 72k points distributed on the unit sphere
using a Gaussian correlation. The approximate square root was obtained by mean of a smooth-
ufmm-accelerated RandSVD (ε = 10−2).

5 Conclusion

We presented a new optimizedH2-method for computing fast MMPs, namely an FFT -accelerated
variant of the bbfmm. The method is very e�cient compared to other optimized bbfmm in both
computational time and memory footprint. The algorithm has been optimized for smooth matrix
kernels allowing for further improvement of the performance. This hierarchical MMP method is
implemented within a randomized SVD resulting in a signi�cant acceleration of the algorithm for
low-rank kernel matrices. We used this hierarchical randomized SVD to compute approximate
low-rank square roots of covariance matrices and generate correlated Gaussian Random Fields
at a reasonable cost compared to standard methods. The resulting approach is faster than most
existing alternatives and has many interesting features (e.g., kernel-independent, matrix-free, easy
to parallelize, . . .) but obviously requires the input matrix to be relatively low-rank. Finally,
we want to emphasize that the bene�ts of using a hierarchical randomized SVD to approximate
square roots of covariance matrices were demonstrated on a very basic and well-studied problem,
however the method is inherently generic and thus extends to a broad range of applications.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 21

` = 0.25

ufmm smooth-ufmm

nreal ‖C̃ − C‖2,rel roc2 ‖C̃ − C‖∞,rel roc∞
1 · 103 2.48 · 10−1 1.47 · 10−1

1 · 104 7.88 · 10−2 0.5 4.53 · 10−2 0.51
1 · 105 2.63 · 10−2 0.48 1.57 · 10−2 0.46
1 · 106 1.02 · 10−2 0.41 8.53 · 10−3 0.27

nreal ‖C̃ − C‖2,rel roc2 ‖C̃ − C‖∞,rel roc∞
1 · 103 2.48 · 10−1 1.57 · 10−1

1 · 104 7.88 · 10−2 0.5 5.68 · 10−2 0.44
1 · 105 2.67 · 10−2 0.47 1.84 · 10−2 0.49
1 · 106 1.09 · 10−2 0.39 1.09 · 10−2 0.23

` = 0.50

ufmm smooth-ufmm

nreal ‖C̃ − C‖2,rel roc2 ‖C̃ − C‖∞,rel roc∞
1 · 103 1.31 · 10−1 1.12 · 10−1

1 · 104 3.75 · 10−2 0.54 4.56 · 10−2 0.39
1 · 105 1.41 · 10−2 0.43 1.76 · 10−2 0.41
1 · 106 4.72 · 10−3 0.47 5.95 · 10−3 0.47

nreal ‖C̃ − C‖2,rel roc2 ‖C̃ − C‖∞,rel roc∞
1 · 103 1.32 · 10−1 1.21 · 10−1

1 · 104 3.72 · 10−2 0.55 3.95 · 10−2 0.48
1 · 105 1.39 · 10−2 0.43 1.35 · 10−2 0.47
1 · 106 4.45 · 10−3 0.49 5.69 · 10−3 0.37

Table 2: Error (and rate of convergence, roc) on the covariance matrix C (N = 72k) w.r.t.
the number of realizations nreal for a Gaussian correlation with ` = 0.25 (top) and ` = 0.50
(bottom). The approximate square root used to generate realizations is computed by a �xed
accuracy randomized SVD (ε = 10−2) powered by ufmm (left) or smooth-ufmm (right) with
p = 4. The sample covariance C̃ is computed from the nreal realizations as Eq. 12. Observations:
The convergence rate is close to the theoretical rate, i.e., 1/2. The rate slightly decreases as N
grows, since Cr fails to represent C with su�cient accuracy, though the experimental covariance
accuracy is already very satisfying, namely below 10%.

RR n° 8811

22 Blanchard & Coulaud & Darve

Acknowledgment

This work was supported by the Inria-Stanford associate team FastLA. Experiments pre-
sented in this paper were carried out using the PLAFRIM experimental testbed, being de-
veloped under the Inria PlaFRIM development action with support from LABRI and IMB and
other entities: Conseil Régional d'Aquitaine, FeDER, Université de Bordeaux and CNRS (see
https://plafrim.bordeaux.inria.fr/).

Inria

http://people.bordeaux.inria.fr/coulaud/projets/FastLA_Website/
https://plafrim.bordeaux.inria.fr/

Fast hierarchical algorithms for generating Gaussian random �elds. 23

6 Fast matrix multiplication algorithms

This appendix gathers the fast hierarchical matrix multiplication algorithms used in the present
paper.

RR n° 8811

24 Blanchard & Coulaud & Darve

6.1 The Black-Box FMM

Algorithm 2 corresponds to the original bbfmm algorithm as introduced by Fong and Darve [21].

Algorithm 2: black-box FMM (bbfmm)

Input: Kernel k(·, ·), Densities w, Positions x, interpolation order p, leaf level L̄
Output: Potentials f
// Precomputation

for level L = 2, . . . , L̄ do

// Assemble M2L operators given a fictitious target cell C(L)
x

for source cell C(L)
y ∈ I(C(L)

x) do
Kαβ = k(x̄α, ȳβ), ∀α,β/|α|, |β| ≤ p

// Upward pass

for level L = L̄, . . . , 2 do

for source cell C(L)
y ∈ tree do

// P2M/M2M

if L = L̄ then

// P2M: interpolation

M(L̄)
β =

N∑
j=1

Sp
β(yj)w(yj), ∀β/|β| ≤ p

else

// M2M:

M(L)
β =

∑
|β′|≤p

Sp
β(ȳβ′)M(L+1)

β′ , ∀β/|β| ≤ p

// Downward pass

for level L = 2, . . . , L̄ do

for target cell C(L)
x ∈ tree do

// M2L: transfer between interacting cells

for source cell C(L)
y ∈ I(C(L)

x) do

L(L)
α + =

∑
|β|≤p

KαβM(L)
β , ∀α/|α| ≤ p

// L2L/L2P/P2P

if L ≤ L̄ then

// L2L:

L(L)
α =

∑
|α′|≤p

Sp
α(x̄α′)L(L−1)

α′ , ∀α/|α| ≤ p

else

// L2P: interpolation

f(xi) =
∑
|α|≤p

Sp
α(xi)L(L̄)

α

// P2P: direct computation

for source cell C(L)
y ∈ N (C(L)

x) do

f(xi) =
N∑

j=1

k(xi,yj)w(yj)

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 25

6.2 The Uniform FMM

Algorithm 3 corresponds to the new matrix multiplication algorithm introduced in section 2.

Algorithm 3: uniform FMM (ufmm)

Input: Kernel k(·, ·), Densities w, Positions x, interpolation order p, leaf level L̄
Output: Potentials f
// Precomputation

for level L = 2, . . . , L̄ do

// Assemble M2L operators (in Fourier domain)

for source cell C(L)
y ∈ I(C(L)

x) do
// Compute first row of 3D block Toeplitz M2L operators

Rβ = k(x̄0, ȳβ), ∀β/|β| ≤ p
// Embed R in the first row R̃ of a 3D block circulant matrix

for β/|β| < p̃ = 2p do

if βd > p then

R̃β = Rβ′ with β′d = 2p− βd and β′i = βi for i 6= d

else

R̃β = Rβ

// Apply 3D DFT

ˆ̃R = FR̃ with Fαβ = e
− 2iπ

p̃
(α·β)

, ∀(α,β)/|α|, |β| < p̃

// Upward pass

for level L = L̄, . . . , 2 do

for source cell C(L)
x ∈ tree do

// P2M/M2M

// ... see Algo. 2

// Pad expansion with zeros and transfer to Fourier domain.

M̃(L)
= 0p̃

M̃(L)

β = M(L)
β , ∀β/|β| ≤ p

ˆ̃M
(L)

= FM̃(L)

// Downward pass

for level L = 2, . . . , L̄ do

for target cell Cx ∈ tree do
// M2L: transfer between interacting cells

for source cell C(L)
y ∈ I(C(L)

x) do
ˆ̃L(L)
α + = ˆ̃Rα

ˆ̃M(L)
α , ∀α/|α| < p̃

// L2L/L2P/P2P

// ... see Algo. 2

// Transfer back to physical domain and unpad.

L̃(L)
= F−1 ˆ̃L

(L)

L(L)
α = L̃(L)

α , ∀α/|α| ≤ p

RR n° 8811

26 Blanchard & Coulaud & Darve

7 Convergence of the hierarchical methods w.r.t. the point

distribution

Here we present comparative results on the convergence of the ufmm and smooth-ufmm with
respect to the interpolation order p for various geometries (unit sphere, cube, prolate sphere and
hyperbolic paraboloid). In particular we analyze the in�uence of the length scale on the MVP
error for the Gaussian correlation kernel. For all geometries the width of the bounding box is
equal to 2. All computations where performed on a cluster computer, namely plafrim/mirabelle:
Hexa-core Westmere Intel Xeon X5670 @ 2.93GHz with 96GB ram and 12MB L3 Cache.

Observations The global �t will always have the same cost at a given interpolation order,
since this method is oblivious of the shape of the distribution. On the other hand, the cost of the
hierarchical methods may vary signi�cantly from one distribution to another. Let us for instance
consider a Gaussian correlation with ` = 0.5. If the particles are distributed in the cube (i.e., an
homogeneous distribution) the cost of the global �t lies somewhere between the ufmm and the
smooth-ufmm with optimal h, see Figure 9. If the particles are distributed on a sphere (i.e., an
heterogeneous distribution) then the hierarchical methods become faster than the global �t , see
Figure 10.

Other distributions Fig. 11 and Fig. 12 respectively con�rm the previous observations on
the prolate ellipsoid and the hyperbolic paraboloid, i.e., highly heterogeneous distributions. The
associated octrees have larger depths (h = 7) than for the unit sphere (h = 5), however in the
lowest level a large number of cells are empty. Consequently, the computational times are only
slightly larger than for the unit sphere.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 27

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 0.5

ufmm h = 5: perform MVP

ufmm h = 5: build P2P

smooth-ufmm h = 5

smooth-ufmm h = 4

global �t

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel
ti
m
e
(s
)

Gaussian with ` = 1.0

ufmm h = 5: perform MVP

ufmm h = 5: build P2P

smooth-ufmm h = 5

smooth-ufmm h = 4

global �t

Figure 9: Computational time of a MVP w.r.t. the relative error magnitude using various algo-
rithms: ufmm and smooth-ufmm with p = 2 . . . 12, and global �t with p = 7 . . . 15. We used 72k
particles randomly distributed in a cube. Observations: ufmm and smooth-ufmm have approx-
imately the same cost when they share the same tree depth. The smooth-ufmm is signi�cantly
faster if we choose an optimal tree depth, e.g., h = 4 represented in brown. If the Gaussian
decreases su�ciently slow (i.e., the rank is su�ciently low), then the cost of the global �t is sim-
ilar to the optimal smooth-ufmm. However, the global �t exhibits an instability for the highest
interpolation order.

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 0.5

ufmm h = 5: perform MVP

ufmm h = 5: build P2P

smooth-ufmm h = 5

smooth-ufmm h = 4

global �t

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 1.0

ufmm h = 5: perform MVP

ufmm h = 5: build P2P

smooth-ufmm h = 5

smooth-ufmm h = 4

global �t

Figure 10: Computational time of a MVP w.r.t. the relative error magnitude using various
algorithms: ufmm and smooth-ufmm with p = 2 . . . 12, and global �t with p = 7 . . . 15. We used
72k particles randomly distributed on the unit sphere. Observations: ufmm and smooth-ufmm
have approximately the same cost when they share the same tree depth. The smooth-ufmm is
signi�cantly faster if we choose an optimal tree depth, e.g., h = 4 represented in brown. If the
Gaussian decreases su�ciently slow (i.e., the rank is su�ciently low), then the cost of the global
�t is slightly lower than the ufmm but the optimal smooth-ufmm still performs better.

RR n° 8811

28 Blanchard & Coulaud & Darve

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 0.5

ufmm h = 7: perform MVP

ufmm h = 7: build P2P

smooth-ufmm h = 7

smooth-ufmm h = 5

global �t

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 1.0

ufmm h = 7: perform MVP

ufmm h = 7: build P2P

smooth-ufmm h = 7

smooth-ufmm h = 5

global �t

Figure 11: Computational time of a MVP w.r.t. the relative error magnitude using various
algorithms: ufmm and smooth-ufmm with p = 2 . . . 12, and global �t with p = 7 . . . 15. We used
72k particles randomly distributed on a prolate ellipsoid (ratio 1:1:10). Observations: ufmm and
smooth-ufmm have approximately the same cost when they share the same tree depth. The
smooth-ufmm is signi�cantly faster if we choose an optimal tree depth, e.g., h = 5 represented
in brown. If the Gaussian decreases su�ciently slow (i.e., the rank is su�ciently low), then the
global �t performs relatively well compared to the hierarchical variants.

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 0.5

ufmm h = 7: perform MVP

ufmm h = 7: build P2P

smooth-ufmm h = 7

smooth-ufmm h = 5

global �t

2 4 6 8 10 12 14
10−2

10−1

100

101

102

relative error magnitude: − log10 ‖fFMM −Kw‖2,rel

ti
m
e
(s
)

Gaussian with ` = 1.0

ufmm h = 7: perform MVP

ufmm h = 7: build P2P

smooth-ufmm h = 7

smooth-ufmm h = 5

global �t

Figure 12: Computational time of a MVP w.r.t. the relative error magnitude using various
algorithms: ufmm and smooth-ufmm with p = 2 . . . 12, and global �t with p = 7 . . . 15. We used
72k particles randomly distributed on a hyperbolic paraboloid (ratio 10:10:1). Observations:
ufmm and smooth-ufmm have approximately the same cost when they share the same tree
depth. The smooth-ufmm is signi�cantly faster if we choose an optimal tree depth, e.g., h = 5
represented in brown. If the Gaussian decreases su�ciently slow (i.e., the rank is su�ciently
low), then the global �t performs relatively well compared to the hierarchical variants.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 29

References

[1] Dimitris Achlioptas, Database-friendly random projections: Johnson-lindenstrauss with
binary coins, Journal of computer and System Sciences, 66 (2003), pp. 671�687.

[2] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve, Matthias

Messner, and Toru Takahashi, Pipelining the fast multipole method over a runtime
system, arXiv preprint arXiv:1206.0115, (2012).

[3] , Task-based fmm for multicore architectures, SIAM Journal on Scienti�c Computing,
36 (2014), pp. C66�C93.

[4] Nir Ailon and Bernard Chazelle, The fast johnson-lindenstrauss transform and ap-
proximate nearest neighbors, SIAM Journal on Computing, 39 (2009), pp. 302�322.

[5] Adolfo J Banchio and John F Brady, Accelerated stokesian dynamics: Brownian
motion, The Journal of chemical physics, 118 (2003), pp. 10323�10332.

[6] Alberto Bellin and Yoram Rubin, Hydro_gen: A spatially distributed random �eld
generator for correlated properties, Stochastic Hydrology and Hydraulics, 10 (1996), pp. 253�
278.

[7] Edmund Bertschinger, Multiscale gaussian random �elds and their application to cos-
mological simulations, The astrophysical journal supplement series, 137 (2001), p. 1.

[8] Pierre Blanchard, Bérenger Bramas, Olivier Coulaud, Eric Darve, Laurent

Dupuy, Arnaud Etcheverry, and Guillaume Sylvand, Scalfmm: A generic parallel
fast multipole library, in Computational Science and Engineering (CSE), SIAM, Mar. 2015.

[9] John P Boyd, Defeating the runge phenomenon for equispaced polynomial interpolation
via tikhonov regularization, Applied Mathematics Letters, 5 (1992), pp. 57�59.

[10] , Trouble with gegenbauer reconstruction for defeating gibbs' phenomenon: Runge phe-
nomenon in the diagonal limit of gegenbauer polynomial approximations, Journal of Com-
putational Physics, 204 (2005), pp. 253�264.

[11] John P Boyd and Jun Rong Ong, Exponentially-convergent strategies for defeating the
runge phenomenon for the approximation of non-periodic functions, part i: Single-interval
schemes. commun, Comput. Phys, 5 (2009), pp. 484�497.

[12] , Exponentially-convergent strategies for defeating the runge phenomenon for the ap-
proximation of non-periodic functions, part two: Multi-interval polynomial schemes and
multidomain chebyshev interpolation, Applied Numerical Mathematics, 61 (2011), pp. 460�
472.

[13] John P Boyd and Fei Xu, Divergence (runge phenomenon) for least-squares polyno-
mial approximation on an equispaced grid and mock�chebyshev subset interpolation, Applied
Mathematics and Computation, 210 (2009), pp. 158�168.

[14] Julien Carron, Melody Wolk, and Istvan Szapudi, On fast generation of cosmolog-
ical random �elds, Monthly Notices of the Royal Astronomical Society, 444 (2014), pp. 994�
1000.

[15] Michael W Davis, Generating large stochastic simulations�the matrix polynomial ap-
proximation method, Mathematical Geology, 19 (1987), pp. 99�107.

RR n° 8811

30 Blanchard & Coulaud & Darve

[16] , Production of conditional simulations via the lu triangular decomposition of the co-
variance matrix, Mathematical Geology, 19 (1987), pp. 91�98.

[17] Vahid Dehdari and Clayton V. Deutsch, Applications of randomized methods for de-
composing and simulating from large covariance matrices, in Geostatistics Oslo 2012, Petter
Abrahamsen, Ragnar Hauge, and Odd Kolbjørnsen, eds., vol. 17 of Quantitative Geology
and Geostatistics, Springer Netherlands, 2012, pp. 15�26.

[18] CR Dietrich and GN Newsam, A fast and exact method for multidimensional gaussian
stochastic simulations, Water Resources Research, 29 (1993), pp. 2861�2869.

[19] Petros Drineas and Michael W Mahoney, On the nyström method for approximat-
ing a gram matrix for improved kernel-based learning, The Journal of Machine Learning
Research, 6 (2005), pp. 2153�2175.

[20] William D Elliott and John A Board, Jr, Fast fourier transform accelerated fast
multipole algorithm, SIAM Journal on Scienti�c Computing, 17 (1996), pp. 398�415.

[21] William Fong and Eric Darve, The black-box fast multipole method, Journal of Com-
putational Physics, 228 (2009), pp. 8712�8725.

[22] Alex Gittens and Michael W Mahoney, Revisiting the nystrom method for improved
large-scale machine learning, arXiv preprint arXiv:1303.1849, (2013).

[23] Leslie Greengard and Vladimir Rokhlin, A fast algorithm for particle simulations,
Journal of computational physics, 73 (1987), pp. 325�348.

[24] , On the e�cient implementation of the fast multipole algorithm, Yale University, De-
partment of Computer Science, 1988.

[25] A Gutjahr, D McKay, and JL Wilson, Fast fourier transform methods for random
�eld generation, Eos Trans. AGU, 68 (1987), p. 1265.

[26] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompositions,
SIAM review, 53 (2011), pp. 217�288.

[27] Mark E Johnson, Multivariate statistical simulation: A guide to selecting and generating
continuous multivariate distributions, John Wiley & Sons, 2013.

[28] Andre G Journel, Geostatistics for conditional simulation of ore bodies, Economic Geol-
ogy, 69 (1974), pp. 673�687.

[29] PK Kitanidis and J Lee, Principal component geostatistical approach for large-
dimensional inverse problems, Water resources research, 50 (2014), pp. 5428�5443.

[30] Mickaële Le Ravalec, Benoît Noetinger, and Lin Y Hu, The �t moving average
(�t-ma) generator: An e�cient numerical method for generating and conditioning gaussian
simulations, Mathematical Geology, 32 (2000), pp. 701�723.

[31] Edo Liberty, Nir Ailon, and Amit Singer, Dense fast random projections and lean
walsh transforms, in Approximation, Randomization and Combinatorial Optimization. Al-
gorithms and Techniques, Springer, 2008, pp. 512�522.

Inria

Fast hierarchical algorithms for generating Gaussian random �elds. 31

[32] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and

Mark Tygert, Randomized algorithms for the low-rank approximation of matrices, Pro-
ceedings of the National Academy of Sciences, 104 (2007), pp. 20167�20172.

[33] Michael W Mahoney, Randomized algorithms for matrices and data, Foundations and
Trends® in Machine Learning, 3 (2011), pp. 123�224.

[34] Michael W Mahoney and Petros Drineas, Cur matrix decompositions for improved
data analysis, Proceedings of the National Academy of Sciences, 106 (2009), pp. 697�702.

[35] Aristotelis Mantoglou, Digital simulation of multivariate two-and three-dimensional
stochastic processes with a spectral turning bands method, Mathematical Geology, 19 (1987),
pp. 129�149.

[36] Aristotelis Mantoglou and John L Wilson, The turning bands method for simulation
of random �elds using line generation by a spectral method, Water Resources Research, 18
(1982), pp. 1379�1394.

[37] Per-Gunnar Martinsson, A fast randomized algorithm for computing a hierarchically
semiseparable representation of a matrix, SIAM Journal on Matrix Analysis and Applica-
tions, 32 (2011), pp. 1251�1274.

[38] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert, A randomized
algorithm for the approximation of matrices, tech. report, DTIC Document, 2006.

[39] Matthias Messner, Bérenger Bramas, Olivier Coulaud, and Eric Darve, Opti-
mized m2l kernels for the chebyshev interpolation based fast multipole method, arXiv preprint
arXiv:1210.7292, (2012).

[40] Dean S Oliver, Moving averages for gaussian simulation in two and three dimensions,
Mathematical Geology, 27 (1995), pp. 939�960.

[41] V. Y. Pan, J. H. Reif, and S. R. Tate, The power of combining the techniques of
algebraic and numerical computing: Improved approximate multipoint polynomial evalua-
tion and improved multipole algorithms, in Proceedings of the 33rd Annual Symposium on
Foundations of Computer Science, SFCS '92, Washington, DC, USA, 1992, IEEE Computer
Society, pp. 703�713.

[42] Ue-Li Pen, Generating cosmological gaussian random �elds, The Astrophysical Journal
Letters, 490 (1997), p. L127.

[43] MJL Robin, AL Gutjahr, EA Sudicky, and JL Wilson, Cross-correlated random �eld
generation with the direct fourier transform method, Water Resources Research, 29 (1993),
pp. 2385�2397.

[44] Tamas Sarlos, Improved approximation algorithms for large matrices via random pro-
jections, in 47th Annual IEEE Symposium on Foundations of Computer Science, 2006,
FOCS'06., IEEE, 2006, pp. 143�152.

[45] Masanobu Shinozuka and C-M Jan, Digital simulation of random processes and its
applications, Journal of sound and vibration, 25 (1972), pp. 111�128.

[46] Si Si, Cho-Jui Hsieh, and Inderjit Dhillon, Memory e�cient kernel approximation, in
Proceedings of The 31st International Conference on Machine Learning, 2014, pp. 701�709.

RR n° 8811

32 Blanchard & Coulaud & Darve

[47] Joel A Tropp, Improved analysis of the subsampled randomized hadamard transform, Ad-
vances in Adaptive Data Analysis, 3 (2011), pp. 115�126.

[48] Peng Wang, Chunhua Shen, and Anton van den Hengel, E�cient sdp inference
for fully-connected crfs based on low-rank decomposition, arXiv preprint arXiv:1504.01492,
(2015).

[49] Ruoxi Wang, Yingzhou Li, Michael W Mahoney, and Eric Darve, Structured block
basis factorization for scalable kernel matrix evaluation, arXiv preprint arXiv:1505.00398,
(2015).

[50] Christopher Williams and Matthias Seeger, Using the nyström method to speed
up kernel machines, in Proceedings of the 14th Annual Conference on Neural Information
Processing Systems, no. EPFL-CONF-161322, 2001, pp. 682�688.

[51] Andrew TA Wood and Grace Chan, Simulation of stationary gaussian processes in [0,
1] d, Journal of computational and graphical statistics, 3 (1994), pp. 409�432.

[52] David P Woodruff, Sketching as a tool for numerical linear algebra, arXiv preprint
arXiv:1411.4357, (2014).

[53] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert, A fast ran-
domized algorithm for the approximation of matrices, Applied and Computational Harmonic
Analysis, 25 (2008), pp. 335 � 366.

[54] Kai Zhang, Ivor W Tsang, and James T Kwok, Improved nyström low-rank approxi-
mation and error analysis, in Proceedings of the 25th international conference on Machine
learning, ACM, 2008, pp. 1232�1239.

Inria

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200 avenue de la Vieille Tour
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Randomized LRA
	Contributions: a randomized SVD powered by a new H2-method
	Related works
	FFT conversion of an H2-method
	Fast randomized LRA

	Preliminary: An FFT-accelerated H2-method, the ufmm
	A new interpolation based H2-method
	Acceleration by Fast Fourier Transform (FFT)
	A block low-rank algorithm for smooth kernels: smooth-ufmm

	A fast randomized algorithm for generating GRFs
	Precomputation of C1/2 via randomized SVD
	Reaching near-optimal accuracy
	An H2-powered randomized SVD

	Numerical benchmarks
	Comparison of H2-methods for fast matrix multiplication
	performance of the H2-powered RandSVD
	Realizations of Gaussian Random Fields

	Conclusion
	Fast matrix multiplication algorithms
	The Black-Box FMM
	The Uniform FMM

	Convergence of the hierarchical methods w.r.t. the point distribution

