
HAL Id: hal-01276456
https://hal.inria.fr/hal-01276456

Submitted on 19 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

marmoteCore: a software platform for Markov modeling
Alain Jean-Marie, Issam Rabhi

To cite this version:
Alain Jean-Marie, Issam Rabhi. marmoteCore: a software platform for Markov modeling. ROADEF:
Recherche Opérationnelle et d’Aide à la Décision, Aziz Moukrim, Feb 2016, Compiègne, France. �hal-
01276456�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49417656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01276456
https://hal.archives-ouvertes.fr


marmoteCore : a software platform for Markov modeling

Alain Jean-Marie, Issam Rabhi
Inria Sophia-Antipolis Méditerranée {Alain.Jean-Marie,Issam.Rabhi}@inria.fr

Mots-clés : Stochastic Operations Research, Markov Chain, modeling software

1 Introduction
We present the marmoteCore software, an open environment for modeling with Markov

chains, developed within the MARMOTE project. 1 This platform aims at providing the general
scientific user with tools for creating Markov models and computing, or simulating, their
behavior. It provides a software library implementing both basic models and methods “from
the book” and advanced solution methods : either general, or for specific classes of models.
marmoteCore is devised to be a collaborative platform, able to embed solution methods and
software developed by independent teams. We describe its architecture and some of its features,
including its capability to communicate with established scientific software such as R.
The need for marmoteCore. Modeling with Markov chains is an activity common to many
fields of science and engineering. Interacting particle systems of Physics, genome evolution
models of Biology, epidemic models of Medicine, population models of Ecology, queueing
systems of Operations Research, all those popular models are based on Markov chains. Monte-
Carlo simulations of Markov chains are commonly used for producing samples of distributions
of combinatorial objects, physical systems etc. This practical importance has prompted the
development of many modeling software for specific areas : GreatSPN for Petri Nets, CADP
and PRISM for Model Checking to name some of the most known, as well as demonstration
packages in general modeling software such as scilab or R. On the other hand, there exists up
to now no software environment providing the general scientific user with, at the same time, a
collection of ready-to-use well-known models and general modeling constructions and solution
methods, all accessible using an uniform programming interface. Realizing the prototype of
such a platform is one of the purposes of the marmoteCore project.

2 Architecture

An object-oriented perspective. The objectives of the project make the choice of object-
oriented programming almost obvious. Object-oriented languages give the possibility of de-
signing high-level abstractions for mathematical concepts, representing objects with common
properties. Yet, through the mechanism of inheritance, the user has the flexibility of controling
the implementation of specific instances of the model. We illustrate this idea below. The
organization of marmoteCore relies a lot on hierarchies of models, and polymorphism. We
have chosen the C++ language, in part due to the fact that the legacy code available to us is
written in C/C++.
Core objects. marmoteCore is based on four principal abstractions : markovChain, statSpace,
transitionStructure and distribution.

The distribution class implements the probabilistic concepts that are underlying stochastic
models in general, including the ubiquitous Bernoulli, Geometric and Exponential distributions.

1. MARMOTE (MARkovian MOdeling Tools and Environments), is a project funded by the French research
agency, grant ANR-12-MONU-00019. See : https://wiki.inria.fr/MARMOTE/Welcome



The transitionStructure class is an abstraction for the labeled state-to-state transitions
that are common to discrete-time and continuous-time Markov chains. Typical methods of
this object include get/setEntry() accessors, and evaluateMeasure()/ evaluateValue()
representing respectively right- and left- vector/multiplications in the language of linear algebra.
This class can be implemented with regular two-dimensional arrays (full or sparse), but also
with methods not based on the comprehensive storage of values but on symbolic manipulations.
It is possible to represent this way processes on potentially infinite state spaces.

The stateSpace class implements discrete sets of states, with elementary objects such as
integer intervals, and elementary constructions such as Cartesian products and unions. Typical
methods such as nextState(), index() and decodeState() are convenient for traversing
complex state spaces and constructing transition structures in an algorithmic way.

The hierarchy of Markov models. The fourth principal class, markovChain, is developped
in a large variety of specific Markov models. The idea is that to each particular family of
model, there can be specific implementation of data structures and, above all, of solution
methods optimized for the particular family.

As an example, consider the following sequence of inclusions of well-known models in Markov
modeling : Poisson ⊂ MMPP ⊂ MMPP/M/1 ⊂ HomogeneousQBD ⊂ QBD ⊂ MarkovChain. At the
level of Poisson processes, the representation of the transition structure is reduced to one
parameter, the arrival rate. Also, most metrics (e.g. transient probabilities, hitting times)
are available in closed form. As we move up in the hierarchy, algorithms for computing the
same metrics can be implemented. For instance : specific algorithms exist to compute level
passage times in QBDs (Quasi-Birth-Death processes). At the highest level, the algorithms are
applicable to any Markov chain, a fortiori to subclasses.

Solution methods. This object architecture offers a large flexibility for implementing and
using solution algorithms. The practitioner, developing a model for a specific situation, has
the choice between several algorithms for computing performance metrics and can choose the
one that turns out to be the more efficient. The developper of new solution methods uses the
existing ones for checking the validity of the new computations, then as benchmark for assessing
their precision and speed. The current version of marmoteCore comes with generic algorithms
for finding stationary distribution and average hitting times, and performing Monte-Carlo
simulation for trajectories, stationary distributions and hitting times.

3 Integration with existing software
The architecture of MARMOTE has been devised to ease up the interaction with existing

scienfic software. This can be done in two ways. First, MARMOTE can be made available to
existing platforms in the form of “plugins” or “libraries”. In the other direction, MARMOTE
can make use of functionalities of such platforms through calls to their specific libraries.

The first possibility can used notably in the interaction with Workflow Management Systems
and related graphical programming tools, so as to make easier the use of the software by
scientists not fluent in C++.

To illustratethe second possibilty, we have developped an interface with the markovchain
package of the scientific software R. 2 Functions from this package such as is.irreducible(),
is.accessible() or rmarkovchain() are wrapped and provided as C++ calls in the API of
marmoteCore. Technically : using the RInside library of R, an execution engine for the R
language is run inside marmoteCore. Markov models are passed to this engine, as well as calls
to the wrapped package. We are currently wrapping other external packages such as Markov
chain procedures in scilab, or the Xborne package developped at the Versailles Saint-Quentin-
en-Yvelines University, and the PSI3 package developped in the MESCAL team. 3

2. https://cran.rstudio.com/web/packages/markovchain/index.html
3. http://psi.gforge.inria.fr/dokuwiki/doku.php?id=psi3:start


