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Hermite type Spline spaces over rectangular meshes
with complex topological structures
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Nkonga2

1 Galaad2, Inria, Sophia Antipolis, France.
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3 School of Mathematics, Hefei University of Technology, P. R. China.

Abstract. Motivated by the magneto hydrodynamic (MHD) simulation for Tokamaks
with Isogeometric analysis, we present splines defined over a rectangular mesh with a
complex topological structure, i.e., with extraordinary vertices. These splines are piece-
wise polynomial functions of bi-degree (d,d) and Cr parameter continuity. And we
compute their dimension and exhibit basis functions called Hermite bases for bicubic
spline spaces. We investigate their potential applications for solving partial differential
equations (PDEs) over a physical domain in the framework of Isogeometric analysis.
For instance, we analyze the property of approximation of these spline spaces for the
L2-norm; we show that the optimal approximation order and numerical convergence
rates are reached by setting a proper parameterization, although the fact that the basis
functions are singular at extraordinary vertices.

AMS subject classifications: 65D05, 65U07, 65U30
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1 Introduction

The finite element method (FEM) is a powerful tool that is often used to derive accurate
and robust scheme for the approximation of the solution of PDEs. We are concerned with
MHD equations applied to the edge plasma of fusion devices as Tokamaks. In this con-
text of strongly magnetized plasma, the finite element formulation faces some difficulties
such as the divergence-free constraint and the high anisotropy of transport processes.

Higher anisotropies suggest the use of meshes aligned with the principal directions
of the transport processes [1]. Quadrilateral (2D) and hexahedral (3D) meshes, called
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structured meshes, are the most convenient for alignment and lead to a reduction in the
approximation error. In [2], isoparametric bicubic Hermite elements are used to solve the
Grad-Shafranov equation, the equilibrium in the resistive MHD model, over a physical
domain by aligning with concentric-circle-like principal directions of transport processes.
They introduced a polar-coordinate-like transformation to construct a global coordinate
system to achieve the desirable properties of the classical cubic Hermite element [3].
However, to align the principal directions of the transport processes in our target appli-
cation for high-confinement Tokamaks, a structured mesh is involved, as shown on the
left side of Figure 1. Different from a regular structured mesh, there is an extraordinary
vertex (the X point in Figure 1). In this paper, we present splines defined on a rectangular
mesh with a complex topological structure, i.e. the mesh allows extraordinary vertices.
To solve PDEs, the properties of approximation and numerical convergence rates of these
splines are discussed.

NURBS, tensor product B-splines [4], hierarchical B-splines [5] [6] [7], LR-splines [8]
and T-splines [9] are often used as shape functions to generate a parameterization. Their
meshes are aligned with these directions by this parameterization. However, without an
extraordinary vertex, their meshes are associated with simpler topological structures than
that needed for the target application. In other words, the structured mesh on the left side
of Figure 1 has to be decomposed when these splines are treated as shape functions. On
the right side of Figure 1, we give an example of decomposition of the structured mesh
into block structured meshes. However, the construction of high-quality block structured
meshes is a challenging issue, even if isoparametric finite elements [10] or isogeometric
analysis [11] can help to fit on physically curved principal directions of the transport
processes.

To deal with extraordinary vertices, there are two classes of the definitions of splines.
One is splines defined over a manifold, see e.g. [12–15]. That is based on the classical
definition of a differential manifold. The crucial issue of constructing manifold splines
in [12,13] is obtaining an affine structure of a manifold. In other words, for a given phys-
ical domain, its parameterization is fixed if manifold splines are adopted. It doesn’t con-
sider the principal directions of transport processes for the target application. Another
traditional way to solve extraordinary vertices problem is by a technique called geomet-
ric continuity. Several works focus on the construction of G1 surfaces which are spline
surfaces with tangent plane continuity, such as [16–24]. The ideas are using transition
maps or reparameterizations. Especially, in [16], Ck-splines are defined over a mesh with
a complex topological structure for the applications in geometric modelling. That defini-
tion generalizes the topological structure of meshes such that splines can be defined on
meshes with more general topological structures.

For structured meshes aligned in the target application, they are not only determined
by the geometry of a physical domain, but also the principal directions of the anisotropy
transport processes. They are more easy to be aligned by splines defined on meshes with
a parameterization, which is a linear combination of these splines. And based on this
parameterization, we can solve PDEs over the physical domain directly in the framework



3

Figure 1: The structured mesh of the target application and its block structured mesh
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of Isogeometric analysis [11]. Thus, in this paper, we generalize “Ck-splines” in [16] to
solving PDEs numerically. Concretely, the principle contributions of this paper are listed
in the following:
1. The paper presents the definition of spline spaces over rectangular meshes with a
complex topological structure. This definition extends “Ck-splines” on a mesh in [16]
from geometry modelling to solving PDEs numerically. For instance, local refinement
property is added to parametric meshes (see Remark 2.4) and the nesting property of
spline spaces is discussed (see Notation 2.9). Moreover, to apply these splines to the target
application, dimension formulas and basis functions called Hermite bases are provided
for bicubic spline spaces with C1 parameter continuity.
2. The approximation property of Hermite bases is presented. Although Hermite bases
are singular at extraordinary vertices, the optimal approximation order is reached by
setting a proper parameterization ( i.e., the parameterization satisfies the first point of
Notation 4.1).
3. By isogeometric techniques, numerical convergence rates are tested for solving linear
and nonlinear Grad-Shafranov equations. For the continuity of the numerical solution
and its gradients, the optimal convergence rates measured by L2-norm and H1-norm are
reached. By splines defined in this paper, a general physical domain with complex prin-
cipal directions of transport processes can be described globally, not only for concentric-
circle-like ones in [2].

The paper is structured as follows. From Section 2 to Section 3, we focus on defin-
ing this type of spline spaces, the dimension formulae and Hermite bases construction
for a bicubic spline space with C1 parameter continuity. In Section 4, the property of
Hermite bases is discussed for solving PDEs over a parametric mesh with a complex
topological structure in the framework of Isogeometric analysis. And we analyze the in-
terpolation approximation error in Section 4.2. In Section 5, numerical convergence rates
are measured by L2-norm and H1-norm for solving the Grad-Shafranov equations by iso-
geometric techniques. The last section proposes a conclusion of our work and directions
for future works.

2 Parametric meshes and spline spaces

In this section, the fundamental definitions of this paper is presented. First, in Section 2.1,
the concept of parametric meshes is given. Its definition includes an equivalence relation,
which allows to address general topologies. Then the definition of spline spaces over a
parametric mesh is introduced in Section 2.2.

2.1 Parametric meshes

In this section, we introduce the concept of a parametric mesh, which generalises the
notion of a mesh in the parametric space, considered, e.g., in [16].
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Informally, a parametric mesh is a collection of planar cells, that are glued together
along edges with transition maps transforming the parameter values of one cell into pa-
rameter values on the other cell adjacent to the common edge. The precise definition of
a parametric mesh is given is given in Definition 2.1. Before given the formal definition,
we illustrate it in Example 2.1. The basic concepts about parametric meshes are presented
in Definition 2.2 and they are illustrated in Example 2.2. In preparation for defining of
spline spaces in Section 2.2 and discussing basis construction in Section 3, other concepts
are introduced in Section 2.1.2, such as local frames, hanging vertices, basis vertices and
composite edges of a parametric mesh. Section 2.1.3 introduces how to perform a local
refinement of a parametric mesh. The definition of hierarchical parametric meshes is then
presented, based on a local refinement process.

2.1.1 Definition of Parametric Meshes

Notation 2.1. The metric plane R2 equipped with coordinates (s,t), will be called the
(s,t)−plane. A cell is a rectangle of R2. We will use the letter C with indices to denote
cells. The boundary of a cell is decomposed into a finite set of segments (at least 4 but
maybe more), called the edges of the cell. We will use the letter e with indices to denote
edges. The end points of these edges are called the vertices of the cell. We will use the
letters v or w with indices to denote vertices. In other words, edges are segments between
vertices.

We will consider an equivalence relation on the vertices (resp. edges) of a union of
cells. Before providing a formal definition of our concept, let us illustrate it with a simple
example to show a parametric mesh with a complex topological structure.

Example 2.1 (A parametric mesh and its topological structure). The left mesh of Figure
2 shows a parametric mesh M . Its equivalent vertices have been marked with the same
vertex labels and the edges between equivalent vertices are equivalent.

The topological structure of M is the same as the topology of a “usual” mesh, shown
on the right side of Figure 2. From this example, a parametric mesh allows extraordinary
vertices, whose valences are not 4.
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Figure 2: A parametric mesh M with 5 cells (left) and a “usual” mesh with the same topology of M
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Now, the formal definition of a parametric mesh is presented.

Definition 2.1 (A Parametric Mesh). A parametric mesh M is given by a collection of
cells denoted by C1,C2,··· ,CN , a subset PF of I= {{i, j} : i, j∈ {1,2,··· ,N} and i 6= j}, a
collection of transition maps indexed by PF, and an equivalence relation “∼ ” on the
edges and vertices of the cells, satisfying the following properties.

1. For each pair (i, j)∈PF, there exists a pair of transition maps:

• φi,j : Ci→R2,

• φj,i : Cj→R2

and a pair of edges ei,j of Ci and ej,i of Cj such that

• φi,j(Ci)∩Cj = ej,i,

• φj,i(Cj)∩Ci = ei,j,

• φi,j|ei,j :ei,j−→ej,i, φj,i|ej,i :ej,i−→ei,j are diffeomorphisms and (φi,j|ei,j)
−1=φj,i|ej,i .

Then, ei,j ∼ ej,i.

Moreover, for any two vertices v of ei,j and w of ej,i, if φi,j(v)=w then v ∼ w.

2. For any edge e of Ci (i=1,2,··· ,n), the number of edges that are equivalent to e by
“∼” is no more than 2.

Remark 2.2 (A Parametric Mesh). The main difference with manifold spline construc-
tions [12, 13] is that we do not require an atlas of an explicit manifold but only transition
maps between the adjacent cells of a parametric mesh. The existence of a manifold is not
required.

Definition 2.2 (Interior vs Boundary, degree). The equivalence class of edges and vertices
of Ci are called M ’s edges and vertices. If an edge equivalence class has two elements,
then it is called an interior edge of M ; otherwise it is called a boundary edge. If a vertex is
on a boundary edge, then it is called a boundary vertex; otherwise, it is called an interior
vertex. The degree deg(v) of an equivalence class of vertices v is the number of distinct
equivalence classes of edges e containing v.

Example 2.2 (Interior vs Boundary, degree). In Example 2.1, note that, e.g., v6v7 is a
boundary edge, while v1v2 and v1v6 are interior edges (because they are shared by two
cells). We have deg(v1)=5, deg(v2)=3 and deg(v3)=2.

Definition 2.3 (Equivalent parametric meshes). Now consider two adjacent cells C1 and
C2 of M , (i.e., that share a common edge).
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Figure 3: Transition maps

They can be moved together by the transition map, which is a rigid transformation.
This is illustrated in Figure 3. By this way, M becomes another parameter mesh M ′ with
identity transition maps between two adjacent cells, where M ′ is called an equivalent
parametric mesh of M .

Example 2.3 (Equivalent parametric meshes). A planar T-mesh, as defined in [25], can
be represented by a parametric mesh such as the right side of Figure 4, where all of the
transition maps are identity maps.

In the left side of Figure 4 there is another parametric mesh with all of the transition
maps, which are rigid transformations. The T-mesh in the right side of Figure 4 is an
equivalent parametric mesh of the parametric mesh in the left side of Figure 4.
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Figure 4: A parametric mesh with rigid transformations and its equivalent parametric mesh with identity
transition maps

Remark 2.3 (Restrictions).

• A parametric mesh can also describe a non-orientable surface, such as the Moebius
strip. However, in this article, we will restrict ourselves to the case where M is
orientable. Furthermore, we suppose that any edge (resp. vertex) of a cell is not
equivalent to another edge (resp. vertex) of the same cell.
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• We also assume that an edge is shared by no more than two faces.

2.1.2 Local frames, hanging vertices, basis vertices and composite edges of a paramet-
ric mesh

In this section, we introduce local frames (Definition 2.4), hanging vertices, basis vertices
and composite edges (Definition 2.5) of a parametric mesh. These concepts are used
to describe spline spaces in Section 2.2, dimension formulae and basis construction in
Section 3.

Definition 2.4 (Local frame). Let M be a parametric mesh and denote its cells as C1,C2,··· ,CN .
For each cell Ci, i= 1...N, we define a local frame by two unit vectors Fi := (si,ti) that
parallel each of the two directions of the edges of Ci (and that agrees with the metric of
the (s,t)–plane). This is illustrated in Figure 5.

ti

sib

b b

bb

Ci

Figure 5: A local frame of Ci

Definition 2.5 (Hanging vertices, Basis vertices and Composite edges).

• An interior vertex v of M is called a hanging vertex if there is a cell C such that v is on
an edge of C and it is not a corner point of C.

• A vertex of M that is not a hanging vertex is called a basis vertex.

• A composite edge of M is the longest possible “line segment” that consists of several
interior edges, and each non-end vertex of this “line segment” is a hanging vertex of
M , where if two edges locate on the same line or not, this point is determined by their
positions in M ’s equivalent parametric mesh.

Example 2.4 (Hanging vertices, Basis vertices and Composite edges). In the left side of
Figure 4, the vertices v5,v7,v6 and v8 are hanging vertices. v9 is not a hanging vertex.
Because it is a boundary vertex and it is a corner point of a cell. v5v7 is an interior edge,
and v5v11 is a composite edge that includes two edges v5v7 and v7v11. Because v5v11 lies
on the same line of its equivalent parametric mesh (T-mesh), shown in the right side of
Figure 4, it satisfies the definition of “a composite edge”.

Remark 2.4. If M has no hanging vertices and all of its cells are unit squares, it is called
a spline domain, as defined in [16].
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2.1.3 Local Refinement and Hierarchical parametric meshes

In adaptive solving PDEs procedure, refinement is an important operation. Traditionally,
one distinguishes between two types of refinement: h-refinement and p-refinement. The
first one, also called h-adaptivity, amounts to splitting elements in space while keeping
their polynomial degree fixed, whereas p-adaptivity amounts to increasing the polyno-
mial degrees. Hereafter, a simple scheme of the local h-refinement of M is presented.

Definition 2.6 (Local Refinement Rule). Let M be a parametric mesh. A refined para-
metric mesh M ′ is obtained by splitting some of the cells of M along lines parallel to one
of the edges of these cells. The transition maps of M ′ are defined as follows.

• Given two cells Ci and Cj of M with an adjacent edge ei,j∼ ej,i which is split, for
any cells C′i′⊂Ci, C′j′⊂Cj of M ′ with a common sub-edge of ei,j∼ ej,i, the transition
map between C′i′ and C′j′ is the restriction respectively to C′i′ and C′j′ of the transition
maps φi,j : Ci−→R2 and φj,i : Cj−→R2.

• For a cell C of M split into sub-cells C′1,C′2 of M ′ along an edge e′, the transition
map across e′ is the identity.

This refinement construction can be iterated. Notice that the refinements create addi-
tional hanging vertices.

Definition 2.7 (Hierarchical parametric mesh). A hierarchical parametric mesh M is a
mesh obtained by the iterated refinement of an initial parametric mesh, where we will
also assume that the initial mesh has no hanging vertex.

If the initial mesh is just a cell, M is a hierarchical T-subdivision, as described in [31].

2.2 Spline spaces over a parametric mesh

In this section, based on the definition of a parametric mesh in Section 2.1, we define the
spline space over a parametric mesh in Section 2.2.1. Formally, this definition depends
on the choice of local frames. In Section 2.2.2, the local frame independency is checked.
After that, in Section 2.2.3, the nesting property of spline spaces is presented by the local
refinement of parametric meshes. This property is usually required in adaptive solving
PDEs procedure.

2.2.1 Definition of spline spaces over a parametric mesh

Definition 2.8 (Spline over M ). A spline f of bi-degree (d,d) and Cr regularity over M
with the local frame set F ={Fi} is given by a collection of polynomials fi satisfying
1. fi(si,ti) := f |Ci ∈Rd,d[si,ti], i= 1,.. .,N, where (si,ti) is the coordinates associated with
the given local frame Fi of Ci;
2. If vi,j∼vj,i is a (class) of vertex common to cells Ci and Cj of M , then

fi(vi,j)= f j(vj,i).
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3. If ei,j∼ej,i is a (class) of edge common to cells Ci and Cj of M , then fi(si,ti) and f j(sj,tj)
are “Cr across the edge”.

More precisely, let φi,j,φj,i be the transition maps between Ci and Cj, such that φi,j(ei,j)=
ej,i; denote as ni,j and nj,i unit vectors of the metric (s,t)−plane, perpendicular, respec-
tively, to ei,j and ej,i. Then, we must have

Dk
ni,j

( f j◦φ−1
j,i )|ei,j =Dk

ni,j
fi|ei,j (2.1)

Dk
nj,i

( fi◦φ−1
i,j )|ej,i =Dk

nj,i
f j|ej,i (2.2)

for k=0,1,2,··· ,r.

Remark 2.5 (Spline over M ). By Equations (2.1) (2.2), splines are Cr in the parameters
(si,ti) across the common edge of two adjacent cells associated with φi,j,φj,i. For rigid
transformation maps that are Ck-diffeomorphims, conditions (2.1) and (2.2) are equiv-
alent. In this paper, from Section 3, we focus on the bi-cubic spline spaces with rigid
transformation maps. For spline spaces with more general transformation maps, we re-
fer to [33].

Remark 2.6 (Spline over M vs Cr-splines in [16]). If the transition maps φi,j,φj,i are rigid
transformations and all the cells Ci are unit squares, then the splines defined here are
Cr-splines in [16].

Notation 2.7 (Basic properties of Spline over M ). We denote by S(d,r;M ) the set of
splines defined in Definition 2.8. We call it a spline space over M .

We have:
• By linearity of directional derivatives, S(d,r;M ) is a vector space;
• It is finite dimensional;
• 1∈S(d,r;M ).

2.2.2 Spline space and local frames

Let us discuss the dependency of the spline space M on the choice of local frames Fi for
the cells Ci.

Considering another local frame F ′
i , there exists a set of orthogonal transformations

O={Oi} such that
Fi =OiF

′
i ,i=1...N.

By the action of Oi, any polynomial in the coordinates of Fi becomes a polynomial in the
coordinates of F ′

i of the same degree. Moreover, the other two items in Definition 2.8,
evaluation at a vertex and regularity, are conserved when expressed in the other frame.
This proves the following theorem.
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Theorem 2.8 (F Independency). Let F and F ′ be two local frames of M . Then, for each
cell Ci, i= 1...N, of M , there exists an orthogonal transformation Oi sending F ′

i to Fi, i. e.,
Fi =OiF

′
i . If f ∈S(d,r;〈M ,F 〉), so that

f ◦O∈S(d,r;〈M ,F ′〉),

where O|Fi =Oi, f ◦O|Ci = f (Oi(s′i,t
′
i)), where S(d,r;〈M ,F 〉) is a spline space over M with

the local frames F . Its bi-degree is (d,d) and, it has Cr regularity.

Thus, up to a set of orthogonal transformations, splines over M are independent of
the choice of F .

2.2.3 Local refinement and spline spaces

Let M ′ be a parametric mesh obtained by refining some cells of M . Then, a spline func-
tion in S(d,r;M ) is a spline function defined over the refined mesh M ′, by the local
refinement rule in Definition 2.6.Thus, we have:

Notation 2.9 (The Nesting Property of spline spaces).

1∈S(d,r;M )⊆S(d,r;M ′).

3 Bicubic spline spaces over a parametric mesh

In this section, bicubic spline spaces over a parametric mesh will be considered. We also
consider transition maps that are rigid transformations of the plane. The main results in
this section are the dimension formula and an explicit basis construction, where Hermite
data play a crucial role.

Let M be a hierarchical mesh. The bicubic spline spaces over M is S(3,1;M ). Here,
we organize this section as follows. In Section 3.1, the Hermite data of a bicubic spline
over a parametric mesh are discussed. Based on the analysis of Section 3.1, in Section 3.2,
the dimension formula of S(3,1;M ) and a set of bases are presented.

3.1 Hermite data

In this section, a linear map H is introduced. By H , a spline in S(3,1;M ) is described
by its Hermite data at each vertex of M . Then, the constraints between its Hermite data
are given, such that the constraints across a common edge (Section 3.1.1) become the
constraints of the Hermite data at a basis vertex and hanging vertex (Section 3.1.2). By
these constraints, H is reduced to a new injective map H̃ .

We first illustrate the Hermite data construction on a single square. Let Q be the
square in the parametric (s,t)-plane with vertices v1 := [0,0], v2 := [0,1], v3 := [1,0], and
v4 := [1,1]. The vector space E of polynomials of bidegree (3,3) on Q has dimension 16
and a basis of E is formed by the two by two products of Bernstein polynomials B3

i (s)
and B3

j (t) for 0≤ i, j≤3.
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We set

Hv`
(s,t)( f )=( f (v`),

∂ f
∂s

(v`),
∂ f
∂t

(v`),
∂2 f
∂s∂t

(v`))

for 1≤ `≤4.
The 4 Hermite data Hv`

(si ,ti)
( f ) at each of the 4 vertices form 16 real numbers naturally

associated with an element f of E.

Lemma 3.1. The linear map E−→R16 defined by the Hermite data at the 4 vertices of Q is an
isomorphism.

Proof. It suffices to check the non vanishing of the determinant of the corresponding ma-
trix on the basis B3

i (s)B3
j (t), 0≤ i, j≤3.

Notice that Hv`( f ) depends only on the four Bernstein coefficients that are near v` as
in the B-net method described in [25]. By this correspondence, the dimension formula
and basis construction of S(3,1;M ) are discussed by generalizing the B-net method in
[25].

Let M ’s cells be C1,. . .,CN . We extend the definition of the Hermite data to the spline
space S(3,1;M ) and via the following map:

H : S(3,1;M ) → R4N (3.1)

f 7→ (Hvi
`

(si ,ti)
( fi))i=1,...,N,`=1,...,4

where vi
`,`=1,.. .,4 are the 4 vertices of cell Ci and Hvi

`

(si ,ti)
( fi) are the Hermite data of f at

vi
`.

Lemma 3.2. The Hermite data map H defined in (3.1) is an injective linear map from S(3,1;M )
to R4N .

Proof. By construction, H is linear. To prove that it is injective, we note that if all Hermite
data of a polynomial fi at the vertices of a cell Ci are zero, then by Lemma 3.1, fi≡0. Thus,
if f ∈S(3,1;M ) is such that H ( f )=0 then f =0.

We now analyze different constraints applicable on the Hermite data at a vertex of
M .

3.1.1 Hermite data across a common edge

In this section, we describe a C1 regularity condition across an edge in terms of Hermite
data.

Lemma 3.3. Let C1,C2 be two cells with the common edge e1,2 = v1v2. Assume that they share
the same local frame (s,t) and the same parameters (s,t). Then f1(s,t) and f2(s,t) are C1 across
e1,2 if and only if their Hermite data at v1 and v2 coincide:

Hv`
(s,t)( f1)=Hv`

(s,t)( f2), l=1,2.
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Proof. Suppose that the edge e1,2 is along the t-direction (the other case can be treated
symmetrically). Because f1(s,t) and f2(s,t) are polynomials of bi-degree (3,3), if their
Hermite data coincide at v1 and v2, then we have f1(s,t)= f2(s,t) and ∂s f1(s,t)=∂s f2(s,t)
along the edge v1v2= e1,2. In other words, the function defined by ( f1, f2) is C1 across the
edge e1,2

Conversely, if ( f1, f2) is C1 across the edge e1,2, then their Hermite data at v1 and v2
must coincide.

Assume now that C1 and C2 have different frames, denoted by F1=(s1,t1)
T and F2=

(s2,t2)T. There must exist an orthogonal transformation O2,1, more precisely a rotation of
angle kπ/2 (k∈Z), such that

F2=O2,1F1, O2,1=

(
O11 O12
O21 O22

)
. (3.2)

The following lemma describes the relations between Hv`
(s1,t1)

( f1) and Hv`
(s2,t2)

( f2).

Lemma 3.4. f1(s1,t1) and f2(s2,t2) have a C1 fit if and only if

Hv`
(s2,t2)

( f2)
T =AHv`

(s1,t1)
( f1)

T, (3.3)

where

A=


1 0 0 0
0 O11 O12 0
0 O21 O22 0
0 0 0 O11O22+O12O21

 (3.4)

where Oi,j (i, j=1,2) are defined in (3.2).

Proof. By Lemma 3.3, after applying the transition map, we have Hv`
(s1,t1)

( f1)
T=Hv`

(s2,t2)
( f2)T.

Thus, we just considered the Hermite data at v` of f2 using different frames F1,F2. Based
on the fact that O2,1 in (3.2) is an orthogonal rotation of angle kπ/2, we explicitly com-
puted matrix A and obtained formula (3.4).

Remark 3.1. Because O2,1 in (3.2) is a rotation of angle kπ/2, we have O11O22+O12O21=
(−1)k; consequently rank(A)=4.

This shows that the Hermite data at v` on C2 is uniquely determined by the Hermite
data at v` on C1, via the linear invertible transformation A. In this case we will say that
the Hermite data at v` on C1 and C2 are compatible.



14

3.1.2 Hermite data at a basis vertex of degree n and a hanging vertex

Let v be a basis vertex of M and n be the degree of v. This means that there are n cells
C1,. . .,Cn with v as one of their corner vertices. These cells form v’s 1-neighborhood. Let
us consider the behavior of f ∈S(3,1;M ) at v.

We can assume that we have already sorted the 1-neighborhood of v such that two
successive cells share a common edge of M in a clockwise direction.

Given a local frame F1=(s1,t1)
T of C1, the local frame Fk of Ck is defined as

Fk =Ok,1F1, (3.5)

where

Ok,1=

(
cos(π(k−1)/2) −sin(π(k−1)/2)
sin(π(k−1)/2) cos(π(k−1)/2)

)
According to C1 continuity, the Hermite data at v of Ck is obtained by Eq. (3.2) and

Eq. (3.3), i.e.,

Hv
(sk ,tk)

( fk)
T =Ak Hv

(s1,t1)
( f1)

T, (3.6)

where fi= f |Ci ,Ak is determined by Ok,1, similarly to Eq. (3.3). Because v is a basis vertex,
it can be a boundary vertex as well as an interior (not hanging) vertex. If v is a boundary
vertex of M , the Hermite data of Hv

(sk ,tk)
( f ) (k>1) are well determined when Hv

(s1,t1)
( f )

is given because rank(Ak)=4.

Proposition 3.1. With the previous notations, if v is an interior basis vertex and n is its
degree, we have

1. If n mod4=1, then,
∂ f (v)

∂s1
=0,

∂ f (v)
∂t1

=0,
∂2 f (v)
∂s1∂t1

=0;

2. If n mod4=2, then
∂ f (v)

∂s1
=0,

∂ f (v)
∂t1

=0;

3. If n mod4=3, then
∂ f (v)

∂s1
=0,

∂ f (v)
∂t1

=0,
∂2 f (v)
∂s1∂t1

=0.

Proof. If v is an interior vertex of M and its degree is n. Consider C1 and Cn stick together
clockwise, by (3.6),

Hv
(sn,tn)

( fn)
T =AnHv

(s1,t1)
( f1)

T, (3.7)



15

Figure 6: C1 and Cn stick anticlockwise

where Hv
(si ,ti)

( f j) is the Hermite data at v on Cj with respect to the local frame (si,ti),
f j = f |Cj , An is defined in (3.6).

Considering C1 and Cn stick together anticlockwise, the common edge is along t1 of
C1 and sn of Cn (shown in Figure 6). Then(

s1
t1

)
=

(
0 −1
1 0

)(
sn
tn

)
Thus, Hv

(s1,t1)
( fn)T =BHv

(sn,tn)
( fn)T and by (3.7),

Hv
(s1,t1)

( fn)
T =BAnHv

(s1,t1)
( f1)

T,

where B=


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 −1

.

f1 and fn are C1 across the common edge with v as their common vertex. By Lemma
3.3, Hv

(s1,t1)
( fn)=Hv

(s1,t1)
( f1), i.e.,

BAnHv
(s1,t1)

( f1)
T =Hv

(s1,t1)
( f1)

T.

Thus (I−BAn)Hv
(s1,t1)

( f1)
T =0.

When n mod4=1, I−BAn =


0 0 0 0
0 1 1 0
0 −1 1 0
0 0 0 2

;

when n mod4=2, I−BAn =


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

;

when n mod4=3, I−BAn =


0 0 0 0
0 1 −1 0
0 1 1 0
0 0 0 2

.
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The result of this proposition is obtained.

We recall that, by Definition 2.5, a hanging vertex v is a non end vertex of a composite
edge, which belongs to the interior of a segment joining two corner points of a cell. For
hanging vertices, similar to Theorem 4.2 in [25], we get

Lemma 3.5. Let v0,v1,. . .,v` be all vertices on a composite edge of M and f ∈S(3,1;M ). Then
the Hermite data Hvi( f ) depends linearly on Hv0( f ) and Hv`( f ), where vi is a hanging vertex ,
for i=1,2,.. .,`−1.

Moreover, a hierarchical parametric mesh is T-cycle free. For a T-cycle free mesh, the
Hermite data at a hanging vertex can be decided by the Hermite data at basis vertices,
as [26].

Let M be a hierarchical mesh. The results of Sections 3.1.1, and 3.1.2 imply the fol-
lowing proposition.

Proposition 3.2. The map H defined in (3.1) can be reduced to

H̃ :S(3,1;M )→R4N1+2N2+N3 ,

f 7→⊕v∈V H̃v( f )

where V is the set of basis vertices of M and

• H̃v( f )=Hv( f ), if v is a boundary vertex or deg(v) mod4=0,

• H̃v( f )= [ f (v),
∂2 f (v)

∂s∂t
], if deg(v) mod4=2,

• H̃v( f )= [ f (v)], if deg(v) mod2=1.

Here, N1 is the number of boundary vertices and interior basis vertices with deg(v)
mod4 = 0, N2 is the number of interior basis vertices with deg(v) mod4 = 2, and N3

is the number of interior basis vertices with deg(v) mod2=1. H̃ is injective.

Indeed, based on Lemma 3.5, if all Hermite data at the basis vertices vanish, then
Hv( f )= 0 for any vertex v of M . Thus, for any cell of M , the Hermite data of f at any
vertex of this cell is zero, i.e., f ≡0. In other words, H̃ is injective.

In the next section, we will construct splines associated with a basis vertex of a hier-
archical parametric mesh M and prove that H̃ is surjective.
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3.2 Dimension formulas and Hermite bases

In this section, M is a hierarchical parametric mesh obtained by a sequence of refine-
ments:

M 0−→···M k−→···−→M l =M .

We will continue to analyze H̃ introduced in Proposition 3.2. By proving that H̃ is a
surjection, the dimension formulae of S(3,1;M ) are given, and the spline set constructed
in Theorem 3.2 is a basis set called Hermite bases.

As we have seen (Proposition 3.2), a spline function f over M is uniquely determined
by its Hermite data H̃ ( f ). The following lemma shows that the image of the linear map
H̃ is the vector space of Hermite data that are compatible across each edge of M .

Lemma 3.6. If the Hermite data at the vertices of the cells C1,. . .,CN are compatible, there exists
a unique element f ∈S(3,1;M ) with this Hermite data.

Proof. Let us consider two vertices v1,v2 of a common edge between two cells Ci1 ,Ci2
of M . We can assume that the transition map is the identity map. Let f1 (resp. f2)
be the unique function constructed from the Hermite data at the vertices on C1 (resp.
C2). By Lemma 3.3, f1 and f2 are C1 across the common edge (v1,v2). This shows that
the piecewise polynomial function f constructed on each cell C1,. . .,CN of M from the
Hermite data at their vertices is in S(3,1;M ). As H̃ is injective, the function f is uniquely
determined by its Hermite data.

In the following, we are going to construct linearly independent spline functions in
S(3,1;M ). This set of spline functions is a basis of S(3,1;M ).

To construct this basis, we proceed as follows. We will associate J = 1,2 or 4 splines
f j
v with each basis vertex v of M ; the choice of J follows a rule described in the theorem

below. We do not associate splines with hanging vertices.

Theorem 3.2. Let v be any basis vertex of a hierarchical parametric mesh M . We can associate
with v a family of J splines f j

v, j=1... J, (J is indicated below), such that the Hermite data of each
f j
v, j=1... J at all other basis vertices w 6=v of M are 0. While J and the Hermite data of each f j

v,
j=1... J at v are as follows.

1. If v is a boundary vertex or an interior vertex with deg(v) mod4=0, then J=4 and the
Hermite data can be set equal to any one of the following choices:

[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1].

2. If v is an interior vertex and deg(v) mod2=1,3, then J=1, and the Hermite data can be
set equal to [1,0,0,0].
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3. If v is an interior vertex and deg(v) mod4= 2, then J = 2 and the Hermite data can be
set equal to any one of the following choices:

[1,0,0,0],[0,0,0,1].

Proof. Let us first compute the Hermite data for all of the vertices of the cells of M .
1. Set the Hermite data for all basis vertices w 6= v to zero. They naturally satisfy the
constraints described in Section 3.1. Thus they are compatible.
2. Set the Hermite data at v to any of the vectors mentioned in this theorem. By the
constraint analysis of Section 3.1, they satisfy the compatibility condition.
3. For the Hermite data at a hanging vertex, they can be decided by the Hermite data at
basis vertices of M as analysing after Lemma 3.5.

By Lemma 3.6, there exists a unique element of S(3,1;M ) corresponding to these
Hermite data. It satisfies the requirement of this theorem.

A direct consequence of this result is the following:

Corollary 3.3. H̃ is surjective.

We deduce the dimension formula for S(3,1;M ).

Theorem 3.4 (Dimension formula). Let M be a hierarchical parametric mesh.

dimS(3,1;M )=4N1+2N2+N3,

where N1 is the number of boundary vertices and interior basis vertices with deg(v) mod4=0,
N2 is the number of interior basis vertices with deg(v) mod4 = 2, and N3 is the number of
interior basis vertices with deg(v) mod4=1,3.

Remark 3.5. For S(d,r,M ), we can analyze its dimension formula with the same method
presented for S(3,1,M ), where d=2r+1.

Using the functions defined by Theorem 3.2, we get a set of bases of S(3,1;M ) called
the Hermite bases of S(3,1;M ). In particular, we have the following property:

Corollary 3.6 (Local Support). Assume that M has no hanging vertices. Let f 1
vi

, f 2
vi

,. . ., f ni
vi

be all of the splines associated with the vertex vi. Then, the support of each f j
vi is within

the 1-neighborhood of vi.

Proof. If the mesh has no hanging vertices, the Hermite data of the basis functions in
Theorem 3.2 associated with a vertex v vanish at all other vertices w 6= v. Thus, their
supports are in the union of cells of M containing v.
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Remark 3.7. The spline functions that we consider are C1-functions, after a local rigid
transformation of the coordinate systems of a cell, i.e., these spline functions are C1-
continuity across adjective elements from perspective of isoparametric elements method.
In isoparametric elements method, the classical cubic Hermite element [3] are C1-elements.
Hermite bases in this paper are a generalisation of the classical cubic Hermite elements
from two aspects.
1. Local refinement (Section 2.2.3). This property allows us to use adaptive mesh refine-
ment strategies.
2. Complex topology: Hermite bases defined on a mesh with complex topology. This en-
ables us to align complex iso-curves. However, to maintain C1-continuity at the interior
extraordinary vertices, by Proposition 3.1, the degrees of freedom of the classical cubic
Hermite elements are lost, i.e., Hermite bases at the interior extraordinary vertices are in-
complete. This problem is solved by setting a proper parameterization (see R2 of Section
4.1) and Theorem 4.2.

4 Parameterizations and the interpolation approximation error

In this section, we analyze the spline spaces from an approximation perspective. A sketch
of the parameterization algorithm is given in Section 4.1 for analyzing the requirements
of constructing parameterization. The parameterization of a physical domain is repre-
sented in a linear combination of the Hermite bases constructed in Section 3.2. Using this
construction, we analyze in Section 4.2 the approximation error order of the spline spaces
using the Hermite basis representation.

4.1 Parameterization

There are three steps for generating a parameterization P that aligns the principal direc-
tions of the transport process, i.e., iso-curves of the magnetic flux surfaces defined on a
given physical domain.

• Based on the iso-curves, design a parametric mesh M such that these iso-curves
can be treated as the image of some mesh grid lines of M under a parameterization
P ;

• Choose positions Q= {Qi} on the physical domain and their parameters P= {Pi}
with frame F , where we expect P(Pi)=Qi;

• Minimize the energy E:

E= ∑
Pi∈P

ωi||P(Pi)−Qi||2, (4.1)

where {ωi} are weights.
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Then, a parameterization P : M −→Ω is obtained, where Ω is a physical domain. The
choice of weights follows a rule implying that the iso-curves in the physical domain can
be aligned by mesh grid lines.

x

y

The isobaric curves
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Figure 7: Parametric mesh of Example 4.1, where degv0 =8

In the following example, the topology of the parametric mesh is the same as that of
the mesh of the target application.

Example 4.1.

The physical domain Ω shown in the left of Figure 8 is bounded by y2−x(x−1)2 =
2,(x−2)2+y2 = 0.25,x = 2,(x−0.5)2+y2 = (

√
2/10)2. The iso-curves are given by F0 :

y2−x(x−1)2 = 0, F2 : y2−x(x−1)2 = 2, X2 : x= 2, C0 : (x−0.5)2+y2 =(
√

2/10)2 and C1 :
(x−2)2+y2 =0.25. Then we construct a parametric mesh M shown in the left of Figure
7. Some grid lines of M are expected to align the iso-curves shown on the right of Figure
7.

Take Q= {Qi} in Ω and P= {Pi} on M , where Q is shown in the middle of Figure
8. Then, minimize the energy (4.1) with weights of 1.5 for the points on the iso-curves
and weights of 1.0 for the other points. The obtained parameterization P is shown on
the right of Figure 8. Based on Example 4.1, Hermite bases can be used to represent
the physical domain with complex iso-curves. However, even if there are 4 degrees of
freedom at v0 in Figure 7, there is only one degree of freedom used by the result of this
algorithm.

Notation 4.1. In the following, parameterizations should satisfy:
1. At the extraordinary vertices, only one Hermite basis corresponding to [1,0,0,0] is used
to construct parameterizations. There are two reasons:

R1: Avoid a geometric foldover of a physical domain.
R2: Obtain the optimal approximation order: As mentioned in the second point of Re-

mark 3.7, Hermite bases at the interior extraordinary vertices are incomplete. With only
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Figure 8: Physical domain (left), Q={Qi} (middle) and parameterization of the physical domain(right)

one Hermite basis corresponding to [1,0,0,0] , we can reduce the impact of incomplete-
ness on physical domains (see Case 2 in the proof of Theorem 4.2, J ∼h2) and obtain the
optimal interpolation approximation order.
2. For solving PDEs, integrability assumptions should be considered, if there is an ex-
traordinary vertex. In the examples of Section 5, parameterizations of physical domains
are designed such that they satisfy the H1 integrability assumptions in [27] for sloving
the Grad-Shafanov equation which is a second order PDE.

4.2 The interpolation approximation error by bicubic Hermite bases

In this section, we analyze the convergence behavior of Hermite bases and the approxi-
mation error by bicubic Hermite bases. We show that the optimal approximation rate is
reached.

Let M0 be an initial parametric mesh. When we subdivide its cells into 4 sub-cells, i.e.,
subdivide one time in each direction, the extraordinary vertices will be surrounded by the
vertices whose valences are 4, and the number of extraordinary vertices will not change.
For example, the topology of the initial parametric mesh is shown on the left side of
Figure 9. The topology of the parametric mesh after one subdivision step is shown on the
right handside of Figure 9. The number of extraordinary vertices and the number of cells
with an extraordinary vertex as a corner vertex do not change in the subdivision process.
Let v be an extraordinary vertex of the initial parametric mesh M0. After subdividing k
times uniformly, we obtain the parametric mesh Mk. There are two classes of cells of Mk.
The first is a cell with 4 regular vertices, i.e., all of the vertices are boundary vertices, or
their valences are 4, the second is a cell with one extraordinary vertex as its vertex.

Theorem 4.2. Let M0 be a parametric mesh with cells of size 1 and with at most one extraordinary
vertex per cell. Let Mk be the parametric mesh obtained by subdividing M0 k times uniformly
with cells of size h= 2−k. Let P : M0−→Ω be a bijective parameterization represented in the
Hermite basis over M0. Suppose that F(x,y)∈C4(Ω). There exists K∈R+, such that ∀k∈N,
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Figure 9: Subdivide the initial parametric mesh M0

there exists u∈S(3,1;Mk) such that

||F(x,y)−u◦P−1||L2≤Kh4.

Proof. First, we construct u∈S(3,1;Mk). For each vertex vi of Mk, F◦P’s Hermite data
can be used to recover a spline defined over Mk. To be more specific, let C=[s1,s1+h]×
[t1,t1+h] be a cell with vi as its vertex, where h=2−k.

• If vi’s valence is 4 or vi is a boundary vertex, i.e. vi is regular, the coefficients of the
4 Hermite bases can be obtained by

Hvi(F◦P)= [F◦P |C(vi),
∂F◦P |C

∂s
(vi),

∂F◦P |C
∂t

(vi),
∂2F◦P |C

∂s∂t
(vi)],

where (s,t) are the coordinates associated with C;

• Otherwise, there is only one Hermite basis function attached to v with Hermite data
[1,0,0,0]. Its coefficient is

Hvi(F◦P)= [F◦P(vi)].

Thus, we define a spline function u over Mk as the linear combination of the Hermite
basis with coefficients corresponding to these values:

u=∑
v

Hv(F◦P)·φv,
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where φv is the vector of Hermite basis functions attached to the vertex v and Hv(F◦P)
is the Hermite data of the function F◦P at the vertex v.
Let U=u◦P−1. We estimate the L2 error

||U(x,y)−F(x,y)||2L2 =
∫

Ω
(U(x,y)−F(x,y))2dxdy

=∑
C1

i

∫
P(C1

i )
(U(x,y)−F(x,y))2dxdy+∑

C2
i

∫
P(C2

i )
(U(x,y)−F(x,y))2dxdy

(4.2)

where C1
i is a cell with 4 regular vertices and C2

i is a cell with one extraordinary ver-
tex as its vertex. We will estimate

∫
P(C1

i )
(U(x,y)−F(x,y))2dxdy and

∫
P(C2

i )
(U(x,y)−

F(x,y))2dxdy, respectively.
Case 1: There are 4 Hermite bases at each regular vertex of the cell C1

i =[s1,s1+h]×[t1,t1+
h] of Mk. Then u|C1

i
’s Hermite data at each vertex of C1

i is the same as the Hermite data
of F◦P |C1

i
at these vertices. Because F(x,y)∈ C4(Ω) and each component of P |C1

i
is a

bicubic polynomial. F◦P |C1
i
∈C4(C1

i ). By Theorem 4 in [29], ∀(s,t)∈C1
i

|F◦P |C1
i
(s,t)−u|C1

i
(s,t)|∞≤K1h4, (4.3)

where K1∈R+ is a constant depending only on F◦P . Thus,∫
P(C1

i )
(F(x,y)−U(x,y))2dxdy≤

∫
C1

i

(F◦P |C1
i
(s,t)−u|C1

i
(s,t))2 |JC1

i
(s,t)|dsdt

where

JC1
i
(s,t)=

∣∣∣∣∣∣∣
∂x(s,t)

∂s
∂x(s,t)

∂t
∂y(s,t)

∂s
∂y(s,t)

∂t

∣∣∣∣∣∣∣
with P |C1

i
(s,t)= [x(s,t),y(s,t)]. There is a constant K2∈R+ depending only on P , such

that ∀(s,t)∈C1
i

|JC1
i
(s,t)|≤K2.

Thus ∫
P(C1

i )
(F(x,y)−U(x,y))2dxdy≤K1K2(h4)2

∫
C1

i

dsdt

=K1K2h10,

The number of cells of this type in Mk+1 is less than N0(2k)2=N0/h2, where N0 is the
number of cells of M0. Thus,

∑
C1

i

∫
P(C1

i )
(U(x,y)−F(x,y))2dxdy≤K1K2h10(N0/h2)

=K1K2N0h8,

(4.4)
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Case 2: Let C2
i be a cell with one extraordinary vertex v4 and the other three vertices

v1,v2,v3 of C2
i of valence 4. Suppose C2

i = [s1,s1+h]×[t1,t1+h], v1 = (s1,t1),v2 = (s1+
h,t1),v3=(s1,t1+h),v4=(s1+h,t1+h). Then the spline u defined over Mk satisfies

• u(v4)=F◦P(v4);

• Hvi
(s,t)(u)=Hvi

(s,t)(F◦P), i. e. ,

u(vi)=F◦P(vi);
∂u(vi)

∂s
=

∂F◦P(vi)

∂s
;
∂u(vi)

∂t
=

∂F◦P(vi)

∂t
;

∂2u(vi)

∂s∂t
=

∂2F◦P(vi)

∂s∂t
,

where i=1,2,3.

Let ρ(s,t)=F◦P |C2
i
(s,t)−u|C2

i
(s,t)=F◦P |C2

i
(s,t)−∑4

i=1 Hvi(F◦P)·φvi |C2
i
(s,t). There is a

constant K3∈R depending only on F◦P such that ∀(s,t)∈C2
i ,

| ∂2ρ

∂u∂v
(s,t)|≤ |∂

2F◦P
∂u∂v

(s,t)|≤
4

∑
i=1
|Hvi(F◦P)· ∂

2φvi

∂u∂v
(s,t)|≤K3

for ∂u,∂v∈{∂s,∂t}.
By construction,

ρ(vi)=0,
∂ρ

∂s
(vi)=0,

∂ρ

∂t
(vi)=0.

for i= 1,.. .,3. Thus, by Taylor expansion at v1, we have for all p=(s,t)∈C2
i there exist

q∈C2
i such that

ρ(p)=
1
2

∂2ρ

∂l2 (q)|v1 p|2= 1
2
(l2

1
∂2ρ

∂s2 (q)+2l1,l2
∂2ρ

∂s∂t
(q)+l2

2
∂2ρ

∂t2 (q))|v1 p|2

where l= ~v1 p/| ~v1 p|. We deduce that

|∂
2ρ

∂l2 (p)|≤K3 |v1 p|2≤2K3 h2.

Let P |C2
i
(s,t)= [x(s,t),y(s,t)]. The parameterization P is singular at v4, i.e.,

∂x(v4)

∂s
=0,

∂x(v4)

∂t
=0;

∂y(v4)

∂s
=0,

∂y(v4)

∂t
=0.

By Taylor expansion of its Jacobian

JC2
i
(s,t)=

∣∣∣∣∣∣∣
∂x(s,t)

∂s
∂x(s,t)

∂t
∂y(s,t)

∂s
∂y(s,t)

∂t

∣∣∣∣∣∣∣
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at the extraordinary vertex v4, we have ∀(s,t)∈C2
i

|JC2
i
(s,t)|≤K4 h2

for some K4∈R depending only on P . We deduce that∫
P(C2

i )
(U(x,y)−F(x,y))2dxdy=

∫
C2

i

(F◦P |C2
i
(s,t)−u|C2

i
(s,t))2|JC2

i
(s,t)|dsdt

≤2K3 K4 h6
∫

C2
i

dsdt=2K3 K4 h8.

The number of cells of the second type of cells does not change in the subdivision process,
i.e., it is a positive constant, denoted Nir, for each Mk. Thus, there is a positive constant
K5 such that

∑
C2

i

∫
P(C2

i )
(U(x,y)−F(x,y))2dxdy≤2Nir K3 K4 h8=K5 h8. (4.5)

Based on (4.4) and (4.5), there is a positive constant K6 depending only on M0, P and F,
such that ∫

Ω
(F(x,y)−U(x,y))2dxdy

=∑
C1

i

∫
P(C1

i )
(F(x,y)−U(x,y))2dxdy+∑

C2
i

∫
P(C2

i )
(F(x,y)−U(x,y))2dxdy

≤K6 h8.

(4.6)

By (4.6), for F(x,y)∈C4(Ω), there is a spline u defined over Mk such that

||F(x,y)−u◦P−1||L2 =

√∫
Ω
(F(x,y)−u◦P−1)2dxdy≤Kh4,

where K=
√

K6∈R depends only on M0, F and P . In other words, for a smooth function
F(x,y) defined over the physical domain, there is a spline u defined over Mk that can
be used to approximate F(x,y) by an injective parameterization P with fourth order of
approximation for the L2 norm.

Remark 4.1. In the context of Isogeometric analysis with Galerkin formulation using
this type of splines, a projection of the solution of the PDE on the space of functions of
the form u◦P−1 with u ∈ S(3,1;Mk) is computed. The order of approximation of the
projected solutions, which minimizes the L2 distance to this space, should be at least 4.
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5 Numerical convergence rates for bicubic Hermite bases

In classical FEM error analysis (see, e.g., Theorem 6.2.1 and Proposition 6.2.2 in [28]), if
the exact solution is in H4(Ω), it is expected that the approximation order with bicubic
splines test functions is 4 for the L2-norm and 3 for the H1-norm. In this section, the
Hermite bases constructed in Section 3.2 are used to represent the parameterizations of
physical domains, and they are treated as trail and test functions when solving the PDE.
The numerical examples for solving the Grad-shafanov equation show that the numerical
convergence rates measured by L2-norm and H1-norm are as expected. The reasons for
choosing these examples are the following.

1. The physical domain can be exactly described by the parameterization with Hermite
bases. The error between the exact solution and the solution given by the isoparametric
finite element method or isogeometric analysis comes from two parts. One is the approx-
imation error of the trail functions. The other is the approximation error of the physical
domain by the shape functions. Thus, to test the error orders that come from the approx-
imation of our spline spaces of solving PDEs, we choose physical domains that can be
exactly described by Hermite bases.
2. The Grad-Shafanov equation [30] is chosen as PDE for describing the resitive MHD
problem. Let Ω be a physical domain. The generic form of the fixed-boundary Grad-
Shafranov equation can be written as

4∗u= f0(u,r,z) in Ω
u=0 on ∂Ω

(5.1)

where

4∗u=r
∂

∂r

(
1
r

∂u
∂r

)
+

∂2u
∂z2

=r∇(X∇u),

and

X=

(
1/r 0

0 1/r

)
Thus, in the following examples, we consider

−∇(R(r)∇u)=−g(r) f (u,r,z) in Ω,
u=0 on ∂Ω,

(5.2)

where g(r)∈L2(Ω) is a function of r and

R(r)=
(

g(r) 0
0 g(r)

)
.
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Case 1. If f (u,r,z)= f (r,z)∈L2(Ω), i.e., f (u,r,z) has no relationship with u, then the weak
form of this model PDE (5.2) can be stated as follows. Given f , find u∈V, such that for
all v∈V,

a(u,v)= l(v), (5.3)

where V={v : v∈H1(Ω),v|∂Ω =0}, H1(Ω) is the Sobolev space that consists of the func-
tions in L2(Ω) that possess weak and square-integrable derivatives. a(u,v) is the sym-
metric bilinear form defined as

a(u,v)=
∫

Ω
∇vTR(r)∇udΩ,

l(v) is a linear continuous functional defined as

l(v)=−
∫

Ω
g(r) f (r,z)vdΩ.

We discretize the weak form, Eq. (5.3), with our splines. This yields the linear system

Ad=F, (5.4)

where A is the stiffness matrix, F is the force vector and d is the displacement vector.
Case 2. For a general f (u,r,z) such that (5.2) is a nonlinear Grad-Shafranov equation,
the fixed-point iteration method [32] is used to compute the solution. Take u0(r,z) as an
initial solution. Suppose that the i−th iteration solution ui(r,z) has been obtained. Solve
the (i+1)−th iteration solution ui+1(r,z) with

−∇(R(r)∇ui+1(r,z))=−g(r) f (ui(r,z),r,z) in Ω,
ui+1=0 on ∂Ω,

by the method presented in Case 1. Then the solution of model PDE (5.2) is given by

u(r,z)= lim
i→∞

ui(r,z)

3. Extraordinary vertices of the initial parametric meshes of these examples are isolated,
while the parametric mesh is subdivided. The parameterizations constructed in Section
4.1 satisfy the H1 integrability assumption [27], i.e., test functions, by composing with the
inverse of a parameterization with Hermite bases, are H1 on the physical domain.

In the following, we present two examples of parameterization with extraordinary
points and show the results of numerical experimentation for the solution of Grad-Shafranov
equations. All of the physical domains of these examples can be exactly described by
Hermite bases. Thus, the errors come from approximation by Hermite bases. In Exam-
ple 5.1, we take g(r)≡ 1 and f (u,r,z) = f (r,z) in the model PDE (5.2). In Example 5.2,
g(r)= 1/(r+2)2 and f (u,r,z)= f (r,z)+u2, where f (r,z) will be defined in Example 5.2.
The exact solutions in Examples 5.1 and 5.2 are C4(Ω).
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Figure 10: The physical domain and the parameterization of Example 5.1

Example 5.1.

The physical domain is shown on the left side of Figure 10, and its boundary is com-
posed of the solutions of nine implicit bicubic polynomials, i. e., there are F1(r,z),F2(r,z),··· ,F9(r,z),
which are bicubic polynomials, such that the boundary of this physical domain is a part
of the solution of one of these equations: F1(r,z)= 0,F2(r,z)= 0,.. .,F9(r,z)= 0 The initial
parametric mesh has the same topology as the “usual” mesh shown in Figure 11.

Figure 11: The “usual” mesh that has the same topology as the initial parametric mesh of Example 5.1

We take g(r)≡1, and f (r,z)=−∆u∗ where u∗=(r+2)(r+1)Π9
i Fi(r,z)/10000. Then u∗ is

the exact solution of the PDE (5.2)

−∆u= f in Ω;
u=0 on ∂Ω.

The initial parameterization of the physical domain is shown on the right side of Figure
10 with the exact boundary representation of the physical domain;
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We globally refine the spline space by recursively splitting each of the original cells
of the mesh into four subcells. Figure 12 shows the numerical solution when k= 8 and
Figure 13 shows the errors measured with L2-norm and H1-norm.

Figure 12: The numerical solution when k=8
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Figure 13: Errors with the L2-norm and H1-norm

Example 5.2.
The physical domain is the square Ω=[−1,1]×[−1,1]⊂R2;
We take g(r)=1/(r+2)2 f (u,r,z)=G(r,z)+u2 so that the exact solution of the model PDE
(5.2) is u=(1−r2)(1−z2), where G(r,z)=−(1−r2)2(1−z2)2+2(1−z2)−8(1−z2)/(r+2)−
2(1−r2). Under these conditions, the PDE is

−(r+2)2∇(R(r)∇u)=−G(r,z)−u2 in Ω,
u=0 on ∂Ω,
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where

R(r)=
(

1/(r+2)2 0
0 1/(r+2)2

)
.

The initial parametric mesh has the same topology as the “usual” mesh shown in Figure
14;

Figure 14: The “usual” mesh that has the same topology as the initial parametric mesh of Example 5.2

The parameterization of Ω (with an exact boundary representation) is described in
Figure 15.

Figure 15: The parameterization of Ω and the isogeometric solution

We globally refine the spline space by recursively splitting each of the 8 cells of the
mesh into four subcells. In Figure 16, there are errors measured by L2-norm and H1-norm.

For Examples 5.1 and 5.2, the error order with L2-norm is approximately 4 and that
with H1-norm is approximately 3. This means that the optimal error orders are reached
in these examples.
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Figure 16: Errors with the L2-norm and H1-norm

6 Conclusion and future work

This paper presents the definition of spline spaces over rectangular meshes with complex
topological structures. A rule for local refinement of parametric meshes is presented, and
the changes in spline space over these refined parametric meshes are studied by tak-
ing transition maps as rigid transformations. Especially, the property of bi-cubic spline
spaces with C1 parameter continuity is studied in detail for using it to solve PDE prob-
lems over a physical domain with a general topology. We compute their dimension and
construct an explicit set of basis functions called Hermite bases. Besides the definition
of splines, we obtain the following other interesting properties for solving PDEs. For
instance, Theorem 4.2 presents the L2 approximation error by Hermite bases. The error
order is optimal. Moreover, the numerical convergence rates for solving the linear and
nonlinear Grad-Shafranov equation are analyzed. In the numerical experiments, optimal
convergence rates with L2-norm and H1-norm are reached.

For a better solution of the MHD simulation over a general physical domain, further
investigations are considered in the following directions:

– We need to generate a parameterization by Hermite bases that satisfes integrability
assumptions, improving the quality of stiffness matrix;

– A parameterization algorithm should be developed for a better approximation of
the boundaries of physical domains during the subdivision process.
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