
HAL Id: hal-01277169
https://hal.inria.fr/hal-01277169

Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing theta functions in quasi-linear time in genus
2 and above

Hugo Labrande, Emmanuel Thomé

To cite this version:
Hugo Labrande, Emmanuel Thomé. Computing theta functions in quasi-linear time in genus
2 and above. LMS Journal of Computation and Mathematics, London Mathematical Soci-
ety, 2016, Special issue: Algorithmic Number Theory Symposium XII, 19 (A), pp.163-177.
�10.1112/S1461157016000309�. �hal-01277169�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49417088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01277169
https://hal.archives-ouvertes.fr


Computing theta functions in quasi-linear time in genus 2
and above

Hugo Labrande and Emmanuel Thomé

Abstract
We outline an algorithm to compute θ(z, τ) in genus 2 in quasi-optimal time, borrowing
ideas from the algorithm for theta constants and the one for θ(z, τ) in genus 1. Our
implementation shows a large speedup for precisions as low as a few thousand decimal
digits. We also lay out a strategy to generalize this algorithm to genus g.

1. Introduction

The θ function is important to several fields of mathematics, such as the resolution
of some non-linear differential equations or the study of complex Riemann surfaces of
any genus, including the important case of complex elliptic and hyperelliptic curves. The
function’s numerous properties underline its connection to deep topics. We refer to [18,
3, 10, 20] and references therein for the uses of θ in various settings. Specific values
of θ, called theta constants, are also of interest, for instance in the study of modular
forms [18, 14]. The problem we consider in this paper is the multiprecision computation
of θ, that is to say finding a fast algorithm computing any number P of exact bits of θ.
This problem has applications in the case of theta constants [6, 9]; in the more general
case of theta-functions, it allows to compute the Abel-Jacobi map with large precision,
thereby making the algebraic–analytic link effective. Such a link offers for example an
alternative way to compute isogenies using embeddings to the complex numbers.
In the case of genus 1, the theta constants exhibit a deep link with the arithmetico-

geometric mean [2]. Using the homogeneity of the AGM gives a function which takes a
simple value at the theta constants; Newton’s method can then be used to compute them
(see, e.g., [5]). This method has also been generalized in [4] to genus 2 theta constants,
using the connection to the Borchardt mean; hints of a generalization to genus g are also
given. Both algorithms have a quasi-linear asymptotic running time, i.e. they compute
the first P bits of the theta constants in O(M(P ) logP ) operations, whereM(P ) is the
cost of multiplying two P -bit numbers. An implementation of the algorithm has been
released in the CMH package [8] and used to compute class polynomials of record size [9].
In [15], we used a similar approach to design an algorithm that computes θ(z, τ)

in genus 1, for any arguments z, τ , also in asymptotic quasi-linear time. This required
designing a function, inspired by the arithmetico-geometric mean, that takes a special
value when evaluated at θ(z, τ) and at the theta constants, and could be evaluated
in quasi-linear time. The quasi-linear complexity beats the one of the naive algorithm,
which is O(M(P )

√
P ); in practice our algorithm beats an optimized version of the naive

algorithm for precision above a hundred thousand decimal digits.



2 HUGO LABRANDE AND EMMANUEL THOMÉ

In this article, we propose to generalize this strategy to theta functions of any genus.
We provide a careful analysis in the case of genus 2, finding a function similar to the
Borchardt mean that can also be computed with precision P in O(M(P ) logP ), then
inverting it using Newton’s method. The algorithm achieves a quasi-linear complexity
in P , neglecting the dependency in z and τ . We implemented this method, and provide
numerical results which show that it is faster than the naive algorithm for precisions as
low as 3000 decimal digits. For higher genera, we outline a way that one could generalize
this algorithm in genus g, with a complexity exponential in g but quasi-linear in P .
Throughout the paper, we will omit dealing with the losses in precision. We performed
the full analysis in genus 1 in [15] and found that, given the argument reduction strategies
that were set up, the loss of precision was not significant asymptotically (of the order
O(logP ) or O(P ) at the most); such a result is likely to hold, for the same reasons, in
genus 2 and in genus g, but a precise analysis would be quite a lot more difficult.
This article is organized as follows. Section 2 lays out the background on genus g theta

functions and algorithms to compute them; we then detail in Section 3 our algorithm for
genus 2, while Section 4 shows how it could be generalized to arbitrary genus.

Notation 1.1. Throughout the paper (mostly in Section 3), we use the following
notation shorthand. For (ai)i a sequence, we denote by ai0,...,in−1 the n-uple (or n-vector)
(ai0 , . . . , ain−1).

2. Background on genus g theta functions

2.1. Definitions

Definition 2.1 ([18, Section II.1]). The Siegel upper-half space Hg is the set of
symmetric g × g complex matrices whose imaginary part is positive definite.

Definition 2.2 (θ function). Let z ∈ Cg and τ ∈ Hg. The θ function, and the
associated theta functions with characteristics are defined as

θ(z, τ) =
∑
n∈Zg

exp(iπ tnτn) exp(2iπ tnz).

For a, b ∈ 1
2Z

g/Zg, θ[a;b](z, τ) =
∑
n∈Zg

exp(iπ t(n+ a)τ(n+ a)) exp(2iπ t(n+ a)(z + b)).

Finally, theta constants are the values in z = 0 of the functions θ[a;b].

As done in [4, 1, 9], we will often write θ[a;b] as θi for the integer i = 2(b0 + 2b1 +
· · ·+ 2g−1bg−1) + 2g+1(a0 + 2a1 + · · ·+ 2g−1ag−1), whose binary expansion is (2a||2b).
We call fundamental theta functions the θ0, . . . , θ2g−1, i.e. the ones with a = 0.



COMPUTING THETA IN QUASI-LINEAR TIME 3

Proposition 2.3 (quasi-periodicity; [18, p. 120-123]). For all m ∈ Zg, we have

θ[a;b](z +m, τ) = exp(2iπ tam)θ[a;b](z, τ) (θ[0;b] is invariant by z → z +m)
θ[a;b](z + τm, τ) = exp(−2iπ tbm) exp(−iπ tmτm) exp(−2iπ tmz)θ[a;b](z, τ)

2.2. Fundamental domain

Definition 2.4. Sp2g(Z), the symplectic group of dimension g, is the set of matrices(
A B
C D

)
∈M2g(Z), such that tAC = tCA, tBD = tDB, and tAD − tCB = Ig.

Proposition 2.5 ([14, Prop. I.1.1]). Sp2g(Z) acts on Hg as follows: for

M =
(
A B
C D

)
∈ Sp2g(Z) and τ ∈ Hg, M · τ = (Aτ +B)(Cτ +D)−1 ∈ Hg. Further-

more, M defines an isomorphism of complex tori between Λτ = Cg/τZg + Zg and ΛM ·τ ,
by z 7→M ·τ z = t(Cτ +D)−1z; we use the shorthand M · z when the context allows.

Proposition 2.6 ([14, Def. I.3.1]). The fundamental domain of the action of Sp2g(Z)
on Hg is the set Fg ⊂ Hg, defined as the matrices satisfying the conditions:
– Im(τ) is Minkowski-reduced, i.e. tg Im(τ)g ≥ Im(τk,k) for all integral g with

(gk, ..., gn) = 1, and Im(τk,k+1) ≥ 0 for all k;
– |Re(τk,l)| ≤ 1

2 for all k, l ∈ {1, ..., n}, k ≤ l;

– |det(Cτ +D)| ≥ 1 for all
(
A B
C D

)
∈ Sp2g(Z).

The last condition can be replaced by a finite set of inequalities; however an explicit
description of those inequalities is not known in general, which means that reducing a
matrix to the fundamental domain is technically not feasible. The case g = 2 has been
solved in [11], which gives 19 necessary and sufficient inequalities.

Theorem 2.7. Let M =
(
A B
C D

)
∈ Sp2g(Z), and (z, τ) ∈ Cg ×Hg. We have:

θi (M · z,M · τ) = ζM
√

det(Cτ +D)eiπ
t(M ·z)(Cz)θσM (i)(z, τ) (2.1)

where σM is a permutation and ζM is an eighth root of unity.

This theorem is proven in [18, Section II.5] in a special case, and in [13, Chap. 5,
Thm. 2]; an outline of the proof can also be found in [1, Prop 3.1.24].

2.3. Algorithms for theta

A naive algorithm to compute the θ function for any genus with arbitrary precision is
simply to compute the series until the remainder is small enough. This naive approach
is studied for instance in [4, 3]. Results giving the number of terms to compute usually
require some assumptions, such as for instance τ ∈ Fg, or that the quasi-periodicity has



4 HUGO LABRANDE AND EMMANUEL THOMÉ

been used to make z small. The complexity of this method is in general O(M(P )P g/2)
for P bits of precision, as we prove in Section 4.
Fast algorithms to compute theta constants in the cases g = 1 and g = 2 are known;

those algorithms require O(M(P ) logP ) operations. We expose succinctly the idea of
the algorithms; more details can be found in [5, 4, 9]. The idea of both algorithms is to
construct a function F such that (using notation 1.1):

F

(
θ1,...,2g−1(0, τ)2

θ0(0, τ)2

)
= F

(
θ1(0, τ)2

θ0(0, τ)2 , . . . ,
θ2g−1(0, τ)2

θ0(0, τ)2

)
= 1
θ0(0, τ)2 .

The function F is the arithmetico-geometric mean in genus 1, and the Borchardt mean
in genus 2. One then uses Equation (2.1) to find other quotients of theta constants such
that evaluating F at those points allows one to compute τi,j . For instance, in genus 2,
the following holds for τ within a large domain:

B
(
θ8,4,12(0, τ)2

θ0(0, τ)2

)
= B

(
θ8(0, τ)2

θ0(0, τ)2 ,
θ4(0, τ)2

θ0(0, τ)2 ,
θ12(0, τ)2

θ0(0, τ)2

)
= 1

(τ2
12 − τ11τ22)θ0(0, τ)2 .

This also means one must be able to compute all the theta constants from the
fundamental theta constants. In the end, we get a function computing τ from the
quotients of fundamental theta constants; Newton’s method is then applied to give an
algorithm computing the theta constants.
The algorithm’s complexity relies on computing F efficiently, since Newton’s method,

when doubling the working precision at each step, does not add any extra asymptotic
complexity. It is known since Gauss that the arithmetico-geometric mean converges
quadratically (see e.g. [2]), provided one does not pick the “wrong” sign for the square
root an infinite number of times; in genus 2, the Borchardt mean also converges
quadratically provided similar conditions are met [4]. These technical requirements were
shown to hold in genus 1 for τ within the fundamental domain; a similar property is
conjectured to hold in genus 2 as well [9, Conjecture 5.7 and Remark 5.9]. In both cases,
this gives a O(M(P ) logP ) algorithm to evaluate F to P bits; a modification of the
algorithm can remove the dependency of the complexity in z, τ .

We successfully generalized this strategy to the computation of the genus 1 function
θ(z, τ) in [15]. The function F is more complex, since the generalization of the AGM
we consider does not converge quadratically. Instead a related sequence, obtained after
considering homogenization, does. We obtained a O(M(P ) logP ) complexity, which does
not depend on z, τ . We released an GNUMPC [7] implementation of the algorithm, which
is faster than the naive algorithm for precisions larger than 100,000 bits.

3. Computing the genus 2 theta function

In this section, we outline an algorithm to compute θ(z, τ), where z ∈ C2 and τ ∈ H2,
with precision P in O(M(P ) logP ) operations.



COMPUTING THETA IN QUASI-LINEAR TIME 5

3.1. Argument reduction

For our purposes, we will not require that τ belong to the fundamental domain; weaker
conditions are sufficient. Let z = (z1, z2) and τ =

(
τ1 τ3
τ3 τ2

)
. We require first that τ

belong to the domain F ′2 defined by the following inequalities

0 ≤ 2 Im(τ3) ≤ Im(τ1) ≤ Im(τ2); |Re(τi)| ≤
1
2 ; Im(τ1) ≥

√
3/2. (3.1)

The first inequality corresponds to Im(τ) being Minkowski-reduced. This domain is called
B in [19], but we choose to highlight the genus in the name. We also require that z satisfy

|Re(zi)| ≤
1
2 ; |Im(z1)| ≤ Im(τ1) + Im(τ3)

2 ; |Im(z2)| ≤ Im(τ2) + Im(τ3)
2 . (3.2)

Given any τ , reducing z so as to satisfy the above condition follows easily from quasi-
periodicity of θ (Proposition 2.3). One can write z = x+ τy, with x, y ∈ R2, explicitly by
solving the system formed by z = x+ τy and z = x+ τy; one can then subtract multiples
of 1 and τ to the first argument so as to get |xi|, |yi| ≤ 1

2 .
Reducing τ to the domain F ′2 instead of F2 is a coarser notion, which has the advantage

of being generalizable to arbitrary genus, unlike the reduction to the fundamental domain
Fg. In genus 2 the strategy for this reduction is described in [19, §6.3]: this gives a
quasi-linear time algorithm for reducing τ to F ′2.

3.2. Naive algorithm

Let qj = eiπτj and wj = eiπzj . We have |θ[a;b](z, τ)| ≤
∑
m,n∈Z|qm

2

1 qn
2

2 q2mn
3 w2m

1 w2n
2 |

using the triangular inequality. Since we have τ ∈ F ′2 and z satisfies (3.2), we have:

|w1|+ |w−1
1 | ≤ 2eπ 3

4 Im(τ1), |w2|+ |w−1
2 | ≤ 2eπ 3

4 Im(τ2).

Hence (|w2m
1 |+ |w−2m

1 |)(|w2n
2 |+ |w−2n

2 |) ≤ 4eiπ( 3
2m Im(τ1)+ 3

2n Im(τ2)). We also have

|qm
2

1 qn
2

2 q2mn
3 | ≤ |qm

2

1 qn
2

2 q−m
2−n2

3 | ≤ |qm
2/2

1 q
n2/2
2 |

Hence, if SB denotes the sum of the series defining θ with m,n ∈ [−B,B], a calculation
very similar to the one in [15, Prop. 2.6] proves that

|θ(z, τ)− SB | ≤
∑

m≥B

|qm2
1 |(|w2m

1 |+ |w−2m
1 |) +

∑
n≥B

|qn2
2 |(|w2n

2 |+ |w−2n
2 |) + 4

∑
m,n≥B

|q
1
2 (m−2)2

1 q
1
2 (n−2)2

2 |

≤ 4
1− |q1|

(
|q1|

(B−2)2
2 −2 + |q1|

(B−2)2+(B−2)2
2 −4

)
≤ 5

(
|q1|

(B−2)2
2 −2 + |q1|(B−2)2+(B−2)2−4

)
.

This means that summing B = O
(√

P
Im(τ1)

)
terms suffices to get an approximation that

is accurate to 2−P .
Following and extending the strategy in [15, §2.2.2] or [9, §5.1], we use induction

relations to compute terms more efficiently. Let

αm = qm
2

1 qn
2

2 q2mn
3 (w2m

1 w2n
2 + w−2m

1 w−2n
2 ), α′m = qm

2

1 qn
2

2 q−2mn
3 (w−2m

1 w2n
2 + w2m

1 w−2n
2 ),

βn = qm
2

1 qn
2

2 q2mn
3 (w2m

1 w2n
2 + w−2m

1 w−2n
2 ), β′n = qm

2

1 qn
2

2 q−2mn
3 (w−2m

1 w2n
2 + w2m

1 w−2n
2 ).



6 HUGO LABRANDE AND EMMANUEL THOMÉ

Here, αm and α′m (respectively, βn and β′n) are functions of n (respectively, m). We have
θ =

∑
m,n∈N αm + α′m =

∑
m,n∈N βn + β′n, and

(w2
1 + w−2

1 )αm−1 = q−2m+1
1 q−2n

3 αm + q2m−3
1 q2n

3 αm−2

(w2
1 + w−2

1 )α′m−1 = q−2m+1
1 q2n

3 α′m + q2m−3
1 q−2n

3 α′m−2
(3.3)

(w2
2 + w−2

2 )βn−1 = q−2n+1
2 q−2m

3 βn + q2n−3
2 q2m

3 βn−2

(w2
2 + w−2

2 )β′n−1 = q−2n+1
2 q2m

3 β′n + q2n−3
2 q−2m

3 β′n−2
(3.4)

We propose an algorithm, Algorithm 4 (cf Appendix A), that uses those induction
relations in a way such that the memory needed is only O(1): it consists in iteratively
computing the terms form = 0 andm = 1 (using Equations (3.4)), and use those as soon
as they are computed to initialize the other induction (Equations (3.3)). We implemented
it in Magma, and will discuss timings in Section 3.6.

3.3. The function F

Proposition 3.1 ([1, formula 3.13]). For all a, b ∈ 1
2Z

g/Zg,

θ[a;b] (z, τ)2 = 1
2g

∑
β∈ 1

2Zg/Zg
e−4iπ taβθ[0;b+β]

(
z,
τ

2

)
θ[0;β]

(
0, τ2

)
. (3.5)

We introduce the following function. Combined with Proposition 3.1, this yields
Proposition 3.2.

F : C8 → C8

a0,...,3, b0,...,3 7→
(√

a0
√
b0 +

√
a1

√
b1 +

√
a2

√
b2 +

√
a3

√
b3

4
,

√
a0

√
b1 +

√
a1

√
b0 +

√
a2

√
b3 +

√
a3

√
b2

4
,

√
a0

√
b2 +

√
a1

√
b3 +

√
a2

√
b0 +

√
a3

√
b1

4
,

√
a0

√
b3 +

√
a1

√
b2 +

√
a2

√
b1 +

√
a3

√
b0

4
,

b0 + b1 + b2 + b3

4
,

2
√
b0

√
b1 + 2

√
b2

√
b3

4
,

2
√
b0

√
b2 + 2

√
b1

√
b3

4
,

2
√
b0

√
b3 + 2

√
b1

√
b2

4

)
.

Proposition 3.2. For a suitable choice of square roots, we have

F
(
θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2) =

(
θ0,1,2,3(z, 2τ)2, θ0,1,2,3(0, 2τ)2)

We discuss what we mean by suitable choice of square roots. Two different notions
must be considered:

– “Good choices” in the sense of [4, 2], i.e. such that Re
(√

ai√
aj

)
, Re

( √
bi√
bj

)
≥ 0.

Note that not all tuples of complex numbers admit a set of “good” square roots.
In genus 1, infinitely many bad choices means the convergence is only linear; to
get quadratic convergence and a quasi-linear running time, we need them to all be
good after a while. This is key to our strategy to get a quasi-linear running time.



COMPUTING THETA IN QUASI-LINEAR TIME 7

– The choice of signs that corresponds to θ, i.e. the square root such that we have√
θi(z, τ)2 = θi(z, τ). We call these the “correct” choice, which need not be a

“good” choice. We need this in order to compute the right value of θ in the end.
Fortunately, the notions of “good” and “correct” choices overlap very often. In genus 1, [2]
proves that for z = 0 and τ within a large domain that includes the fundamental domain,
the correct choice is always good. In [15], we proved a similar result for arbitrary z. A
reassuring fact is that in any genus, we have limk→∞

θ[0;b](z,2kτ)
θ[0;b′](z,2kτ) = 1, so that the two

notions coincide for large enough τ , and hence for all but a finite number of iterations
of F . This argument will be key to the quadratic convergence studied in Section 3.5.
In genus 2, we do not determine an explicit domain for which correct choices are good.

Although one could work with |θ(z, τ)− SB | to establish it, Section 3.4 would require
such results for τ within a domain larger than F ′g, making proofs difficult to obtain.
In order to overcome this difficulty and compute the correct square roots, we rely on

low-precision approximations of θ – using the naive algorithm to sum the series until
Re(SB) or Im(SB) is bigger than the bound on the norm of the remainder of the series
(cf. Section 4), so that we know the sign of either Re(θ) or Im(θ). The number of terms
and the precision needed to achieve this do not asymptotically depend on P , but only
in z and τ ; since we neglect the dependency in z, τ in the complexity of our algorithm†,
determining the correct square root requires only a constant number of operations. We
used this strategy in our implementation; furthermore, it generalizes easily to genus g.

Proposition 3.3 computes F in 4 multiplications and 4 squares instead of the 22
multiplications its definition seems to require. Section 4 extends this to genus g.

Proposition 3.3. Let
(
a

(n+1)
0,1,2,3, b

(n+1)
0,1,2,3

)
= F

(
a

(n)
0,1,2,3, b

(n)
0,1,2,3

)
. Put H =

(
1 1
1 −1

)
and H2 = H⊗H. Let t(m0,1,2,3) = H2

t

(√
a

(n)
0,1,2,3

)
and t(s0,1,2,3) = H2

t

(√
b

(n)
0,1,2,3

)
.

We have t(a(n+1)
0,1,2,3) = 1

4H2
t(m0,1,2,3 ∗ s0,1,2,3) (∗ being the termwise product), and

t(b(n+1)
0,1,2,3) = 1

4H2
t(s2

0,1,2,3).

3.4. Constructing and inverting the F function

Proposition 3.4. Define J =
(

0 −I2
I2 0

)
and Mi =

(
I2 mi

0 I2

)
, with m1 =(

1 0
0 0

)
, m2 =

(
0 0
0 1

)
, m3 =

(
0 1
1 0

)
(as in [4, Chap. 6]). Then

θ0
(
(JM1)2 · z, (JM1)2 · τ

)2 = −τ1e
2iπz2

1/τ1θ8(z, τ)2,

θ0
(
(JM2)2 · z, (JM2)2 · τ

)2 = −τ2e
2iπz2

2/τ2θ4(z, τ)2,

θ0
(
(JM3)2 · z, (JM3)2 · τ

)2 = (τ2
3 − τ1τ2)e2iπ

z2
1τ2+z2

2τ1−2z1z2τ3
det(τ) θ0(z, τ)2.

†To extend the present work into an algorithm whose complexity is uniform in z, τ , one could follow
the approach of [4, 15].



8 HUGO LABRANDE AND EMMANUEL THOMÉ

This result is a direct consequence of Equation (2.1)‡. The next proposition looks at
how the sequence of Fn behaves with respect to homogeneity; its proof is similar to the
one in [15], i.e. an induction.

Proposition 3.5. Let(
a0,1,2,3

(n), b0,1,2,3
(n)
)

= Fn
(
θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2) ,(

a′0,1,2,3
(n)
, b′0,1,2,3

(n)
)

= Fn
(
λθ0,1,2,3(z, τ)2, µθ0,1,2,3(0, τ)2) .

Then we have a′0
(n) = εnλ

1/2nµ1−1/2na
(n)
0 (where ε2nn = 1), and b′0

(n) = µb
(n)
0 , and we

can compute λ, µ as µ = limn→∞ b
(n)
0 and λ = limn→∞

(
a′0

(n)

b′0
(n)

)2n

× µ.

We define G as the function which computes these two quantities; then
G
(
λθ0,1,2,3(z, τ)2, µθ0,1,2,3(0, τ)2) = (λ, µ). We prove in Section 3.5 that G can be

computed in O(M(P ) logP ) operations.
We now build F from G. The idea is to evaluate G at quotients of theta functions

after the action of (JMi)2; the λ and µ we recover are the inverses of the quantities in
Proposition 3.4. Note that (JMi)2 · τ 6∈ F ′g, which prevents us from generalizing proofs
which worked for genus 1 to make “good choices” and “correct choices” coincide. However
it is still possible to determine the sign using low-precision approximations.
Evaluating the quotients after the action of (JMi)2 is actually simply evaluating

different quotients of theta functions (by Theorem 2.7); for instance:

θ1
(
(JM1)2 · z, (JM1)2 · τ

)2

θ0 ((JM1)2 · z, (JM1)2 · τ)2 = θ9(z, τ)2

θ0(z, τ)2 .

Hence, we need to compute θ[a;b](z, τ) for a 6= 0. The approach used in [4] for theta
constants is to use explicit formulas linking the

(
θ[a;b](0, τ)

)
to the

(
θ[0;b](0, τ)

)
. Instead,

we use the approach of [9], which is simpler and more generalizable. The τ -duplication
formulas (Equation (3.5)) allow us to compute θ[a;b](z, 2τ) from the fundamental thetas,
and we then compute λ and µ corresponding to the quotients at 2τ , instead of the ones
corresponding to the same quotients at τ . This still gives two numbers that are a simple
function of z and τ , which is all we need to use Newton’s method.
Defining F so that it is locally invertible, in order to use Newton’s method, requires

some care. In genus 1, we simply compute z and τ , which gives a C2 → C2 function;
however in higher genus this approach leads to a function from C2g+1−2 to Cg(g+3)/2,
and we cannot apply Newton’s method to recover the quotients of thetas. In genus 2,
the function is from C6 to C5; there are two ways to work around the issue:
(1) A natural idea would be to add an extra equation, which would be the equation

of a variety which the thetas lie on. For instance, we can take the equation of

‡Note that the result appears different from [4] only because the tables for M1 and M2 (page 146)
have been switched by mistake; and it differs from [9] because their M2 is our M3, and vice-versa.



COMPUTING THETA IN QUASI-LINEAR TIME 9

Algorithm 1 Compute F
(
θ2

1,2,3
θ2

0
(z, τ), θ

2
1,2,3
θ2

0
(0, τ)

)
.

Evaluate G at
(
θ2

1,2,3
θ2

0
(z, τ), θ

2
1,2,3
θ2

0
(0, τ)

)
to recover λ = 1

θ0(z,τ)2 and µ = 1
θ0(0,τ)2 .

Compute the θi(z, 2τ)2, θi(0, 2τ)2 using Equation (3.5).
Compute λ1, µ1 = G

(
θ2

9,0,1
θ2

8
(z, 2τ), θ

2
9,0,1
θ2

8
(0, 2τ)

)
.

Compute λ2, µ2 = G
(
θ2

0,6,2
θ2

4
(z, 2τ), θ

2
0,6,2
θ2

4
(0, 2τ)

)
.

Compute λ3, µ3 = G
(
θ2

8,4,12
θ2

0
(z, 2τ), θ

2
8,4,12
θ2

0
(0, 2τ)

)
.

µ1 ← θ2
8(0, 2τ)/µ1, µ2 ← θ4(0, 2τ)2/µ2, µ3 ← θ0(0, 2τ)2/µ3.

return
(
µ1θ

2
8(z, 2τ)/λ1, µ2θ

2
4(z, 2τ)/λ2, µ3θ0(z, 2τ)2/λ3, µ1, µ2, µ3

)

the Kummer surface, as described in [10], which links the fundamental theta-
functions and theta constants. This approach, however, does not appear to be
easily generalizable to higher genus.

(2) An approach which actually works just as well is to define F so that it outputs a
few values of λ and µ computed by different means, instead of z, τ . In our case,
we modify the λ, µ slightly, so that

F

(
θ1,2,3(z, τ)2

θ0(z, τ)2 ,
θ1,2,3(0, τ)2

θ0(0, τ)2 ,

)
=
(
eiπ

z2
1

τ11 , eiπ
z2

2
τ22 , eiπ

z2
1τ2+z2

2τ1−2z1z2τ3
det(τ) , τ1, τ2, τ

2
3 − τ1τ2

)
.

We use here the second approach, since it can be generalized to higher genera. Our final
function F is thus described in Algorithm 1.
We conjecture the following, which holds experimentally:

Conjecture 3.6. The Jacobian of F system is invertible.

To finish, we describe how we use Newton’s method to get an approximation of θ
with precision p− δ, where δ is a small constant, from an approximation with precision
p/2. We compute an approximation of ∂Fi

∂xj
with precision p using finite differences, i.e.

Fi(x+εj)−Fi(x)
||εj || , for εj a perturbation of 2−p on the j-th coordinate. We prove in the

next section that computing F with precision p costs O(M(p) log p) for any arguments;
this implies that applying one step of Newton’s method costs O(M(p) log p). Thus, as
in [4, 9, 15] we can compute an approximation of θ with precision P0 using the naive
algorithm, then use Newton’s method to refine it into a value of θ with precision P ; the
total cost of this algorithm is O(M(P ) logP ).

3.5. Proof of quasi-optimal time

We prove that the computation of G with precision P requires only O(logP ) steps as
long as the choice of signs is always good. The result if the arguments are

(
θ2

1
θ2

0
,
θ2

2
θ2

0
,
θ2

3
θ2

0

)
is

merely a consequence of the quadratic convergence of (θ(z, 2kτ))k∈N; however we need
to prove the result for any arguments to apply it to the computation of the Jacobian.



10 HUGO LABRANDE AND EMMANUEL THOMÉ

Proposition 3.7. Suppose that the choice of signs is always good. Then
(i) the |a(i)

0 |, |b
(i)
0 | are upper-bounded;

(ii) the |a(i)
0 |, |b

(i)
0 | are lower-bounded;

(iii) only O(logP ) steps are needed to compute λ with precision P .

Proof. The proof is very similar to [15, Section 3.4], hence we omit some details.
(i) Easy induction using the definition of F .
(ii) The |b(n)

i | are lower bounded by [4, Prop. 7.3]. We follow the proof of [15, Prop. 3.8].
The |ai − aj | converge quadratically since the choice of sign is good:

|a(n+1)
0 − a(n+1)

1 |2 = |m2 +m3|2

4 (using notations of Prop 3.3)

≤ 2C|
√
b

(n)
0 −

√
b

(n)
1 |2 ≤ 2C|b(n)

0 − b(n)
1 |.

We can also prove inequalities of the shape |√ai +√aj | ≥ c1
√

1− |ai − aj |/c2 using
the parallelogram identity. Those inequalities can be combined to get a lower bound
for |a(n+1)

i | that proves that if |a(n)
i |, |b

(n)
i | ≥ δ, then |a(n+1)

i |, |b(n+1)
i | ≥ δ(1 + εn)

with εn quadratically convergent. This finishes the proof.
(iii) Proceed exactly as in [15, Prop. 3.9]; the only difference is

a
(n+1)
0 −

√
a

(n)
0 b

(n)
0 =

∑3
i=1

(
√

a
(n)
i
−
√

a
(n)
0 )(

√
b

(n)
i

+
√

b
(n)
0 ) + (

√
a

(n)
i

+
√

a
(n)
0 )(

√
b

(n)
i
−
√

b
(n)
0 )

8

≤
√

C

4

3∑
i=1

|
√

a
(n)
i
−
√

a
(n)
0 | + |

√
b

(n)
i
−
√

b
(n)
0 |

≤
√

C

4

3∑
i=1

√
|a(n)
i
− a

(n)
0 | +

√
|b(n)
i
− b

(n)
0 |.

Then use the calculation in (ii) to prove quadratic convergence; the quadratic
convergence of qn to 1, and hence the result, follows exactly the same.

3.6. Implementation results

We wrote an implementation of this quasi-optimal time algorithm in Magma and
compared it with Magma’s Theta function. In addition, we implemented Algorithm 4,
i.e. the naive algorithm combined with induction relations, achieving a O(M(P )P )
complexity. Magma’s Theta function is probably general-purpose code, which means
it probably uses exponentiations to compute each term, making it a O(M(P )P logP )
algorithm at best; however its complexity in practice appears to be much worse. Our
implementation of the quasi-optimal time algorithm uses our naive algorithm to compute
a first approximation of the values of θ with 3000 digits, which is the crossover point for
which our algorithm is better than the naive algorithm.
Our results in Table 1 show that for precisions higher than 1000 decimal digits our

algorithm, which outputs 8 values, is faster than one call to Magma’s Theta function,
which simply computes one value of θ(z, τ). Furthermore, our quasi-optimal algorithm
is better than Algorithm 4 for precisions greater than 3000 digits; this is much earlier
than in the genus 1 case, which is explained by the fact that the complexity of the



COMPUTING THETA IN QUASI-LINEAR TIME 11

Algorithm 2 Reduce τ . Input: τ ∈ Hg Output: τ ′ ∈ F ′g.

1: τ ′ ← τ .
2: Apply Minkowski reduction to τ ′.
3: Subtract an integer matrix to τ ′ so that |Re(τ ′i,j)| ≤ 1

2 .
4: If |τ ′1,1| ≤ 1, do τ ′ ← N0 · τ ′ and go back to Step 2.
5: return τ ′.

naive algorithm is O(M(P )
√
P ) in genus 1 and O(M(P )P ) in genus 2. Our results are

consistent with the situation in the case of theta constants, studied in [9]†.

Prec (digits) Magma Algorithm 4 This work
1000 0.42 0.38 0.38
2000 2.58 1.86 1.86
4000 18.4 9.51 6.65
8000 128.98 53.85 13.17
16000 889 303 25
32000 6368 1535 50
64000 46566 8798 120

Table 1: Times (in s) of different methods

4. Extending the algorithm to higher genera

This section outlines ideas for extending the previous strategy to the case g > 2. The
complexity of such an algorithm will certainly be exponential (or worse) in g; we do not
make any attempt at lowering this complexity, and in fact we do not even evaluate it
fully. However, the complexity in P would still be O(M(P ) logP ), which is desirable.

4.1. Argument reduction

We extend the domain F ′2 to genus g as follows: F ′g is the set of τ such that:

Re(τi,j) ≤
1
2 ; Im(τ) is Minkowski-reduced; Im(τ1,1) ≥

√
3/2.

Note that Fg ⊂ F ′g, since N0 =
(
Ig − δ1,1 −δ1,1
δ1,1 Ig − δ1,1

)
, where δ1,1 is the g × g Kronecker

matrix, is symplectic and such that |det(Cτ +D)| = |τ1,1|. The algorithm to reduce τ is
similar to [19, Alg. 6.8]; this is Algorithm 2.

Proposition 4.1. Algorithm 2 terminates.

†Note that our code is slower by several orders of magnitude; however, their algorithm only computes
theta constants, and their implementation is written in low-level C (MPC) while ours uses Magma. An
MPC implementation of our algorithm would speed up the computations significantly.



12 HUGO LABRANDE AND EMMANUEL THOMÉ

Proof. We generalize the lemmas in [19, Section 6.4]; the proof is rather technical.
Lemma 6.9 holds in genus g; Lemma 6.14 becomes

(m2 · · ·mg)(Im(M(Z))) ≤ c1(g) max{m1(Y )−1, (m2 · · ·mg)(Y )}

with c1(g) the constant in Minkowski’s inequality [14, Prop I.2.1, p.13].
We generalize Lemma 6.12 as follows. Let Rg be the set of Minkowski-reduced matrices,

and Q′g(t) defined as in [14, Def. I.2.3]; then, the remark after [14, Def. I.2.2] and [14,
Prop. I.2.2] proves that there is a t′ > 2 such that Rg ⊂ Q′g(t′). Consider the set of the
matrices τ ′ obtained during the execution of Algorithm 2 for which y1 ≥ 1

t′ ; this set
injects in the set Lg(t′) defined in [14, Def. I.3.2]. Applying [14, Thm. I.3.1] yields the
result that there are only finitely many steps in which y1 >

1
t′ ; note c the number of such

steps (i.e. the cardinality of the set in [14, Thm. I.3.1]).
Lemma 6.11 with the bound y1 ≤ 1

t′ holds in genus g, since t′ > 2. Combining all the
lemmas as in [19, Prop. 6.13] proves termination, since after k iterations

2k−c ≤ c1(g)3 max{m1(Y0)−3(m2 · · ·mg)(Y0)−1, (m2 · · ·mg)(Y0)m1(Y0)−1}

Bounding the number of steps in the algorithm requires making a few theorems
explicit, namely [14, Prop. I.2.2] (making t′ explicit) and [14, Thm. I.3.1] (determining c).
We believe that the number of steps is exponential in g. Furthermore, each step requires
computing the Minkowksi reduction of a g × g matrix, which has a cost of O

(
21.3g3

)
arithmetic operations [12]. Hence the running time of this reduction is exponential in g.

The conditions on z, which can be met using Proposition 2.3, are

|Re(zi)| ≤
1
2 ; |Im(zi)| ≤

∑
j∈[1..2g]|Im(τi,j)|

2 .

We note that [3] uses another approach, the so-called Siegel reduction, with weaker
conditions than the ones we impose here, e.g. using LLL reduction instead of Minkowski
reduction. It is apparently enough to limit the number of terms in the naive algorithm.

4.2. Naive algorithm

In [3], the authors compute an ellipsoid containing the indices of the terms one needs
to sum to get an approximation of θ(z, τ) up to ε. Its size depends on R, defined as the
solution to the equation ε = g

2
2g
ρg Γ(g/2, (R− ρ/2)2), where Γ is the incomplete gamma

function and ρ the smallest vector after an orthogonal change of basis.
Neglecting the dependency in τ and z, we get the rather coarse bound of O(Rg) terms

needed. We complete the analysis in [3] by computing an explicit estimate on R:

Proposition 4.2. Treating z, τ (and hence ρ) as constants, we have R = O(
√
P ),

i.e. summing O(P g/2) terms is sufficient to get a result accurate to P bits.



COMPUTING THETA IN QUASI-LINEAR TIME 13

Proof. Assuming that g is even (which we can do since Γ is growing in the first
parameter for R large enough), we use integration by parts g/2 times to prove that

Γ(g/2, d) = (g/2− 1)!e−d +
g/2∑
i=1

(g/2− 1) · · · (g/2− i)dg/2−ie−d

≤ g

2(g/2− 1)!dg/2−1e−d ≤ e−d+g/2(log d+log(g/2)).

Hence : g

2
2g

ρg
Γ(g/2, d) ≤ 2−d log2 e+g/2(log d+log(g/2))+log(g/2)+g log(2/ρ).

Asymptotically, i.e. for R large enough, taking d = P log2 e+ g logP + g log(2/ρ) + g =
O(P ) is enough for the right hand side to be smaller than 2−P . Hence R = O(

√
P ).

The terms can be computed using induction relations, which exist whatever the genus
is: if g − 1 indices are fixed, there exists a relation between three consecutive terms for the
remaining index. However, exploiting those relations gets increasingly complicated and
harder to code efficiently as the genus grows. We assume that such induction relations are
used in the naive algorithm, i.e. that the cost of computing each term is only O(M(P )),
and the memory needs O(1) or O(g). Under this assumption, the cost of the naive
algorithm is O(M(P )P g/2) operations, which agrees with our analyses in genus 1 and 2.

4.3. The function F

We use once again the τ -duplication formula (Equation (3.5)) where a = 0:

θi(z, 2τ)2 = 1
2g

∑
k∈{0,...,2g−1}

θi⊕k(z, τ)θk(0, τ), (4.1)

where ⊕ is the bitwise XOR. This gives us a function

F : C2g+1
→ C2g+1((

θ2
[0;b](z, τ)

)
,
(
θ2

[0;b](0, τ)
))
7→
((
θ2

[0;b](z, 2τ)
)
,
(
θ2

[0;b](0, 2τ)
))

.

Just like in genus 2, we solve the problem of determining the correct square root by using
low-precision approximations of θ, which only require a number of terms and a precision
that are independent of P .
The trick we used in Proposition 3.3 can be generalized here. Sums involving bitwise

XORs as in Equation (3.5) are called dyadic convolutions in [17], who also gives
an optimal algorithm to compute them. The method is exactly the one we used in
Proposition 3.3, using this time Hg = H⊗ · · · ⊗ H (g times). This means we only need
2g+1 multiplications, instead of the 22g+1 multiplications in the definition of F .

4.4. Extending the quasi-linear time algorithm

4.4.1. Defining F. We can study the homogeneity of the formulas defining F ;
Equation (3.5) gives for instance θ(z, 2τ)2 =

∑2g−1
i=0

√
θi(z, τ)2

√
θi(0, τ)2. Combined



14 HUGO LABRANDE AND EMMANUEL THOMÉ

Algorithm 3 Compute F
(
θ1,...,2g−1(z,τ)2

θ0(z,τ)2 ,
θ1,...,2g−1(0,τ)2

θ0(0,τ)2

)
.

1: Compute λ0, µ0 = 1
θ0(z,τ)2 ,

1
θ0(0,τ)2 = F∞

(
θ1,...,2g−1(z,τ)2

θ0(z,τ)2 ,
θ1,...,2g−1(0,τ)2

θ0(0,τ)2

)
.

2: Compute the individual θi(z, τ), θi(z, τ) for i ∈ {0, ..., 2g − 1}.
3: Use Equation (3.5) to compute θi(z, 2τ)2, θi(0, 2τ)2 for i ∈ {0, ..., 22g − 1}.
4: for i = 1 to 2g − 1 do
5: Compute λi, µi = F∞

(
θ1,...,2g−1(Mi·z,Mi·2τ)2

θ0(Mi·z,Mi·2τ)2 ,
θ1,...,2g−1(0,Mi·2τ)2

θ0(0,Mi·2τ)2

)
.

6: end for
7: return (λi, µi).

with the expression of the Borchardt mean, it is then easy to prove that

µ = lim
n→∞

b
(n)
0 , λ =

(
a

(n)
0

b
(n)
0

)2n

× µ.

We then consider the sequence formed of iterates of F . The Borchardt mean of 2g
numbers converges quadratically [4, Chap. 7] (modulo some rather weak hypotheses) .
We put forward the following conjecture, which has been proven in genus 1 and 2:

Conjecture 4.3. If all the choices of sign are good, λ and µ can be computed up
to 2−P in O(logP ) steps.

This means that F∞, the function computing λ, µ with precision P from the quotients
of theta functions and theta constants, can be evaluated in O(2gM(P ) logP ) operations.

The other requirement for defining F in a way that Newton’s method is applicable is
to find 2g − 1 symplectic matrices Mi such that

θ0(Mi · z,Mi · τ)2 = f(τ)e2iπg(z,τ)θni(z, τ)2

with f, g rational functions. We then define the F function with Algorithm 3.

4.4.2. The final algorithm. We can compute λi, µi from z, τ using Equation 2.1 in
O(2gM(P ) logP ) operations. We can then apply Newton’s method to F to compute the
quotients of theta functions and theta constants, but only if the Jacobian of the system
is invertible. This depends on which Mi are chosen, but we conjecture that such a choice
can be found, as in genus 1 and 2.
The total complexity of this method is the same as the complexity of evaluating F,

since Newton’s method (when doubling the working precision at each step) does not add
any asymptotic complexity. The complexity of the evaluation of F is O(4gM(P ) logP )
bit operations. Although this is exponential in the genus g, this is quasi-linear in the
precision P ; hence, as it was the case between genus 1 and 2, we expect the precision for
which our algorithm is better than a naive approach to be smaller as the genus grows.



COMPUTING THETA IN QUASI-LINEAR TIME 15

References
1. R. Cosset. Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques. PhD

thesis, Université Henri Poincaré-Nancy I, 2011.
2. D. A. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math, 30(2):275–330, 1984.
3. B. Deconinck, M. Heil, A. Bobenko, M. Van Hoeij, and M. Schmies. Computing Riemann theta

functions. Math. Comp., 73(247):1417–1442, 2004.
4. R. Dupont. Moyenne arithmético-géométrique, suites de Borchardt et applications. PhD thesis,

École polytechnique, Palaiseau, 2006. http://www.lix.polytechnique.fr/Labo/Regis.Dupont/
these_soutenance.pdf.

5. R. Dupont. Fast evaluation of modular functions using Newton iterations and the AGM. Math.
Comp., 80(275):1823–1847, 2011.

6. A. Enge. The complexity of class polynomial computation via floating point approximations. Math.
Comp., 78(266):1089–1107, 2009.

7. A. Enge, M. Gastineau, P. Théveny, and P. Zimmerman. GNU MPC. INRIA, September 2012.
Release 1.0.1, http://mpc.multiprecision.org/.

8. A. Enge and E. Thomé. CMH — Computation of Igusa Class Polynomials, Dec. 2014. Version 1.0,
http://cmh.gforge.inria.fr/.

9. A. Enge and E. Thomé. Computing class polynomials for abelian surfaces. Exp. Math., 23(2):129–
145, 2014.

10. P. Gaudry. Fast genus 2 arithmetic based on theta functions. J. Math. Cryptol., 1(3):243–265,
2007.

11. E. Gottschling. Explizite bestimmung der randflächen des fundamentalbereiches der modulgruppe
zweiten grades. Math. Ann., 138(2):103–124, 1959.

12. B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice bases.
Theoretical Computer Science, 41:125–139, 1985.

13. J.-I. Igusa. Theta functions. Springer, 1972.
14. H. Klingen. Introductory lectures on Siegel modular forms. Cambridge University Press, 1990.
15. H. Labrande. Computing Jacobi’s θ in quasi-linear time. http://arxiv.org/abs/1511.04248, 2015.
16. W. Luther and W. Otten. Reliable computation of elliptic functions. J.UCS, 4(1):25–33, 1998.
17. O. Makarov. The connection between algorithms of the fast Fourier and Hadamard transformations

and the algorithms of Karatsuba, Strassen, and Winograd. USSR Computational Mathematics and
Mathematical Physics, 15(5):1–11, 1975.

18. D. Mumford. Tata lectures on Theta, volume I. Birkhäuser, Boston, 1983.
19. M. Streng. Computing Igusa class polynomials. Math. Comp., 83(285), 2014.
20. P. Van Wamelen. Equations for the Jacobian of a hyperelliptic curve. Trans. Amer. Math. Soc.,

350(8):3083–3106, 1998.

Hugo Labrande
Université de Lorraine, LORIA (UMR CNRS

7503), INRIA Nancy (CARAMBA) &
University of Calgary

615 rue du jardin botanique,
54602 Villers-lès-Nancy Cedex, France

hugo.labrande@inria.fr

Emmanuel Thomé
INRIA Nancy (CARAMBA), LORIA (UMR

CNRS 7503), Université de Lorraine
615 rue du jardin botanique,
54602 Villers-lès-Nancy Cedex, France

emmanuel.thome@inria.fr

Appendix A. Naive algorithm in genus 2
Algorithm 4 computes θ(z, τ) in genus 2 using the partial evaluation of the series, as

well as induction relations to speed up the computation of each term. The terms of the
form qki should be computed using induction relations; we used such relations in our
implementation, but did not include this here for readability. There are ways to speed
up this algorithm using O(

√
P ) memory, for instance by caching the qm1 and the qn2 ; we

did not investigate those methods.

http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://mpc.multiprecision.org/
http://cmh.gforge.inria.fr/
http://arxiv.org/abs/1511.04248


16 HUGO LABRANDE AND EMMANUEL THOMÉ

Algorithm 4 Naive algorithm for θ(z, τ) in genus 2.
Input: z, τ Output: θi(z, τ), θi(0, τ) for i ∈ {0..3}.
1: For i := 1 to 4, tz[i] ← 1, t0[i] ← 1 . We start with the sums for n = 0.
2: u0,0 ← 1, u1,0 ← q1, v0,0 ← 1, v1,0 ← q1(w2

1 + w−2
1 ). Add those to the tz[i], t0[i] with

the correct sign.
3: for m = 2 to B1 do
4: um,0 ← q2m+1

1 um−1,0. Add to the t0[i] with the correct sign.
5: vm,0 ← q2m−1

1 vm−1,0v1 − q4m−4
1 vm−2,0. Add to the tz[i] with the correct sign.

6: end for . Now for the rest of the sum
7: v0 ← 2, v1 ← q2

3 + q−2
3 ; wm=0

0 ← 2, wm=1
0 ← q1q2(q2

3 + q−2
3 ).

8: βm=0
0 ← 2, βm=1

0 ← q1(w2
1 + w−2

1 ), βm=0
1 ← q2(w2

2 + w−2
2 ), βm=1

1 ← q1q2q
2
3(w2

1w
2
2 +

w−2
1 w−2

2 ).
9: β

′m=0
0 ← βm=0

0 , β
′m=1
0 ← βm=1

0 , β
′m=0
1 ← βm=0

1 , β
′m=1
1 ← q1q2q

−2
3 (w−2

1 w2
2 +

w2
1w
−2
2 ).

10: for n = 1 to B do
11: Add wm=1

0 to the t0[i] and βm=1
i + β

′m=1
i to the tz[i], with the correct sign.

12: α0 ← βm=0
1 , α1 ← βm=1

1
13: α′0 ← β

′m=0
1 , α′1 ← β

′m=1
1

14: for m=2 to B − n2 Im(τ2) do
15: wm ← q2m−1

1 vnwm−1 − q4m−4
1 wm−2.

16: αm ← (w2
1 + w−2

1 )q2m−1
1 q2n

3 αm−1 − q4n
3 q4m−4

1 αm−2
17: α′m ← (w2

1 + w−2
1 )q2m−1

1 q−2n
3 α′m−1 − q−4n

3 q4m−4
1 α′m−2

18: Add wm to the t0[i] and αm + α′m to the tz[i], with the correct sign.
19: end for
20: vn+1 ← vnv1 − vn−1
21: end for
22: return tz, t0.


	Introduction
	Background on genus g theta functions
	Computing the genus 2 theta function
	Extending the algorithm to higher genera
	References
	Appendix A. Naive algorithm in genus 2

