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Abstract: Checkpointing is a classical technique to mitigate the overhead of adjoint Algorithmic
Differentiation (AD). In the context of source transformation AD with the Store-All approach,
checkpointing reduces the peak memory consumption of the adjoint, at the cost of duplicate runs
of selected pieces of the code. Checkpointing is vital for long run-time codes, which is the case of
most MPI parallel applications. However, the presence of MPI communications seriously restricts
application of checkpointing.
In most attempts to apply checkpointing to adjoint MPI codes (the “popular” approach), a number
of restrictions apply on the form of communications that occur in the checkpointed piece of code.
In many works, these restrictions are not explicit, and an application that does not respect these
restrictions may produce erroneous code.
We propose techniques to apply checkpointing to adjoint MPI codes, that either do not suppose
these restrictions, or explicit them so that the end users can verify their applicability. These
techniques rely on both adapting the snapshot mechanism of checkpointing and on modifying the
behavior of communication calls.
One technique is based on logging the values received, so that the duplicated communications need
not take place. Although this technique completely lifts restrictions on checkpointing MPI codes,
message logging makes it more costly than the popular approach. However, we can refine this
technique to blend message logging and communications duplication whenever it is possible, so
that the refined technique now encompasses the popular approach. We provide elements of proof
of correction of our refined technique, i.e. that it preserves the semantics of the adjoint code and
that it doesn’t introduce deadlocks.

Key-words: Algorithmic Differentiation, Adjoint, Checkpointing, Message Passing, MPI



Sur l’application correcte de checkpointing de la DA aux
programmes parallèles MPI adjoints

Résumé : Le “Checkpointing” est une technique classique pour atténuer le surcoût de la
différentiation algorithmique adjointe (DA). Dans le contexte de la DA par transformation de
source avec l’approche Store-All, le checkpointing réduit le pic de consommation de mémoire de
l’adjoint au prix d’exécutions dupliquées de morceaux de code sélectionnés. Le checkpointing
est vital pour les codes de temps d’exécution long, ce qui est le cas de la plupart des applica-
tions parallèles MPI. Cependant, la présence des communications MPI restreint sérieusement
l’application du checkpointing.
Dans la plupart des tentatives pour appliquer le checkpointing aux codes MPI adjoints (l’approche
“populaire”), certaines restrictions s’appliquent sur la forme des communications qui ont lieu dans
le morceau de code apres le checkpointing. Dans plusieurs travaux, ces restrictions ne sont pas
explicites, et une application qui ne respecte pas ces restrictions peut produire des résultats er-
ronés.
Nous proposons des techniques pour appliquer le checkpointing aux codes MPI adjoints, qui ou
bien ne supposent pas ces restrictions, ou bien les explicitent de telle façon que les utilisateurs
finaux peuvent vérifier leur applicabilité. Ces techniques utilisent à la fois l’adaptation des mé-
canismes de snapshot de checkpoining et sur la modification de comportement des appels de
communications.
Une technique est fondée sur l’enregistrement des valeurs reçues, de telle façon que les com-
munications n’ont pas besoin d’être répétées. Malgré que cette technique lève complètement
les restrictions sur le checkpointing des codes MPI, l’enregistrement des messages la rend plus
coûteuse que l’approche populaire. Cependant, nous pouvons raffiner cette technique pour rem-
placer l’enregistrement des valeurs par la duplication des communications à chaque fois que c’est
possible, de telle façon que la technique raffinée englobe maintenant l’approche populaire. Nous
fournissons des éléments de preuve de correction de notre technique raffinée, à savoir qu’elle
préserve la sémantique du code adjoint et qu’elle n’introduit pas de deadlock.

Mots-clés : Différentiation Algorithmique, Adjoint, Checkpointing, Passage de message, MPI
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4 L. Hascoët and A. Taftaf

1 Introduction

Adjoint algorithms, and in particular those obtained through the adjoint mode of Automatic
Differentiation (AD) [1], are probably the most efficient way to obtain the gradient of a numerical
simulation. Given a piece of code P , adjoint AD (with the “Store-All” approach) consists of two
successive pieces of code. The first one, the “forward sweep” −→P computes the original values
and stores in memory the overwritten variables needed to compute the gradients. The second
one, the “backward sweep” ←−P , computes the gradients, using the intermediate values stored as
needed. Primarily, i.e. before any form of program optimisation, the adjoint program is simply−→
P followed by a ←−P .

Many large-scale computational science applications are parallel programs based on Message-
Passing, implemented for instance by using the MPI message passing library. We will call them
“MPI programs”. MPI programs consist of one or more threads (called "MPI processes") that
communicate through message exchanges.

In most attempts to apply checkpointing to adjoint MPI codes (the “popular” approach), a
number of restrictions apply on the form of communications that occur in the checkpointed piece
of code. In many works, these restrictions are not explicit, and an application that does not
respect these restrictions may produce erroneous code.
We propose techniques to apply checkpointing to adjoint MPI codes, that either do not suppose
these restrictions, or explicit them so that the end users can verify their applicability. These
techniques rely on both adapting the snapshot mechanism of checkpointing and on modifying
the behavior of communication calls.

isend
Process1:

send wait recv

Process 2:
recv sendrecv

isend

Process 1:

send wait recv

Process 2:
recv sendrecv

isend
=wait

send 
=recv

wait
=irecv

  
recv 
=send

recv
=send

send
= recv

recv
=send

P⃗P

P

⃗

(a) (b)

Process 1:

Process 2:

Figure 1: (a) Communications graph of an MPI parallel program with two processes. Thin
arrows represent the edges of the communications graph and thick arrows represent the propa-
gation of the original values by the processes. (b) Communications graph of the corresponding
adjoint MPI parallel program. The two thick arrows in the top represent the forward sweep,
propagating the values in the same order as the original program, and the two thick arrows in
the bottom represent the backward sweep, propagating the gradients in the reverse order of the
computation of the original values.
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Checkpointing Adjoint MPI Programs 5

1.1 Communications graph of adjoint MPI programs
One commonly used model to study message-passing is the communications graph [[2], pp.
399–403], which is a directed graph (see figure 1 (a)) in which the nodes are the MPI com-
munication calls and the arrows are the dependencies between these calls. For simplicity, we
omit the mpi_ prefix from subroutine names and omit parameters that are not essential in our
context. Calls may be dependent because they have to be executed in sequence by a same
process, or because they are matching send and recv calls in different processes.

• The arrow from each send to the matching recv (or to the wait of the matching isend)
reflects that the recv (or the wait) cannot complete until the send is done. Similarly, the
arrow from each recv to the matching send (or to the wait of the matching irecv) reflects
that the send will block until the recv is done.

• The arrows between two successive MPI calls within the same process reflect the depen-
dency due to the program execution order, i.e. instructions are executed sequentially. In
the sequel, we will not show these arrows.

A central issue for correct MPI programs is to be deadlock free. Deadlocks are cycles in the
communications graph.

There have been several works on the adjoint of MPI parallel programs [7], [4], [3], [5], [6].
When the original code performs an MPI communication call, the adjoint code must perform
another MPI call, which we will call an “adjoint MPI call”.

• For instance the adjoint for a receiving call recv(b) is a send of the corresponding adjoint
value b. In practice, this will write as send(b); b = 0.

• Symmetrically the adjoint for a sending call send(a) performs a receive of the corresponding
adjoint value. In practice this will write as recv(tmp); a+ = temp.

This way, the adjoint code will perform a communication of the adjoint value (called “adjoint
communication”) in the opposite direction of the communication of the primal value, which is
what should be done according to the AD model. This creates in ←−P a new graph of communi-
cations (see figure 1 (b)), that has the same shape as the communications graph of the original
program, except the inversion of the direction of arrows. This implies that if the communications
graph of the original program is acyclic, then the communications graph of ←−P is also acyclic.
Since −→P is essentially a copy of P with the same communications structure, the communications
graphs of −→P and ←−P are acyclic if the communications graph of P is acyclic. Since we observe in
addition that there is no communication from −→P to ←−P , we conclude that if P is deadlock free,
then P =

−→
P ;
←−
P is also deadlock free.

1.2 Checkpointing
Storing all intermediate values in −→P consumes a lot of memory space. In the case of serial
programs, the most popular solution is the “checkpointing” mechanism [8] (see figure 2). Check-
pointing is best described as a transformation applied with respect to a piece of the original code
(a “checkpointed part”). For instance figure 2 (a) and (b) illustrate checkpointing applied to the
piece C of a code, consequently written as U ;C;D.
On the adjoint code of U ;C;D (see figure 2 (a)), checkpointing C means in the forward sweep
not storing the intermediate values during the execution of C. As a consequence, the backward
sweep can execute←−D but lacks the stored values necessary to execute←−C . To cope with that, the
code after checkpointing (see figure 2 (b)) runs the checkpointed piece again, this time storing the
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6 L. Hascoët and A. Taftaf

DC

⃗

D⃗C

DC⃗

C

U

U⃗

U

⃗ ⃗

⃗⃗

⃗

C⃗ D⃗U⃗
depth= 0

depth= 1

depth= 2

(a) (b) (c)

Figure 2: (a) A sequential adjoint program without checkpointing. (b) The same adjoint
program with checkpointing applied to the part of code C. The thin arrow reflects that the first
execution of the checkpointed code C does not store the intermediate values in the stack. (c)
Application of the checkpointing mechanism on two nested checkpointed parts. The checkpointed
parts are represented by dashed rectangles.

intermediate values. The backward sweep can then resume, with←−C then←−U . In order to execute
C twice (actually C and later −→C ), one must store (a sufficient part of) the memory state before
C and restore it before←−C . This storage is called a snapshot, which we represent on figures as a •
for taking a snapshot and as a ◦ for restoring it. Taking a snapshot “•” and restoring it “◦” have
the effect of resetting a part of the machine state after “◦” to what it was immediately before
“•”. We will formalize and use this property in the demonstrations that follow. To summarize,
for original code U ;C;D, whose adjoint is −→U ;

−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U , checkpointing C transforms the

adjoint into −→U ; •;C;−→D ;
←−
D ; ◦;−→C ;

←−
C ;
←−
U .

The benefit of checkpointing is to reduce the peak size of the stack in which intermediate values
are stored: without checkpointing, this peak size is attained at the end of the forward sweep,
where the stack contains kU ⊕ kC ⊕ kD, where kX is the values stored by code X. In contrast,
the checkpointed code reaches two maximums kU ⊕ kD after −→D and kU ⊕ kC after −→C . The cost
of checkpointing is twofold: the snapshot must be stored, generally on the same stack, but its
size is in general much smaller than kC . The othor part of the cost is that C is executed twice,
thus increasing run time.

1.3 Checkpointing on MPI adjoints

Checkpointing MPI parallel programs is restricted due to MPI communications. In previous
works, the “popular” checkpointing approach has been applied in such a way that a checkpointed
piece of code always contains both ends of each communication it performs. In other words,
no MPI call inside the checkpointed part may communicate with an MPI call which is outside.
Furthermore, non-blocking communication calls and their corresponding waits must be both
inside or both outside of the checkpointed part. This restriction is often not explicitly mentioned.
However, if only one end of a point to point communication is in the checkpointed part, then
the above method will produce erroneous code. Consider the example of figure 3 (a), in which
only the send is contained in the checkpointed part. The checkpointing mechanism duplicates
the checkpointed part and thus duplicates the send. As the matching recv is not duplicated,
the second send is blocked. The same problem arises if only the recv is contained in the
checkpointed part (see figure 3 (b)). The duplicated recv is blocked. Figure 3 (c) shows the
case of a non-blocking communication followed by its wait, and only the wait is contained in
the checkpointed part. This code fails because the repeated wait does not correspond to any
pending communication.

We propose techniques that adapt checkpointing to MPI programs with point-to-point com-

Inria



Checkpointing Adjoint MPI Programs 7

send

recv

send?

isend wait

wait

wait

wait

isend

?
Process:

(c)

Process 1:

Process 2:

send

recv

recv

send

recv?

Process 2:

Process 1:

recv

send

(b)(a)

Figure 3: Three examples of careless application of checkpointing to MPI programs, leading to
wrong code. For clarity, we separated processes: process 1 on top and process 2 at the bottom.
In (a), an adjoint program after checkpointing a piece of code containing only the send part of
point-to-point communication. In (b), an adjoint program after checkpointing a piece of code
containing only the recv part of point-to-point communication. In (c), an adjoint program after
checkpointing a piece of code containing a wait without its corresponding non blocking routine
isend.

munications. These techniques either do not suppose restrictions on the form of communications
that occur in the checkpointed code, or explicit them so that the end user can verify their applica-
bility. One technique is based on logging the values received, so that the duplicated communica-
tions need not take place. Although this technique completely lifts restrictions on checkpointing
MPI codes, message logging makes it more costly than the popular approach. However, we can
refine this technique to replace message logging with communications duplication whenever it is
possible, so that the refined technique now encompasses the popular approach. In section 2, we
give a proof framework for correction of checkpointed MPI codes, that will give some sufficient
conditions on the MPI adapted checkpointing technique so that the checkpointed code is correct.
In section 3 , we introduce our MPI adapted checkpointing technique based on message logging.
We prove that this technique respects the assumptions of section 2 and thus that it preserves the
semantics of the adjoint code. In section 3, we show how this technique may be refined in order
to reduce the number of values stored in memory. We prove that the refinement we propose
respects the assumptions of section 2 and thus that it preserves the semantics of the adjoint code
as well.

2 Elements Of Proof

We propose adaptations of the checkpointing method to MPI adjoint codes, so that it provably
preserves the semantics of the resulting adjoint code for any choice of the checkpointed part. To
this end, we will first give a proof framework of correction of checkpointed MPI codes, that relies
on some sufficient conditions on the MPI adapted checkpointing method so that the checkpointed
code is correct.

On large codes, checkpointed codes are nested (see figure 2 (c)) , with a nesting level often
as deep as the depth of the call tree. Still, nested checkpointed parts are obtained by repeated
application of the simple pattern described in figure 2 (b). Specifically, checkpointing applies
to any sequence of forward, then backward code (e.g. −→C ; ←−C on figure 2 (b)) independently of
the surrounding code. Therefore, it suffices to prove correctness of one elementary application

RR n° 8864



8 L. Hascoët and A. Taftaf

of checkpointing to obtain correctness for every pattern of nested checkpointed parts.
To compare the semantics of the adjoint codes without and with checkpointing, we define

the effect E of a program P as a function that, given an initial machine state σ, produces a
new machine state σnew = E(P, σ). The function E describes the semantics of P . It describes
the dependency of the program execution upon all of its inputs and specifies all the program
execution results. The function E is naturally defined on the composition of programs by :
E((P1;P2), σ) = E(P2, E(P1, σ)).

When P is in fact a parallel program, it consists of several processes pi run in parallel. Each
pi may execute point-to-point communication calls. We will define the effect E of one process p.
To this end, we need to specify more precisely the contents of the execution state σ for a given
process, to represent the messages being sent and received by p. We will call “R” the (partly
ordered) collection of messages that will be received (i.e. are expected) during the execution
of p. Therefore R is a part of the state σ which is input to the execution of p, and it will be
consumed by p. It may well be the case that R is in fact not available at the beginning of p. In
real execution, messages will accumulate as they are being sent by other processes. However, we
consider R as a part of the input state σ as it represents the communications that are expected
by p. Symmetrically, we will call “S” the collection of messages that will be sent during the
execution of p. Therefore, S is a part of the state σnew which is output by execution of p and it
is produced by p.
We must adapt the definition of E for the composition of programs accordingly. We explicit the
components of σ as follows. The state σ contains:

• W , the values of variables

• R, the collection of messages expected, or “to be received” by p

• S, the collection of messages emitted by p

With this shape of σ, the form of the semantic function E and the rule of the composition of
programs become more complex. Definition of E on one process p imposes the prefix Rp of R (the
messages to be received) that is required by p and that will be consumed by p. Therefore, the
function E applies pattern matching on its R argument to isolate this “expected” part. Whatever
remains in R is propagated to the output R. Similarly, SP denotes the suffix set of messages
emitted by p, to be added to S. Formally, we will write this as:
E(p, 〈W,RP ⊕R,S〉) = 〈W ′, R, S ⊕ SP 〉
To explicit the rule of code sequence, suppose that p runs pieces of code C and D in sequence,
with C expecting incoming received messages RC and D expecting incoming received messages
RD. Assuming that the effect of C on the state is:
E(C, 〈W,RC ⊕R,S〉) = 〈W ′, R, S ⊕ SC〉
and the effect of D on the state is:
E(D, 〈W ′, RD ⊕R,S〉) = 〈W ′′, R, S ⊕ SD〉,
then C;D expects received messages RC ⊕ RD (for the appropriate concatenation operator ⊕)
and its effect on the state is:
E(C;D, 〈W,RC ⊕RD ⊕R,S〉) = 〈W ′′, R, S ⊕ SC ⊕ SD〉.

Adjoint programs operate on two kinds of variables. On one hand, the variables of the original
primal code are copied in the adjoint code. In the state σ, we will note their values “V ”. On
the other hand, the adjoint code introduces new adjoint variables to hold the derivatives. In the
state σ, we will denote their values “V ”.
Moreover, adjoint computations with the store-all approach use a stack to hold the intermediate
values that are computed and pushed during the forward sweep −→P and that are popped and
used during the backward sweep ←−P . We will denote the stack as “k”. In the sequel, we will use

Inria



Checkpointing Adjoint MPI Programs 9

a fundamental property of the stack mechanism of AD adjoints, which is that when a piece of
code has the shape −→P ;

←−
P , then the stack is the same before and after this piece of code. To be

complete, the state should also describe the sent and received messages corresponding to adjoint
values (see section 1.1). As these parts of the state play a very minor role in the proofs, we will
omit them. Therefore, we will finally split states σ of a given process as: σ = 〈V, V , k,R, S〉.
For our needs, we formalize some classical semantic properties of adjoint programs. These prop-
erties can be proved in general, but this is beyond the scope of this paper. We will consider these
properties as axioms.

• Any “copied” piece of code X (for instance C) that occurs in the adjoint code operates only
on the primal values V and on the R and S communication sets, but not on V nor on the
stack. Formally, we will write:
E(X, 〈V, V , k,RX ⊕ R,S〉) = 〈Vnew, V , k,R, S ⊕ SX〉, with the output Vnew and SX de-
pending only on V and on RX .

• Any “forward sweep” piece of code −→X (for instance −→U ,−→C or −→D) works in the same manner
as the original or copied piece X, except that it also pushes on the stack new values noted
δkX , which only depend on V and RX . Formally, we will write:
E(−→X, 〈V, V , k,RX ⊕R,S〉) = 〈Vnew, V , k ⊕ δkX , R, S ⊕ SX〉

• Any “backward sweep” piece of code ←−X (for instance ←−U ,←−C or ←−D), on one hand operates
on the adjoint variables V and, on the other hand, uses exactly the top part of the stack
δkX that was pushed by −→X . In the simplest AD model, δkX is used to restore the values
V that were held by the primal variables immediately before the corresponding forward
sweep −→X . There exists a popular improvement in the AD model in which this restoration
is only partial, restoring only a subset of V to their values before −→X . This improvement
(called TBR) guarantees that the non-restored variables have no influence on the following
adjoint computations and therefore need not be stored. The advantage of TBR is to reduce
the size of the stack. Without loss of generality, we will assume in the sequel that the full
restoration is used, i.e. no TBR is used. With the TBR mechanism, the semantics of the
checkpointed program are preserved at least for the output V so that this proof is still
valid. Formally, we will write:
E(←−X, 〈V, V , k ⊕ δkX , R, S〉) = 〈Vnew, V new, k, R, S〉, where Vnew is equal to the value V
before running −→X (which is achieved by using δkX and V ) and V new depends only on V ,
V and δkX .

• A “take snapshot” operation “•” for a checkpointed piece C does not modify V nor V ,
expects no received messages, and produces no sent messages. It adds into the stack
enough values SnpC to permit a later re-execution of the checkpointed part. Formally, we
will write :
E(•, 〈V, V , k,R, S〉) = 〈V, V , k ⊕ SnpC , R, S〉, where SnpC is a subset of the values in V ,
thus depending on only V .

• A “restore snapshot” operation “◦” of a checkpointed piece C does not modify V , expects
no received messages and produces no sent messages. It pops from the stack the same set
of values SnpC that the “take snapshot” operation pushed “onto” the stack. This modifies
V so that it holds the same values as before the “take snapshot” operation.
We introduce here the additional assumption that restoring the snapshot may (at least
conceptually) add some messages to the output value of R. In particular:

Assumption 1. The duplicated recvs in the checkpointed part will produce the same values
as their original calls.

RR n° 8864



10 L. Hascoët and A. Taftaf

Formally, we will write:
E(◦, 〈V, V , k ⊕ SnpC , R, S〉) = 〈Vnew, V , k,RC ⊕ R,S〉 where Vnew is the same as V from
the state input to the take snapshot.

Our goal is to demonstrate that the checkpointing mechanism preserves the semantics i.e.:

Theorem 1. For any individual process p, for any checkpointed part C of p, (so that p =
{U ;C:D}), for any state σ and for any checkpointing method that respects the Assumption 1:

E({−→U ;
−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U }, σ) = E({−→U , •, C,−→D,←−D, ◦,−→C ,←−C ,←−U }, σ)

Proof. We observe that the non-checkpointed adjoint and the checkpointed adjoint share a com-
mon prefix −→U and also share a common suffix ←−C ;←−U . Therefore, as far as semantics equivalence
is concerned, it suffices to compare −→C ;

−→
D ;
←−
D with •, C,−→D,←−D, ◦,−→C .

Therefore, we want to show that for any initial state σ0 :

E({−→C ;
−→
D ;
←−
D}, σ0) = E({•, C,

−→
D,
←−
D, ◦,−→C }, σ0)

Since the semantic function E performs pattern matching on the R0 part of its σ0 argument,
and the non-checkpointed code has the shape {−→C ;

−→
D ;
←−
D}, R0 matches the pattern RC⊕RD⊕R.

Therefore, what we need to show writes as:

E({−→C ;
−→
D ;
←−
D}, 〈V0, V 0, k0, RC ⊕RD ⊕R,S0〉) =

E({•, C,−→D,←−D, ◦,−→C }, 〈V0, V 0, k0, RC ⊕RD ⊕R,S0〉)

We will call σ2, σ3 and σ6 the intermediate states produced by the non-checkpointed code (see

C⃗ D⃗

DC

⃗⃗

D⃗C

DC⃗

C

⃗

⃗

(a) (b)

σ0 σ2

σ3

σ6σ7

σ0 σ1 ' σ2 '
σ3 '

σ4 ' σ5 '
σ6 'σ7 '

U⃗

U

U⃗

U

⃗

⃗

Process: Process:

Figure 4: (a) An adjoint program run by one process. (b) The same adjoint after applying
checkpointing to C. The figures show the locations (times) in the execution for the successive
states σi and σ′

i.

figure 4 (a)). Similarly, we call σ′
1, σ′

2, σ′
3, σ′

4, σ′
5, σ′

6 the intermediate states of the checkpointed
code (see figure 4 (b)). In other words: σ2 = E(−→C , σ0); σ3 = E(−→D,σ2); σ6 = E(←−D,σ3) and
similarly σ′

1 = E(•, σ0); σ′
2 = E(C, σ′

1); σ′
3 = E(−→D,σ′

2); σ′
4 = E(←−D,σ′

3); σ′
5 = E(◦, σ′

4);
σ′
6 = E(−→C , σ′

5).
Our goal is to show that σ′

6 = σ6. Considering first the non-checkpointed code, we propagate
the state σ by using the axioms already introduced:

σ2 + E(−→C , σ0) = E(−→C , 〈V0, V0, k0, RC ⊕RD ⊕R,S0〉)
= 〈V2, V0, k0 ⊕ δkC , RD ⊕R,S0 ⊕ SC〉
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Checkpointing Adjoint MPI Programs 11

with V2, SC and δkC depending only on V0 and RC

σ3 + E(−→D,σ2) = E(−→D, 〈V2, V0, k0 ⊕ δkC , RD ⊕R,S0 ⊕ SC〉)
= 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

with V3, SD and δkD depending only on V2 and RD

σ6 + E(←−D,σ3) = E(←−D, 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉)
= 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

with V2 and V 6 depending only on V3, V0 and δkD

Considering now the checkpointed code, we propagate the state σ′, starting from σ′
0 = σ0 by

using the axioms already introduced:

σ′
1 + E(•, σ0) = E(•, 〈V0, V0, k0, RC ⊕RD ⊕R,S0〉)

The snapshot-taking operation • stores a subset of the original values V0 in the stack “SnpC”.

σ′
1 = 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R,S0〉

σ′
2 + E(C, σ′

1) = E(C, 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R,S0〉)

The forward sweep of the checkpointed code −→C is essentially a copy of the checkpointed code C.
As the only difference between the two states σ′

1 and σ0 is the stack k and both C and −→C don’t
need the stack during run time (−→C stores values in the stack, but doesn’t use it), the effect of
C on the state σ′

1 produces exactly the same output values V2 and the same collection of sent
values SC as the effect of −→C on the state σ0 .

σ′
2 = 〈V2, V0, k0 ⊕ SnpC , RD ⊕R,S0 ⊕ SC〉

The next step is to run −→D :

σ′
3 + E(−→D,σ′

2) = E(−→D, 〈V2, V0, k0 ⊕ SnpC , RD ⊕R,S0 ⊕ SC〉

The output state of −→D uses only the input state’s original values V and received values R. As
V and R are the same in both σ′

2 and σ2, the effect of −→D on the state σ′
2 produces the same

variables values V3, the same collection of messages sent through MPI communications SD and
the same set of values stored in the stack δkD as the effect of of −→D on the state σ2.

σ′
3 = 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

Then, the backward sweep starts with the backward sweep of D.

σ′
4 + E(←−D,σ′

3) = E(←−D, 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

The output state of ←−D uses only its input state’s original values V , the values of the adjoint
variables V and the values stored in the top of the stack δkD. As V , V and δkD are the same
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12 L. Hascoët and A. Taftaf

in both σ′
3 and σ3, the effect of ←−D on the state σ′

3 produces exactly the same variables values V2
and the same values of adjoint variables V 6 as the effect of ←−D on the state σ3.

σ′
4 = 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

σ′
5 + E(◦, σ′

4) = E(◦, 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

The snapshot-reading operation ◦ overwrites V2 by restoring the original values V0. According to
Assumption 1, the snapshot-reading ◦ conceptually also restores the collection of values that
have been received during the first execution of the checkpointed part RC .

σ′
5 = 〈V0, V6, k0, RC ⊕R,S0 ⊕ SC ⊕ SD〉

σ′
6 + E(−→C , σ′

5) = E(−→C , 〈V0, V6, k0, RC ⊕R,S0 ⊕ SC ⊕ SD〉

The output state after −→C uses only on the input state’s values V and the received values R. As
V and R are the same in both σ′

5 and σ0, the effect of −→C on the state σ′
5 produces the same

original values V2 and the same set of values stored in the stack δkC as the effect of −→C on the
state σ0.

σ′
6 = 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

Finally we have σ′
6 = σ6.

We have shown the preservation of the semantics at the level of one particular process pi.
The semantics preservation at the level of the complete parallel program P requires to show in
addition that the collection of messages sent by all individual processes pi matches the collection
of messages expected by all the pi. At the level of the complete parallel code, the messages
expected by one process will originate from other processes and therefore will be in the messages
emitted by other processes.
This matching of emitted and received messages depends on the particular parallel communica-
tion library used (e.g. MPI) and is driven by specifying communications, tags, etc. Observing
the non-checkpointed code first, we have identified the expected receives and produced sends
SU ⊕ SC ⊕ SD of each process. Since the non-checkpointed code is assumed correct, the collec-
tion of SU ⊕SC ⊕SD for all processes pi matches the collection of RU ⊕RC ⊕RD for all process
pi.
The study of the checkpointed code for process pi has shown that it can run with the same ex-
pected receives RU ⊕RC⊕RD and produces at the end the same sent values SU ⊕SC⊕SD. This
shows that the collected sends of the checkpointed version of P matches its collected expected
receives.
However, matching sends with expected receives is a necessary but not sufficient condition for

correctness. Consider the example of figure 5, in which we have two communications between
two processes (“comm A” and “comm B”):

• The set of messages that process 1 expects to receive R= {comm B}. The set of messages
that it will send is S= {comm A}.

• The set of messages that process 2 expects to receive R= {comm A}. The set of messages
that it will send is S= {comm B}.
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recv

Process 2:

send

sendrecv

comm A

Process 1:

comm B

Figure 5: Example illustrating the risk of deadlock if send and receive sets are only tested for
equality.

The above required property that the collection of sends {comm A, comm B} matches the
collection of receives {comm A, comm B} is verified. However, this code will fall into a deadlock.
Semantic equivalence between two parallel programs requires not only that collected sends match
collected receives but also that there is no deadlock. If, conversely:

Assumption 2. the resulting checkpointed code is deadlock free,

then, the semantics of the checkpointed code is the same as that of its non-checkpointed
version.

To sum up, a checkpointing adjoint method adapted to MPI programs is correct if it respects
these two assumptions:

Assumption 1. The duplicated recvs in the checkpointed part will collect the same values as
their original calls.

Assumption 2. The checkpointed code is deadlock free.

For instance, the “popular” checkpointing approach that we find in most previous works is
correct because the checkpointed part which is duplicated is self-contained regarding communi-
cations. Therefore, it has always been assumed that the receive operations in that duplicated
part receive the same value as their original instances. In addition, the duplicated part, being a
complete copy of a part of the original code that does not communicate with the rest, is clearly
deadlock free.
We believe, however, that this constraint of a self-contained checkpointed part can be alleviated.
We will propose a checkpointing approach that respects our two assumptions for any check-
pointed piece of code. We will then study a frequent special case where the cost of our proposed
checkpointing approach can be reduced.

3 A General MPI-Adjoint Checkpointing Method
We introduce here a general technique that adapts the checkpointing to the case of MPI parallel
programs and that can be applied to any checkpointed piece of code. This technique is basically
inspired by the works that have been done in the context of resilience [9]. Therefore, before
detailing this general technique, we will start with a small analogy between the checkpointing
in the context of resilience “Resilience-checkpointing” and the checkpointing in the context of
AD-Adjoints. In both mechanisms, processes take snapshots of the values they are computing
to be able to restart from these snapshots when it is needed. The difference is the reason why
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14 L. Hascoët and A. Taftaf

taking these snapshots. In the case of “Resilience-checkpointing”, the reason is to recover the
system from failure, whereas in the case of AD-adjoint, the reason is mostly the reduction of the
peak of memory used. Also, the snapshots are called “checkpoints” in the case of “Resilience-
checkpointing”. Clearly the checkpoints in the context of Adjoint-AD are different from the
checkpoints in the context of resilience. We recall that the checkpoints (or also the checkpointed
parts) in the case Adjoint-AD are rather intervals of computation that are re-executed when it
is needed.
There are two types of checkpointing for resilience: the non-coordinated checkpointing, in which
every process takes its own checkpoint independently from the other processes and the coordi-
nated checkpointing in which every process has to coordinate with other process before taking its
own checkpoint. We are interested rather by the non-coordinated checkpointing, more precisely
by the non-coordinated checkpointing coupled with Message logging. To cope with failure, every
process saves in a remote storage checkpoints , i.e. complete images of the process memory.
Also, every process saves the messages it receives and every send or recv event that it performs.
In case of failure, only the failed process restarts from its last checkpoint. The other non-failed
processes continue their executions normally. The restarted process runs exactly in the same
way as before the failure, except that it does not perform any send call already done before the
failure. The restarted process does not perform either any recv call already done, but retrieves
instead the value that has been received and stored by the recv before the failure.

By analogy, we propose an adaptation of the checkpointing technique to MPI adjoint codes.
This adapted technique (we call it “receive-logging”) relies on logging every message at the time
when it is received.

• During the first execution of the checkpointed part, every communication call is executed
normally. However, every receive call (in fact its wait in the case of non-blocking commu-
nication) stores the value it receives into some location local to the process. Calls to send
are not modified.

• During the duplicated execution of the checkpointed part, every send operation does noth-
ing (it is “deactivated”). Every receive operation, instead of calling any communication
primitive, reads the previously received value from where it has been stored during the
first execution.

• The type of storage used to store the received values is First-In-First-Out. This is different
from the stack used by the adjoint to store the trajectory.

In the case of nested checkpointed parts, this strategy can either reuse the storage prepared
for enclosing checkpointed parts, or free it at the level of the enclosing checkpointed part and
re-allocate it at the time of the enclosed checkpoint. This can be managed using the knowledge
of the nesting depth of the current checkpointed part.

Notice that this management of storage and retrieval of received values, triggered at the time
of the recv’s or the wait’s, together with nesting depth management, can be implemented by a
specialized wrapper around MPI calls, for instance inside the AMPI library [3].

Figure 6 (a) shows the example of two nested checkpointed parts together with an arbitrary
communication pattern that straddles across the boundaries of the checkpointed parts.
During execution of the duplicated checkpointed parts, no communication call is made and receive
operations read from the local storage instead. We can see that the communication pattern of
the forward sweep is preserved by checkpointing, the communication pattern of the backward
sweep is also preserved, and no communication takes place during duplicated parts.
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isend send wait recv

recv;
log

sendrecv;
log

send

no_op no_op

restorerestore

no_op no_op

restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

isend send wait recv

recv;
log

sendrecv;
log

send

no_op no_op

restorerestore;
free

no_op send

recv restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

restore

(a) (b)

Figure 6: (a) Checkpointing a parallel adjoint program on two nested checkpointed parts by using
the receive-logging method. (b) Refinement of the checkpointed code by applying the message
re-sending to a send-recv pair with respect to the inner checkpointed code which is right-tight
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To show that this strategy is correct, we will check that it verifies the two assumptions of
section 2.

3.1 Correctness

GU⃗ GC G D⃗

GD

GC

GU

⃗

GC⃗

U⃗ D⃗

C⃗

U

D

C

⃗
⃗

⃗

C

=φ

⃗

⃗

Figure 7: Communications graph of a checkpointed program with pure receive-logging method

By construction, this strategy respects Assumption 1 because the duplicated receives read
what the initial receives have received and stored.
To verify Assumption 2 about the absence of deadlocks, it suffices to consider one elementary
application of checkpointing, shown in the top part of figure 7. Communications in the check-
pointed code occur only in −→U , −→C , −→D (about primal values) on one hand, and in←−D ,←−C ,←−U (about
derivatives) on the other hand. The bottom part of the figure 7 shows the communications graph
of the checkpointed code, identifying the sub-graphs of each piece of code. Dotted arrows express
execution order, and solid arrows express communication dependency. Communications may be
arbitrary between G−→

U
, GC and G−→

D
but the union of these 3 graphs is the same as for the

forward sweep of the non-checkpointed code, so it is acyclic by hypothesis.
Similarly, communications may be arbitrary between G←−

D
, G←−

C
and G←−

U
but (as G−→

C
is by defi-

nition empty) these graphs are the same as for the non-checkpointed backward sweep. Since we
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assume that the non-checkpointed code is deadlock free, it follows that the checkpointed code is
also deadlock free.

3.2 Discussion
The receive-logging strategy applies for any choice of the checkpointed piece(s). However, it
may have a large overhead in memory. At the end of the general forward sweep of the complete
program, for every checkpointed part (of level zero) encountered, we have stored all received
values, and none of these values has been used and released yet. This is clearly impractical for
large codes.
On the other hand, for checkpointed parts deeply nested, the receive-logging has an acceptable
cost as stored values are used quickly and their storage space may be released and used by
checkpointed parts to come. We need to come up with a strategy that combines the generality
of receive-logging with the memory efficiency of an approach based on re-sending.

4 Using Message Re-Sending Whenever Possible
We may refine the receive-logging by re-executing communications when possible. The principle
is to identify send-recv pairs whose ends belong to the same checkpointed part, and to re-
execute these communication pairs identically during the duplicated part, thus performing the
actual communication twice. Meanwhile, communications with one end not belonging to the
checkpointed part are still treated by receive-logging.

However, the checkpointed part must obey an extra constraint which we will call “right-tight”.
A checkpointed part is “right-tight” if no communication dependency goes from downstream the
checkpointed part back to the checkpointed part, i.e. there is no communication dependency
arrow going from D to C in the communications graph of the checkpointed code. For instance,
there must no wait in the checkpointed part that corresponds with communication call in other
process which is downstream (i.e. after) the checkpointed part.

Figure 6 (a) shows an example of two nested checkpointed parts in which the outer check-
pointed part is not right-tight, whereas the inner checkpointed part is right-tight since the de-
pendency from the second recv of process 2 to the wait of the isend of process 1 only goes from
the checkpoint inside to its outside. In the figure 6 (a), we identify a send-recv pair (whose
ends are surrounded by circles) that belongs to both nested checkpointed parts. As the outer
checkpointed part is not right-tight, we can apply the message re-sending to the send-recv pair
only with respect to the inner checkpointed part. We see on figure 6 (b) that the send-recv pair
is re-executed during the execution of the duplicated instance of the inner checkpointed part. As
the duplication of the pair send-recv is placed between the wait of process 1 and the first recv
of process 2 and since wait is a non blocking routine, the duplication of this send-recv pair does
not create deadlock in the resulting adjoint.

Figure 8 shows a counterexample, illustrating the danger of applying message re-sending to
a checkpointed part which is not right-tight. We reuse the example of figure 6 (a). Instead of
applying the message re-sending to the pair send-recv (whose ends are surrounded by circles)
with respect to the inner checkpointed code as it is the case in figure 6 (b), we applied the
message re-sending to the pair send-recv with respect to the outer checkpointed code which is
not right-tight. Figure 8 shows the cycle in the communications graph of the resulting adjoint.
We see on the figure that, between the recv of process 1 and the send of process 2 takes place
the duplicated run of the outer checkpointed part. In this duplicated run, we find a duplicated
send-recv pair that causes a synchronization. Execution thus reaches a deadlock, with process
1 blocked on the recv, and process 2 blocked on the duplicated recv.
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isend send wait recv

recv;
log

sendrecv

send

no_op send

restorerecv

no_op no_op

restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

restore

Figure 8: Application of the message re-sending to a send-recv pair with respect to the outer
checkpointed part which is not right-tight
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Only when the checkpointed part is right-tight can we mix message re-sending of communi-
cations pairs that are contained in the checkpointed part with receive-logging of the others. The
interest is that memory consumption is limited to the (possibly few) logged receives. The cost
of extra communications is tolerable compared to the gain in memory.

4.1 Correctness

GU⃗
GC G D⃗

GD

GC

GU

GC⃗

U⃗ D⃗

C⃗

U

D

C

⃗
⃗

⃗

C

⃗

⃗

⃗

Figure 9: Communications graph of a checkpointed program by using the receive-logging coupled
with the message re-sending

The subset of the duplicated receives that are treated by receive-logging still receive the same
value by construction. Concerning the duplicated send-recv pair, the duplicated checkpointed
part computes the same values as its original execution (see step from σ′

5 to σ′
6 in section 2 ).

Therefore the duplicated send and the duplicated recv transfer the same value.
The proof about the absence of deadlocks is illustrated in figure 9. In contrast with the pure
receive-logging case, G−→

C
is not empty any more because of re-sent communications. G−→

C
is a

subgraph of GC and is therefore acyclic. Since the checkpointed part is right-tight, the depen-
dency from GC to G−→

D
and from G←−

D
to G←−

C
are unidirectional. There is no communication

dependency between G−→
C

and G←−
D

and G←−
C

because G−→
C

communicates only primal values and
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G←−
D

an G←−
C

communicate only derivative values.
Assuming that the communications graph of the non-checkpointed code is acyclic, it follows that:

• Each of G−→
U
, G−→

C
, G−→

D
, G←−

D
, G←−

C
and G←−

U
is acyclic.

• Communications may be arbitrary between G−→
U

and GC but since these pieces of code
occur in the same order in the non-checkpointed code, and it is acyclic, there is no cycle
involved in (G−→

U
; GC). The same argument applies to (G←−

C
; G←−

U
).

Therefore, the complete graph on the bottom of figure 9 is acyclic.

5 Discussion And Further Work

Process 1:
send

send

Process 2:
recv;log

recv;log

depth=1

Process 3:

(a) (b)

send

no_op

restore

restore

send

recv

recv

Process 1:
send

send

Process 2:
recv;log

recv

depth=1

Process 3:

send

send

restore

recv

send

recv

recv

Figure 10: (a) The receive-logging applied to a parallel adjoint program. (b) Application of the
message re-sending to a send-recv pair with respect to a non-right-tight checkpointed code

We studied checkpointing in the case of MPI parallel programs with point-to-point com-
munications. We proved that any technique that adapts the checkpointing mechanism to MPI
parallel programs and that respects some sufficient conditions, is a correct MPI checkpointing
technique, in the sense that, the checkpointed code resulting from the application of this MPI
checkpointing technique preserves the semantics of the non-checkpointed adjoint code. We in-
troduced, a general MPI checkpointing technique that respects the sufficient conditions for any
choice of the checkpointed part. This technique is based on logging the received messages , so
that the duplicated communications need not take place. We proposed a refinement that reduces
the memory consumption of this general technique by duplicating the communications whenever
possible. There are a number of questions that should be studied further:

We imposed a number of restrictions on the checkpointed part in order to apply the refine-
ment. These are sufficient conditions, but it seems they are not completely necessary. Figure
10 shows a checkpointed code which is not right-tight. Still, the application of the message re-
sending to a send-recv pair (whose ends are surrounded by circles) in this checkpointed part,
does not introduce deadlocks in the resulting checkpointed code.
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In real codes we may have nested structure of checkpointed parts in which each checkpointed
part may be or not right-tight. Applying the message re-sending to only checkpointed parts
that are right-tight means that some communication calls will be activated in some levels and
deactivated in the other levels. Thus, to implement the refined receive-logging, we need to
think about the way we could automatically alternate between these two situations for each
communication call. For instance, a receive that is deactivated at a level and activated at the
level just after has to release its stored value.

Finally, these checkpointing techniques need to be experimented in real codes. It would be
interesting to measure the memory consumption of the general checkpointing technique before
and after the application of message re-sending.
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