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PSEUDOPRIME REDUCTIONS OF ELLIPTIC CURVES

C. DAVID & J. WU

Abstract. Let E be an elliptic curve over Q without complex multiplication,
and for each prime p of good reduction, let nE(p) = |E(Fp)|. For any integer b,
we are studying in this paper elliptic pseudoprimes to the base b. More precisely,
let QE,b(x) be the number of primes p 6 x such that bnE(p) ≡ b (modnE(p)), and
πpseu

E,b (x) be the number of compositive nE(p) such that bnE(p) ≡ b (modnE(p))
(also called elliptic curve pseudoprimes). Motivated by cryptography applications,
we address in this paper the problem of finding upper bounds for QE,b(x) and
πpseu

E,b (x), generalising some of the literature for the classical pseudoprimes [6, 17]
to this new setting.

1. Introduction

The study of the structure and size of the group of points of elliptic curves over
finite fields has received much attention since Koblitz and Miller independently pro-
posed in 1985 elliptic curve cryptography, an approach to public-key cryptography
based on the algebraic structure of elliptic curves over finite fields. Those cryptosys-
tems guarantee, in general, a high level of security with less cost in the size of the
keys, whenever the order of the group has a big prime divisor.

Let E be an elliptic curve defined over Q with conductor NE and without complex
multiplication (CM), and denote by E(Fp) the reduction of E modulo p. Writing
nE(p) := |E(Fp)|, it is an interesting problem to study the asymptotic behavior of

(1.1) πtwin
E (x) :=

∣∣{p 6 x : nE(p) is prime
}∣∣.

Here and in the sequel, the letters p, q and ` denote prime numbers. Koblitz [11]
conjectured that as x→∞,

(1.2) πtwin
E (x) ∼ Ctwin

E x

(log x)2
,

with an explicit constant Ctwin
E depending only on E (see [5, (2.5)] for its precise

definition). It is easy to see that if Ctwin
E = 0, then πtwin

E (x) �E 1 for all x > 1.
The asymptotic formula (1.2) can be regarded as the analogue of the twin prime
conjecture for elliptic curves. As in the classical case, Koblitz’s conjecture is still
open, but was shown to be true on average over all elliptic curves [1]. One can also
apply sieve methods to get unconditional or conditional upper bounds for πtwin

E (x).
The best unconditional upper bound is due to Zywina [22, Theorem 1.3], and the
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best bound under the Generalised Riemann Hypothesis (GRH) is due to David &
Wu [5, Theorem 2]. For E an elliptic curve over Q without CM, and for any ε > 0,
those bounds are

(1.3) πtwin
E (x) 6


(24Ctwin

E + ε)
x

(log x) log2 x
(unconditionally),

(10Ctwin
E + ε)

x

(log x)2
(under the GRH),

where logk denotes the k-fold logarithm function.
Let b > 2 be an integer. We say that a composite positive integer n is a pseudo-

prime to base b if the congruence

(1.4) bn ≡ b (modn)

holds. In practice, primality testing algorithms are not fast when one wants to test
many numbers in a short amount of time, and pseudoprime testing can provide a
quick pre-selection procedure to get rid of most of the pretenders. The distribution
of pseudoprimes was studied by many authors, including [6, 17]. Motivated by
applications in cryptography, the question of the distribution of pseudoprimes in
certain sequences of positive integers has received some interest (see [3, 7, 14, 15, 18]).
In particular Cojocaru, Luca & Shparlinski [3] have investigated distribution of
pseudoprimes in {nE(p)}p primes. Define

QE,b(x) :=
∣∣{p 6 x : bnE(p) ≡ b (modnE(p))

}∣∣.
According to Fermat’s little theorem, if nE(p) is a prime such that nE(p) - b, then
(1.4) holds with n = nE(p). Thus

(1.5) πtwin
E (x) 6 QE,b(x)

for all x > 2. Cojocaru, Luca & Shparlinski [3, Theorems 1 and 2] proved that for
any fixed base b > 2 and elliptic curve E without CM, the estimates

(1.6) QE,b(x)�E,b


x(log3 x)2

(log x) log2 x
(unconditionally)

x(log2 x)2

(log x)2
(under the GRH)

hold for all x > 10, where the implied constant depends on E and b. ∗

The first aim of this paper is to improve (1.6).

∗We noticed that there are two inaccuracies in Cojocaru, Luca & Shparlinski’s proof of (1.6):
With the notation of [3], we have tb(`) | (nE(p) − 1) instead of tb(`) | nE(p) (see [3, page 519]).
Thus the inequality (see [3, page 520])

#T 6
∑

y<`6z

Π(x; `ρ(tb(`)))

does not hold. Secondly the statements of Lemmas 3, 4, 6 and 7 of [3] are not true when (m,ME) 6=
1 (see Section 2 for the definition of ME). Then, the proofs of Lemma 9 and 10 hold only for
(m,ME) = 1. This is not sufficient for the proof bounding #T since tb(`) is not necessarily
coprime with ME .



PSEUDOPRIME REDUCTIONS OF ELLIPTIC CURVES 3

Theorem 1.1. Let E be an elliptic curve over Q without CM and b > 2 be an
integer. For any ε > 0, we have

(1.7) QE,b(x) 6


(48eγ + ε)

x log3 x

(log x) log2 x
(unconditionally)

(28eγ + ε)
x log2 x

(log x)2
(under the GRH)

for all x > x0(E, b, ε), where γ is the Euler constant.

Denoting by π(x) the number of primes not exceeding x, and by πpseu
b (x) the

number of pseudoprimes to base b not exceeding x, then it is known that (see
[6, 17])

(1.8) πpseu
b (x) = o(π(x))

as x→∞. Precisely Pomerance [17, Theorem 2] proved that †

(1.9) πpseu
b (x) 6

x√
L(x)

for x > x0(b), where

(1.10) L(x) := e(log x)(log3 x)/ log2 x.

As analogue of πpseu
b (x) for elliptic curve, we introduce

πpseu
E,b (x) :=

∣∣{p 6 x : nE(p) is pseudoprime to base b
}∣∣.

Clearly
QE,b(x) = πtwin

E (x) + πpseu
E,b (x).

In view of (1.8), it seems reasonable to conjecture

(1.11) πpseu
E,b (x) = o

(
πtwin
E (x)

)
as x→∞.

In order to establish analogue of (1.9) for πpseu
E,b (x), we need a supplementary

hypothesis.

Hypothesis 1.2. Let E be an elliptic curve over Q. There is a positive constant δ
such that

(1.12) ME(n) := # {p : nE(p) = n} �E n
δ

holds uniformly for n > 1, where the implied constant can depend on the elliptic
curve E.

By the Hasse bound |p+ 1− nE(p)| 6 2
√
p, it is easy to see that

(1.13) nE(p)/16 6 p 6 16nE(p)

for all p. Thus the relation nE(p) = n and the Hasse bound imply that |p−n| 6 9
√
n.

Therefore (1.12) holds trivially with δ = 1
2

and an absolute implicit constant. It is
conjectured that (1.12) should hold for any δ > 0 (see [12, Question 4.11]). Kowalski

†In [17], the definition of pseudoprime to base b is slightly stronger: bn−1 ≡ 1 (modn) in place
of bn ≡ b (modn). It is easy to adapt Pomerance’s proof of [17, Theorem 2] to obtain (1.9), as we
do in this paper for the context of elliptic curves pseudoprimes. See Section 5 for more details.
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proved that this conjecture is true for elliptic curves with CM [12, Proposition 5.3]
and on average for elliptic curves without CM [12, Lemma 4.10].

The next theorem shows that we can obtain a better conditional upper bound for
πpseu
E,b (x) than πtwin

E (x), which can be regarded as analogue of (1.9) for elliptic curves
without CM.

Theorem 1.3. Let E be an elliptic curve over Q without CM and b > 2 be an
integer. If we assume the GRH and Hypothesis 1.2 with δ < 1

24
, we have

(1.14) πpseu
E,b (x) 6

x

L(x)1/38

for all x > x0(E, b, δ).

In view of Koblitz’s conjecture (1.2), the result of Theorem 1.3 then encourages
our belief in Conjecture (1.11).

By combining (1.14) and the second part of (1.3), we immediately get the following
result.

Corollary 1.4. Let E be an elliptic curve over Q without CM and b > 2 be an
integer. If we assume the GRH and hypothesis 1.2 with δ < 1

24
, for any ε > 0 we

have

(1.15) QE,b(x) 6 (10Ctwin
E + ε)

x

(log x)2

for all x > x0(E, b, δ, ε).

We can also consider the same problem for elliptic curves with CM. In this case,
we easily obtain an unconditional result by using the bound (1.9) of Pomerance for
pseudoprimes and a result of Kowalski [12] about the second moment of ME(n) for
elliptic curves with CM.

Theorem 1.5. Let E be an elliptic curve over Q with CM and b > 2 be an integer.
Then we have

(1.16) πpseu
E,b (x) 6

x

L(x)1/4

for all x > x0(E, b).

It seems be interesting to prove that

(1.17) πpseu
E,b (x)→∞, as x→∞.

We hope to come back to this question in the future.
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during the academic year 2009-2010. The second author wishes to thank the Centre
de Recherches Mathématiques (CRM) in Montréal for hospitality and support during
the preparation of this article.
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2. Chebotarev density theorem

In order to prove Theorems 1.1 and 1.3, we need to know some information on the
distribution of the sequence {nE(p)}p primes in arithmetic progressions. The aim of
this section is to give such results with the help of the Chebotarev density theorem.
Our main result of this section is Theorem 2.3 below.

We conserve all notation of [5, Sections 2 and 3]. In particular, for an elliptic
curve E without complex multiplication defined over the rationals, let E[n] be the
group of n-torsion points of E, and let Ln be the field extension obtained from Q
by adding the coordinates of the n-torsion points of E. This is a Galois extension
of Q, and we denote G(n) := Gal(Ln/Q). Since E[n](Q̄) ' Z/nZ×Z/nZ, choosing
a basis for the n-torsion and looking at the action of the Galois automorphisms on
the n-torsion, we get an injective homomorphism

ρn : G(n) ↪→ GL2(Z/nZ).

If p - nNE, then p is unramified in Ln/Q. Let p be an unramified prime, and let
σp be the Artin symbol of Ln/Q at the prime p. For such a prime p, ρn(σp) is
a conjugacy class of matrices of GL2(Z/nZ). Since the Frobenius endomorphism
(x, y) 7→ (xp, yp) of E over Fp satisfies the polynomial x2 − aE(p)x + p, it is not
difficult to see that

tr(ρn(σp)) ≡ aE(p) (modn) and det(ρn(σp)) ≡ p (modn).

To study the sequence {nE(p)}p primes, we will use the Chebotarev Density Theorem
to count the number of primes p such that

nE(p) = p+ 1− aE(p) ≡ det(ρn(σp)) + 1− tr(ρn(σp)) ≡ r (modn)

for integers r, n with n > 2. We then define

Cr(n) = {g ∈ G(n) : det(g) + 1− tr(g) ≡ r (modn)} .

Then, the Cr(n) are unions of conjugacy classes in G(n). We also denote C(n) :=
C0(n). For any prime ` such that (`,ME) = 1, G(`) = GL2(Z/`Z), and it is easy to
compute that

(2.1) |Cr(`)| =


`(`2 − 2) for r ≡ 0 (mod `)

`(`2 − `− 1) for r ≡ 1 (mod `)

`(`2 − `− 2) for r 6≡ 0, 1 (mod `)

and then

(2.2)
|Cr(`)|
|G(`)|

=



`2 − 2

(`− 1)2(`+ 1)
for r ≡ 0 (mod `)

`2 − `− 1

(`− 1)2(`+ 1)
for r ≡ 1 (mod `)

`2 − `− 2

(`− 1)2(`+ 1)
for r 6≡ 0, 1 (mod `).
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It was shown by Serre [19] that the Galois groups G(n) ⊆ GL2(Z/nZ) are large,
and that there exists a positive integer ME depending only on the elliptic curve E
such that

If (n,ME) = 1, then G(n) = GL2(Z/nZ);(2.3)

If (n,ME) = (n,m) = 1, then G(mn) ' G(m)×G(n);(2.4)

If ME | m, then G(m) ⊆ GL2(Z/mZ) is the full inverse image of(2.5)

G(ME) ⊆ GL2(Z/MEZ) under the projection map.

Let

πCr(n)(x, Ln/Q) := |{p 6 x : p - nNE and ρn(σp) ∈ Cr(n)}| .
The following proposition (with a better error term) was proved in [5, Theorem 3.9]
for the conjugacy class C(n) = C0(n) ⊆ G(n) when n is squarefree, and can be
easily generalised to general n and r.

Proposition 2.1. Let E be an elliptic curve over Q without CM. Let r > 0 be an
integer, and let n = dm be any positive integer with (d,ME) = 1 and m |ME

∞. ‡

(i) Then,

πCr(n)(x, Ln/Q) =
|Cr(m)|
|G(m)|

(∏
`k‖d

|Cr(`k)|
|GL2(Z/`kZ)|

)
Li(x)+OE

(
x exp

{
−An−2

√
log x

})
uniformly for log x � n12 log n, where the implied constants depend only on the
elliptic curve E and A is a positive absolute constant.

(ii) Assuming the GRH for the Dedekind zeta functions of the number fields Ln/Q,
we have

πCr(n)(x, Ln/Q) =
|Cr(m)|
|G(m)|

(∏
`k‖d

|Cr(`k)|
|GL2(Z/`kZ)|

)
Li(x) +OE

(
n3x1/2 log (nx)

)
.

Proof. To prove (i) and (ii), one applies the effective Cheboratev Density Theorem
due to Lagarias and Odlyzko [13] and slightly improved by Serre in [20], as stated in
[5, Theorem 3.1] with the appropriate bounds for the discriminants of number fields
[20, Proposition 6], and the bound of Stark [21] for the exceptional zero of Dedekind
L-functions for (i). We refer the reader to [5] for more details. �

Remark 1. There are many cases where we can improve the error term in Proposition
2.1 (ii) by applying a strategy first used in [20] and [16] to reduce to the case of an
extension where Artin’s conjecture holds. The error term then becomes

OE

(
n3/2x1/2 log (nx)

)
.

This can be done if r = 0 (as in [5, Theorem 3.9]), or if (n,ME) = 1 for any r. To
apply the strategy of [20] and [16] and obtain this improved error term, one needs
to insure that Cr(n) ∩ B(n) 6= ∅, where B(n) is the Borel subgroup of GL2(Z/nZ).
For example, this is the case if E is a Serre curve, and most elliptic curves are Serre
curves as it was shown by Jones [10].

‡The notation d | n∞ means that p | d ⇒ p | n and the notation pk‖n means that pk | n and
pk+1 - n.
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We now need upper and lower bounds on the size of the main term of Proposition
2.1, which are computed in the next lemma.

Lemma 2.2. Let E be an elliptic curve over Q without CM. For all primes ` - ME

and integers k > 1, we have the bounds

(2.6)
1

ϕ(`k)
· `− 2

`− 1
6

|Cr(`k)|
|GL2(Z/`kZ)|

6
1

ϕ(`k)

when r 6≡ 0 (mod `), and the bounds

(2.7)
1

ϕ(`k)
· `− 2

`− 1
6

|Cr(`k)|
|GL2(Z/`kZ)|

6
1

ϕ(`k)

(
1 +

1

(`3 − 1)(`2 − 1)

)
when r ≡ 0 (mod `).

Furthermore, for m |ME
∞ such that |Cr(m)| 6= 0, we have that

(2.8)
1

ϕ(m)
�E
|Cr(m)|
|G(m)|

�E
1

ϕ(m)

with constants depending only on the elliptic curve E. In particular, the upper bound
in (2.8) holds without the hypothesis |Cr(m)| 6= 0.

Proof. Fix ` - ME and k > 1. To count the number of elements in Cr(`
k), we count

the matrices g̃ ∈ GL2(Z/`kZ) which are the inverse images of a matrix g ∈ Cr(`)
under the projection map from GL2(Z/`kZ) to GL2(Z/`Z), and which satisfy

det(g̃) + 1− tr (g̃) ≡ r (mod `k).

Let

g =

(
a b
c d

)
, g̃ =

(
ã b̃

c̃ d̃

)
.

If b 6≡ 0 (mod `), then b̃ is invertible, and we have to count the number of ã, b̃, c̃, d̃

lifting a, b, c, d such that c̃ ≡ b̃−1(ãd̃− (ã+ d̃)− r+ 1) (mod `k), and there are `3(k−1)

such lifts. A similar argument shows that there are also `3(k−1) lifts if c 6≡ 0 (mod `),
or a 6≡ 1 (mod `) or d 6≡ 1 (mod `). This proves (2.6) as the identity matrix does not
belong to Cr(`) when r 6≡ 0 (mod `). Then, the number of lifts of any matrix from
Cr(`) to Cr(`

k) is `3(k−1), and the number of lifts from GL2(Z/`Z) to GL2(Z/`kZ)
is `4(k−1), which gives

|Cr(`k)|
|GL2(Z/`kZ)|

=
`3(k−1)|Cr(`)|

`4(k−1)|GL2(Z/`Z)|
,

and the result follows by using (2.2).
Finally, we have to count the number of lifts(

1 + k1` k2`
k3` 1 + k4`

)
of the identity matrix such that `2(k1k4 − k2k3) ≡ r (mod `k), where 0 6 ki < `k−1.
We assume that k > 2. If r 6≡ 0 (mod `2), there are no lifts, and we assume that
r ≡ 0 (mod `2). Let v = mini v`(ki), where v`(n) is the `-adic evaluation of n, and
write ki = `vk′i with 0 6 k′i < `k−1−v. If r 6≡ 0 (mod `2+v), there is no solution with
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k1, k2, k3, k4 such that v = mini v`(ki). Suppose that r ≡ 0 (mod `2+v). Then we
need to solve

`2+v(k′1k
′
4 − k′2k′3) ≡ `2+vr′ (mod `k) ⇐⇒ (k′1k

′
4 − k′2k′3) ≡ r′ (mod `k−2−v),

and there are ``3(k−1−v) solutions k′1, k
′
2, k
′
3, k
′
4. The number of lifts of the identity

matrix is then bounded by

(2.9) `
k−2∑
v=0

`3(k−1−v) = ``3(k−1)

k−2∑
v=0

`−3v 6 ``3(k−1) `3

`3 − 1
·

We now prove (2.7). Using (2.9) and the first formula of (2.1), it follows that

`k−1|Cr(`k)|
|GL2(Z/`kZ)|

6
|Cr(`)|

|GL2(Z/`Z)|
+

`4/(`3 − 1)

|GL2(Z/`Z)|
=

(`3 − 1)(`2 − 1) + 1

(`− 1)(`2 − 1)(`3 − 1)
·

For the lower bound, we have

`k−1|Cr(`k)|
|GL2(Z/`kZ)|

>
|Cr(`)| − 1

|GL2(Z/`Z)|
=

`(`2 − 2)− 1

`(`− 1)(`2 − 1)
>

`− 2

(`− 1)2
·

We now prove (2.8). Let m′ =
∏

p|m p
min (vp(m),vp(ME)). By (2.5), G(m) is the full

inverse image of G(m′) under the projection map from GL2(Z/mZ) to GL2(Z/m′Z).
Fix g ∈ Cr(m′), and we now count the number of lifts g̃ in Cr(m). By the Chinese
Remainder Theorem, it suffices to count the number of lifts from Cr(p

vp(m′)) to
Cr(p

vp(m)) for each p | m. In general, fix 1 6 e 6 k, fix g ∈ GL2(Z/peZ) such that
det(g) + 1 − tr(g) ≡ r (mod pe), and we count the number of lifts g̃ ∈ GL2(Z/pkZ)
such that det(g̃)+1−tr(g̃) ≡ r (mod pk). If g is not congruent to the identity matrix
modulo p, then the same argument as above shows that there are p3(k−e) lifts of g.
If g is congruent to the identity matrix modulo p, we have to count the number of
matrices

g̃ =

(
1 + k1p

e k2p
e

k3p
e 1 + k4p

e

)
such that

p2e(k1k4 − k2k3) ≡ r (mod pk),

where 0 6 ki < pk−e. If r 6≡ 0 (mod min (pk, p2e)), there are no lifts, and we suppose
that r ≡ 0 (mod min (pk, p2e)). Let v = mini vp(ki), and write ki = pvk′i where
0 6 v < k − e and 0 6 k′i < pk−e−v. The congruence above rewrites as

(2.10) p2e+v(k′1k
′
4 − k′2k′3) ≡ r (mod pk).

If 2e + v > k, (2.10) has p4(k−e−v) solutions when r ≡ 0 (mod pk) and no solutions
otherwise. If 2e + v < k, assume that r ≡ 0 (mod (p2e+v)) (otherwise (2.10) has no
solutions). Writing r = r′p2e+v, (2.10) rewrites as k′1k

′
4 − k′2k

′
3 ≡ r′ (mod pk−2e−v)

and this leads to pep3(k−e−v) solutions k′1, k
′
2, k
′
3, k
′
4. Then, the number of lifts of the

identity matrix from Cr(p
e) to Cr(p

k) is bounded by

(2.11)

k−e−1∑
v=0

2e+v<k

pep3(k−e−v) +
k−e−1∑
v=0

2e+v>k

p4(k−e−v) 6 p3(k−e)p4e+1.
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Then, applying (2.11), we have that

|Cr(m)|
|G(m)|

6
|Cr(m′)|
|G(m′)|

∏
p|m

p3(vp(m)−vp(m′))p4vp(m′)+1

p4(vp(m)−vp(m′))

=
|Cr(m′)|
|G(m′)|

1

ϕ(m)

∏
p|m

pvp(m
′)−1p4vp(m′)+1(p− 1)�E

|Cr(m′)|
|G(m′)|

1

ϕ(m)
·

Finally we suppose that |Cr(m)| 6= 0 and prove the lower bound in (2.8). Denoting
by Cr(m

′) 6≡ the subset of Cr(m
′) consisting of matrices not equivalent to the identity

matrix modulo p (notice that Cr(m
′) 6≡ is not empty since |Cr(m)| 6= 0), we have that

|Cr(m)|
|G(m)|

>
|Cr(m′) 6≡|
|G(m′)|

∏
p|m

p3(vp(m)−vp(m′))

p4(vp(m)−vp(m′))

=
∏
pk‖m

1

pk−1(p− 1)

∏
p|m

(p− 1)pvp(m
′)

p

|Cr(m′) 6≡|
|G(m′)|

�E
1

ϕ(m)
,

and the lower bound in (2.8) follows from the last two inequalities. �

Theorem 2.3. Let E be an elliptic curve over Q without CM. Let r > 0 be an
integer, and let n = dm be any positive integer with (d,ME) = 1 and m |ME

∞.
(i) We have that

|{p 6 x : nE(p) ≡ r (modn)}| �E
Li(x)

ϕ(n)
+ x exp

{
− An−2

√
log x

}
uniformly for log x � n12 log n, where the implied constants depend only on the
elliptic curve E and A is a positive absolute constant.

(ii) Assuming the GRH for the Dedekind zeta functions of the number fields Ln/Q,
we have that

|{p 6 x : nE(p) ≡ r (modn)}| �E
Li(x)

ϕ(n)
+ n3x1/2 log (nx).

(iii) Assuming the GRH for the Dedekind zeta functions of the number fields Ln/Q,
we have that

|{p 6 x : nE(p) ≡ r (modn)}| �E
Li(x)

ϕ(n)

holds uniformly for n 6 x1/8/ log x, where the implied constant depends only on the
elliptic curve E.

Further if r = 0 or (n,ME) = 1, then the condition n 6 x1/8/ log x in the third
assertion can be relaxed to n 6 x1/5/ log x and the term n3x1/2 log(nx) in the second
can be replaced by n3/2x1/2 log(nx).

Proof. It follows from the estimates of Lemma 2.2 that

|Cr(m)|
|G(m)|

(∏
`k‖d

|Cr(`k)|
|GL2(Z/`kZ)|

)
�E

1

ϕ(d)

1

ϕ(m)
=

1

ϕ(n)
,
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and first two statements are obtained by using this upper bound in the estimates of
Proposition 2.1 for

πCr(n)(x, Ln/Q) = |{p 6 x : nE(p) = p+ 1− aE(p) ≡ r (modn)}| .
We now prove (iii). If |Cr(m)| = 0, Proposition 2.1 implies trivially the required

inequality, and we suppose that |Cr(m)| 6= 0. Clearly, it is sufficient to show that

1

ϕ(n) log2 n
�E
|Cr(m)|
|G(m)|

(∏
`k‖d

|Cr(`k)|
|GL2(Z/`kZ)|

)
�E

1

ϕ(n)
·(2.12)

It follows from Lemma 2.2 that

1

ϕ(d)

∏
`|d

`− 2

`− 1
6
∏
`k‖d

|Cr(`k)|
|GL2(Z/`kZ)|

� 1

ϕ(d)
,(2.13)

and the lower bound of (2.12) follows from (2.13), (2.8) and the estimate∏
`|d

`− 2

`− 1
>
∏
`|n

`− 2

`− 1
� 1

log2 n
·

This completes the proof of the Theorem. �

3. Rosser-Iwaniec’s linear sieve formulas

We state in this section the Rosser-Iwaniec linear sieve [9, Theorem 1], which
will be used in the proof of Theorem 1.1. It is worth indicating that the Selberg
linear sieve [8, Theorem 8.4] cannot be applied for our purpose since the condition
(Ω2(1, L)) of Selberg’s linear sieve (see [8, page 228]) is not satisfied by the function
wy(`). But the corresponding condition (Ω1) of the Rosser-Iwaniec’s sieve is satisfied
by the wy(`) (see (4.5) below).

Let A be a finite sequence of integers and P a set of prime numbers. As usual,
we write the sieve function

S(A,P , z) := |{a ∈ A : (a, P (z)) = 1}|,
where

(3.1) P (z) :=
∏

p<z, p∈P

p.

Let B = B(P) denote the set of all positive squarefree integers supported on the
primes of P . For each d ∈ B, define

Ad := {a ∈ A : a ≡ 0 (mod d)}.
We assume that A is well distributed over arithmetic progressions 0 (mod d) in the
following sense: There are a convenient approximation X to |A| and a multiplicative
function w(d) on B verifying §

(A0) 0 < w(p) < p (p ∈ P)

§Since we need (3.2) below only for d | P (z), we are freely to define w(p) = 0 for p /∈ P.
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such that
(i) the “remainders”

(3.2) r(A, d) := |Ad| −
w(d)

d
X (d ∈ B)

are small on average over the divisors d of P (z);
(ii) there exists a constant K > 1 such that

(Ω1)
V (z1)

V (z2)
6

log z2

log z1

(
1 +

K

log z1

)
(2 6 z1 < z2),

where

V (z) :=
∏
p<z

(
1− w(p)

d

)
.

The next result is the well known theorem of Iwaniec [9, Theorem 1].

Lemma 3.1. Under the hypotheses (A0), (3.2) and (Ω1), we have

S(A,P , z) 6 XV (z){F (s) + E}+ 2ε
−γ
R(A,M,N),

where 0 < ε < 1
8
, s := (logMN)/ log z, E � εs2eK + ε−8eK−s(logMN)−1/3 and

F (s) =
2eγ

s
(0 < s 6 3), V (z) :=

∏
p<z

(
1− w(p)

d

)
.

The second error term R(A,M,N) has the form

R(A,M,N) :=
∑

m<M,n<N
mn|P (z)

ambnr(A,mn),

where the coefficients am, bn are bounded by 1 in absolute value and depend at most
on M,N, z and ε.

4. Proof of Theorem 1.1

As in [3], introduce

L :=
∏
y6`<z

`

and

S(x, y, z) := {p 6 x : (nE(p), L) = 1},
T (x, y, z) := {p 6 x : (nE(p), L) > 1, bnE(p) ≡ b (modnE(p))}.

Clearly

(4.1) QE,b(x) 6 |S(x, y, z)|+ |T (x, y, z)|.

First we estimate |S(x, y, z)|.
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Lemma 4.1. Let E be an elliptic curve over Q without CM and b > 2 be an integer.
For any ε, there is a constant y0 = y0(E, b, ε) such that

(i) We have

(4.2) |S(x, y, z)| 6 (eγ + ε)
x log y

(log x) log z

uniformly for y0 6 y 6 z 6 (log x)1/24/ log2 x.

(ii) If we assume the GRH, we have

(4.3) |S(x, y, z)| 6 (eγ + ε)
x log y

(log x) log z

uniformly for y0 6 y 6 z 6 x1/10/(log x)4.

Proof. We shall sieve

A := {nE(p) : p 6 x}

by

Py := {p : p > y}.

By definition, |S(x, y, z)| = S(A ,Py, z) for all 1 6 y 6 z 6 x.
Without loss of generality, we can suppose that y0 > ME + b. Thus we have

(d,ME) = 1 for all d ∈ B(Py). Using Proposition 2.1 (with the improved error
term discussed in the remark following the proposition under the GRH) and (2.2),
we get that

(4.4) |Ad| =
wy(d)

d
X + r(A , d)

for all d ∈ B(Py), with

(4.5)

X = Li(x),

wy(`) =
`(`2 − 2)

(`− 1)(`2 − 1)
(` ∈Py),

|r(A , d)| �E

{
x e−Ad

−2
√

log x (d 6 (log x)1/12/ log2 x),

d3/2x1/2 log(dx) (under the GRH),

where A > 0 is a positive absolute constant.
In order to apply Lemma 3.1, we must show that wy(`) satisfies conditions (A0)

and (Ω1). The former is obvious, and we now check the latter. Writing

(4.6) Vy(z) :=
∏
p<z

(
1− wy(p)

p

)−1

,

then
Vy(z1)

Vy(z2)
6
V1(z1)

V1(z2)
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for all z2 > z1 > 2. On the other hand, by using the prime number theorem, it
follows that

(4.7)

V1(z) =
∏
p<z

(
1− w1(p)

p

)
=
∏
p<z

(
1− 1

p

)∏
p<z

(
1− p2 − p− 1

(p− 1)3(p+ 1)

)
=

{
1 +O

(
1

log z

)}
Ce−γ

log z
,

where γ is the Euler constant and

C :=
∏
p

(
1− p2 − p− 1

(p− 1)3(p+ 1)

)
.

Clearly this implies that for any 2 6 z1 < z2

(4.8)
V1(z1)

V1(z2)
=

log z2

log z1

{
1 +O

(
1

log z1

)}
,

and (4.6) and (4.8) show that the condition (Ω1) is satisfied. Therefore we can apply
Lemma 3.1 to write

(4.9) S(A ,Py, z) 6 (eγ + ε)XVy(z) +RS ,

where

RS :=
∑
d<z2

d|P (z)

2ω(d)|r(A , d)|.

In view of the bounds for |r(A , d)| of (4.5), we can deduce that

(4.10) RS � x/(log x)3

for all

(4.11) z 6

{
(log x)1/24/ log2 x (unconditionally),

x1/10/(log x)4 (under GRH).

On the other hand, in view of (4.7), we have for any z > y,

(4.12) Vy(z) =
V1(z)

V1(y)
=

{
1 +O

(
1

log y

)}
log y

log z
·

Inserting (4.10) and (4.12) into (4.9), we obtain the required results. �

In order to estimate |T (x, y, z)|, we need to prove a preliminary result. For integers
b > 2 and d > 1, denote by ordd(b) the multiplicative order of b modulo d (i.e. the
smallest positive integer k with bk ≡ 1 (mod d)).
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Lemma 4.2. For all t > 1, we have∑
`>t

1

`ord`(b)
�b

1

t1/2
,(4.13)

∑
`ord`(b)>t

1

`ord`(b)
�b

1

t1/3
·(4.14)

Proof. Let 0 < η < 1 be a parameter to be choosen later. We have

(4.15)
∑
`

ord`(b)=m

1 6
∑

`|(bm−1)

1 6
log(bm − 1)

log 2
6

log b

log 2
m.

Thus ∑
`6u

ord`(b)<`
η

1

ord`(b)
=
∑
m6uη

1

m

∑
`6u

ord`(b)=m

1 6
∑
m6uη

log b

log 2
�b,η u

η.

A simple partial summation leads to∑
`>t

ord`(b)<`
η

1

`ord`(b)
=

∫ ∞
t

1

u
d

( ∑
`6u

ord`(b)<`
η

1

ord`(b)

)
�b,η

1

t1−η
·

On the other hand, we have trivially∑
`>t

ord`(b)>`η

1

`ord`(b)
�
∑
`>t

1

`1+η
�η

1

tη
·

Combining these estimates and taking η = 1
2
, we obtain (4.13).

Similarly we have∑
`ord`(b)>t
ord`(b)<`

η

1

`ord`(b)
6

∑
`>t1/(1+η)

ord`(b)<`
η

1

`ord`(b)
�b,η

1

t(1−η)/(1+η)
,

∑
`ord`(b)>t
ord`(b)>`η

1

`ord`(b)
=
∑
k>1

∑
`ord`(b)>t

2k−1`η6ord`(b)<2k`η

1

`ord`(b)

�
∑
k>1

1

2k

∑
`>(2−kt)1/(1+η)

1

`1+η

�η
1

tη/(1+η)
·

The inequality (4.14) follows from these estimates with the choice of η = 1
2
. �

We now estimate |T (x, y, z)|.

Lemma 4.3. Let E be an elliptic curve over Q without CM and b > 2 be an integer.
Then there is a constant y0 = y0(E, b) and a positive absolute constant A such that
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(i) We have

(4.16) |T (x, y, z)| �E,b Li(x)
log2 z

y1/2
+ x exp

{
− Az−4

√
log x

}
uniformly for

(4.17) y0 6 y < z 6 (log x)1/24/ log2 x.

(ii) If we assume the GRH, we have

(4.18) |T (x, y, z)| �E,b Li(x)
log2 z

y1/2
+ z7x1/2

uniformly for

(4.19) y0 6 y < z.

The implied constants depend on E and b only.

Proof. If nE(p) is a pseudoprime to base b and d | nE(p) with (d, b) = 1, then

d | nE(p) | b(bnE(p)−1 − 1) ⇒ d | (bnE(p)−1 − 1) ⇒ bnE(p)−1 ≡ 1 (mod d).

Using Fermat’s little theorem, it follows that

(4.20) nE(p) ≡ 0 (mod d), nE(p) ≡ 1 (mod ordd(b)), (d, ordd(b)) = 1.

By the Chinese remainder theorem, there is an integer rb,d ∈ {1, . . . , dordd(b)} such
that nE(p) ≡ rb,d (mod dordd(b)).

Clearly for each p ∈ T (x, y, z), there is a prime ` such that

(4.21) y 6 ` < z, ` | (L, nE(p)) and nE(p) | bnE(p) − b.
Applying (4.20) with d = `, we have

|T (x, y, z)| 6
∑
y<`6z

∑
p6x

nE(p)≡rb,`(mod `ord`(b))

1

=
∑
y<`6z

πCrb,` (x, L`ord`(b)/Q).

Then, using (i) and (ii) of Theorem 2.3 with the bound ϕ(n) � n/ log2 n, we have
that

(4.22) |T (x, y, z)| �E Li(x)(log2 z)
∑
y<`6z

1

`ord`(b)
+RT ,

where

(4.23)

RT :=


∑
y<`6z

x exp
{
− A`−4

√
log x

}
(z 6 (log x)1/24/ log2 x)

∑
y<`6z

`6x1/2 log(`2x) (under the GRH)

�

x exp
{
− Az−4

√
log x

}
(z 6 (log x)1/24/ log2 x),

z7x1/2 (under the GRH).
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The required results follow from (4.22), (4.23) and (4.13) of Lemma 4.2. �

Taking, in Lemmas 4.1 and 4.3

y =

{
(log2 x)2 log3 x (unconditionally),

(log x)2 log2 x (under the GRH),

z =

{
(log x)1/24/ log2 x (unconditionally),

x1/14/ log x (under the GRH),

which satisfy (4.11) and (4.17), and using the bounds of those lemmas in (4.1), this
proves Theorem 1.1.

5. Proof of Theorem 1.3

We shall adapt Pomerance’s method [17] to prove Theorem 1.3.
We split the primes p 6 x such that nE(p) is pseudoprimes to base b into four

possibly overlapping classes:

• nE(p) 6 x/L(x);

• there is ` | nE(p) with ord`(b) 6 L(x) and ` > L(x)3;

• there is ` | nE(p) with ord`(b) > L(x);

• nE(p) > x/L(x), for all ` | nE(p), we have ` 6 L(x)3;

and denote by S1, . . . , S4 the corresponding contribution to πpseu
E,b (x), respectively.

A. Estimate for S1

In view of (1.13), it follows that

(5.1) S1 6
∑

p616x/L(x)

1� x

L(x)
·

B. Estimate for S2

Clearly

S2 6
∑

`>L(x)3

ord`(b)6L(x)

∑
p6x

`|nE(p)

1.

Using (iii) of Theorem 2.3 with r = 0 and (4.15), we deduce that the contribution
of L(x)3 < ` 6 x1/5/ log x to S2 is

�E

∑
L(x)3<`6x1/5/ log x

ord`(b)6L(x)

Li(x)

ϕ(`)
�E

x

L(x)3

∑
ord`(b)6L(x)

1�E,b
x

L(x)
·
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Furthermore, using Hypothesis 1.2 with δ < 1
5
, we have∑

x1/5/ log x<`
ord`(b)6L(x)

∑
p6x

`|nE(p)

1 6
∑

x1/5/ log x<`62x
ord`(b)6L(x)

∑
m62x/`

∑
p6x

nE(p)=m`

1

�E

∑
x1/5/ log x<`62x

ord`(b)6L(x)

∑
m62x/`

(m`)δ

�E

∑
x1/5/ log x<`62x

ord`(b)6L(x)

x1+δ

`

�E,b x
4/5+δL(x)3,

using (4.15).
Combining these estimates yields

(5.2) S2 �E,b
x

L(x)
·

C. Estimate for S3

Clearly

S3 6
∑

n64x,∃`|nwith ord`(b)>L(x)
npseudoprime

∑
p6x

nE(p)=n

1.

If n is a pseudoprime and d | n, then

(5.3) n ≡ 0 (mod d), n ≡ 1 (mod ordd(b)), (d, ordd(b)) = 1.

Thus the number of pseudoprimes n 6 4x with d | n at most 1 + 4x/(dordd(b)). If
d = `, a prime, then we throw out the solution n = ` to (5.3), so that in this case
there are at most 4x/(`ord`(b)) solutions in pseudoprimes n. Then, if `ord`(b) > 4x,
there are no solution in pseudoprimes n and no contribution to S3, and we can
suppose that `ord`(b) 6 4x. Thus

S3 6
∑

`ord`(b)64x
ord`(b)>L(x)

∑
n64x, `|n

n pseudoprime

∑
p6x

nE(p)=n

1

6
∑

`ord`(b)64x
ord`(b)>L(x)

∑
p64x, `|nE(p)

nE(p) pseudoprime

1.

Applying (4.20) with d = `, there is an integer rb,` ∈ {1, . . . , `ord`(b)} such that
nE(p) ≡ rb,` (mod dordd(b)). Thus

(5.4) S3 6
∑

`ord`(b)64x
ord`(b)>L(x)

∑
p6x

nE(p)≡rb,`(mod `ord`(b))

1.
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If `ord`(b) 6 x1/8/ log x, then by Theorem 2.3(iii)

∑
p6x

nE(p)≡rb,`(mod `ord`(b))

1�E
Li(x)

ϕ(`ord`(b))
,

and using again the bound ϕ(n) � n/ log2 n, the contribution of those ` to S3 is
bounded by

∑
`ord`(b)6x1/8/ log x

ord`(b)>L(x)

Li(x)

ϕ(`ord`(b))
�E

Li(x) log2 x

L(x)

∑
`ord`(b)6x1/8/ log x

1

`

�E
Li(x)(log2 x)2

L(x)
·

With the help of Hypothesis 1.2 with δ < 1
24

and (4.14) of Lemma 4.2, the contri-

bution of x1/8/ log x < `ord`(b) 6 4x to S3 is bounded by

∑
x1/8/ log x<`ord`(b)64x

∑
06m64x/`ord`(b)

∑
p6x

nE(p)=rb,`+m`ord`(b)

1

�E

∑
x1/8/ log x<`ord`(b)64x

∑
06m64x/`ord`(b)

(rb,` +m`ord`(b))
δ

�E

∑
x1/8/ log x<`ord`(b)64x

x1+δ

`ord`(b)

�E x
1+δ−1/24 log x.

Inserting these estimates into (5.4), we find that

(5.5) S3 �E
x

L(x)
·

D. Estimate for S4

In order to adapt the proof of [17] to the more general definition (1.4) of pseudo-
primes (which includes the case where b and n are not coprime), we write nE(p) =
n′E(p)n′′E(p) with n′E(p) | b∞ and (n′′E(p), b) = 1. Denote by S ′4 and S ′′4 the contribu-
tion of n′E(p) > x2/3 and n′E(p) 6 x2/3 to S4, respectively.
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By the Hasse bound (formulated as the statement of Hypothesis 1.2 with δ = 1
2
),

we have

S ′4 6
∑

x2/3<d64x
d|b∞

∑
m64x/d
(m,b)=1

∑
p6x

n′E(p)=d, n′′E(p)=m

1

�E

∑
x2/3<d64x

d|b∞

∑
m64x/d

(dm)1/2

6
∑

x2/3<d64x
d|b∞

x3/2

d

6 x5/6(log x)b.

If p is counted in S ′′4 , then n′′E(p) > x1/3/L(x) and all prime factors of n′′E(p) are
6 L(x)3. Thus n′′E(p) must have a divisor d with x1/18 < d 6 x1/17 and (d, b) = 1.
Thus, by the comment following (4.20), nE(p) ≡ rb,d (mod dordd(b)) for some residue
rb,d, and by Theorem 2.3, we have

S ′′4 6
∑

x1/18<d6x1/17

(d,b)=1

∑
p6x

nE(p)≡rb,d(mod dordd(b))

1

�E

∑
x1/18<d6x1/17

x

dordd(b)

6 x
∑

m6x1/17

1

m

∑
x1/18<d6x1/17

ordd(b)=m

1

d
·

With the help of the following inequality (see [17, Theorem 1])∑
d6t

ordd(b)=m

1 6
t√
L(t)

(t > t0(b), m > 1),

a simple partial integration allows us to deduce that

∑
x1/18<d6x1/17

ordd(b)=m

1

d
=

∫ x1/17

x1/18

1

t
d
( ∑

d6t
ordd(b)=m

1
)
� 1

L(x)1/37
,

and S ′′4 �E x(log x)L(x)−1/37. Thus

(5.6) S4 = S ′4 + S ′′4 �E,b
x

L(x)
+

x log x

L(x)1/37
6

x

L(x)1/38
·

The statement of Theorem 1.3 then follows from (5.1), (5.2), (5.5) and (5.6).
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6. Proof of Theorem 1.5

First write

πpseu
E,b (x) =

∑
p6x

nE(p) is pseudoprime to base b

1

6
∑
n64x

n is pseudoprime to base b

ME(n).

By using the Cauchy-Schwarz inequality, it follows that

(6.1) πpseu
E,b (x) 6

(
πpseu
b (4x)

)1/2( ∑
n64x

ME(n)2
)1/2

.

To bound the second sum on the right-hand side of (6.1), we use a result of Kowalski
[12] who proved that for a curve E with complex multiplication and for any ε > 0,

(6.2)
∑
n64x

ME(n)2 � x

(log x)1−ε .

We remark that in [12], there are no curves with complex multiplication defined over
Q as the field of complex multiplication must be included in the field of definition
of the elliptic curve. Then, (6.2) is first proven for the sequence {nE(p) = #E(Fp)}
associated to E, where p runs over the primes of the CM field [12, Theorem 5.4].
This first result can then be used to deduce the upper bound (6.2) by separating
the rational primes into ordinary and supersingular primes of E, and by using [12,
Theorem 5.4] to obtain (6.2) (see [12, Proposition 7.4]).

Theorem 1.5 then follows by replacing (6.2) and (1.9) in (6.1).
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braic Number Fields (A. Fröhlich edit.), New York, Academic Press (1977), 409-464.

[14] F. Luca & Igor E. Shparlinski, Pseudoprime values of the Fibonacci sequence, polynomials
and the Euler function, Indag. Math. (N.S.) 17 (2006), no. 4, 611–625.

[15] F. Luca & Igor E. Shparlinski, Pseudoprime Cullen and Woodall numbers, Colloq. Math.
107 (2007), no. 1, 35–43.

[16] M.-R. Murty, V.-K. Murty & N. Saradha, Modular forms and the Chebotarev density theorem,
Amer. J. Math. 110 (1988), 253–281.

[17] C. Pomerance, On the distribution of pseudoprimes, Math. Computation 37 (1981), no. 156,
587–593.

[18] A. J. van der Poorten & A. Rotkiewicz, On strong pseudoprimes in arithmetic progressions,
J. Austral. Math. Soc. Ser. A 29 (1980), no. 3, 316–321.

[19] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.
Math. 15 (1972), no. 4, 259–331.
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