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Trouver de bonnes 2-partitions des digraphes I.
Propriétés héréditaires.

Résumé : Nous étudions la complexité de décider si un digraphe donné D admet une partition
en deux sous-digraphes ayant des propriétés structurelles fixées. Dénotons par H et E les deux
ensembles de propriétés de digraphes naturelles : H ={acyclique, complet, sans arcs, orienté,
semicomplet, symétrique, tournoi} et E ={fortement connexe, connexe, degré sortant minimum
au moins 1, degré entrant minimum au moins 1, semi-degré entrant minimum au moins 1,
degré minimum au moins 1, avoir une arborescence sortante couvrante, avoir une arborescence
entrante couvrante}. Dans ce rapport, nous déterminons la complexité de décider, pour toute
paire d’entiers k1, k2, si un digraphie donné admet une partition en deux digraphes D1, D2 tels
que |V (Di)| ≥ ki et Di a la propriété Pi pour i = 1, 2 lorsque P1 ∈ H et P2 ∈ H ∪ E . Nous
classifions également la complexité des mêmes problèmes restreints aux digraphies fortement
connexes. La complexité des problèmes lorsque P1 et P2 sont toutes deux dans E est déterminée
dans le rapport suivant [2].

Mots-clés : graphe orienté, graphe dirigé, NP-complet, polynomial, partition, acyclique,
digraphe semicomplet, tournoi, arborescence, ensemble d’arcs transverse, 2-partition, degré min-
imum
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1 Introduction
A k-partition of a (di)graph D is a partition of V (D) into k disjoint sets. Let P1,P2 be two
(di)graph properties, then a (P1,P2)-partition of a (di)graph D is a 2-partition (V1, V2) where
V1 induces a (di)graph with property P1 and V2 a (di)graph with property P2. For example a
(δ+ ≥ 1, δ+ ≥ 1)-partition is a 2-partition of a digraph where each partition induces a subdigraph
with minimum out-degree at least 1.

There are many papers dealing with vertex-partition problems on (di)graphs. Examples (from
a long list) are [1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23]. Important examples
for undirected graphs are bipartite graphs (those having has a 2-partition into two independent
sets) and split graphs (those having a 2-partition into a clique and an independent set) [8]. It is
well known and easy to show that there are linear-time algorithms for deciding whether a graph
is bipartite, respectively, a split graph. The dichromatic number of a digraph D [17] is the
minimum number k such that D has a k-partition where each set in the partition induces an
acyclic digraph. This is a natural analogue of the chromatic number for undirected graphs as a
graph G has chromatic number k if and only if the symmetric digraph

↔
G, that we obtain from G

by replacing every edge by a directed 2-cycle, has dichromatic number k. Contrary to the case
of undirected graphs, it is already NP-complete to decide whether a digraph has dichromatic
number 2 [5] (see also the proof of Theorem 4.4).

A set of vertices X in a digraph D is a feedback vertex set if D − X is acyclic. If we
wish to study feedback vertex sets with a certain property P, this is the same as studying the
(P,acyclic)-partition problem. For example we may seek a feedback vertex set that induces an
acyclic digraph and that is the (acyclic,acyclic)-partition problem which is the same as asking
whether D has dichromatic number (at most) 2 and hence is NP-complete as noted above. On
the other hand, if we want the feedback vertex set to be connected, we obtain the (connected,
acyclic)-partition problem which is polynomial-time solvable as we show in Corollary 3.2.

In this paper and its companion paper [2] we give a complete characterization for the com-
plexity of (P1,P2)-partition problems when P1,P2 are one of the following properties: acyclic,
complete, independent (no arcs), oriented (no directed 2-cycle), semicomplete, tournament, sym-
metric (if two vertices are adjacent, then they induce a directed 2-cycle), strongly connected,
connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree
at least 1, minimum degree at least 1, having an out-branching, having an in-branching. All of
these 15 properties are natural properties of digraphs (as we already indicated above, symmetric
digraphs correspond to undirected graphs). For each of them, it can be checked in linear time
whether the given digraph has this property. Hence all the 120 distinct 2-partition problems are
in NP.

Several of these 120 (P1,P2)-partition problems are NP-complete and some results are sur-
prising. For example, in [2], we show that the (δ+ ≥ 1, δ ≥ 1)-partition problem is NP-complete.
Some other problems are polynomial-time solvable because (under certain conditions) there are
trivial (P1,P2)-partitions (V1, V2) with |V1| = 1 (or |V2| = 1). Therefore, in order to avoid
such trivial partitions we consider [k1, k2]-partitions, that is, partitions (V1, V2) of V such that
|V1| ≥ k1 and |V2| ≥ k2. Consequently, for each pair of above-mentioned properties and all pairs
(k1, k2) of positive integers, we consider the (P1,P2)-[k1, k2]-partition problem, which consists
in deciding whether a given digraph D has a (P1,P2)-[k1, k2]-partition. When k1 = k2 = 1 we
usually just write (P1,P2)-partition.

It might seem to be a lot of work but we are able to structure the approach in such a way
that we can handle all the cases (especially most of the polynomial-time solvable ones) effectively.
The results, including those from [2], are summarized in Table 1.

The paper is organized as follows. We first introduce the necessary terminology, and show
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4 Bang-Jensen & Havet

that the properties in the classes H and E , which we introduced in the abstract, are checkable
and hereditary respectively, enumerable properties (defined below). Then in Section 3, we show
that if P1 is hereditary and P2 is enumerable, then for any k1, k2, the (P1,P2)-[k1, k2]-partition
problem is polynomial-time solvable. In Section 4, we determine the complexity of the (P1,P2)-
[k1, k2]-partition problem for all possible pairs (P1,P2) of elements in H. The complexity of the
problem for all possible pairs (P1,P2) of elements in E is determined in the companion paper [2].
The results are summarized in Table 1. The grey cells correspond to results proved in [2].

P1 \ P2 strong conn. B+ B− δ ≥ 1 δ+ ≥ 1 δ− ≥ 1 δ0 ≥ 1 A C X
strong NPc NPcL NPcL NPcL NPcL NPcL NPcL NPc P P P
conn. NPcR P P P P NPc NPc NPc P P P
B+ NPcR P P NPc P NPc P NPc P P P
B− NPcR P NPc P P P NPc NPc P P P
δ ≥ 1 NPcR P P P P NPc NPc NPc P P P
δ+ ≥ 1 NPcR NPc NPc P NPc P NPc NPc P P P
δ− ≥ 1 NPcR NPc P NPc NPc NPc P NPc P P P
δ0 ≥ 1 NPc NPc NPc NPc NPc NPc NPc NPc P P P
A P P P P P P P P NPc P NPc
C P P P P P P P P P P P
X P P P P P P P P NPc P P

Properties: conn. : connected; B+: out-branchable; B−: in-branchable; A: acyclic; C: com-
plete; X: any property in ‘being independent’, ‘being oriented’, ‘being semi-complete’, ‘being a
tournament’ and ‘being symmetric’.
Complexities: P: polynomial-time solvable; NPc : NP-complete for all values of k1, k2; NPcL
: NP-complete for k1 ≥ 2, and polynomial-time solvable for k1 = 1. NPcR : NP-complete for
k2 ≥ 2, and polynomial-time solvable for k2 = 1.

Table 1: Complexity of the (P1,P2)-[k1, k2]-partition problem for some properties P1,P2.

All the NP-completeness proofs given in this paper are also valid if we restrict the input
digraph to be strongly connected. However, for some partition problem with two enumerable
properties, the complexity is sometimes different when we restrict to strongly connected digraphs
as shown in [2]. The complexity results of the problems restricted to strongly connected digraphs
are summarized in Table 2. The grey cells correspond to results proved in [2].

2 Notation and definitions

Notation follows [3]. In this paper graphs and digraphs have no parallel edges/arcs and no loops.
We use the shorthand notation [k] for the set {1, 2, . . . , k}. Let D = (V,A) be a digraph with
vertex set V and arc set A. We use |D| to denote |V (D)|. Given an arc uv ∈ A we say that u
dominates v and v is dominated by u. If uv or vu (or both) are arcs of D, then u and v are
adjacent. If none of the arcs exist in D, then u and v are non-adjacent. The underlying
graph of a digraphD, denoted UG(D), is obtained fromD by suppressing the orientation of each
arc and deleting multiple copies of the same edge (coming from directed 2-cycles). A digraph D
is connected if UG(D) is a connected graph, and the connected components of D are those
of UG(D).

A (u, v)-path is a directed path from u to v, and for two disjoint non-empty subsets X,Y of
V an (X,Y )-path is a directed path which starts in a vertex x ∈ X and ends in a vertex y ∈ Y

Inria



Finding good 2-partitions of digraphs I. Hereditary properties 5

P1 \ P2 strong conn. B+ B− δ ≥ 1 δ+ ≥ 1 δ− ≥ 1 δ0 ≥ 1 A C H
strong NPc P NPc∗ NPc∗ P NPcL NPcL NPc P P P
conn. P P P P P P P P P P P
B+ NPc∗ P P NPc∗ P NPcL P NPcL P P P
B− NPc∗ P NPc∗ P P P NPcL NPcL P P P
δ ≥ 1 P P P P P P P P P P P
δ+ ≥ 1 NPcR P NPcR P P P NPc NPc P P P
δ− ≥ 1 NPcR P P NPcR P NPc P NPc P P P
δ0 ≥ 1 NPc P NPcR NPcR P NPc NPc NPc P P P
A P P P P P P P P NPc P NPc
C P P P P P P P P P P P
H P P P P P P P P NPc P P

The legend is the same as in Table 1, but we have one more complexity type: NPc∗ : NP-complete
for k1, k2 ≥ 2, and polynomial-time solvable for k1 = 1 or k2 = 1. We also emphasize with a
bold P, the problems that are polynomial-time solvable on strong digraphs and NP-complete in
the general case.

Table 2: Complexity of the (P1,P2)-[k1, k2]-partition problem on strong digraphs.

and whose internal vertices are not in X ∪ Y . A digraph is strongly connected (or strong) if
it contains a (u, v)-path for every ordered pair of distinct vertices u, v. A strong component of
a digraph D is a maximal subdigraph of D which is strong. An initial (resp. terminal) strong
component of D is a strong component X with no arcs entering (resp. leaving) X in D.

The subdigraph induced by a set of vertices X in a digraph D, denoted by D〈X〉, is the
digraph with vertex set X and which contains those arcs from D that have both end-vertices in
X. When X is a subset of the vertices of D, we denote by D−X the subdigraph D〈V −X〉. If
D′ is a subdigraph of D, for convenience we abbreviate D − V (D′) to D −D′.

A digraph is acyclic if it does not contain any directed cycles. An oriented graph is a
digraph without directed 2-cycles. A semicomplete digraph is a digraph with no non-adjacent
vertices and a tournament is a semicomplete digraph which is also an oriented graph. Finally, a
complete digraph is a digraph in which every pair of distinct vertices induce a directed 2-cycle.

The in-degree (resp. out-degree) of v, denoted by d−D(v) (resp. d+D(v)), is the number of
arcs from V \ {v} to v (resp. v to V \ {v}). The degree of v, denoted by dD(v) is given by
dD(v) = d+D(v)+d−D(v). Finally theminimum out-degree, respectively minimum in-degree,
minimum degree is denoted by δ+(D), respectively δ−(D) , δ(D) and the minimum semi-
degree of D, denoted by δ0(D) is defined as δ0(D) = min{δ+(D), δ−(D)}. A vertex is isolated
if it has degree 0.

An out-tree rooted at the vertex s, also called an s-out-tree is a connected digraph T
such that d−T (s) = 0 and d−T (v) = 1 for every vertex v different from s. Equivalently, for every
v ∈ V (T ) \ {s} there is a unique (s, v)-path in T . The directional dual notion is the one of
in-tree. An in-tree rooted at the vertex s, or s-in-tree, is a digraph T such that d+T (s) = 0
and d+T (v) = 1 for every vertex v different from s.

An s-out-branching (resp. s-in-branching) is a spanning s-out-tree (resp. s-in-tree).
We say that a subset X ⊆ V (D) is out-branchable (resp. in-branchable) if D〈X〉 has an
s-out-branching (resp. s-in-branching) for some s ∈ X.

Let D be a digraph. For a set S of vertices of D, we denote by Reach+
D(S), or simply

Reach+(S) if D is clear form the context, the set of vertices that can be reached from S in D,
that is, the set of vertices v for which there exists an (S, v)-path in D. Similarly, we denote by
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6 Bang-Jensen & Havet

Reach−D(S), or simply Reach−(S), the set of vertices that can reach S in D, that is, the set of
vertices v for which there exists a (v, S)-path in D. For sake of clarity, we write Reach+

D(x) (resp.
Reach−D(x)) in place of Reach+

D({x}) (resp. Reach−D({x})). The following lemma is well-known
and easy to prove.

Lemma 2.1 Let D be a digraph. If S is a set of vertices such that D〈S〉 is out-branchable and
Reach+

D(S) = V (D), then D has an out-branching with root in S.

2.1 Hereditary, checkable and enumerable properties
Recall the definitions of the two classes of properties H, E : H ={acyclic, complete, arcless,
oriented, semicomplete, symmetric, tournament} and E ={strongly connected, connected, min-
imum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1,
minimum degree at least 1, out-branchable, in-branchable}. A property P is checkable if there
is a polynomial-time algorithm deciding whether a given digraph has the property P. Observe
that the fifteen properties in E ∪ H are all checkable.

A property P is hereditary if the set of digraphs having the property is closed by taking
induced subdigraphs, i.e. if a digraph has the property P, then all its induced subdigraphs also
have the property P. It is easy to see that all properties in H are hereditary, while e.g., being
connected is not a hereditary property.

A property P is enumerable if given a digraph one can enumerate in polynomial time all
its (inclusion-wise) maximal subdigraphs having property P. In particular, this requires that the
number of maximal subdigraphs of a digraph with property P is polynomial.

Lemma 2.2 The following are enumerable properties: being connected, being strongly connected,
being out-branchable, being in-branchable, having minimum in-degree (resp. out-degree, semi-
degree, degree) at least k. In particular, all properties in E are enumerable.

Proof: The first two properties are clearly enumerable: the maximal subdigraphs are the
connected, respectively, the strongly connected components and those can be found in linear
time.

To find the maximal subdigraphs that are out-branchable we first compute the strong compo-
nents of D. Let S1, . . . , Sp be the initial strong components, that is, those with no arcs entering.
Then the maximal out-branchable subdigraphs of D are the Reach+

D(Si), 1 ≤ i ≤ p. Clearly
these can be identified in polynomial time. The maximal subdigraphs that are in-branchable can
be obtained in a similar by directional duality.

The remaining properties all deal with degrees. Here there will be at most one maximal
subdigraph with the property. We illustrate this only for in-degree but the others are analogous.
If δ−(D) ≥ k, then D is the unique maximal subdigraph with in-degree at least k. Otherwise
we may delete a vertex of in-degree less than k and continue this until the resulting digraph is
either empty or we reach an induced subdigraph D′ with δ−(D′) ≥ k. Clearly D′ is the unique
maximal subdigraph with in-degree at least k and we produce either this or conclude than D
has no such subdigraph in time O(|V |2) (say, by using a priority queue). �

2.2 Variants of 3-SAT used in the paper
Let us recall the definition of the 3-SAT problem(s): An instance is a boolean formula F =
C1 ∧ C2 ∧ . . . ∧ Cm over the set of n boolean variables x1, . . . , xn. Each clause Ci is of the
form Ci = (`i,1 ∨ `i,2 ∨ `i,3) where each `i,j belongs to {x1, x2, . . . , xn, x̄1, x̄2, . . . x̄n} and x̄i is the
negation of variable xi. Our NP-completeness proofs will use reductions from the 3-SAT problem

Inria



Finding good 2-partitions of digraphs I. Hereditary properties 7

and the following variants of the 3-SAT problem: 2-IN-3-SAT, where exactly two of the three
literals in each clause should be safisfied and NOT-ALL-EQUAL-3-SAT (NAE-3-SAT), where
every clause must have at least one true and at least one false literal. These variants are both
NP-complete [19].

In all of the NP-completeness proofs below we will use the following easy fact: for any pair
of fixed integers k, k′ and any given instance F of 3-SAT, 2-IN-3-SAT or NAE-3-SAT, we can
always add new variables and clauses whose number only depends on k, k′ such that the resulting
formula F ′ has at least max{k, k′} clauses and at least max{k, k′} variables and F ′ is satisfiable
if and only if F is satisfiable. In all the proofs below we may hence assume that the 3-SAT
instances that we use in the reductions satisfy that min{n,m} ≥ max{k1, k2}, where k1, k2 are
the lower bounds on the two sides of the partition. It will be clear from the proofs that this
ensures that the partitions (V1, V2) that we obtain from a satisfying truth assignment will always
satisfy that |Vi| ≥ ki for i = 1, 2.

For a given instance F of 3-SAT the bipartite incidence graph G(F) of F has bipartition
classes the set of variables and the set of clauses of F and there is an edge between variable xi
and clause Cj if Cj contains a literal on xi. We say that F is a connected instance of 3-SAT if
G(F) is a connected graph. It is not difficult to see that all 3-SAT-variants above remain NP-
complete if we also request that the instance F is connected: If we are given a non-connected
instance of 3-SAT (resp. NAE-3-SAT, 2-IN-3-SAT) then we just need to add 2 extra clauses and
at most 3 new variables so that the new instance F ′ is satisfiable if and only if F is and F ′ has
one connected component less than F . Thus in our proof below we may always assume that F
is a connected instance of the relevant variant of 3-SAT.

3 Partitioning into parts with a checkable hereditary prop-
erty and an enumerable property

Theorem 3.1 Let H be a checkable hereditary property, E be an enumerable property, and let
k1 and k2 be two positive integers. One can decide in polynomial time whether a given digraph
D has a (H,E)-[k1, k2]-partition.

Proof: We shall describe a polynomial-time procedure that for any fixed set U1 of k1 vertices of
D decides whether D has an (H,E)-[k1, k2]-partition (V1, V2) with U1 ⊆ V1. Then applying this
algorithm to the O(nk1) k1-subsets of V (D), we obtain the desired algorithm.

The procedure proceeds as follows. First, we enumerate the maximal subdigraphs of D−U1

with property E. This can be done in polynomial time because E is enumerable. Now for each
such subdigraph F , (there is a polynomial number of them), we check whether |F | ≥ k2 and if
D − F has property H (which can be done in polynomial time) because H is checkable. In the
affirmative, we return ‘Yes’, and in the negative we proceed to the next subdigraph. If no more
subdigraph remains, we return ‘No’.

The above procedure clearly runs in polynomial time. To prove that it is valid we need
to show that D has an (H,E)-[k1, k2]-partition (V1, V2) with U1 ⊆ V1 if and only if there is a
maximal subdigraph F of D − U1 with property E of order at least k2 such that D − F has
property P.

If there is a maximal subdigraph F of D−U1 with property E of order at least k2 such that
D−F has property P, then (V (D−F ), V (F )) is clearly an (H,E)-[k1, k2]-partition (V1, V2) with
U1 ⊆ V1.
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8 Bang-Jensen & Havet

Conversely, assume there is an (H,E)-[k1, k2]-partition (V1, V2) with U1 ⊆ V1. Then D〈V2〉
has property E and thus is contained in a maximal subdigraph F of D − U1 with property E.
Since F is a superdigraph of D〈V2〉 it has order at least k2. In addition, U1 ⊆ V (D − F ) ⊆ V1,
so D − F has the property H, because this property is hereditary and V1 has it. �

One can easily check that the algorithm described in the proof of Theorem 3.1 runs in time
O(nk1+c) for some constant c. A natural question is then to ask whether the problem could be
FPT with respect to (k1, k2), that is, in time f(k1, k2)nc for some constant c and computable
function f , and if not, one may ask if it can be solved in FPT time with respect to k2 only, that
is, in time g(k1)nh(k2) for some computable function g and h.

Using Theorem 3.1 we can now settle the complexity of 56 of the 120 2-partition problems
we are studying.

Corollary 3.2 The (P1,P2)-partition problem is polynomial-time solvable for all choices of P1,P2

with P1 ∈ H and P2 ∈ E �

4 2-partitions into parts with hereditary properties

Below the letters A, C, I, O, S, T, Z are shorthand for ’acyclic’, ’complete’, ’independent’,
’oriented’, ’semicomplete’, ’tournament’ and ’symmetric’, respectively.

4.1 The locally constrained cases

We first deal with the local conditions C, I, O, S, T, Z. These can be expressed as a condition
on pairs of vertices in the same part of a partition. This indicates that a reduction to 2-SAT
may work, which is indeed the case.

Theorem 4.1 Let k1, k2 be fixed positive integers. The (P1,P2) − [k1, k2]-partition problem is
polynomial-time solvable for all P1,P2 ∈ {C, I,O,S,T,Z}.

Proof: Clearly we can assume that the input D = (V,A) has at least k1+k2 vertices. Denote
V by V = {v1, v2, . . . , vn} and build an instance of 2-SAT with variables x1, . . . , xn and clauses
depending on which problem we deal with. We shall always associate the vertex set V1 of a
partition (V1, V2) with the true literals in a given truth assignment. The following shows which
clauses to add for the given problem:

• If P1 = C (resp. P2 = C), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi, vj do
not induce a directed 2-cycle in D.

• If P1 = I (resp. P2 = I), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi and vj
are adjacent in D.

• If P1 = O (resp. P2 = O), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi, vj
induce a directed 2-cycle in D.

• If P1 = S (resp. P2 = S), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi and vj
are not adjacent in D.

• If P1 = T (resp. P2 = T), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi, vj are
not adjacent in D or they form a directed 2-cycle in D.

Inria



Finding good 2-partitions of digraphs I. Hereditary properties 9

• If P1 = Z (resp. P2 = Z), then add a clause (x̄i ∨ x̄j) (resp. (xi ∨ xj)) whenever vi, vj are
adjacent in D but do not induce a directed 2-cycle in D.

It is easy to check that for each of the 36 choices (15 of which are the same) of (P1,P2) the
corresponding formula F(D) is satisfiable if and only if D has a (P1,P2)-partition (V1, V2) by
letting V1 correspond to those vertices vi for which the corresponding variable xi is true (and
conversely). Note that it is possible that V1 = ∅ (resp. V2 = ∅), but in this case for any vertex x
({x}, V (D) \ {x}) (resp. (V (D) \ {x}, {x})) is a (P1,P2)-partition because the digraph with one
vertex has the property P1 (resp. P2) and P2 (resp. P1) is hereditary. The size of F(D) is O(n2)
as every pair of vertices give rise to at most 2 clauses. Since 2-SAT is solvable in linear time in
the number of variables and clauses, each of the problems can be solved in time O(nk1+k2+2):
We consider (at most) all possible choices (V ′1 , V

′
2) of k1 vertices V ′1 that must lie in V1 and k2

vertices V ′2 that must lie in V2 and for each of these (at most) O(nk1+k2) choices we first set
Vi = V ′i and then move all other vertices that are now forced to be in V1 or V2 to that set (this
may lead to new vertices that have to be moved etc). If this leads to a contradiction, then there
is no (P1,P2)-partition with V ′i ⊆ Vi and we continue with the next candidate for V ′1 , V ′2 . After
this we either have a (P1,P2)-partition of D or D has a (P1,P2)-partition if and only if there is
a (P1,P2)-partition of D〈V \ V1 ∪ V2〉. �

4.2 (A,P)-partition, P ∈ {A,C, I,O,S,T,Z}
When (at least) one part is required to be acyclic, we no longer have just a local condition and,
as we shall see, the problem becomes more complicated. We first show that the (A,C)-[k1, k2]-
partition problems are polynomial-time solvable.

Theorem 4.2 For all positive integers k1, k2, the (A,C)-[k1, k2]-partition problem is polynomial-
time solvable.

Proof: Given a digraph D = (V,A), we form its directed complement D = (V, (V × V ) \ A),
that is, for every ordered pair u, v ∈ V of vertices the arc uv is in D if and only if it is not in D.
Now every (A,C)-partition (V1, V2) of D is an (S, I)-partition of D. The converse may not hold:
if (V1, V2) is an (S, I)-partition of D, there may be directed cycles in the (oriented) subdigraph
D〈V1〉. However, for any pair of subsets V1, V ′1 where both (V1, V \ V1) and (V ′1 , V \ V ′1) are
(S, I)-partitions of D we have |V14V ′1 | ≤ 2 because an independent set and a clique intersect
in at most one vertex. Therefore we can solve the (A,C)-[k1, k2]-partition problem as follows:
we first check whether D has an (S, I)-partition (V1, V2) and if so, we check whether one of the
O(n2) possible 2-partitions (V ′1 , V

′
2) such that |V14V ′1 | ≤ 2 is an (A,C)-[k1, k2]-partition of D. �

In contrast, we now prove that the (A,P)-[k1, k2]-partition problems are NP-complete for
P ∈ {A, I,O,S,T,Z}. All our reductions use superdigraphs of the digraph B(F) which is obtained
from a given 3-SAT instance F = F = C1 ∧ C2 ∧ . . . ∧ Cm over the set of n boolean variables
x1, . . . , xn. The digraph B(F) is defined from F as follows. Let qi denote the maximum of the
number of times xi occurs in the clauses and the number of times x̄i occurs in the clauses.The
vertex set of B(F) is (

⋃
i∈[n]{xi,j |j ∈ [qi]})∪ (

⋃
i∈[n]{yi,j |j ∈ [qi]}) and the arc set of B(F) is the

union of the arc sets of the n complete bipartite digraphs B1, B2, . . . , Bn where Bi has vertex
set {xi,j |j ∈ [qi]} ∪ {yi,j |j ∈ [qi]}.

The choice of qi implies that for each clause Cj we can associate a set Wj of three vertices
of B(F) so that Wj ∩Wj′ = ∅ if j 6= j′. This can be done as follows: the ordering C1, . . . , Cm
of the clauses induces an ordering of the occurrences of each literal xi or x̄i in these. Hence
we can construct the sets Wj , j ∈ [m], by picking, for each clause Ci a private copy of vertices
corresponding to each of its literals (the x, y vertices correspond to these), so if e.g. Cj =
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x1 ∨ x̄4 ∨ x7 and these are the, respectively i’th, f ’th and h’th occurrences of these literals, then
we set Wj = {x1,i, y4,f , x7,h}.

The following is just a reformulation of the corresponding 3-SAT problem:

Theorem 4.3 Let F be a 3-SAT formula and let B(F) be the corresponding bipartite digraph.
Then the following holds:

• B(F) has a 2-partition (V1, V2) such that V1 intersects all the sets W1, . . . ,Wm if and only
if F is a ‘Yes’-instance of 3-SAT.

• B(F) has a 2-partition (V1, V2) such that each Vi intersects all the sets W1, . . . ,Wm if and
only if F is a ‘Yes’-instance of NAE-3-SAT. �

Theorem 4.4 The (A,P)-[k1, k2]-partition problem is NP-complete for P ∈ {A, I,O,S,T,Z} and
every choice of positive integers k1, k2. This holds even when the input is restricted to strongly
connected digraphs.

Proof: All the reductions we will describe are clearly polynomial so we will not mention
that below but just prove that the reductions are correct. It will also be clear from the proofs
below that the partitions (V1, V2) that we derive from a satisfying truth assignment will always
satisfy that both sides of the partition have size at least the number of variables in the given
3-SAT formula F . Hence, by the remark we made after the definition of 3-SAT in Section 2, by
choosing F appropriately, the partitions will have sufficiently many vertices in each side. We will
thus drop the [k1, k2] suffix of the problems below. It is easy to check that all our digraphs used
in the NP-completeness proofs below are strongly connected, provided that the 3-SAT instance
is connected. Hence, by the remark at the end of Section 2.2, all (A,P)-partition problems with
P ∈ {A, I,O,S,T,Z} remain NP-complete when restricted to strongly connected digraphs.

(A,A) The (A,A)-partition problem was proved NP-complete in [5] (by a reduction from hyper-
graph 2-colourability). It has also been proved to be already NP-complete for tournaments
in [6]. We provide a short different proof here since we use the construction in the other
proofs. It can easily be modified to prove the NP-completeness of the (A,A)-partition
problem for semicomplete digraphs. See Corollary 4.5

We show how to reduce NAE-3-SAT this problem. Let F be an instance of NAE-3-SAT with
variables x1, . . . , xn and clauses C1, C2, . . . , Cm. Let B(F) be the corresponding bipartite
digraph as described above and form the digraph D(F) by adding the arcs of m vertex
disjoint directed 3-cycles on the vertex sets W1, . . . ,Wm to B(F) (we chose an arbitrary
directed 3-cycle for each Wj).

We claim that D(F) has an (A,A)-partition if and only if F is a ‘Yes’-instance of NAE-3-
SAT.

Suppose first that (V1, V2) is an (A,A)-partition of D(F). Then for each directed 2-cycle
in Bj , j ∈ [n], we have precisely one end in V1 and the other in V2 so, for each i ∈ [n],
we have either {xi,j |j ∈ [qi]} ⊂ V1 and {yi,j |j ∈ [qi]} ⊂ V2, or {xi,j |j ∈ [qi]} ⊂ V1 and
{yi,j |j ∈ [qi]} ⊂ V1. Now assign the value true to a variable xi if the first case occurs and
false if the second case occurs. As none of the m directed 3-cycles is fully contained in V1
or V2, this truth assignment satisfies either one or two literals of each clause.

Reciprocally, assume that a truth assignment t : {x1, . . . , xn} → {true, false} satisfies one
or two literals of each clause. Set V1 = (

⋃
i|t(xi)=true

{xi,j |j ∈ [qi]})∪(
⋃
i|t(xi)=false}{yi,j |j ∈

[qi]}) and V2 = V (D(F)) \ V1. It is easy to check that (V1, V2) is an (A,A)-partition of D.
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(A, I) We show a polynomial reduction of 2-IN-3-SAT to the (A, I)-partition problem. Let F be
an instance of 2-IN-3-SAT and form the digraph D(F) in the same way as above.

We claim that D(F) has an (A, I)-partition if and only if F has a truth assignment which
satisfies exactly two literals of each clause.

Suppose first that t is such a truth assignment. Let V1 (resp. V2) be the set of vertices
corresponding to true (resp. false) literals, that is,

V1 =

 ⋃
i|t(xi)=true

{xi,j |j ∈ [qi]}

∪
 ⋃
i|t(xi)=false}

{yi,j |j ∈ [qi]}

 , and V2 = V (D(F)) \V1.

Then V2 is independent since the only arcs it could potentially contain would be from
vertices corresponding to literals of a clause and it contains exactly one of these. This
also means that V1 does not contain any directed 3-cycle and also no directed 2-cycle by
definition of V1 and hence D〈V1〉 is acyclic (the only possible directed cycles in D〈V1〉 are
2-cycles and 3-cycles and V1 contains precisely one vertex of each directed 2-cycle).

Reciprocally, assume that (V1, V2) is an (A, I)-partition of D(F). Then for each i ∈ [n]
either {xi,j |j ∈ [qi]} ⊆ V1 and {yi,j |j ∈ [qi]} ∩ V1 = ∅, or {xi,j |j ∈ [qi]} ∩ V1 = ∅ and
{yi,j |j ∈ [qi]} ⊆ V1. Moreover V1 contains precisely two vertices of each directed 3-cycle
corresponding to a clause since D〈V2〉 is arcless. Thus by assigning the value true to all
variables whose corresponding xi,j vertices are in V1 and false to the remaining ones, we
obtain the desired truth assignment.

(A,O) To see that the 3-SAT problem polynomially reduces to this problem, it suffices to show
that, for a given instance F of 3-SAT, the digraph D(F) (defined as we did above) has an
(A,O)-partition if and only if F is satisfiable. This is easy to see using the observations
we have already made about the digraph D(F): the oriented part will contain at least one
vertex of each directed 3-cycle so setting a variable true if and only if the corresponding
set of vertices in D(F) are in the oriented part, we obtain a satisfying truth assignment
and conversely.

(A,T) We show a polynomial reduction from NAE-3-SAT to this problem. Let R be the di-
graph with vertex set {`1, `2, `3, c1, c2, c3} and arc set {`1`2, `2`3, `3`1, c1c2, c2c3, c3c1} ∪
{c1`1, c2`2, c3`3} ∪ {`icj |i, j ∈ [3]}. It is easy to check that R has an (A,T)-partition and
for each such partition (V1, V2), either two of the vertices {`1, `2, `3} and one of the vertices
{c1, c2, c3} are in the tournament part V2 or one of the vertices {`1, `2, `3} and two of the
vertices {c1, c2, c3} are in V2. Note also that for i ∈ [3], `i and ci are in different parts of
the partition as they form a directed 2-cycle.

Let F be an instance of NAE-3-SAT with variables x1, . . . , xn and clauses C1, C2, . . . , Cm.
Form the digraphH(F) by adding the following toB(F). Add vertices (

⋃
j∈[m]{cj,1, cj,2, cj,3})

and the arc set which is the union of the sets A1, A2 defined as follows:

– A1 consists of the arcs of the m copies Rj , j ∈ [m] where Rj is obtained by using
the 3 vertices in Wj corresponding to the literals of Cj as the vertices {`1, `2, `3} and
letting {cj,1, cj2 , cj,3} correspond to c1, c2, c3.

– A2 consists of the union of

∗ all arcs of the form xi,jxi′,j′ , i, i′ ∈ [n], j ∈ [qi], j
′ ∈ [qi′ ], Where i < i′ or i = i′

and j < j′,
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∗ all arcs of the form yi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi], j
′ ∈ [qi′ ], where i < i′ or i = i′

and j < j′ and
∗ all arcs of the form xi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi], j

′ ∈ [qi′ ], where i < i′ and
∗ all arcs of the form xi,jcr,s, i ∈ [n], j ∈ [qi], r ∈ [m], s ∈ [3]

∗ all arcs of the form yi,jcr,s, i ∈ [n], j ∈ [qi], r ∈ [m], s ∈ [3].
∗ all arcs of the form cr,scr′,s′ , r, r′ ∈ [m], s, s′ ∈ [3], where r < r′.

Note that, by definition of A1 and A2, we may get a directed 2-cycle between two vertices
corresponding to literals of the same clause. In that case we keep only the arc from A1.
Note also that H(F) is in fact a semicomplete digraph.

We claim that F has a truth assignment which satisfies one or two literals of every clause
if and only if H(F) has an (A,T)-partition (V1, V2). Suppose first that t is such a truth
assignment. Let V2 consist of the union of all xi,j vertices such that xi is true, all ye,f
vertices such that xe is false and those vertices among c1,1, c1,2, c1,3 . . . , cm,1, cm,2, cm,3
that do not form any directed 2-cycle with the chosen x, y vertices. By the definition of R
and the fact that t is a valid truth assignment, for each j ∈ [m], V2 contains exactly three
vertices of Rj . Set V1 = V (H(F)) \ V2.
Let us show that (V1, V2) is an (A,T)-partition of H(F). First observe that the subdigraph
induced by V2 is semicomplete as it is an induced subdigraph of the semicomplete digraph
H(F). There can be no directed 2-cycle in V2 since, by construction (from t), the only
possible directed 2-cycles would be of the form `j,icj,i for some j ∈ [m], i ∈ [3] and we
avoided those by the definition of V1.

To see that D〈V1〉 is acyclic, first observe that, by the construction of V2, there are no
directed 2-cycles in V1 and none of the directed 3-cycles cj,1cj,2cj,3cj,1, j ∈ [m] are in V1.
Now the claim follows from the way we added arcs between literal vertices and vertices of
the kind cj,i in the definition of A2: there are no arcs from a cj,i vertex to a vertex of the
kind xp,q, yr,s and each of the subdigraphs of H(F) induced by literal vertices, respectively
the V1 vertices of the kind ca,b are acyclic.

Suppose now that (V1, V2) is an (A,T)-partition of H(F). By construction, using the same
arguments as in the previous cases, we see that for every variable xi either all vertices of
the form xi,j are in V1 and those of the form yi,j are in V2, or all vertices of the form xi,j are
in V2 and those of the form yi,j are in V1. So, as in the other proofs, we get a well-defined
truth assignment t by letting xi be true precisely when all xi,j are in V2. It follows from
the remark on (A,T)-partitions of the 6-vertex subdigraphs Rj that this truth assignment
satisfies either one or two literals of each clause.

(A,S) We show a polynomial reduction from 2-IN-3-SAT to this problem. Let F be an instance of
2-IN-3-SAT with variables x1, . . . , xn and clauses C1, C2, . . . , Cm. Form the digraph G(F)
by adding the following vertices and arcs toB(F): add vertices {x1,q1+1, y1,q1+1, . . . , xn,qn+1, yn,qn+1}∪
(
⋃
j∈[m]{cj,1, cj,2, cj,3}) and new arcs formed by the union of A1, A2, A3 defined as follows:

– A1 = {xi,qi+1yi,qi+1, yi,qi+1xi,qi+1|i ∈ [n]}.
– A2 consists of the arcs of the m directed 3-cycles Qj = cj,1cj,2cj,3cj,1, j ∈ [m] and the

arcs of the m vertex-disjoint complete digraphs Mj , j ∈ [m] on three vertices where
V (Mj) = Wj for j ∈ [m]. Finally, for each clause Cj , j ∈ [m], A2 contains six arcs
from Wj to V (Qj) such that each vertex in V (Qj) receives exactly two arcs from Wj

and each vertex of Wj sends exactly two arcs to Qj .

Inria
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– A3 consists of the union of
∗ all arcs of the form xi,jxi′,j′ , i, i′ ∈ [n], j ∈ [qi + 1], j′ ∈ [qi′ + 1], where i < i′ or
i = i′ and j < j′,

∗ all arcs of the form yi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi + 1], j′ ∈ [qi′ + 1], where i < i′ or
i = i′ and j < j′,

∗ all arcs of the form xi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi + 1], j′ ∈ [qi′ + 1], where i < i′,
∗ all arcs of the form xi,jcr,s, i ∈ [n], j ∈ [qi+1], r ∈ [m], s ∈ [3], except those where
xi,j ∈Wr

∗ all arcs of the form yi,jcr,s, i ∈ [n], j ∈ [qi+ 1], r ∈ [m], s ∈ [3], except those where
yi,j ∈Wr,

∗ all arcs of the form cr,scr′,s′ , r, r′ ∈ [m], s, s′ ∈ [3], where r < r′.

We claim that F has a truth assignment which satisfies exactly two literals of every clause
if and only if G(F) has an (A,S)-partition (V1, V2).

Suppose first that t is such a truth assignment. Let V2 consist of the union of all xi,j
vertices such that vi is true, all ye,f vertices such that ve is false and the precisely m
vertices c1,g1 , . . . , cm,gm such that, for each j ∈ [m], cj,gj is the unique vertex of Qj which
has two in-neighbours among those x, y vertices (these correspond to the two true literals of
Cj). Set V1 = V (G(F))\V2. Let us prove that (V1, V2) is an (A,S)-partition of G(F). First,
observe that the subdigraph induced by V2 is semicomplete: the only non-adjacent pairs
of vertices in G(F) are those containing exactly one of the vertices cr,s (such a vertex has
precisely one non-neighbour and it is in Wr), those containing one of the vertices xi,qi+1,
i ∈ [n] and a vertex yi,j , j ∈ [qi] or those containing one of the vertices yi,qi+1, i ∈ [n] and
a vertex xi,j j ∈ [qi]. In the choice of V1, V2 above we chose V2 so that it has no pairs of
that kind.

To see that V1 is acyclic, first note that D〈V1〉 has no 2-cycle since it contains exactly one
vertex of each Mj and no pair xi,j , yi,j′ . Now it suffices to observe that, as the subdigraph
G(F) of induced by all cj,i vertices contains exactly m directed cycles, one for each clause
and there is no arc from a cj,i vertex to a literal vertex, the only possible directed cycles
in V1 would be the directed 3-cycles Qj but here we put one of the vertices in V2.

Suppose now that (V1, V2) is an (A,S)-partition of G(F). By construction, using the same
arguments as in the previous cases, together with the fact that the vertex xi,qi+1 (resp.
yi,qi+1) has no neighbour in {yi,j |j ∈ [qi]} (resp. {xi,j |j ∈ [qi]}), we see that for each
i ∈ [n] either all vertices of the form xi,j are in V1 and those of the form yi,j are in V2 or
conversely. So, as in the other proofs, we get a well-defined truth assignment φ by letting
xi be true precisely when all xi,j are in V2. Let us show that this truth assignment satisfies
exactly two literals of each clause: Since V1 is acyclic, for each j ∈ [m], at least two of the
vertices corresponding to the literals of Cj are in V2 so φ satisfies at least two variables of
each clause. To see that it cannot satisfy three literals of any clause, it suffices to notice
that if all three literal vertices of some Cj were in V2 then V1 would contain the 3-cycle Qj ,
because each vertex in Qj has a non-neighbour in Wj . This would contradict that D〈V1〉
is acyclic.

(A,Z) We show a polynomial reduction from 2-IN-3-SAT to the (A,Z)-partition problem. First
consider the digraph U with vertex set {u1, u2, u3, v1, v2, v3} and arc set {uiuj |i, j ∈
[3], i 6= j} ∪ {v1v2, v2v3, v3v1} ∪ {uivi|i ∈ [3]}. It is easy to check that U has exactly
three distinct (A,Z)-partitions : ({u3, v1, v2}, {u1, u2, v3}), ({u1, v2, v3}, {u2, u3, v1}), and
({u2, v3, v1}, {u3, u1, v2}).

RR n° 8867



14 Bang-Jensen & Havet

Let F be an instance of 2-IN-3-SAT with variables x1, . . . , xn and clauses C1, C2, . . . , Cm.
Form the digraphK(F) by adding the following vertices and arcs to B(F): add new vertices
{di,p|i ∈ [n], p ∈ [4]} ∪ (

⋃
j∈[m]{vj,1, vj,2, vj,3}) and the arc sets A1, A2, A3 defined below.

– A1 is the sets of arcs of the n disjoint directed 4-cycles di,1di,2di,3di,4di,1, i ∈ [n].

– A2 is the arc-disjoint union of the arcs of m copies U1, . . . , Um of U where we identify
the vertices uj,1, uj,2, uj,3 of the j’th copy of U with the vertices ofWj (the vj,i-vertices
are all distinct).

– A3 =
⋃
i∈[n],j∈[qi]{di,1yi,j , di,3yi,j , di,2xi,j , di,4xi,j}.

We claim that K(F) has an (A,Z)-partition (V1, V2) if and only if F has a truth assignment
which satisfies exactly two literals of each clause.

First assume that we have such a truth assignment φ. Then let V2 contain exactly those
vertices xi,j and di,1, di,3 such that xi is true and all those vertices ye,f and de,2, de,4 such
that xe is false and the precisely m vertices v1,h1 , . . . , vm,hm such that for each j ∈ [m] none
of the two vertices of Wj ∩ V2 are adjacent to vj,hj

. Set V1 = V (K(F)) \ V2. As there are
no arcs from the set of vj,k vertices to the remaining vertices, the digraph D〈V1〉 is clearly
acyclic (note that the di,j vertices have no arcs in the part they belong to). By the way we
chose vj,hj (picking exactly that vertex of Uj with no adjacency to Wj ∩ V2) we also have
that D〈V2〉 is a symmetric digraph.

Conversely, let (V1, V2) be an (A,Z)-partition. First observe that the adjacencies between
vertices of the 4-cycles di,1di,2di,3di,4di,1, i ∈ [n] and the variable vertices imply that, for
each i ∈ [n], either all vertices xi,j , j ∈ [qi] are in V2 and all vertices yi,j , j ∈ [qi] are in V1,
or all vertices xi,j , j ∈ [qi] are in V1 and all vertices yi,j , j ∈ [qi] are in V2. This follows
from the fact that we cannot have all vertices of such a 4-cycle in V1. Hence we get a well-
defined truth assignment from the partition by assigning the value true to xi if the first
case above occurs and false if the second case occurs. Now it follows from the property
of the digraph U that for each j ∈ [m] the clause Cj has exactly two true literals, namely
those corresponding to those vertices of Wj that are in V2. �

Corollary 4.5 For all fixed integers k1, k2 the (A,A)-[k1, k2]-partition problem and the (A,T)-
[k1, k2]-partition problem are NP-complete already for semicomplete digraphs.

Proof: The last part was done when we proved that (A,T)-partition was NP-complete as
the digraph H(F) was in fact semicomplete. To show that the (A,A)-partition problem is NP-
complete for semicomplete digraphs it suffices to notice that we can add arcs to the digraph D(F)
that we constructed in the proof for (A,A)-partition, then we get an equivalent semicomplete
instance: add the following arcs to obtain DS(F):

• all arcs of the form xi,jxi′,j′ , i, i′ ∈ [n], j ∈ [qi], j
′ ∈ [qi′ ], where i < i′ or i = i′ and j < j′,

• all arcs of the form yi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi], j
′ ∈ [qi′ ], where i < i′ or i = i′ and j < j′,

and

• all arcs of the form xi,jyi′,j′ , i, i′ ∈ [n], j ∈ [qi], j
′ ∈ [qi′ ], where i < i′.

It is easy to check that the only directed cycles of Ds(F) which do not contain both vertices of
some 2-cycle xi,jyi,j′ are the m directed 3-cycles corresponding to the clauses. Together with the
arguments used in the proof above for the (A,A)-partition problem this shows that Ds(F) has
an (A,A)-partition if and only if F is a ‘Yes’-instance of NAE-3-SAT. �
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5 Concluding remarks
In this paper, we gave polynomial-time algorithms for many [k1, k2]-partition problems for k1
and k2 fixed. However, the proposed algorithms are only polynomial when k1 and k2 are fixed
and generally have a typical running time of O(nα·k1+β·k2+γ) for some constants α, β, γ. This
means that the [k1, k2]-partition problem is in XP with respect to the parameter (k1, k2). A
natural question is then to ask whether some of those problems can be solved in polynomial time
or when this is not the case, then in FPT time when k1 and k2 are not fixed.

Problem 5.1 For which pairs (P1,P2) of properties among the ones studied in this paper and
[2], does there exist an algorithm that, given a digraph D and two integers k1, k2, decides whether
D admits a (P1,P2)-[k1, k2]-partition in polynomial time? Which ones can be solved in FPT time
(i.e. f(k1, k2)nc)-time with f a computable function and c a constant.

The companion paper [2] contains a number of further problems to study, one of which
concerns combinations of several of the properties from H ∪ E .
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