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THE LIN-NI’S PROBLEM FOR MEAN CONVEX DOMAINS

OLIVIER DRUET, FRÉDÉRIC ROBERT, AND JUNCHENG WEI

Abstract. We prove some refined asymptotic estimates for postive blowing

up solutions to ∆u+εu = n(n−2)u
n+2
n−2 on Ω, ∂νu = 0 on ∂Ω; Ω being a smooth

bounded domain of Rn, n ≥ 3. In particular, we show that concentration can
occur only on boundary points with nonpositive mean curvature when n = 3 or

n ≥ 7. As a direct consequence, we prove the validity of the Lin-Ni’s conjecture

in dimension n = 3 and n ≥ 7 for mean convex domains and with bounded
energy. Recent examples by Wang-Wei-Yan [32] show that the bound on the

energy is a necessary condition.

Frédéric Robert dedicates this work to Clémence Climaque
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1. Introduction

Let Ω be a smooth bounded domain of Rn, n ≥ 2. In [21], Lin, Ni and Takagi
got interest in solutions u ∈ C2(Ω) to the elliptic problem ∆u+ εu = n(n− 2)uq−1 in Ω

u > 0 in Ω
∂νu = 0 on ∂Ω

(Eq)
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2 OLIVIER DRUET, FRÉDÉRIC ROBERT, AND J.WEI

where ε > 0 is a parameter and q > 2. Here and in the sequel, ∆ := −div(∇) is
the Laplace operator with minus-sign convention. This problem has its origins in
the analysis of the Gierer-Meinhardt model in mathematical biology: this model
is a system of nonlinear evolution equations of parabolic type, and the stationary
problem with infinite diffusion constant splits into two equations like (Eq). We refer
to the surveys [24, 33] for the justifications of the model and its simplification.

Problem (Eq) enjoys a variational structure, since its solutions are critical points
of the functional

u 7→ 1

2

∫
Ω

|∇u|2 dx+
ε

2

∫
Ω

u2 dx− 1

q

∫
Ω

|u|q dx,

a functional that is defined for all u ∈ H2
1 (Ω)∩Lq(Ω), where H2

1 (Ω) is the standard
Sobolev space of L2−functions with derivatives also in L2 endowed with the norm
‖ · ‖2 + ‖∇ · ‖2. In particular, it follows from Sobolev’s embedding theorem that
H2

1 (Ω) ↪→ Lq(Ω) continuously in case 2 < q ≤ 2? where 2? := 2n
n−2 (we assume here

that n ≥ 3): therefore the functional above is defined on H2
1 (Ω) when 2 < q ≤ 2?.

Moreover, the Sobolev embedding above is compact in case q < 2?.

The system (Eq) enjoys at least a solution, namely the constant solution u ≡(
ε

n(n−2)

) 1
q−2

. In a series of seminal works, Lin-Ni-Takagi [21] and Ni-Takagi [25,

26] got interest in the potential existence of nonconstant solutions to (Eq). In
particular, it is showed in [25, 26] that for ε large, solutions concentrate at boundary
points of maximum mean curvature. In the present article, we restrict our attention
to that case when ε > 0 is small. In case 2 < q < 2?, variational techniques and the
compactness of the embedding imply that for small positive ε, the constant solution
is the sole solution to (Eq). This uniqueness result incited Lin and Ni to conjecture
the extension of this result to the critical case q = 2?:

Question (Lin-Ni [20]): Is the constant solution the only solution to (E2?) when
ε > 0 is small?

The mathematical difficulty of this question comes from the conformal invariance
of (E2?) and its associated unstability. Indeed, for µ > 0 and x0 ∈ Rn, define

Ux0,µ(x) :=

(
µ

µ2 + |x− x0|2

)n−2
2

for all x ∈ Rn. (1.1)

The scalar curvature equation for the pulled back of the spherical metric via the
stereographic projection (or direct computations) yields ∆Ux0,µ = n(n − 2)U2?−1

x0,µ

in Rn. Therefore, there is an abundance of solutions to ∆u = u2?−1, some of them
being peaks blowing-up to infinity since limµ→0 Ux0,µ(x0) = +∞: in this sense, the
equation is unstable since it enjoys many solutions that are far from each other.
There are no such solutions in the subcritical case q < 2? (see [5]). This conformal
dynamic transfers on the Lin-Ni’s problem and it follows from the famous Struwe
decomposition [30] that families of solutions (uε)ε>0 to (E2?) with bounded energy
may develop some peaks like (1.1) when ε→ 0: more precisely, there exists N ∈ N
such that for any i ∈ {1, ..., N}, there exists sequences (xi,ε)ε ∈ Rn, (µi,ε)i ∈ R>0
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such that limε→0 µi,ε = 0 and, up to the extraction of a subfamily,

uε =

N∑
i=1

Uxi,ε,µi,ε +Rε (1.2)

where limε→0Rε = 0 in H2
1 (Ω). This decomposition is refered to as the integral de-

composition. When there is at least one peak, then there are nonconstant solutions.
Conversely, in case there is no peak, elliptic estimates and simple integrations by
parts (see Section 2) yield the sole constant solution for small ε.

In the radial case, that is when Ω is a ball and when u is radially symmetrical,
Adimurthi-Yadava solved the problem in [2, 3]: when n = 3 or n ≥ 7, the answer to
Lin-Ni’s question is positive, and it is negative for n ∈ {4, 5, 6}. In the asymmetric
case, the complete answer is not known yet, but there are a few results. When
n = 3, it was proved independently by Zhu [35] and Wei-Xu [34] that the answer
to Lin-Ni’s question is positive when Ω is convex. When n = 5, Rey-Wei [27]
constructed solutions to (E2?) as a sum of peaks like (1.1) for ε→ 0. In the present
paper, we concentrate on the localization of the peaks in the general case.

Let (εα)α∈N ∈ (0, 1] be a sequence such that

lim
α→+∞

εα = 0.

We consider a sequence (uα)α∈N ∈ C2(Ω) such that ∆uα + εαuα = n(n− 2)u2?−1
α in Ω

uα > 0 in Ω
∂νuα = 0 on ∂Ω

(1.3)

We assume that there existe Λ > 0 such that∫
Ω

u2?

α dx ≤ Λ (1.4)

for all α ∈ N.

Definition 1. We say that x ∈ Ω is a non-singular point of (uα) if there exists
δ > 0 and C > 0 such that

‖uα‖L∞(Bδ(x)∩Ω) ≤ C

for all α ∈ N. We say that x ∈ Ω is a singular point if it is not a non-singular
point.

The singular points are exactly the points where the peaks are located. In the
sequel, H(x) denotes the mean curvature at x ∈ ∂Ω of the oriented boundary ∂Ω.
With our sign convention, the mean curvature of the oriented boundary of the unit
ball is positive. We prove the following theorem:

Theorem 1. Let (uα)α∈N ∈ C2(Ω) and ε > 0 such that (1.3) and (1.4) hold. Let
S denote the (possibly empty) set of singular points for (uα). Assume that n = 3
or n ≥ 7: then S is finite and

S ⊂ {x ∈ ∂Ω/H(x) ≤ 0}.

As a consequence, we get the following:
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Theorem 2. [Lin-Ni’s conjecture for mean convex domains] Let Ω be a smooth
bounded domain of Rn, n = 3 or n ≥ 7. Assume that H(x) > 0 for all x ∈ ∂Ω.
Then for all ε > 0, there existe ε0(Ω,Λ) > 0 such that for all ε ∈ (0, ε0(Ω,Λ)) and
for any u ∈ C2(Ω), we have that

∆u+ εu = n(n− 2)u2?−1 in Ω
u > 0 in Ω
∂νu = 0 on ∂Ω∫

Ω
u2? dx ≤ Λ

 ⇒ u ≡
(

ε

n(n− 2)

)n−2
4

.

The method we use to prove Theorem 1 relies on a sharp control of the solutions
to (1.3) in the spirit of Druet-Hebey-Robert [9], our first result being that (see
Proposition 5 and (7.3) in Section 7)

uα ≤ C

(
ūα +

N∑
i=1

Uxi,α,µi,α

)
(1.5)

where ūα is the average of uα on Ω and the peaks are as in Struwe’s decomposition
(1.2). In particular, we pass from an integral description to a pointwise descrip-
tion. As in Druet [6] (see also Ghoussoub-Robert [12] and Druet-Hebey [8]), this
pointwise description allows us to determine exactly where two peaks may interact,
and to describe precisely the behavior of uα there. The localization of the singular
points then follows from a succession of Pohozaev identities.

These results appeal some remarks. In dimension n = 3, our result must be com-
pared to Zhu’s result: in [35], no bound on the energy is assumed, but the convexity
is required; in our result, we require the bound on the energy, but a weak convexity
only is needed. The assumption on the energy (1.4) may seem technical for who is
familiar with the Yamabe equation: indeed, in general, see Druet [7], Li-Zhu [19],
Schoen [29] and Khuri-Marques-Schoen [18], any solution to the Yamabe equation
automatically satisfies a bound on the energy like (1.4). For the Lin-Ni’s problem,
this is not the case: recently, it was proved that solutions to (E2?) may accumulate
with infinite energy when the mean curvature is negative somewhere (see Wang-
Wei-Yan [31]) or when Ω is a ball (see Wang-Wei-Yan [32]), a domain with positive
mean curvature: therefore, the answer to Lin-Ni’s question is negative if one does
not impose the bound (1.4).

The influence of curvature is reminiscent in the asymptotic analysis of equations like
(1.3). For instance, in Druet [6, 7] and in Li-Zhu [19], it is proved that for Yamabe-
type equations, the peaks are located where the potential of the equation touches
the scalar curvature; we refer to Hebey-Robert-Wen [17] and Hebey-Robert [16]
for the corresponding localization for fourth-order problems. In Ghoussoub-Robert
[11, 12], that is for a singular Dirichlet-type problem, the peaks are located where
the mean curvature is nonnegative: in Theorem 1 above, that is for a Neumann
problem, we conversely prove that the peaks are located at points of nonpositive
mean curvature. For Neumann-type equations like (1.3), the role of the mean
curvature has been enlighted, among others, by Adimurthi-Mancini-Yadava [1],
Lin-Wang-Wei [22] and Gui-Lin [15].

The present paper is devoted to the asymptotic analysis of solutions (uα)α of (1.3)
satisfying (1.4) when n ≥ 3. In Sections 2 to 7, we prove the pointwise control
(1.5). Section 8 is devoted to the convergence of the (uα)α’s at the scale where
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peaks interact. In Sections 9 and 10, we prove an asymptotic relation mixing the
heights of the peaks, the distance between peaks and the mean curvature. Finally,
we prove Theorems 1 and 2 in Section 11.

Notations: in the sequel, we define Rn− := {(x1, x
′) ∈ Rn/ x1 < 0} and we assim-

ilate ∂Rn− = {(0, x′)/ x′ ∈ Rn−1} to Rn−1. Given two sequences (aα)α ∈ R and
(bα)α ∈ R, we say that aα � bα when α → +∞ if aα = O(bα) and bα = O(aα)
when α → +∞. For U an open subset of Rn, k ∈ N, k ≥ 1, and p ≥ 1, we define

Hp
k (U) as the completion of C∞(Ū) for the norm

∑k
i=1 ‖∇i‖p.

Acknowledgements: This work was initiated and partly carried out during the visits
of F.Robert in Hong-Kong. He expresses his thanks J.Wei for the invitations and his
gratitude for his friendly support in April 2010. F.Robert was partially supported
by the ANR grant ANR-08-BLAN-0335-01 and by a regional grant from Université
Nancy 1 and Région Lorraine. The research of J.Wei is partially supported by RGC
of HK and “Focused Research Scheme” of CUHK.

2. L∞−bounded solutions

Let Ω ⊂ Rn be a smooth domain (see Definition 2 of Section 3 below), n ≥ 3.
We consider a sequence (uα)α∈N of positive solutions of ∆uα + εαuα = n(n− 2)u2?−1

α in Ω
uα > 0 in Ω
∂νuα = 0 on ∂Ω

(2.1)

We assume in the following that ∫
Ω

u2?

α dx ≤ Λ (2.2)

for some Λ > 0. We claim that

uα ⇀ 0 weakly in H2
1 (Ω) as α→ +∞. (2.3)

We prove the claim. Indeed, after integrating (2.1) on Ω, it follows from Jensen’s
inequality that(

1

|Ω|

∫
Ω

uα dx

)2?−1

≤ 1

|Ω|

∫
Ω

u2?−1
α dx =

εα
∫

Ω
uα dx

n(n− 2)|Ω|
for all α ∈ N. Then, we get that

ūα ≤
(

εα
n(n− 2)

)n−2
4

(2.4)

for all α ∈ N, where, given ūα := 1
|Ω|
∫

Ω
uα dx denote the average of uα on Ω.

Multiplying (2.1) by uα and integrating on Ω, we get that (uα)α is bounded in
H2

1 (Ω). Therefore, up to a subsequence, (uα)α converges weakly. The convergence
(2.3) then follows from (2.4). This proves the claim.

We prove in this section the following:

Proposition 1. Assume that the sequence (uα)α is uniformly bounded in L∞ (Ω).

Then there exists α0 > 0 such that uα ≡
(

εα
n(n−2)

)n−2
4

for all α ≥ α0.
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Proof of Proposition 1: Assume that there exists M > 0 such that uα ≤ M in Ω
for all α > 0. By standard elliptic theory (see Theorem 9.11 in [13] together with
Theorem 6 of Section 11), we deduce then thanks to (2.3) that uα → 0 in L∞ (Ω).
Multiplying equation (2.1) by uα − ūα (ūα is the average of uα defined above) and
integrating by parts, we then get that∫

Ω

|∇uα|2 dx+ εα

∫
Ω

(uα − ūα)
2
dx

= n(n− 2)

∫
Ω

u2?−1
α (uα − ūα) dx

= n(n− 2)

∫
Ω

(
u2?−1
α − ū2?−1

α

)
(uα − ūα) dx

= O

((
‖uα‖2

?−2
∞ + ū2?−2

α

)∫
Ω

(uα − ūα)
2
dx

)
= o

(∫
Ω

(uα − ūα)
2
dx

)
= o

(∫
Ω

|∇uα|2 dx
)

when α → +∞ thanks to Poincaré’s inequality. This yields
∫

Ω
|∇uα|2 dx = 0 for

α large and thus uα is a constant for α > α0 for some α0 > 0. The constant is

easily seen to be
(

εα
n(n−2)

)n−2
4

thanks to equation (2.1). This ends the proof of

Proposition 1. �

For the rest of the article, we assume that

lim
α→+∞

‖uα‖∞ = +∞. (2.5)

Under this assumption, the sequence (uα) will develop some concentration points.
In sections 4 to 7, we provide sharp pointwise estimates on uα and thus describe
precisely how the sequence (uα) behaves in C1

(
Ω̄
)
. In section 8 to 10, we get

precise informations on the patterns of concentration points which can appear.
This permits to conclude the proof of the main theorems in section 11.

3. Smooth domains and extensions of solutions to elliptic equations

We first define smooth domains:

Definition 2. Let Ω be an open subset of Rn, n ≥ 2. We say that Ω is a smooth
domain if for all x ∈ ∂Ω, there exists δx > 0, there exists Ux an open neighborhood
of x in Rn, there exists ϕ : Bδx(0)→ Ux such that

(i) ϕ is a C∞ − diffeomorphism
(ii) ϕ(0) = x
(iii) ϕ(Bδx(0) ∩ {x1 < 0}) = ϕ(Bδx(0)) ∩ Ω
(iv) ϕ(Bδx(0) ∩ {x1 = 0}) = ϕ(Bδx(0)) ∩ ∂Ω

The outward normal vector is then defined as follows:

Definition 3. Let Ω be a smooth domain of Rn. For any x ∈ ∂Ω, there exists a
unique ν(x) ∈ Rn such that ν(x) ∈ (Tx∂Ω)⊥, ‖ν(x)‖ = 1 and (∂1ϕ(0), ν(x)) > 0 for
ϕ as in Definition 2. This definition is independent of the choice of such a chart ϕ
and the map x 7→ ν(x) is in C∞(∂Ω,Rn).



LIN-NI’S PROBLEM 7

Let Ω be a smooth bounded domain of Rn as above. We consider the following
problem: {

∆u = f in Ω
∂νu = 0 in ∂Ω

(3.1)

where u ∈ C2(Ω) and f ∈ C0(Ω). Note that the solution u is defined up to the
addition of a constant and that it is necessary that

∫
Ω
f dx = 0 (this is a simple

integration by parts). It is useful to extend solutions to (3.1) to a neighborhood of
each point of ∂Ω. For this, a variational formulation of (3.1) is required: multiplying
(3.1) by ψ ∈ C∞(Ω) and integrating by parts leads us to the following definition:

Definition 4. We say that u ∈ H1
1 (Ω) is a weak solution to (3.1) with f ∈ L1(Ω)

if ∫
Ω

(∇u,∇ψ) dx =

∫
Ω

fψ dx for all ψ ∈ C∞(Ω).

In case u ∈ C2(Ω), as easily checked, u is a weak solution to (3.1) iff it is a classical
solution to (3.1).

We let ξ be the standard Euclidean metric on Rn and we set{
π̃ : Rn → Rn

(x1, x
′) 7→ (−|x1|, x′)

Given a chart ϕ as in Definition 2, we define

π̃ϕ := ϕ ◦ π̃ ◦ ϕ−1.

Up to taking Ux0
smaller, the map π̃ϕ fixes Ux0

∩Ω and ranges in Ω. We prove the
following useful extension lemma:

Lemma 1. Let x0 ∈ ∂Ω. There exist δx0 > 0, Ux0 and a chart ϕ as in Definition
2 such that the metric g̃ := π̃?ϕξ = (ϕ ◦ π̃ ◦ϕ−1)?ξ is in C0,1(Ux0

) (that is Lipschitz
continuous), g̃|Ω = ξ, the Christoffel symbols of the metric g̃ are in L∞(Ux0

) and

dϕ0 is an orthogonal transformation. Let u ∈ H1
1 (Ω∩Ux0

) and f ∈ L1(Ω∩Ux0
) be

functions such that∫
Ω

(∇u,∇ψ) dx =

∫
Ω

fψ dx for all ψ ∈ C∞c (Ω ∩ Ux0
). (3.2)

For all v : Ω ∩ Ux0
→ R, we define

ṽ := v ◦ π̃ϕ in Ux0 .

Then, we have that ũ ∈ H1
1 (Ux0

), ũ|Ω = u, f ∈ L1(Ux0
) and

∆g̃ũ = f̃ in the distribution sense,

where ∆g̃ := −divg̃(∇).

Here, by ”distribution sense”, we mean that∫
Ux0

(∇ũ,∇ψ)g̃ dvg̃ =

∫
Ux0

f̃ψ dvg̃ for all ψ ∈ C∞c (Ux0),

where dvg̃ is the Riemannian element of volume associated to g̃ and (·, ·)g̃ is the
scalar product on 1−forms.
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Proof of Lemma 1: Given a chart ϕ̂ at x0 defined on Bδ̃x0
(0) as in Definition 2, we

define the map {
ϕ : Bδ̃x0

(0) → Rn

(x1, x
′) 7→ x1ν(ϕ̂(0, x′)) + ϕ̂(0, x′)

The inverse function theorem yields the existence of δx0 > 0 and Ux0 ⊂ Rn open
such that ϕ : Bδx0 (0)→ Ux0

is a smooth diffeomorphism being a chart at x0 as in
Definition 2. Moreover, the pull-back metric satisfies the following properties:

(ϕ?ξ)11 = 1, (ϕ?ξ)1i = 0 ∀i 6= 1.

In particular, up to a linear transformation on the {x1 = 0} hyperplane, we can
assume that dϕ0 is an orthogonal transformation. It is easily checked that ((ϕ ◦
π̃)?ξ)ij = (ϕ?ξ)ij ◦ π̃ outside {x1 = 0} for all i, j, and then we prologate (ϕ◦ π̃)?ξ as
a Lipschitz continuous function in Ux0

, and so is g̃ := (ϕ ◦ π̃ ◦ ϕ−1)?ξ. In addition,

as easily checked, if Γ̃kij ’s denote the Christoffel symbols for the metric g̃, we have

that Γ̃kij ∈ L∞. Therefore, the coefficients of ∆g̃ are in L∞ and the principal part
is Lipschitz continuous.

We fix ψ ∈ C∞c (Ux0). For convenience, in the sequel, we define π := π̃|Rn+ , that is{
π : Rn+ → Rn−

(x1, x
′) 7→ (−x1, x

′).

Clearly, π is a smooth diffeomorphism. As for π̃ϕ, we define

πϕ := ϕ ◦ π ◦ ϕ−1

that maps (locally) Ω
c

to Ω. With changes of variable, we get that∫
Ux0

(∇ũ,∇ψ)g̃ dvg̃ =

∫
Ω∩Ux0

(∇u,∇(ψ + ψ ◦ π−1
ϕ ◦ ϕ−1)) dx

and ∫
Ux0

f̃ψ dvg̃ =

∫
Ω∩Ux0

f(ψ + ψ ◦ π−1
ϕ ) dx.

It then follows from (3.2) that ∆g̃ũ = f̃ in Ux0
in the distribution sense. This ends

the proof of Lemma 1. �

In the particular case of smooth solutions, we have the following lemma:

Lemma 2. Let x0 ∈ ∂Ω. There exist δx0 > 0, Ux0 and a chart ϕ as in Definition
2 such that the metric g̃ := (ϕ ◦ π̃ ◦ ϕ−1)?ξ is in C0,1(Ux0) (that is Lipschitz
continuous), g̃|Ω = ξ, the Christoffel symbols of the metric g̃ are in L∞(Ux0

) and

dϕ0 is an orthogonal transformation. We let u ∈ C2(Ω ∩ Ux0) and all f ∈ C1
loc(R)

be such that {
∆u = f(u) in Ω ∩ Ux0

∂νu = 0 in ∂Ω ∩ Ux0

and we define

ũ := u ◦ ϕ ◦ π̃ ◦ ϕ−1 in Ux0
.

Then, in addition to the regularity of g̃, we have that

ũ ∈ C2(Ux0
), ũ|Ω = u and ∆g̃ũ = f(ũ) for all x ∈ Ux0

,

where ∆g̃ := −divg̃(∇).
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4. Exhaustion of the concentration points

We prove in this section the following :

Proposition 2. Let (uα)α∈N ∈ C2(Ω) and Λ > 0 such that (1.3) and (1.4) hold
for all α ∈ N. Then there exists N ∈ N?, N sequences (xi,α)i=1,...,N of points in Ω

and N sequences µ1,α ≥ µ2,α ≥ · · · ≥ µN,α of positive real numbers such that, after
passing to a subsequence, the following assertions hold :

(i) For any 1 ≤ i ≤ N , xi,α → xi as α→ +∞ for some xi ∈ Ω̄ and µi,α → 0 as

α→ +∞. Moreover, either
d(xi,α,∂Ω)

µi,α
→ +∞ as α→ +∞ or xi,α ∈ ∂Ω.

(ii) For any 1 ≤ i < j ≤ N ,

|xi,α − xj,α|2

µi,αµj,α
+
µi,α
µj,α

+
µj,α
µi,α

→ +∞ as α→ +∞ .

(iii) For any 1 ≤ i ≤ N , we define

ũi,α := µ
n−2
2

i,α uα (xi,α + µi,α . ) if lim
α→+∞

d (xi,α, ∂Ω)

µi,α
= +∞,

and

ũi,α := µ
n−2
2

i,α ũα ◦ ϕ
(
ϕ−1(xi,α) + µi,α .

)
if xi,α ∈ ∂Ω for all α ∈ N

where ũα is the extension of uα around x0 := limα→+∞ xi,α and ϕ are as in Lemma
2. Then

lim
α→+∞

‖ũi,α − U0‖C1(K∩Ω̄i,α) = 0 (4.1)

for all compact subsets K ⊂⊂ Rn \ Si if xi,α 6∈ ∂Ω and K ⊂⊂ Rn \
(
Si ∪ π−1(Si)

)
if xi,α ∈ ∂Ω where the function U0 is given by

U0(x) :=
(
1 + |x|2

)1−n2
and Si is defined by

Si :=

{
lim

α→+∞

xj,α − xi,α
µi,α

, i < j ≤ N
}
.

In the definition of Si, we allow the limit to be +∞ (and in fact, we discard these
points).

(iv) We have that

R
n−2
2

α

∣∣∣∣∣uα −
N∑
i=1

Ui,α

∣∣∣∣∣→ 0 in L∞
(
Ω̄
)

as α→ +∞

where

Rα(x) := min
1≤i≤N

√
|xi,α − x|2 + µ2

i,α

and

Ui,α(x) := µ
1−n2
i,α U0

(
x− xi,α
µi,α

)
.

Proof of Proposition 2: For N ≥ 1, we say that property PN holds if there exist N
sequences (xi,α)i=1,...,N of points in Ω and N sequences µ1,α ≥ µ2,α ≥ · · · ≥ µN,α
of positive real numbers such that, after passing to a subsequence, assertions (i)-
(ii)-(iii) of the claim hold for these sequences. We divide the proof of Proposition
2 in three steps.
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Step 2.1: We claim that there exists Nmax ≥ 1 such that (PN ) can not hold for
N ≥ Nmax.

Proof of Step 2.1: Let N ≥ 1 be such that (PN ) holds. Let (xi,α)i=1,...,N be N

sequences of points in M and µ1,α ≥ µ2,α ≥ · · · ≥ µN,α be N sequences of positive
real numbers such that the assertions (i)-(ii)-(iii) of Proposition 2 hold after passing
to a subsequence. Let R > 0 and set

Ωi,α (R) = BRµi,α(xi,α) \
⋃

i<j≤N

B 1
Rµi,α

(xj,α) .

It easily follows from (ii) that

Ωi,α (R) ∩ Ωj,α (R) = ∅

for α large enough. Thus we can write that∫
Ω

u2?

α dx ≥
N∑
i=1

∫
Ωi,α(R)∩Ω

u2?

α dx

for α large enough. It follows then from (iii) that∫
Ω

u2?

α dx ≥ N

2

∫
Rn
U2?

0 dx− η(R) + o(1)

where η(R) → 0 as R → +∞. Letting R → +∞ and thanks to (2.2), we then get
that

N ≤ 2Λ∫
Rn U

2?
0 dx

.

This ends the proof of Step 2.1. �

Step 2.2: We claim that P1 holds.

Proof of Step 2.2. We let xα ∈ Ω̄ be such that

uα (xα) = max
Ω̄

uα (4.2)

and we set

uα (xα) = µ
1−n2
α . (4.3)

Thanks to (2.5), we know that µα → 0 as α→ +∞. We set

vα (x) := µ
n
2−1
α uα (xα + µαx) (4.4)

for x ∈ Ωα = {x ∈ Rn s.t. xα + µαx ∈ Ω}. It is clear that

∆vα + εαµ
2
αvα = n(n− 2)v2?−1

α in Ωα

with ∂νvα = 0 on ∂Ωα and

0 ≤ vα ≤ vα(0) = 1 in Ωα .

Step 2.2.1: we assume that

lim
α→+∞

d (xα, ∂Ω)

µα
= +∞. (4.5)

It follows from standard elliptic theory (see [13]) that, after passing to a subse-
quence,

vα → v in C2
loc (Rn) as α→ +∞
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where v ∈ C2(Rn) is such that

∆v = n(n− 2)v2?−1

and
0 ≤ v ≤ v(0) = 1 .

By the classification result of Caffarelli-Gidas-Spruck [5], we then get that v = U0.
This proves P1 in case (4.5). This ends Step 2.2.1.

Step 2.2.2: we assume that there exists ρ ≥ 0 such that

lim
α→+∞

d (xα, ∂Ω)

µα
= ρ. (4.6)

We let x0 := limα→+∞ xα. We then have x0 ∈ ∂Ω and we choose ϕ and δx0
> 0,

Ux0
as in Lemma 2. Let δ ∈ (0, δx0

). Denoting by ũα ∈ C2(Ux0
) the local extension

of uα on Ux0
with respect to ϕ, we then have that

∆g̃ũα + εαũα = ũ2?−1
α in Ux0

. (4.7)

Since dϕ0 is an orthogonal transformation, we have that

d(ϕ(x), ∂Ω) = (1 + o(1))|x1| (4.8)

for all x ∈ Bδ0(0)∩Rn−, where limx→0 o(1) = 0 uniformly locally. We let (xα,1, x
′
α) ∈

{x1 ≤ 0}×Rn−1 be such that xα := ϕ(xα,1, x
′
α) for all α ∈ N. It follows from (4.6)

and (4.8) that

lim
α→+∞

|xα,1|
µα

= ρ. (4.9)

We define

ṽα(x) := µ
n−2
2

α ũα(ϕ((0, x′α) + µαx)) for all x ∈ Bδ/µα(0).

It follows from (4.7) that

∆g̃α ṽα + εαµ
2
αṽα = n(n− 2)ṽ2?−1

α in Bδ/µα(0), (4.10)

where g̃α(x) = (ϕ?g̃)((0, x′α)+µαx) = ((ϕ−1 ◦ π̃)?ξ)((0, x′α)+µαx). Since 0 < ṽα ≤
ṽα(ρα, 0) = 1 and (4.9) holds, it follows from standard elliptic theory (see Theorem
9.11 in [13]) that there exists V ∈ C1(Rn) such that

lim
α→+∞

ṽα = V in C1
loc(Rn), (4.11)

where 0 ≤ V ≤ V (ρ, 0) = 1. Passing to the limit α→ +∞ in (4.10) and using that
dϕ0 is an orthogonal transformation, we get that ∆V = n(n − 2)V 2?−1 weakly in
Rn. Since V ∈ C1(Rn), one gets that V ∈ C2(Rn) and it follows from Caffarelli-
Gidas-Spruck [5] that

V (x) =

(
1

1 + |x− (ρ, 0)|2

)n−2
2

for all x ∈ Rn. The Neumann boundary condition ∂νuα = 0 rewrites ∂1ṽα = 0 on
∂Rn−. Passing to the limit, one gets that ∂1V = 0 on ∂Rn−, and therefore ρ = 0 and
V ≡ U0. In particular, we have that

lim
α→+∞

xα,1
µα

= 0.

Taking x̃α := ϕ(0, x′α), we can then perform the above analysis of Step 2.2.2 with
x̃α ∈ ∂Ω instead of xα. This proves P1 in case (4.6). This ends Step 2.2.2.
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Steps 2.2.1 and Step 2.2.2 prove that P1 holds. Step 2.2 is proved. �

Remark: For P1, we can be a little more precise and prove the following claim:

xα ∈ ∂Ω for α ∈ N large. (4.12)

We prove the claim by contradiction and assume that xα 6∈ Ω for a subsequence.
Define ρα :=

xα,1
µα

. Then ρα < 0 for α large. Since (ρα, 0) is a maximum point of

ṽα, we have that ∂1ṽα(ρα, 0) = 0. Since ∂1ṽα(0) = 0 (Neumann boundary condi-
tion), it then follows from Rolle’s Theorem that there exists τα ∈ (0, 1) such that
∂11ṽα(ταρα, 0) = 0. Letting α → +∞, we get that ∂11U0(0) = 0: a contradiction.
This proves the claim.

Step 2.3: Assume that PN holds for someN ≥ 1. Let (xi,α)i=1,...,N beN sequences

of points in Ω and µ1,α ≥ µ2,α ≥ · · · ≥ µN,α be N sequences of positive real numbers
such that assertions (i)-(ii)-(iii) of the claim hold. We claim that if assertion (iv)
of Proposition 2 does not hold for this sequence of points, then PN+1 holds.

Proof of Step 2.3: We assume that (iv) does not hold for these sequences. In other
words assume that there exists ε0 > 0 such that

max
Ω̄

(
R
n−2
2

α

∣∣∣∣∣uα −
N∑
i=1

Ui,α

∣∣∣∣∣
)
≥ ε0 (4.13)

for all α ∈ N where

Rα(x)2 := min
1≤i≤N

(
|xi,α − x|2 + µ2

i,α

)
and

Ui,α(x) := µ
1−n2
i,α U0

(
x− xi,α
µi,α

)
.

We let yα ∈ Ω̄ be such that

max
Ω̄

(
R
n−2
2

α

∣∣∣∣∣uα −
N∑
i=1

Ui,α

∣∣∣∣∣
)

= Rα (yα)
n−2
2

∣∣∣∣∣uα (yα)−
N∑
i=1

Ui,α (yα)

∣∣∣∣∣ (4.14)

and we set

uα (yα) = ν
1−n2
α . (4.15)

Step 2.3.1: We claim that

Rα (yα)
n−2
2 Ui,α (yα)→ 0 as α→ +∞ for all 1 ≤ i ≤ N . (4.16)

Indeed, assume on the contrary that there exists 1 ≤ i ≤ N such that

Rα (yα)
n−2
2 Ui,α (yα) ≥ η0 (4.17)

for some η0 > 0. This means that

Rα (yα)

µi,α
≥ η

2
n−2

0

(
1 +
|yα − xi,α|2

µ2
i,α

)
. (4.18)

Since Rα (yα)
2 ≤ |yα − xi,α|2 +µ2

i,α, we get in particular that, up to a subsequence,

|yα − xi,α|
µi,α

→ R as α→ +∞ (4.19)
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for some R > 0. Coming back to (4.18), we can also write that

|xj,α − yα|2

µ2
i,α

+
µ2
j,α

µ2
i,α

≥ η
4

n−2

0

(
1 +R2

)2
+ o(1) (4.20)

for all 1 ≤ j ≤ N . These two equations permit to prove thanks to (ii) of Proposition

2 (which holds by assumption) that
|xj,α−yα|
µi,α

≥ η
2

n−2

0

(
1 +R2

)
+o(1) for all i < j ≤

N . Thus

lim
α→+∞

yα − xi,α
µi,α

6∈ Si

and we use (iii) of Proposition 2 to get that

µ
n−2
2

i,α |uα (yα)− Ui,α (yα)| → 0

as α→ +∞. Since Rα (yα) = O (µi,α), we thus get that

Rα (yα)
n−2
2 |uα (yα)− Ui,α (yα)| → 0

as α→ +∞. Let 1 ≤ j ≤ N , j 6= i. We write now that

Rα (yα)Uj,α (yα)
2

n−2 = O

µi,α
µj,α

(
1 +
|yα − xj,α|2

µ2
j,α

)−1
 = o(1)

thanks to (4.19), (4.20) and assertion (ii) of Proposition 2. Thus we arrive to

Rα (yα)
n−2
2

∣∣∣∣∣uα (yα)−
N∑
i=1

Ui,α (yα)

∣∣∣∣∣→ 0

as α→ +∞ which contradicts (4.17) and thus proves (4.16). This ends Step 2.3.1.

Note that, coming back to (4.13), (4.14), (4.15) with (4.16), we get that

Rα (yα)

να
≥ ε

2
n−2

0 + o(1) . (4.21)

Step 2.3.2: We claim that

να → 0 as α→ +∞ . (4.22)

We prove the claim. If Rα (yα) → 0 as α → +∞, then (4.22) follows from (4.21).
Assume now that Rα (yα) ≥ 2δ0 for some δ0 > 0. Using (4.14) and (4.16), we get
that

uα ≤ 2
n
2 uα (yα) + o(1)

in Bδ0(yα) ∩ Ω̄ for α large enough. If uα(yα) → +∞ when α → +∞, then (4.22)
holds. If uα (yα) = O(1), we then get by standard elliptic theory (see [13] and
Lemma 2) and thanks to (2.3) that uα (yα) → 0 as α → +∞, which contradicts
(4.21) since Ω is a bounded domain. This proves (4.22) and ends Step 2.3.2.

Note also that (4.16) directly implies that

|xi,α − yα|2

µi,ανα
+
µi,α
να
→ +∞ as α→ +∞ (4.23)

for all 1 ≤ i ≤ N . We set now

wα(x) := ν
n−2
2

α uα (yα + ναx) (4.24)
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in Ωα := {x ∈ Rn s.t. yα + ναx ∈ Ω}. We then have that

∆wα + εαν
2
αwα = n(n− 2)w2?−1

α (4.25)

in Ωα and ∂νwα = 0 on ∂Ωα. We define

S :=

{
lim

α→+∞

xi,α − yα
να

, 1 ≤ i ≤ N s.t. |xi,α − yα| = O (να) and µi,α = o (να)

}
.

Let us fix K ⊂⊂ Rn \ S a compact set. We note that, thanks to (4.16) and (4.14),(
Rα (yα + ναx)

Rα (yα)

)n−2
2

wα (x) ≤ 1 + o(1) (4.26)

for all x ∈ K ∩ Ωα, where limα→+∞ supK∩Ωα o(1) = 0. Let zα ∈ BR(0) ∩ Ωα \⋃
x∈S BR−1(x) for some R > 0 fixed.

Step 2.3.3: We claim that
wα (zα) = O (1) . (4.27)

We prove the claim. It is clear from (4.26) if Rα(yα+ναzα)
Rα(yα) 6→ 0 as α→ +∞. Assume

now that
Rα (yα + ναzα)

Rα (yα)
→ 0 as α→ +∞ . (4.28)

Up to a subsequence, we let 1 ≤ i ≤ N be such that

Rα (yα + ναzα)
2

= |xi,α − yα − ναzα|2 + µ2
i,α .

We then write thanks to (4.28) that

|xi,α − yα − ναzα|2 + µ2
i,α = o

(
|xi,α − yα|2

)
+ o

(
µ2
i,α

)
which implies that |xi,α − yα| = O (να) and that µi,α = o (να). This leads to∣∣∣∣xi,α − yανα

− zα
∣∣∣∣2 → 0 as α→ +∞ ,

which is absurd since, thanks to the definition of S and to the fact that d (zα,S) ≥
1
R , ∣∣∣∣xi,α − yανα

− zα
∣∣∣∣ ≥ 1

2R

for α large. Thus (4.27) is proved. This ends Step 2.3.3.

Thanks to (4.21), we easily get that 0 ∈ Ωα \ S.

Step 2.3.4: Assume first that

lim
α→+∞

d (yα, ∂Ω)

να
= +∞.

It follows from Step 2.3.3 that (wα)α is bounded in L∞ on all compact subsets of
Rn \ S. Then, by standard elliptic theory (see [13]), it follows from (4.25) that,
after passing to a subsequence,

wα → w0 in C1
loc (Rn \ S)

where w0 satisfies
∆ξw0 = n(n− 2)w2?−1

0

in Rn\S and w0(0) = 1. Noting that, since (uα) is uniformly bounded in H2
1 (Ω), we

have that w0 ∈ H2
1,loc (Rn), we easily get that w0 is in fact a smooth solution of the
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above equation and that, by Caffarelli-Gidas-Spruck [5], w0(x) = λ
n−2
2 U0 (λx+ x0)

for some λ > 0 and some x0 ∈ Rn. If we set

xN+1,α := yα −
να
λ
x0

and

µN+1,α = λ−1να ,

it is easily checked that, up to reorder the concentration points such that the se-
quence of weights is non-increasing, assertions (i)-(ii)-(iii) of Proposition 2 hold for
the N + 1 sequences (xi,α, µi,α)i=1,...,N+1. Here one must use in particular (4.23)

to get (ii). This ends Step 2.3.4.

Step 2.3.5: Assume now that

lim
α→+∞

d (yα, ∂Ω)

να
= ρ ≥ 0.

One proceeds similarly, using the extension ũα of uα as in Lemma 2 as was done for
Step 2.2.2. More precisely, let y0 := limα→+∞ yα ∈ ∂Ω. We choose ϕ and δy0 > 0,
Uy0 as in Lemma 2. Let δ ∈ (0, δy0). Denoting by ũα ∈ C2(Uy0) the local extension
of uα on Uy0 , we then have that

∆g̃ũα + εαũα = ũ2?−1
α in Uy0 . (4.29)

As in Step 2.2.2, we let yα := ϕ(yα,1, y
′
α) and we have

lim
α→+∞

yα,1
να

= −ρ ≤ 0.

We define

ṽα(x) := ν
n−2
2

α ũα(ϕ((0, y′α) + ναx)) for all x ∈ Bδ/να(0).

It follows from (4.29) that

∆g̃αw̃α + εαν
2
αw̃α = n(n− 2)w̃2?−1

α in Bδ/να(0), (4.30)

where g̃α(x) = (ϕ?g̃)((0, y′α) + ναx) = ((ϕ−1 ◦ π̃)?ξ)((0, y′α) + ναx). We define

Ĩ := {i ∈ {1, ..., N} s.t. |xi,α − yα| = O (να) and µi,α = o (να)}

and

S̃ =

{
lim

α→+∞

ϕ−1(xi,α)− (0, y′α)

να
/ i ∈ Ĩ

}
.

We let K ⊂ Rn \
(
S̃ ∪ π−1(S̃)

)
a compact set. Here, (4.27) rewrites 0 < w̃α(x) ≤

C(K) for all x ∈ K ∩ Rn−. The symmetry of w̃α yields

0 < w̃α(x) ≤ C(K) for all x ∈ K and all α > 0.

We are then in position to use elliptic theory to get the convergence of w̃α in

C1
loc(Rn \

(
S̃ ∪ π−1(S̃)

)
), and the proof goes as in Step 2.3.4. This ends Step 2.3.5.

Proposition 2 follows from Step 2.1 to Step 2.3. Indeed, Step 2.2 tells us that P1

holds. Then we construct our sequences of points and weights thanks to Step 2.3.
Thanks to Step 2.1, we know that the process has to stop. When it stops, (i)-(iv)
of the claim holds for these points and weights. This proves Proposition 2. �
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5. A first upper-estimate

We consider in the following the concentration points (xi,α, µi,α)1≤i≤N given by

Proposition 2. We recall that they are ordered in such a way that

µ1,α ≥ · · · ≥ µN,α
and we shall denote in the following µα = µ1,α. Let us fix some notations and make
some remarks before going on. We let

S :=

{
lim

α→+∞
xi,α , 1 ≤ i ≤ N

}
(5.1)

where the limits do exist, up to a subsequence. For δ > 0 small enough, we let

ηα (δ) = sup
Ω̄∩{d(x,S)≥2δ}

uα . (5.2)

Thanks to Proposition 2 (iv) and to standard elliptic theory (see Theorem 9.11 of
[13]), we get that

ηα (δ)→ 0 as α→ +∞ for all δ > 0 . (5.3)

Note that, as a consequence of (iii) of Proposition 2, there exists C > 0 such that

Cµ
n−2
2

α ≤
∫

Ω

u2?−1
α dx

while ∫
Ω

u2?−1
α dx = εα |Ω| ūα

thanks to equation (2.1). This proves that

µ
n−2
2

α = O (εαūα) = o (ūα) (5.4)

when α→ +∞. At last, we fix R0 > 0 such that

for any 1 ≤ i ≤ N , |x| ≤ R0

2
for all x ∈ Si (5.5)

where Si is as in Proposition 2, (iii). And we let

rα (x) := min
i=1,...,N

|xi,α − x| . (5.6)

We prove in this section the following :

Proposition 3. There exists C1 > 0 and some sequence βα → 0 as α→ +∞ such
that

|uα(x)− ūα| ≤ C1µ
n−2
2

α Rα (x)
2−n

+ βαūα (5.7)

for all x ∈ Ω̄ and all α > 0.

Proof of Proposition 3: We divide the proof in two main steps. We start by proving
the following :

Step 3.1: We claim that for any 0 < γ < 1
2 , there exists Rγ > 0, δγ > 0 and

Cγ > 0 such that

uα(x) ≤ Cγ
(
µ
n−2
2 (1−2γ)

α rα(x)(2−n)(1−γ) + ηα (δγ) rα(x)(2−n)γ
)

for all α > 0 and all x ∈ Ω̄ \
⋃N
i=1BRγµi,α(xi,α).
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Proof of Step 3.1. We divide the proof in two parts, depending whether we work
in the interior of Ω or near its boundary. Let 0 < γ < 1

2 . We define

Φγ(x, y) := |x− y|(2−n)(1−γ) for all x, y ∈ Rn−, x 6= y.

Step 3.1.1: We fix x0 ∈ Ω and we let δ0 > 0 such that Bδ0(x0) ⊂⊂ Ω. We claim
that there exists Rγ > 0 such that

uα(x) ≤ Cγ
(
µ
n−2
2 (1−2γ)

α rα(x)(2−n)(1−γ) + ηα (δγ) rα(x)(2−n)γ
)

(5.8)

for all α > 0 and all x ∈ Bδ0(x0) \
⋃N
i=1BRγµi,α(xi,α).

We prove the claim. We let

ϕγ,α(x) = µ
n−2
2 (1−2γ)

α

N∑
i=1

Φγ (xi,α, x) + ηα (δ)

N∑
i=1

Φ1−γ (xi,α, x) (5.9)

where Φγ and Φ1−γ are as above and δ > 0 will be chosen later on. We let

xα ∈ Bδ0(x0) \
⋃N
i=1BRµi,α(xi,α) be such that

sup
Bδ0 (x0)\

⋃N
i=1 BRµi,α (xi,α)

uα
ϕγ,α

=
uα (xα)

ϕγ,α (xα)
. (5.10)

In particular, xα ∈ Ω.

We claim that, up to choose δ > 0 small enough and R > 0 large enough, we have
that

xα ∈ ∂

(
N⋃
i=1

BRµi,α(xi,α)

)
or rα (xα) ≥ δ (5.11)

for α > 0 small. We prove (5.11) by contradiction. We assume on the contrary that

xα 6∈ ∂

(
N⋃
i=1

BRµi,α(xi,α)

)
and rα (xα) < δ (5.12)

for all α > 0. Since xα ∈ Ω, we write then thanks to (5.12) and the second order
characterization of the supremum (5.10) that

∆uα (xα)

uα (xα)
≥ ∆ϕγ,α (xα)

ϕγ,α (xα)
.

Thanks to (2.1), we have that

∆uα (xα)

uα (xα)
≤ n(n− 2)uα (xα)

2?−2

which leads to
∆ϕγ,α (xα)

ϕγ,α (xα)
≤ n(n− 2)uα (xα)

2?−2
. (5.13)

Direct computations yield the existence of Dγ > 0 such that

(A) D−1
γ ≤ |x− y|

(n−2)(1−γ)
Φγ (x, y) ≤ Dγ for all x, y ∈ Rn, x 6= y.

(B)
∆yΦγ(x,y)

Φγ(x,y) ≥
1
Dγ
|x− y|−2 −Dγ for all x, y ∈ Ω, x 6= y.

(5.14)
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Let us write now thanks (5.14) that

∆ϕγ,α (xα) ≥ D−1
γ µ

n−2
2 (1−2γ)

α

N∑
i=1

|xi,α − xα|−2
Φγ (xi,α, xα)

+D−1
1−γηα (δ)

N∑
i=1

|xi,α − xα|−2
Φ1−γ (xi,α, xα)

−Dγµ
n−2
2 (1−2γ)

α

N∑
i=1

Φγ (xi,α, xα)

−D1−γηα (δ)

N∑
i=1

Φ1−γ (xi,α, xα)

≥
(
D−2
γ rα (xα)

−2 −ND2
γ

)
µ
n−2
2 (1−2γ)

α rα (xα)
−(n−2)(1−γ)

+
(
D−2

1−γrα (xα)
−2 −ND2

1−γ

)
ηα (δ) rα (xα)

−(n−2)γ

We choose δ > 0 such that

D−2
γ δ−2 ≥ 2ND2

γ and D−2
1−γδ

−2 ≥ 2ND2
1−γ

so that, using once again (5.14), the above becomes

∆ϕγ,α (xα) ≥ 1

2
D−2
γ rα (xα)

−2
µ
n−2
2 (1−2γ)

α rα (xα)
−(n−2)(1−γ)

+
1

2
D−2

1−γrα (xα)
−2
ηα (δ) rα (xα)

−(n−2)γ

≥ 1

2N
D−3
γ rα (xα)

−2
µ
n−2
2 (1−2γ)

α

N∑
i=1

Φγ (xi,α, xα)

+
1

2N
D−3

1−γrα (xα)
−2
ηα (δ)

N∑
i=1

Φ1−γ (xi,α, xα)

≥ 1

2N
(max {Dγ , D1−γ})−3

rα (xα)
−2
ϕγ,α (xα) .

Coming back to (5.13), we thus get that

rα (xα)
2
uα (xα)

2?−2 ≥ 1

2n(n− 2)N
(max {Dγ , D1−γ})−3

.

Using point (iv) of Proposition 2, it is easily check that one can choose R > 0
large enough such that this is absurd. And with these choices of δ and R, (5.11) is
proved.

Assume that rα (xα) ≥ δ. Then we have that uα (xα) ≤ ηα (δ) so that, thanks to
(5.14), we get in this case that uα (xα) = O (ϕγ,α (xα)).

Assume that xα ∈ ∂BRµi,α(xi,α) for some 1 ≤ i ≤ N . Then, up to increase a little
bit R so that R ≥ 4R0, R0 as in (5.5), we get thanks to (iii) of Proposition 2 that

uα (xα) = O
(
µ

1−n2
i,α

)
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while, using (5.14),

ϕγ,α (xα) ≥ D−1
γ µ

n−2
2 (1−2γ)

α (Rµi,α)
(2−n)(1−γ)

so that, once again,

uα (xα) = O (ϕγ,α (xα))

since µi,α ≤ µα.
Thus we have proved so far that there exists C > 0 such that

uα (x) ≤ Cϕγ,α(x) in Bδ0(x0) \
N⋃
i=1

BRµi,α(xi,α) .

It remains to use point (A) of (5.14) above to prove (5.8) and therefore Step 3.1.1.

Step 3.1.2: We fix x0 ∈ ∂Ω. Then there exists δ0 > 0 such that

uα(x) ≤ Cγ
(
µ
n−2
2 (1−2γ)

α rα(x)(2−n)(1−γ) + ηα (δγ) rα(x)(2−n)γ
)

(5.15)

for all α > 0 and all x ∈ (Bδ0(x0) ∩ Ω) \
⋃N
i=1BRγµi,α(xi,α).

We prove the claim. Indeed, via the extension of Lemma 2, the proof goes roughly
as in Step 3.1. We only enlight here the main differences. As usual, since x0 ∈ ∂Ω,
we consider δx0

, Ux0
and a chart ϕ as in Lemma 2. We let ũα be the C2−extension

of uα on Ux0
: it satisfies that

∆g̃ũα + εαũα = n(n− 2)ũ2?−1
α in Ux0

. (5.16)

We let J := {i ∈ {1, ..., N}/ limα→+∞ xi,α = x0} and we let δ0 > 0 such that

Bδ0(x0) ⊂ Ux0
and |xi,α − x0| ≥ 2δ0 for all i ∈ {1, ..., N} \ J.

For all i ∈ J , we define

x̃i,α := π−1
ϕ (xi,α) = ϕ ◦ π−1 ◦ ϕ−1(xi,α),

where π(x1, x
′) = (−x1, x

′) is the usual symmetry. We define

ϕγ,α(x) := µ
n−2
2 (1−2γ)

α

∑
i∈J

(Φγ (xi,α, x) + Φγ (x̃i,α, x))

+ηα (δ)
∑
i∈J

(Φ1−γ (xi,α, x) + Φ1−γ (x̃i,α, x))

+µ
n−2
2 (1−2γ)

α

∑
i∈Jc

Φγ (xi,α, x) + ηα (δ)
∑
i∈Jc

Φ1−γ (xi,α, x)

where Φγ and Φ1−γ are as above and δ ∈ (0, δ0) will be chosen later on. For the
sake of clearness, we define

Wα,R := Bδ0(x0) ∩ Ω \

(
N⋃
i=1

BRµi,α(xi,α) ∪
⋃
i∈J

BRµi,α(x̃i,α)

)
.

We let xα ∈Wα,R be such that

sup
x∈Wα,R

ũα
ϕγ,α

=
ũα (xα)

ϕγ,α (xα)
.
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We claim that, up to choose δ > 0 small enough and R > 0 large enough,

xα ∈ ∂

(
N⋃
i=1

BRµi,α(xi,α) ∪
⋃
i∈J

BRµi,α(x̃i,α)

)
or rα (xα) ≥ δ (5.17)

for α > 0 small. We prove it by contradiction. We assume on the contrary that

xα 6∈ ∂

(
N⋃
i=1

BRµi,α(xi,α) ∪
⋃
i∈J

BRµi,α(x̃i,α)

)
and rα (xα) < δ (5.18)

for all α > 0. First, it follows from the choice of δ0 and of ηα(δ) that xα ∈ Bδ0(xα).
Therefore, if xα 6∈ ∂Ω, we write then thanks to (5.18) that

∆gũα (xα)

ũα (xα)
≥ ∆gϕγ,α (xα)

ϕγ,α (xα)
.

Thanks to (5.16), we have that

∆gũα (xα)

ũα (xα)
≤ ũα (xα)

2?−2

which leads to
∆gϕγ,α (xα)

ϕγ,α (xα)
≤ ũα (xα)

2?−2
.

Since the coefficients of ∆g are in L∞ with a continuous principal part (the metric
g is Lipschitz continuous), direct computations yield the existence of Dγ > 0 such
that

(A’) D−1
γ ≤ |x− y|

(n−2)(1−γ)
Φγ (x, y) ≤ Dγ for all x, y ∈ Rn, x 6= y.

(B’)
(∆g)yΦγ(x,y)

Φγ(x,y) ≥ 1
Dγ
|x− y|−2 −Dγ for all x, y ∈ Ω, x 6= y.

And then the proof goes exactly as in Step 3.1.1, using the convergence of the
rescalings of ũα proved in Proposition 2. In case xα ∈ ∂Ω, we approximate it by
a sequence of points in Ω and also conclude. This proves that there exists C > 0
such that

ũα(x) ≤ Cµ
n−2
2 (1−2γ)

α

∑
i∈J

(|x− xi,α|(2−n)(1−γ) + |x− x̃i,α|(2−n)(1−γ))

+ηα (δ)
∑
i∈J

(|x− xi,α|(2−n)γ + |x− x̃i,α|(2−n)γ)

+µ
n−2
2 (1−2γ)

α

∑
i∈Jc
|x− xi,α|(2−n)(1−γ) + ηα (δ)

∑
i∈Jc
|x− xi,α|(2−n)γ

for all x ∈ Wα,R. As easily checked, there exists C > 0 such that |x − x̃i,α| ≥
C|x− xi,α| for all x ∈ Bδ0(x0) ∩Ω. Therefore, we get that there exists C > 0 such
that (5.15) holds. This ends the proof of Step 3.1.2.

Since Ω is compact, Step 3.1 is a consequence of Steps 3.1.1 and 3.1.2. �

Step 3.2: We claim that there exists C > 0 such that

uα(x) ≤ C
(
µ
n−2
2

α Rα(x)2−n + ūα

)
for all x ∈ Ω̄ and all α > 0.
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Proof of Step 3.2: We fix 0 < γ < 1
n+2 in the following. We let (xα) be a sequence

of points in Ω̄ and we claim that

uα (xα) ≤ ūα +O
(
µ
n−2
2

α Rα (x)
2−n
)

+ o
(
ηα (δγ)

)
. (5.19)

Note that this clearly implies the estimate of Step 3.2 if we are then able to prove
that ηα (δγ) = O (ūα). Let us prove this last fact before proving (5.19). A direct
consequence of (5.19) and (5.4) is that

ηα (δγ) = O
(
µ
n−2
2

α

)
+O (ūα) = O (ūα) ,

thus proving the above assertion. We are left with the proof of (5.19).

Step 3.2.1: Assume first that Rα (xα) = O (µα). We use then (iv) of Proposition
2 to write that

Rα (xα)
n−2
2 uα (xα) =

N∑
i=1

Rα (xα)
n−2
2 Ui,α (xα) + o(1) .

We can thus write that

µ
1−n2
α Rα (xα)

n−2
uα (xα) = O

(
N∑
i=1

µ
1−n2
α µ

n
2−1
i,α Rα (xα)

n−2
(
µ2
i,α + |xi,α − xα|2

)1−n2
)

+o

((
Rα (xα)

µα

)n−2
2

)

= O

(
N∑
i=1

µ
1−n2
α µ

n
2−1
i,α

)
+ o(1) = O(1)

since µ2
i,α + |xi,α − xα|2 ≤ Rα (xα)

2
and µi,α ≤ µα for all 1 ≤ i ≤ N . Thus the

estimate (5.19) clearly holds in this situation. This ends Step 3.2.1.

Step 3.2.2: Assume now that

Rα (xα)

µα
→ +∞ as α→ +∞ . (5.20)

We use the Green representation formula, see Appendix A, and equation (2.1) to
write that

uα (xα)− ūα =

∫
Ω

G (xα, x)
(
n(n− 2)uα(x)2?−1 − εαuα(x)

)
dx

where G is the Green’s function for the Neumann problem. Since adding a constant
to G does not change the representation above and using the pointwise estimates
of Proposition 9, we get that

uα (xα) ≤ ūα +

∫
Ω

(G (xα, x) +m(Ω))
(
n(n− 2)uα(x)2?−1 − εαuα(x)

)
dx

≤ ūα + n(n− 2)

∫
Ω

(G (xα, x) +m(Ω))uα(x)2?−1 dx

≤ ūα + C

∫
Ω

|xα − x|2−n uα(x)2?−1 dx .
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Using now Step 3.1, this leads to

uα (xα) ≤ ūα +O

(
ηα (δγ)

2?−1
∫

Ω

|xα − x|2−n rα (x)
−(n+2)γ

dx

)
+O

(
µ
n+2
2 (1−2γ)

α

∫
{rα(x)≥Rµα}

|xα − x|2−n rα (x)
−(n+2)(1−γ)

dx

)

+O

(∫
{rα(x)≤Rµα}

|xα − x|2−n uα(x)2?−1 dx

)
,

for some R >> 1. The first term can easily be estimated since 2 − (n + 2)γ > 0.
We get that

ηα (δγ)
2?−1

∫
Ω

|xα − x|2−n rα (x)
−(n+2)γ

dx = O
(
ηα (δγ)

2?−1
)

= o
(
ηα (δγ)

)
thanks to (5.3). We estimate the second term:∫

{rα(x)≥Rµα}
|xα − x|2−n rα (x)

−(n+2)(1−γ)
dx

≤
N∑
i=1

∫
{|xi,α−x|≥Rµα}

|xα − x|2−n |x− xi,α|−(n+2)(1−γ)
dx

= O

(
N∑
i=1

µn−(n+2)(1−γ)
α |xα − xi,α|2−n

)
= O

(
µn−(n+2)(1−γ)
α Rα (xα)

2−n
)

since n−(n+2) (1− γ) < 0 and |xi,α − xα| ≥ 1
2Rα (xα) for α large for all 1 ≤ i ≤ N

thanks to (5.20). The last term is estimated thanks to (2.2), to (5.20) and to
Hölder’s inequalities by∫

{rα(x)≤µα}
|xα − x|2−n uα(x)2?−1 dx

= O

(
rα (xα)

2−n
∫
{rα(x)≤µα}

uα(x)2?−1 dx

)

= O

rα (xα)
2−n

µ
n−2
2

α

(∫
{rα(x)≤µα}

uα(x)2? dx

) 2?−1
2?


= O
(
µ
n−2
2

α rα (xα)
2−n
)
.

Combining all these estimates gives (5.19) in this second case. This ends Step 3.2.2.
As already said, this ends the proof of Step 3.2. �

The proof of Proposition 3 is now straightforward, using once again the Green
representation formula. We write that, for any sequence (xα) of points in Ω̄,

uα (xα)− ūα = n(n− 2)

∫
Ω

G (xα, x)uα (x)
2?−1

dx− εα
∫

Ω

G (xα, x)uα (x) dx .
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Let us write thanks to Appendix A, Step 3.2 and Giraud’s lemma that∫
Ω

G (xα, x)uα (x) dx = O

(
µ
n−2
2

α

∫
Ω

|xα − x|2−nRα(x)2−n dx

)
+O

(
ūα

∫
Ω

|xα − x|2−n dx
)

= O
(
µ
n−2
2

α Rα (xα)
2−n
)

+O (ūα)

(here one needs to spearate the case n < 4, n = 4 and n > 4) and that∫
Ω

G (xα, x)uα (x)
2?−1

dx = o (ūα) +O
(
µ
n−2
2

α Rα (xα)
2−n
)
.

Note that this last estimate has been proved in Step 3.2.2. Combining these equa-
tions, we get the existence of some C1 > 0 and some sequence βα as α→ +∞ such
that (5.7) holds. This proves Proposition 3. �

6. A sharp upper-estimate

Let us fix some notations. We let in the following

ri,α(x) := min
i≤j≤N

|xi,α − x| and Ri,α(x)2 := min
i≤j≤N

(
|xi,α − x|2 + µ2

i,α

)
. (6.1)

Note that R1,α(x) = Rα(x) and r1,α(x) = rα(x).

Definition 5. For 1 ≤ i ≤ N , we say that (Ii) holds if there exists Ci > 0 and a
sequence βα as α→ +∞ such that∣∣∣∣∣∣uα(x)− ūα −

i−1∑
j=1

Vj,α(x)

∣∣∣∣∣∣ ≤ βα
ūα +

i−1∑
j=1

Uj,α(x)

+ Ciµ
n−2
2

i,α Ri,α (x)
2−n

(6.2)

for all x ∈ Ω̄ and all α > 0. Here, Vj,α is as in Appendix B.

This section is devoted to the proof of the following :

Proposition 4. (IN ) holds.

Proof of Proposition 4: Thanks to Proposition 3, we know that (I1) holds. The
aim of the rest of this section is to prove by induction on κ that (Iκ) holds for all
1 ≤ κ ≤ N . In the following, we fix 1 ≤ κ ≤ N − 1 and we assume that (Iκ) holds.
The aim is to prove that (Iκ+1) holds. We proceed in several steps. Let us first set
up some notations. In the following, we fix

0 < γ <
1

n+ 2
. (6.3)

We let, for any 1 ≤ i ≤ κ,

Ψi,α(x) := min
{
µ
n−2
2 (1−2γ)

i,α Φγ (xi,α, x) ; A0µ
−n−2

2 (1−2γ)
i,α Φ1−γ (xi,α, x)

}
(6.4)

for x ∈ Ω \ {xi,α} where

A0 :=
1

DγD1−γ
(4R0)

−(n−2)(1−2γ)
. (6.5)
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Here Φγ , Φ1−γ , Dγ and D1−γ are given by (5.14) and R0 is as in (5.5). With this
choice of A0, we have with (5.14) that

Ψi,α(x) = A0µ
−n−2

2 (1−2γ)
i,α Φ1−γ (xi,α, x)

if |xi,α − x| ≤ 2R0µi,α. Similarly, Ψi,α(x) = µ
n−2
2 (1−2γ)

i,α Φγ (xi,α, x) if x is far enough
from xi,α. Note also that we have that

A−1
1 ≤ Ψi,α(x)

Ui,α (x)
(
|xi,α−x|
µi,α

+
µi,α
|xi,α−x|

)(n−2)γ
≤ A1 (6.6)

for all x ∈ Ω̄ \ {xi,α} and all α > 0 for some A1 > 0 independent of α. We also
define

ψα(x) := max
{
ūα ; µ

n−2
2 (1−2γ)

α

} N∑
i=1

Φ1−γ (xi,α, x) (6.7)

and

Θα (x) :=

N∑
i=κ+1

Φγ (xi,α, x) . (6.8)

We set, for 1 ≤ i ≤ κ,

Ωi,α :=
{
x ∈ Ω̄ s.t. Ψi,α(x) ≥ Ψj,α(x) for all 1 ≤ j ≤ κ

}
. (6.9)

We also fix A2 > 0 that will be chosen later and we define νκ,α by

ν
n−2
2 (1−2γ)

κ,α := max

{
µ
n−2
2 (1−2γ)

κ+1,α ; max
1≤i≤κ

sup
Ω̃i,α

Ψi,α

Θα

}
(6.10)

where

Ω̃i,α :=

x ∈ Ωi,α s.t. |xi,α − x|2
∣∣∣∣∣∣uα(x)− ūα −

κ∑
j=1

Vj,α(x)

∣∣∣∣∣∣
2?−2

≥ A2

 . (6.11)

In the above definition, the suprema are by definition −∞ if the set is empty.
Remark that, in all these notations, we did not show the dependence in γ of the
various objects since γ is fixed for all this section.

Step 4.1: We claim that νκ,α = O (µκ,α) when α→ +∞.

Proof of Step 4.1: This is clearly true if νκ,α = µκ+1,α since µκ+1,α ≤ µκ,α.

Step 4.1.1: Let us assume that there exists xα ∈ Ω̃i,α for some 1 ≤ i ≤ κ such
that

Ψi,α (xα) = ν
n−2
2 (1−2γ)

κ,α Θα (xα)

which implies thanks to (5.14) that

ν1−2γ
κ,α = O

(
Rκ+1,α (xα)

2(1−γ)
Ψi,α (xα)

2
n−2

)
. (6.12)

Since (Iκ) holds and xα ∈ Ω̃i,α, we also have that

A2 ≤ o(1) + o

|xi,α − xα|2 κ−1∑
j=1

Uj,α (xα)
2?−2

+O

(
µ2
κ,α |xi,α − xα|

2

Rκ,α (xα)
4

)
.
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Noting that

|xi,α − xα|2 Ui,α (xα)
2?−2

=

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)−2

and using (6.6), we get since xα ∈ Ωi,α that

|xi,α − xα|2
κ−1∑
j=1

Uj,α (xα)
2?−2

= O

κ−1∑
j=1

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)4γ−2( |xj,α − xα|
µj,α

+
µj,α

|xj,α − xα|

)−4γ


= O(1)

since γ < 1
2 . Thus the previous equation leads to

Rκ,α (xα)
2

= O
(
µκ,α |xi,α − xα|

)
. (6.13)

If Rκ,α (xα) = Rκ+1,α (xα), then (6.12) and (6.13) together with (6.6) lead to

ν1−2γ
κ,α = O

(
µ1−γ
κ,α |xi,α − xα|

1−γ
Ψi,α (xα)

2
n−2

)
= O

(
µ1−γ
κ,α |xi,α − xα|

1−γ
(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)2γ

µi,α

(
µ2
i,α + |xi,α − xα|2

)−1
)

= O

(
µ1−γ
κ,α µ

−γ
i,α

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)3γ−1
)

= O
(
µ1−γ
κ,α µ

−γ
i,α

)
= O

(
µ1−2γ
κ,α

)
since γ < 1

3 and i ≤ κ so that µi,α ≥ µκ,α. The estimate of Step 4.1 is thus proved
in this case. This ends Step 4.1.1.

Step 4.1.2: Assume now that Rκ,α (xα) < Rκ+1,α (xα) so that Rκ,α (xα)
2

=

|xκ,α − xα|2 + µ2
κ,α. Then (6.13) becomes

|xκ,α − xα|2 + µ2
κ,α = O

(
µκ,α |xi,α − xα|

)
. (6.14)

If i = κ, we then get that |xi,α − xα| = O (µi,α). Since Rκ+1,α (xα) ≥ Rκ,α(xα) ≥
µi,α in this case, we can deduce from Proposition 2, (iii), that

|xi,α − xα|2
∣∣∣∣∣∣uα(xα)− ūα −

κ∑
j=1

Vj,α(xα)

∣∣∣∣∣∣
2?−2

→ 0

as α → +∞, thus contradicting the fact that xα ∈ Ω̃i,α. If i < κ, we write thanks
to (6.6) and to the fact that Ψi,α (xα) ≥ Ψκ,α (xα) (since xα ∈ Ωi,α) that

U
2

n−2
κ,α (xα)

(
|xκ,α − xα|

µκ,α
+

µκ,α
|xκ,α − xα|

)2γ

= O

(
Ui,α (xα)

2
n−2

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)2γ
)
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which gives thanks to (6.14) that(
|xκ,α − xα|

µκ,α
+

µκ,α
|xκ,α − xα|

)2γ

= O

(
|xi,α − xα|Ui,α (xα)

2
n−2

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)2γ
)

= O

((
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)2γ−1
)
.

Since γ < 1
2 , this leads clearly to

C−1 ≤ |xi,α − xα|
µi,α

≤ C and C−1 ≤ |xκ,α − xα|
µκ,α

≤ C

for some C > 0 independent of α. This implies that µκ,α = o (µi,α) thanks to
Proposition 2, (ii). One then easily deduces from (6.6) that

Ψi,α (xα)

Ψκ,α (xα)
= O

((
µκ,α
µi,α

)n−2
2

)
= o(1) ,

which contradicts the fact that xα ∈ Ωi,α. This ends Step 4.1.2, and therefore this
proves Step 4.1. �

Step 4.2: We claim that there exists A3 > 0 such that

uα(x) ≤ A3

(
κ∑
i=1

Ψi,α(x) + ν
n−2
2 (1−2γ)

κ,α rκ+1,α(x)(2−n)(1−γ)

+ max
{
ūα ; µ

n−2
2 (1−2γ)

α

}
rα(x)(2−n)γ

)
(6.15)

for all x ∈ Ω \
⋃N
i=κ+1BR0µi,α(xi,α).

Proof of Step 4.2: As in the proof of Step 3.1, the proof of Step 4.2 requires to
distinguish whether we consider points in the interior or on the boundary of Ω.
We only prove the estimate for interior points and we refer to Step 3.1.2 for the
extension of the proof to the boundary. We fix x0 ∈ Ω and δ0 > 0 such that

Bδ0(x0) ⊂⊂ Ω. We let xα ∈ Bδ0(x0) \
⋃N
i=κ+1BR0µi,α(xi,α) be such that

uα (xα)∑κ
i=1 Ψi,α (xα) + ν

n−2
2 (1−2γ)

κ,α Θα (xα) + ψα (xα)

= sup
Bδ0 (x0)\

⋃N
i=κ+1 BR0µi,α

(xi,α)

uα∑κ
i=1 Ψi,α + ν

n−2
2 (1−2γ)

κ,α Θα + ψα

.
(6.16)

and we assume by contradiction that

uα (xα)∑κ
i=1 Ψi,α (xα) + ν

n−2
2 (1−2γ)

κ,α Θα (xα) + ψα (xα)
→ +∞ as α→ +∞ . (6.17)

Thanks to the definition (6.7) of ψα and to the fact that (Iκ) holds, it is clear that

rα (xα)→ 0 as α→ +∞ . (6.18)
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We claim that

|xi,α − xα|
µi,α

→ +∞ as α→ +∞ for all κ+ 1 ≤ i ≤ N . (6.19)

Assume on the contrary that there exists κ + 1 ≤ i ≤ N such that |xi,α − xα| =
O (µi,α). Since |xi,α − xα| ≥ R0µi,α and by the definition (5.5) of R0, we then get

thanks to Proposition 2, (iii), that uα (xα) = O
(
µ

1−n2
i,α

)
. But, thanks to (6.10) and

to (5.14), we also have that

ν
n−2
2 (1−2γ)

κ,α Θα (xα) ≥ D−1
γ µ

n−2
2 (1−2γ)

κ+1,α |xi,α − x|(2−n)(1−γ)

≥ D−1
γ µ

n−2
2 (1−2γ)

i,α |xi,α − x|(2−n)(1−γ)

so that

uα (xα)

ν
n−2
2 (1−2γ)

κ,α Θα (xα)
= O

((
|xi,α − x|
µi,α

)(n−2)(1−γ)
)

= O(1) ,

thus contradicting (6.17). So we have proved that (6.19) holds. With the same
argument performed with Ψi,α, we also know that, for any 1 ≤ i ≤ κ,

either |xi,α − xα| ≤ R0µi,α or
|xi,α − xα|

µi,α
→ +∞ as α→ +∞ . (6.20)

In particular, we can write thanks to (6.16), to (6.19) and to (6.20) (which ensures
that the Ψi,α’s are smooth in a small neighbourhood of xα, see the remark following
(6.5)) that

∆uα (xα)

uα (xα)
≥

∆
(∑κ

i=1 Ψi,α + ν
n−2
2 (1−2γ)

κ,α Θα + ψα

)
∑κ
i=1 Ψi,α + ν

n−2
2 (1−2γ)

κ,α Θα + ψα

(xα)

for α large. We write thanks to (2.1) that

∆uα (xα)

uα(xα)
≤ n(n− 2)uα (xα)

2?−2

so that the above becomes

∆

(
κ∑
i=1

Ψi,α + ν
n−2
2 (1−2γ)

κ,α Θα + ψα

)
(xα)

≤ n(n− 2)uα (xα)
2?−2

(
κ∑
i=1

Ψi,α + ν
n−2
2 (1−2γ)

κ,α Θα + ψα

)
(xα) .

Writing thanks to (A), (B) that

∆Ψi,α (xα) ≥
(

1

Dγ +D1−γ
|xi,α − xα|−2 −Dγ −D1−γ

)
Ψi,α (xα)

for all 1 ≤ i ≤ κ, that

∆Θα (xα) ≥
(

1

N
D−3
γ rκ+1,α (xα)

−2 −NDγ

)
Θα (xα)

and that

∆ψα (xα) ≥
(

1

N
D−3

1−γrα (xα)
−2 −ND1−γ

)
ψα (xα) ,
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we get that

0 ≥
κ∑
i=1

(
|xi,α − xα|−2 − Cγ − Cγuα (xα)

2?−2
)

Ψi,α (xα)

+
(
rκ+1,α (xα)

−2 − Cγ − Cγuα (xα)
2?−2

)
ν
n−2
2 (1−2γ)

κ,α Θα (xα)

+
(
rα (xα)

−2 − Cγ − Cγuα (xα)
2?−2

)
ψα (xα)

(6.21)

where Cγ > 0 is large enough and independent of α and δ. We let in the following
1 ≤ i ≤ κ be such that xα ∈ Ωi,α. We can then deduce from (6.21) that

0 ≥
(
|xi,α − xα|−2 − κCγ − κCγuα (xα)

2?−2
)

Ψi,α (xα)

+
(
rκ+1,α (xα)

−2 − Cγ − Cγuα (xα)
2?−2

)
ν
n−2
2 (1−2γ)

κ,α Θα (xα)

+
(
rα (xα)

−2 − Cγ − Cγuα (xα)
2?−2

)
ψα (xα)

(6.22)

Thanks to (6.7) and to (6.17), we know that

ūα = o
(
uα (xα)

)
. (6.23)

We also know thanks to (6.17) that

Uj,α (xα) = o
(
uα (xα)

)
(6.24)

for all 1 ≤ j ≤ κ since
Uj,α (xα) = O

(
Ψi,α (xα)

)
for all 1 ≤ j ≤ κ. Note also that, thanks to (6.19), we have that

Rκ+1,α (xα)
2
Uj,α (xα)

2?−2 → 0 as α→ +∞ for all κ+ 1 ≤ j ≤ N . (6.25)

Thus we can deduce from Proposition 2, (iv), together with (6.24) and (6.25) that

Rα (xα)
2
uα (xα)

2?−2 → 0 as α→ +∞ . (6.26)

Thanks to (6.18) and to this last equation, we can transform (6.22) into

0 ≥
(
|xi,α − xα|−2 − κCγ − κCγuα (xα)

2?−2
)

Ψi,α (xα)

+
(
rκ+1,α (xα)

−2 − Cγ − Cγuα (xα)
2?−2

)
ν
n−2
2 (1−2γ)

κ,α Θα (xα)

+
(
1 + o(1)

)
rα (xα)

−2
ψα (xα)

(6.27)

Since (Iκ) holds, we get thanks to (6.23) and (6.24) that

uα (xα)
2?−2

= O
(
µ2
κ,αRκ,α (xα)

−4
)
. (6.28)

We claim that we then have that

uα (xα)
2?−2

= O
(
µ2
κ,αRκ+1,α (xα)

−4
)
. (6.29)

Indeed, if (6.29) does not hold, then Rκ+1,α (xα) = o(Rκ,α (xα)) when α → +∞
and then Rκ,α (xα) =

√
µ2
κ,α + |xα − xκ,α|2, which contradicts (6.24) and (6.28).

This proves (6.29).

We claim that this implies that

Rκ+1,α (xα)
2
uα (xα)

2?−2 → 0 as α→ +∞ . (6.30)
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Indeed, if not, (6.29) would imply that

Rκ+1,α (xα) = O (µκ,α)

while (6.26) would imply that Rα (xα) = o (Rκ+1,α (xα)), which would in turn imply
that there exists 1 ≤ j ≤ κ such that

|xj,α − xi,α|2 + µ2
j,α = Rα (xα)

2
= o

(
Rκ+1,α (xα)

2
)

= o
(
µ2
κ,α

)
which turns out to be absurd since µj,α ≥ µκ,α. Thus (6.30) holds. Note that (6.29)
together with (6.23) also implies that

Rκ+1,α (xα)→ 0 as α→ +∞ (6.31)

thanks to (5.4). Thanks to (6.30) and (6.31), we can transform (6.27) into

0 ≥
(
|xi,α − xα|−2 − κCγ − κCγuα (xα)

2?−2
)

Ψi,α (xα)

+
(
1 + o(1)

)
rκ+1,α (xα)

−2
ν
n−2
2 (1−2γ)

κ,α Θα (xα) +
(
1 + o(1)

)
rα (xα)

−2
ψα (xα) .

(6.32)

If xα 6∈ Ω̃i,α, we can transform this into

0 ≥
(

1 + o(1)− κCγA2 − κCγ |xi,α − xα|2
)
|xi,α − xα|−2

Ψi,α (xα)

+
(
1 + o(1)

)
rκ+1,α (xα)

−2
ν
n−2
2 (1−2γ)

κ,α Θα (xα) +
(
1 + o(1)

)
rα (xα)

−2
ψα (xα)

thanks to (6.23) and (6.24). Up to taking A2 > 0 small enough, this leads to

rα (xα)
−2
ψα (xα) = O

(
µ
n−2
2 (1−2γ)

i,α

)
.

Thanks to (6.18), (6.7) and (5.14), this is clearly absurd. Thus we have that

xα ∈ Ω̃i,α. Coming back to (6.32), we have that

ν
n−2
2 (1−2γ)

κ,α Θα (xα) = O
((
uα (xα)

2?−2
+ 1
)
rκ+1,α (xα)

2
Ψi,α (xα)

)
.

Using (6.30) and (6.31), this leads to

ν
n−2
2 (1−2γ)

κ,α Θα (xα) = o
(
Ψi,α (xα)

)
,

which clearly contradicts the definition (6.10) of νκ,α since xα ∈ Ω̃i,α. We have
thus proved that (6.17) leads to a contradiction. Using (5.14), this proves (6.15)
and permits to end the proof of Step 4.2. �

Step 4.3: We claim that there exists A4 > 0 such that

uα(x) ≤ A4

(
κ∑
i=1

Ui,α(x) + ūα + ν
n−2
2

κ,α Rκ+1,α(x)2−n

)
(6.33)

for all x ∈ Ω̄ and all α > 0.

Proof of Step 4.3: We let (xα) be a sequence of points in Ω̄. We aim at proving
that

uα (xα) = O

(
κ∑
i=1

Ui,α(xα) + ūα + ν
n−2
2

κ,α Rκ+1,α(xα)2−n

)
. (6.34)
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Since (Iκ) holds, and distinguishing whether Rκ,α(xα) = o(Rκ+1,α(xα)) or not, we
already know that (6.34) holds if

µ
n−2
2

κ,α Rκ+1,α (xα)
2−n

= O
(
Ui,α (xα)

)
for some 1 ≤ i ≤ κ. Thus we can assume from now on that

Rκ+1,α (xα)
2

= o (µi,αµκ,α) + o

(
µκ,α
µi,α

|xi,α − xα|2
)

(6.35)

for all 1 ≤ i ≤ κ. This implies in particular that, for α large,

Rα (xα) = Rκ+1,α (xα) = o(1) . (6.36)

Using Step 4.1 and (iv) of Proposition 2, we also get that (6.34) holds as soon as
Rκ+1,α (xα) = O (νκ,α). Thus we can assume from now on that

Rκ+1,α (xα)

νκ,α
→ +∞ as α→ +∞ . (6.37)

We now use the Green representation formula to estimate uα (xα). As in Step 3.2.2,
we write that

uα (xα) ≤ ūα + n(n− 2)

∫
Ω

(G (xα, x) +m(Ω))uα (x)
2?−1

dx

since uα satisfies equation (2.1). This leads to

uα (xα)− ūα ≤ C0n(n− 2)

∫
Ω

|xα − x|2−n uα (x)
2?−1

dx . (6.38)

Noting that rκ+1,α(xα) � Rκ+1,α (xα), we write thanks to (6.37) and to Step 4.1
that∫

{x∈Ω, rκ+1,α(x)≤R0νκ,α}
|xα − x|2−n uα (x)

2?−1
dx = O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)

(6.39)
using Hölder’s inequalities and (2.2), where R0 is as in Step 4.2. Noting that

N⋃
i=κ+1

BR0µi,α(xi,α) ⊂ {x ∈ Ω, rκ+1,α (x) ≤ R0νκ,α} ,

we write now thanks to this last inclusion, to (6.39) and to (6.15) that∫
Ω

|xα − x|2−n uα (x)
2?−1

dx

= O

(
κ∑
i=1

∫
Ω

|xα − x|2−n Ψi,α (x)
2?−1

dx

)

+O

(
ν
n+2
2 (1−2γ)

κ,α

∫
{x∈Ω, rκ+1,α(x)≥R0νκ,α}

|xα − x|2−n rκ+1,α (x)
−(n+2)(1−γ)

dx

)

+O

(
max

{
ū2?−1
α ; µ

n+2
2 (1−2γ)

α

}∫
Ω

|xα − x|2−n rα(x)−(n+2)γ dx

)
+O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.
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Here all the integrals have a meaning since γ < 2
n+2 . We write that∫

{x∈Ω, rκ+1,α(x)≥νκ,α}
|xα − x|2−n rκ+1,α (x)

−(n+2)(1−γ)
dx

≤
N∑

i=κ+1

∫
{x∈Ω, |xi,α−x|≥νκ,α}

|xα − x|2−n |xi,α − x|−(n+2)(1−γ)
dx

= O

(
N∑

i=κ+1

νn−(n+2)(1−γ)
κ,α |xα − xi,α|2−n

)
= O

(
νn−(n+2)(1−γ)
κ,α Rκ+1,α (xα)

2−n
)

since γ < 2
n+2 and thanks to (6.37). We can also write since γ < 2

n+2 that∫
Ω

|xα − x|2−n rα(x)−(n+2)γ dx = O(1)

and that

ū2?−1
α + µ

n+2
2 (1−2γ)

α = o (ūα) + o
(
µ
n−2
2

α

)
= o (ūα)

thanks to (2.3) and (5.4). Collecting these estimates, we arrive to∫
Ω

|xα − x|2−n uα (x)
2?−1

dx

= O

(
κ∑
i=1

∫
Ω

|xα − x|2−n Ψi,α (x)
2?−1

dx

)
+o (ūα) +O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.

Since γ < 2
n+2 , we get that (see Step 13.2 in the proof of Proposition 13 in Appendix

B for the details) ∫
Ω

|xα − x|2−n Ψi,α (x)
2?−1

dx = O
(
Ui,α (xα)

)
for all 1 ≤ i ≤ κ. Thus we have obtained that∫

Ω

|xα − x|2−n uα (x)
2?−1

dx

= O

(
k∑
i=1

Ui,α (xα)

)
+ o (ūα) +O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.

Coming back to (6.38) with this last estimate, we obtain that (6.34) holds. This
ends the proof of Step 4.3. �

Step 4.4: We claim that there exists A5 > 0 such that for any sequence (xα) of
points in Ω̄, we have that∣∣∣∣∣uα (xα)− ūα −

κ∑
i=1

Vi,α (xα)

∣∣∣∣∣ (6.40)

≤ A5ν
n−2
2

κ,α Rκ+1,α (xα)
2−n

+ o (ūα) + o

(
κ∑
i=1

Ui,α (xα)

)
.
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Proof of Step 4.4: Let (xα) be a sequence of points in Ω̄.

Step 4.4.1: Assume first that

Rκ+1,α (xα) = O (νκ,α) when α→ +∞ and Rκ+1,α (xα) = Rα (xα) . (6.41)

We can apply Proposition 2, (iv), to write that

Rκ+1,α (xα)
n
2−1

∣∣∣∣∣uα (xα)− ūα −
N∑
i=1

Ui,α (xα)

∣∣∣∣∣ = o(1) .

This leads to∣∣∣∣∣uα (xα)− ūα −
κ∑
i=1

Ui,α (xα)

∣∣∣∣∣ ≤
N∑

i=κ+1

Ui,α (xα) + o
(
Rκ+1,α (xα)

1−n2
)
.

Noting that, for any κ+ 1 ≤ i ≤ N ,

Ui,α (xα) = µ
n−2
2

i,α

(
|xi,α − xα|2 + µ2

i,α

)1−n2

≤ µ
n−2
2

i,α Rκ+1,α (xα)
2−n

≤ µ
n−2
2

κ+1,αRκ+1,α (xα)
2−n

≤ ν
n−2
2

κ,α Rκ+1,α (xα)
2−n

thanks to (6.10), we then get that∣∣∣∣∣uα (xα)− ūα −
κ∑
i=1

Ui,α (xα)

∣∣∣∣∣ ≤ Nν n−2
2

κ,α Rκ+1,α (xα)
2−n

+ o
(
Rκ+1,α (xα)

1−n2
)
.

Thanks to (6.41), we also know that

Rκ+1,α (xα)
1−n2 = O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.

We then get that∣∣∣∣∣uα (xα)− ūα −
κ∑
i=1

Vi,α (xα)

∣∣∣∣∣ ≤ Cν n−2
2

κ,α Rκ+1,α (xα)
2−n

+
κ∑
i=1

|Ui,α (xα)−Vi,α(xα)| .

(6.42)
We are left with estimating |Ui,α (xα)−Vi,α(xα)| when α→ +∞ for all i ∈ {1, ..., κ}.
We use the estimates of Proposition 13 and we let i ∈ {1, ..., κ}. We have that

Ui,α (xα)− Vi,α(xα) = O(Ui,α(xα)) = O

( µi,α
µ2
i,α + |xα − xi,α|2

)n−2
2


= O

min

 µ
n−2
2

i,α

Rα(xα)n−2
, µ
−n−2

2
i,α




= O

min

µ
n−2
2

i,α

ν
n−2
2

κ,α

,
Rα(xα)n−2

ν
n−2
2

κ,α µ
n−2
2

i,α

 ν
n−2
2

κ,α

Rα(xα)n−2


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Using (6.41) and Rα(xα) = Rκ+1,α(xα), we get that

Ui,α (xα)− Vi,α(xα) = O

(
min

{(
µi,α
νκ,α

)n−2
2

,

(
νκ,α
µi,α

)n−2
2

}
ν
n−2
2

κ,α

Rκ+1,α(xα)n−2

)

Ui,α (xα)− Vi,α(xα) = O

(
ν
n−2
2

κ,α

Rκ+1,α(xα)n−2

)
(6.43)

Plugging (6.43) into (6.42) yields (6.40) up to take A5 large enough if (6.41) holds.
This ends Step 4.4.1.

Step 4.4.2: Assume now that

Rκ+1,α (xα) = O (νκ,α) when α→ +∞ and Rα (xα) < Rκ+1,α (xα) . (6.44)

Then there exists 1 ≤ i ≤ κ such that

|xi,α − xα|2 + µ2
i,α ≤ Rκ+1,α (xα)

2
= O

(
µ2
κ,α

)
thanks to Step 4.1. This implies that µi,α = O (µκ,α) and that |xi,α − xα| =
O (µκ,α) when α→ +∞. This also implies that Rκ+1,α (xα) ≥ µi,α. Since we have
that µκ,α ≤ µi,α, using Proposition 2, (ii) and (iii), we then obtain that

|uα (xα)− Ui,α (xα)| = o
(
Ui,α (xα)

)
and that

µ
1−n2
i,α = O

(
Ui,α (xα)

)
. (6.45)

This leads in particular to∣∣∣∣∣∣uα (xα)− ūα −
κ∑
j=1

Uj,α (xα)

∣∣∣∣∣∣ = o
(
Ui,α (xα)

)
+O

 ∑
1≤j≤κ, j 6=i

Uj,α (xα)

 .

Now, for any 1 ≤ j ≤ κ, j 6= i, we have that

µ
n−2
2

i,α Uj,α (xα) = (µi,αµj,α)
n−2
2

(
|xj,α − xα|2 + µ2

j,α

)1−n2

≤

(
|xj,α − xα|2

µi,αµj,α
+
µj,α
µi,α

)1−n2

= o(1) (6.46)

thanks to Proposition 2, (ii), since µi,α = O (µκ,α) and µκ,α ≤ µj,α. In particular,
(6.45) and (6.46) yield

Uj,α(xα) = o(Ui,α(xα)) (6.47)

when α→ +∞ for all 1 ≤ j ≤ κ, j 6= i. Thus we arrive in this case to∣∣∣∣∣∣uα (xα)− ūα −
κ∑
j=1

Uj,α (xα)

∣∣∣∣∣∣ = o
(
Ui,α (xα)

)
. (6.48)

To obtain (6.40), we need to remark that, thanks to Proposition 13 and (6.47), we
have that

Uj,α(xα)− Vj,α(xα) = O(Uj,α(xα)) = o(Ui,α(xα)) (6.49)
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when α → +∞ for all 1 ≤ j ≤ κ, j 6= i. Concerning Ui,α(xα), we refer again to
Proposition 13: if xi,α is such that case (i) or (ii) holds, then Ui,α(xα)−Vi,α(xα) =
o(Ui,α(xα)) when α→ +∞. In case (iii) of Proposition 13, we get with (6.45) that

Ui,α(xα)− Vi,α(xα) = O

( µi,α
µ2
i,α + d(xi,α, ∂Ω)2

)n−2
2

+ o(Ui,α(xα)) +O(µ
n−2
2

i,α )

= o(µ
−n−2

2
i,α ) + o(Ui,α(xα)) = o(Ui,α(xα))

when α → +∞. Therefore (6.49) holds for all j ∈ {1, ..., κ}: associating this
equation with (6.48) yields (6.40) for any choice of A5 > 0 if (6.44) holds. This
ends Step 4.4.2.

Step 4.4.3: From now on, we assume that

Rκ+1,α (xα)

νκ,α
→ +∞ as α→ +∞ . (6.50)

As a preliminary remark, let us note that

rκ+1,α(α) � Rκ+1,α(xα) (6.51)

for large α’s (the argument goes by contradiction). We use Green’s representation
formula and (5.4) to write that∣∣∣∣∣uα (xα)− ūα −

κ∑
i=1

Vi,α (xα)

∣∣∣∣∣
≤ n(n− 2)C0

∫
Ω

|xα − x|2−n
∣∣∣∣∣uα (x)

2?−1 −
κ∑
i=1

Ui,α (x)
2?−1

∣∣∣∣∣ dx
+ C0εα

∫
Ω

|xα − x|2−n uα (x) dx+ o (ūα) .

(6.52)

Let us write thanks to (6.33) that∫
Ω

|xα − x|2−n uα (x) dx ≤ A4

κ∑
i=1

µ
n−2
2

i,α

∫
Ω

|xα − x|2−n
(
|xi,α − x|2 + µ2

i,α

)1−n2
dx

+A4ūα

∫
Ω

|xα − x|2−n dx+A4ν
n−2
2

κ,α

N∑
i=κ+1

∫
Ω

|xα − x|2−n
(
|xi,α − x|2 + µ2

i,α

)1−n2
dx

= O

(
κ∑
i=1

µ
n−2
2

i,α

(
|xi,α − xα|2 + µ2

i,α

)1−n2
)

+O (ūα)

+O

(
ν
n−2
2

κ,α

N∑
i=κ+1

(
|xi,α − xα|2 + µ2

i,α

)1−n2
)

= O

(
κ∑
i=1

Ui,α (xα)

)
+O (ūα) +O

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.
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Thus (6.52) becomes∣∣∣∣∣uα (xα)− ūα −
κ∑
i=1

Vi,α (xα)

∣∣∣∣∣
≤ n(n− 2)C0

∫
Ω

|xα − x|2−n
∣∣∣∣∣uα (x)

2?−1 −
κ∑
i=1

Ui,α (x)
2?−1

∣∣∣∣∣ dx
+ o (ūα) + o

(
κ∑
i=1

Ui,α (xα)

)
+ o

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.

(6.53)

Thanks to Proposition 2, (ii) and (iii), there exists a sequence Lα → +∞ as α →
+∞ such that, for any 1 ≤ i ≤ κ,∥∥∥∥uα − Ui,αUi,α

∥∥∥∥
L∞(Ωi,α∩Ω)

→ 0 as α→ +∞

and ∥∥∥∥
∑

1≤j≤κ, j 6=i Uj,α

Ui,α

∥∥∥∥
L∞(Ωi,α∩Ω)

→ 0 as α→ +∞

where

Ωi,α := BLαµi,α(xi,α) \
⋃

i+1≤j≤N

B 1
Lα

µi,α(xj,α)

and such that these sets are disjoint for α large enough. Then we can write that∫
Ω∩Ωi,α

|xα − x|2−n
∣∣∣∣∣∣uα (x)

2?−1 −
κ∑
j=1

Uj,α (x)
2?−1

∣∣∣∣∣∣ dx
= o

(∫
Ω∩Ωi,α

|xα − x|2−n Ui,α(x)2?−1 dx

)
= o
(
Ui,α (xα)

)
for all 1 ≤ i ≤ κ. We also remark that∫

Ω\Ωi,α
|xα − x|2−n Ui,α(x)2?−1 dx = o

(
Ui,α (xα)

)
for all 1 ≤ i ≤ κ. Thus, using (6.33), we transform (6.53) into∣∣∣∣∣uα (xα)− ūα −

κ∑
i=1

Vi,α (xα)

∣∣∣∣∣
≤ Cν

n+2
2

κ,α

∫
Ω∩{rκ+1,α(x)≥νκ,α}

|xα − x|2−nRκ+1,α (x)
−(n+2)

dx

+O

(∫
Ω∩{rκ+1,α(x)<νκ,α}

|xα − x|2−n uα(x)2?−1 dx

)

+ o (ūα) + o

(
κ∑
i=1

Ui,α (xα)

)
+ o

(
ν
n−2
2

κ,α Rκ+1,α (xα)
2−n
)
.

(6.54)
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Following the proof of Step 4.3, it remains to notice that∫
Ω∩{rκ+1,α(x)≥νκ,α}

|xα − x|2−nRκ+1,α (x)
−(n+2)

dx

≤
N∑

i=κ+1

∫
BR(xi,α)∩{|x−xi,α|≥νκ,α}

|xα − x|2−n
(
|xi,α − x|2 + µ2

i,α

)−1−n2
dx

Fix i ≥ κ+ 1. Assume first that

lim
α→+∞

|xi,α − xα|
µi,α

= +∞.

Then, we get with changes of variables that∫
BR(xi,α)∩{|x−xi,α|≥νκ,α}

|xα − x|2−n
(
|xi,α − x|2 + µ2

i,α

)−1−n2
dx

≤
∫
BR(xi,α)∩{|x−xi,α|≥νκ,α}

|xα − x|2−n |xi,α − x|−(n+2)
dx

= |xi,α − xα|2−nν−2
κ,α

∫
1<|z|< R

νκ,α

|z|−2−n
∣∣∣∣ xi,α − xα|xi,α − xα|

+
νκ,α

|xi,α − xα|
z

∣∣∣∣2−n dz
= O(|xi,α − xα|2−nν−2

κ,α) = O
(
ν−2
κ,α

(
|xi,α − xα|2 + µ2

i,α

)1−n2 )
when α→ +∞. Assume now that

|xi,α − xα| = O(µi,α) (6.55)

when α→ +∞. With the change of variables x := xi,α + µi,αz, we get that∫
BR(xi,α)∩{|x−xi,α|≥νκ,α}

|xα − x|2−n
(
|xi,α − x|2 + µ2

i,α

)−1−n2
dx = O(µ−ni,α )

when α → +∞. It follows from (6.55) that Rκ+1,α(xα) = O(µi,α), and then, with
(6.50), we get that νκ,α = o(µi,α) and then∫

BR(xi,α)∩{|x−xi,α|≥νκ,α}
|xα − x|2−n

(
|xi,α − x|2 + µ2

i,α

)−1−n2
dx

= O(µ2−n
i,α ν−2

κ,α) = O
(
ν−2
κ,α

(
|xi,α − xα|2 + µ2

i,α

)1−n2 ) .
In all the cases, we have then proved that∫

BR(xi,α)∩{|x−xi,α|≥νκ,α}
|xα − x|2−n

(
|xi,α − x|2 + µ2

i,α

)−1−n2
dx (6.56)

= O
(
ν−2
κ,α

(
|xi,α − xα|2 + µ2

i,α

)1−n2 )
when α→ +∞ for all i ≥ κ+ 1.

independently, using Hölder’s inequality and (6.51), we have that∫
Ω∩{rκ+1,α(x)<νκ,α}

|xα − x|2−n uα(x)2?−1 dx = O(ν
n−2
2

κ,α rκ+1,α(xα)2−n) (6.57)

when α→ +∞.

Plugging (6.56) and (6.57) into (6.54), we get that (6.40) holds up to take A5 large
enough if (6.50) holds. This ends Step 4.4.3.
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Plugging together Steps 4.4.1 to 4.4.3, we get that (6.40) holds up to taking A5

large enough. This ends the proof of Step 4.4. �

Step 4.5: We claim that νκ,α = O (µκ+1,α) when α→ +∞.

Proof of Step 4.5: We proceed by contradiction and thus assume that, up to a
subsequence, there exists 1 ≤ i ≤ κ and xα ∈ Ω̃i,α such that (see the definition
(6.10))

ν
n−2
2 (1−2γ)

κ,α Θα (xα) = Ψi,α (xα) . (6.58)

Since xα ∈ Ω̃i,α, we also have that

|xi,α − xα|2
∣∣∣∣∣∣uα (xα)− ūα −

κ∑
j=1

Vj,α (xα)

∣∣∣∣∣∣
2?−2

≥ A2 . (6.59)

At last, since xα ∈ Ωi,α, we have that

Ψj,α (xα) ≤ Ψi,α (xα) (6.60)

for all 1 ≤ j ≤ κ. In particular, we can write thanks to (6.6) that

|xi,α − xα|2 Uj,α (xα)
2?−2 ≤ CA2?−2

1 |xi,α − xα|2 Ψi,α (xα)
2?−2

≤ CA2(2?−2)
1 |xi,α − xα|2 Ui,α (xα)

2?−2

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)4γ

≤ CA2(2?−2)
1

(
|xi,α − xα|

µi,α
+

µi,α
|xi,α − xα|

)4γ−2

≤ CA2(2?−2)
1

for all 1 ≤ j ≤ κ since γ < 1
2 . Applying (6.40) to the sequence (xα) and coming

back to (6.59), we thus obtain that

A2 ≤ A2?−2
5 |xi,α − xα|2 ν2

κ,αRκ+1,α (xα)
−4

+ o(1) .

This leads to
Rκ+1,α (xα)

2
= O (νκ,α |xi,α − xα|) . (6.61)

Using (5.14), we can write thanks to (6.58) that

ν1−2γ
κ,α = O

(
Ψi,α (xα)

2
n−2 Rκ+1,α (xα)

2(1−γ)
)

(6.62)

which leads with (6.61) to

ν−γκ,α = O
(

Ψi,α (xα)
2

n−2 |xi,α − xα|1−γ
)
.

It is easily checked thanks to (6.6) that this leads to |xi,α − xα| = O (νκ,α). Since
νκ,α = O (µi,α) thanks to Step 4.1 and since xi,α − xα 6= o(µi,α) when α → +∞,
this leads in turn to

µi,α = O
(
|xi,α − xα|1−γ νγκ,α

)
= O (νκ,α) = O (µκ,α) .

Thanks to (6.62), we have obtained so far that |xi,α − xα| = O (µi,α), that µi,α =
O (µκ,α) and at last that µi,α = O (Rκ+1,α (xα)) using again (6.62). Note that
since µi,α � µκ,α, we have that µi,α = O(µj,α) for j ≤ κ when α → +∞. Using
Proposition 2, (ii) and (iii), we then get that

|xi,α − xα|2
∣∣∣∣∣∣uα (xα)− ūα −

κ∑
j=1

Vj,α (xα)

∣∣∣∣∣∣
2?−2

→ 0 as α→ +∞ ,
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thus contradicting (6.59) This ends the proof of Step 4.5. �

Steps 4.4 and 4.5 give that, if (Iκ) holds for some 1 ≤ κ ≤ N − 1, then (Iκ+1)
holds. Since we know that (I1) holds thanks to Proposition 3, we have proved that
(IN ) holds and thus we have proved Proposition 4. �

7. Asymptotic estimates in C1 (Ω)

In this section, we prove the following:

Proposition 5. There exists a sequence βα as α→ +∞ such that∣∣∣∣∣uα − ūα −
N∑
i=1

Vi,α

∣∣∣∣∣ ≤ βα
(
ūα +

N∑
i=1

Ui,α

)
(7.1)

for all x ∈ Ω̄ and all α > 0. In addition, there exists A6 > 0 such that

|∇uα(x)| ≤ o(ūα) +A6

N∑
i=1

µ
n−2
2

i,α

(
µ2
i,α + |xi,α − x|2

)−n−1
2

(7.2)

for all x ∈ Ω̄ and all α > 0.

Proof of Proposition 5: We first prove the pointwise estimate on uα. Then we will
prove the pointwise estimate in C1

(
Ω̄
)
.

Step 5.1: We claim that there exists a sequence βα → 0 as α → +∞ such that
(7.1) holds. In particular, there exists C > 0 such that

uα(x) ≤ C

ūα +

N∑
i=1

(
µ2
i,α

µ2
i,α + |x− xi,α|2

)n−2
2

 (7.3)

for all x ∈ Ω and for all α ∈ N.

Proof of Step 5.1: The proof of (7.1) goes as in Step 4.4. We omit the details. The
estimate (7.3) is a consequence of (7.1) and the inequality (11.33) of Proposition
13.

Step 5.2: We claim that (7.2) holds.

Proof of Step 5.2: Green’s representation formula yields

uα(x)− ūα =

∫
Ω

G(x, ·)
(
u2?−1
α − εαuα

)
dy

for all x ∈ Ω and all α ∈ N. Differentiation with respect to x yields

|∇uα(x)| ≤
∣∣∣∣∫

Ω

∇xG(x, ·)
(
u2?−1
α − εαuα

)
dy

∣∣∣∣
≤

∫
Ω

|∇xG(x, ·)|
(
u2?−1
α + εαuα

)
dy

Plugging (7.3) and the estimate of ∇xG of in (11.5) of Proposition 9 yield (7.2):
we omit the details.

These two steps prove Proposition 5. �
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8. Convergence to singular harmonic functions

8.1. Convergence at general scale. We prove the following general convergence
result

Proposition 6. Let (uα)α∈N ∈ C2(Ω) such that (1.3) and (1.4) hold. Let (x1,α), ..., (xN,α) ∈
Ω and (µ1,α), ..., (µN,α) ∈ (0,+∞) such that (7.1) holds. Let (xα)α∈N ∈ Ω and
(µα)α∈N, (rα)α∈N ∈ (0,+∞) be sequences such that

(i) limα→+∞ rα = 0 and µα = o(rα) when α→ +∞,

(ii) rα 6� µi,α when α → +∞ for all i ∈ {1, ..., N} such that xi,α − xα = O(rα)
when α→ +∞,

(iii) rn−2
α ūα = O(µ

n−2
2

α ) when α→ +∞,

(iv) µi,α = O(µα) when α→ +∞ for all i ∈ I where

I := {i ∈ {1, ..., N}/xi,α − xα = O(rα) and µi,α = o(rα) when α→ +∞},

(v) r2
αµi,α = O(µα(µ2

i,α + |xα − xi,α|2)) when α→ +∞ for all i ∈ Ic.

Then we distinguish two cases:

• Case 6.1: Assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= +∞.

We define

vα(x) :=
rn−2
α

µ
n−2
2

α

uα(xα + rαx) for all x ∈ Ω− xα
rα

. (8.1)

Then,

lim
α→+∞

vα(x) = K +
∑
i∈I′

λi|x− θi|2−n in C2
loc(Rn \ {θi/ i ∈ I}) (8.2)

where

I ′ := {i ∈ I/ µi,α � µα} (8.3)

and

θi := lim
α→+∞

xi,α − xα
rα

for all i ∈ I and λi > 0 for all i ∈ I ′. (8.4)

And

K = lim
α→+∞

rn−2
α ūα

µ
n−2
2

α

+
∑
i∈Ic

τi lim
α→+∞

(
r2
αµi,α

µα(µ2
i,α + |xα − xi,α|2)

)n−2
2

(8.5)

with τi ≥ 1 for all i ∈ Ic

• Case 6.2: Assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= ρ ∈ [0,+∞).

Then there exists x0 ∈ ∂Ω such that limα→+∞ xα = x0. We take ϕ, Ux0
and the

extension ũα as in Lemma 2. We define

ṽα(x) :=
rn−2
α

µ
n−2
2

α

ũα ◦ ϕ(ϕ−1(xα) + rαx) for all x ∈ ϕ−1(Ux0
)− ϕ−1(xα)

rα
. (8.6)
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Then,

lim
α→+∞

ṽα(x) = K+
∑
i∈I′

λi(|x−θ̃i|2−n+|x−σ(θ̃i)|2−n) in C1
loc(Rn\{θ̃i, σ(θ̃i)/ i ∈ I})

(8.7)
where K ≥ 0, I ′, λi are as above,

θ̃i := lim
α→+∞

ϕ−1(xi,α)− ϕ−1(xα)

rα
for all i ∈ I

and σ : Rn → Rn is the orthogonal symmetry with respect to the hyperplane {x1 =
ρ}, that is

σ(x1, x
′) = (2ρ− x1, x

′) for all (x1, x
′) ∈ Rn. (8.8)

Proof of Proposition 6: As in the statement of the proposition, we distinguish two
cases.

Case 6.1: we assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= +∞. (8.9)

We let R > 0 so that, for α ∈ N large enough, it follows from (8.1) that vα(x)
makes sense for all x ∈ BR(0). We fix x ∈ BR(0). It follows from (7.1) that

vα(x) = (1 + o(1))

(
rn−2
α ūα

µ
n−2
2

α

+

N∑
i=1

rn−2
α Vi,α(xα + rαx)

µ
n−2
2

α

)
(8.10)

when α→ +∞. We estimate the right-hand-side with Proposition 13. We have to
distinguish whether i ∈ I or not

Step 6.1.1: Let i ∈ I. We define

θi,α :=
xi,α − xα

rα

for all α ∈ N. In particular, limα→+∞ θi,α = θi where θi is defined in (8.4).
Therefore

rn−2
α Ui,α(xα + rαx)

µ
n−2
2

α

=

(
µi,αr

2
α

µα(µ2
i,α + |xα − xi,α + rαx|2)

)n−2
2

=

 µi,α

µα(
(
µi,α
rα

)2

+ |x− θi,α|2)


n−2
2

=

(
lim

α→+∞

(
µi,α
µα

)n−2
2

)
|x− θi|2−n + o(1) (8.11)

for all x ∈ BR(0)\{θi} when α→ +∞. Note that these quantities are well-defined
due to point (iv) of the hypothesis of Proposition 6.

Step 6.1.2: Let i ∈ Ic such that

lim
α→+∞

|xi,α − xα|
rα

= +∞.
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Let α0 ∈ N be large enough such that |xi,α − xα| ≥ 2Rrα for all α ≥ α0. Then

||xα − xi,α + rαx| − |xi,α − xα|| ≤ rα|x| = O(rα) = o(|xα − xi,α|)

when α→ +∞ and uniformly for all x ∈ BR(0). Therefore, we have that

rn−2
α Ui,α(xα + rαx)

µ
n−2
2

α

=

(
µi,αr

2
α

µα(µ2
i,α + |xα − xi,α + rαx|2)

)n−2
2

= (1 + o(1))

(
µi,αr

2
α

µα(µ2
i,α + |xα − xi,α|2)

)n−2
2

(8.12)

for all x ∈ BR(0) and all α ∈ N.

Step 6.1.3: Let i ∈ Ic such that

|xi,α − xα| = O(rα) when α→ +∞.

Since i 6∈ I and points (ii) and (iv) of the hypothesis of Proposition 6 hold, we then
have that rα = o(µi,α) when α → +∞: in particular, |xα − xi,α| = o(µi,α) when
α→ +∞. We then get that

rn−2
α Ui,α(xα + rαx)

µ
n−2
2

α

=

(
µi,αr

2
α

µα(µ2
i,α + o(µ2

i,α))

)n−2
2

= (1 + o(1))

(
µi,αr

2
α

µα(µ2
i,α + |xi,α − xα|2)

)n−2
2

(8.13)

for all x ∈ BR(0) and all α ∈ N.

Step 6.1.4: Let i ∈ {1, ..., N}. We claim that

rn−2
α µ

n−2
2

i,α

µ
n−2
2

α

= o(1) (8.14)

when α→ +∞. Indeed, it follows from Point (iii) of Proposition 2 that

µ
n−2
2

i,α ≤ C
∫

Ω∩Bµi,α (xi,α)

u2?−1
α dx ≤ C

∫
Ω

u2?−1
α dx = Cεα

∫
Ω

uα dx = o(ūα) (8.15)

when α → +∞. Therefore, (8.14) follows from point (iii) of the hypothesis of
Proposition 6.

Step 6.1.5: We let i ∈ {1, ..., N} such that the hypothesis of point (iii) of Propo-
sition 13 hold. Since π−1

ϕ (xi,α) 6∈ Ω, we have that |xα − π−1
ϕ (xi,α)| ≥ d(xα, ∂Ω).

Moreover, since (8.9) holds, we have that

rn−2
α Ũi,α(xα + rαx)

µ
n−2
2

α

=

(
µi,αr

2
α

µα(µ2
i,α + |xα + rαx− π−1

ϕ (xi,α)|2)

)n−2
2

= (1 + o(1))

(
µi,αr

2
α

µα(µ2
i,α + |xα − π−1

ϕ (xi,α)|2)

)n−2
2
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Assume that i ∈ I: in this case, we have that µi,α = O(µα) when α→ +∞. Since
in addition |xα − π−1

ϕ (xi,α)| ≥ d(xα, ∂Ω) and (8.9) holds, we have that

lim
α→+∞

rn−2
α Ũi,α(xα + rαx)

µ
n−2
2

α

= 0 if i ∈ I. (8.16)

Assume that i 6∈ I. Since |xα − xi,α| = O(|xα − π−1
ϕ (xi,α)|) when α → +∞, we

have that

rn−2
α Ũi,α(xα + rαx)

µ
n−2
2

α

= O

( µi,αr
2
α

µα(µ2
i,α + |xα − xi,α|2)

)n−2
2

 (8.17)

when α→ +∞.

Plugging (8.11)-(8.17) into (8.10) and using Proposition 13, we get that

lim
α→+∞

vα(x) = K +
∑
i∈I′

λi|x− θi|2−n (8.18)

for all x ∈ Rn \ {θi/ i ∈ I}, where K, I ′, θi and λi are as in (8.3), (8.4) and (8.5).
Moreover, as easily checked, this convergence is uniform on every compact subset
of Rn \ {θi/ i ∈ I}.

Step 6.1.6: We claim that (8.2) holds. We prove the claim. It follows from
equation (1.3) that

∆vα + r2
αεαvα = n(n− 2)

(
µα
rα

)2

v2?−1
α in BR(0) (8.19)

for all α ∈ N. Since µα = o(rα) when α→ +∞, it follows from (8.18) and standard
elliptic theory that (8.2) holds. This proves the claim.

This ends the proof of Proposition 6 in Case 6.2.

Case 6.2: We assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= ρ

with ρ ∈ [0,+∞). In particular, limα→+∞ xα = x0 ∈ ∂Ω. We consider the domain
Ux0 , the extension g̃ of the Euclidean metric ξ, the chart ϕ and the extension ũα
defined in Lemma 2. Let R > 0 and let α > 0 large enough such that

BR(0) ⊂ r−1
α (ϕ−1(Ux0)− ϕ−1(xα)).

Let us define (x1,α, x
′
α) := ϕ−1(xα) with x1,α ≤ 0 and x′α ∈ Rn−1. Therefore, as is

easily checked, we have that for any x ∈ BR(0),

ϕ(ϕ−1(xα) + rαx) ∈ Ω ⇔ x1 ≤
|x1,α|
rα

.

We consider the extension ũα of uα defined as in Lemma 2. In particular, the maps
ϕ, π, π̃, πϕ, π̃ϕ refer to the point x0. Given i ∈ {1, ..., N}, it follows from the
properties of the Vi,α’s (see Proposition 13) that

Vi,α(π−1
ϕ (x)) = (1 + o(1))Vi,α(x) +O(µ

n−2
2

i,α ) (8.20)
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when α→ +∞ uniformly for x ∈ Ux0
(up to taking Ux0

a sufficiently small neigh-
borhood of x0 in Rn). Therefore, it follows from (7.1) that

ũα(x) = (1 + o(1))

(
ūα +

N∑
i=1

Vi,α(x)

)
when α → +∞ uniformly for x ∈ Ux0

∩ Ω. Consequently, using (8.20) and (8.14),
for x ∈ BR(0), we have that

ṽα(x) = (1 + o(1))

(
rn−2
α ūα

µ
n−2
2

α

+

N∑
i=1

rn−2
α Vi,α(ϕ((x1,α, x

′
α) + rαx))

µ
n−2
2

α

)
(8.21)

when α→ +∞ uniformly for x ∈ BR(0). Here again, we distinguish whether i ∈ I
or not.

Step 6.2.1: we fix i ∈ Ic. Then there exists τi ≥ 1 such that

rn−2
α Vi,α(ϕ((x1,α, x

′
α) + rαx))

µ
n−2
2

α

= (1 + o(1))τi

(
µi,αr

2
α

µα(µ2
i,α + |xi,α − xα|2)

)n−2
2

(8.22)
for all x ∈ BR(0) and all α ∈ N. The proof goes as in Case 6.1 above and we omit
it.

Step 6.2.2: We fix i ∈ I. Mimicking what was done in Case 6.1.1, we define

θ̃i,α :=
ϕ−1(xi,α)− ϕ−1(xα)

rα
and θ̃i := lim

α→+∞
θ̃i,α

for all i ∈ I. Using that dϕ0 is an orthogonal transformation and proceeding as in
Step 6.1.1, we get that

rn−2
α Ui,α(ϕ((x1,α, x

′
α) + rαx))

µ
n−2
2

α

=

(
lim

α→+∞

(
µi,α
µα

)n−2
2

)
|x− θ̃i|2−n + o(1) (8.23)

for all x ∈ BR(0)\{θ̃i} when α→ +∞. Here again we omit the proof and we refer
to Step 6.1.1.

Step 6.2.3: We fix i ∈ I. In particular, limα→+∞ xi,α = x0. We assume that
xi,α 6∈ ∂Ω for all α ∈ N. We then have that

rn−2
α Ũi,α(ϕ((x1,α, x

′
α) + rαx))

µ
n−2
2

α

=

(
µi,αr

2
α

µα(µ2
i,α + |ϕ((x1,α, x′α) + rαx)− π−1

ϕ (xi,α)|2)

)n−2
2

(8.24)

for all α ∈ N and all x ∈ BR(0). Here, note that since we work in a neighborhood
of x0, we use the maps ϕ, π defined above. We define ((xi,α)1, x

′
i,α) := ϕ−1(xi,α)

for all α ∈ N. We have that

|ϕ((x1,α, x
′
α) + rαx)− π−1

ϕ (xi,α)| = |ϕ((x1,α, x
′
α) + rαx)− ϕ ◦ π−1((x1,α, x

′
α) + rαθ̃i,α)|

= (1 + o(1))|(x1,α, x
′
α) + rαx− π−1(x1,α, x

′
α)− rαπ−1(θ̃i,α)|

= (1 + o(1))rα

∣∣∣∣(2
x1,α

rα
, 0

)
+ x− π−1(θ̃i,α)

∣∣∣∣ (8.25)
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independently, since dϕ0 is an orthogonal transformation (this is due to the choice
made in Lemma 2), we have that

d(xα, ∂Ω) = (1 + o(1))|x1,α| (8.26)

when α→ +∞. In particular,

lim
α→+∞

|x1,α|
rα

= ρ.

Since x1,α < 0, plugging together (8.24), (8.25) and (8.26), we have that

rn−2
α Ũi,α(ϕ((x1,α, x

′
α) + rαx))

µ
n−2
2

α

=

(
lim

α→+∞

(
µi,α
µα

)n−2
2

)
|x−σ(θ̃i)|2−n+o(1) (8.27)

when α→ +∞ uniformly on compact subsets of Rn \ {σ(θ̃i)}.

Step 6.2.4: Given i ∈ I ′, we define

λi := lim
α→+∞

(
µi,α
µα

)n−2
2

·
{

1 if xi,α 6∈ ∂Ω for all α ∈ N
1
2 if xi,α ∈ ∂Ω for all α ∈ N

It then follows from (8.21), (8.22), (8.23), (8.27), Step 6.1.4 and Proposition 13 that

lim
α→+∞

ṽα(x) = K +
∑
i∈I′

λi(|x− θ̃i|2−n + |x− σ(θ̃i)|2−n) (8.28)

uniformly for all x in compact subsets of Rn \ {θ̃i, σ(θ̃i)/ i ∈ I}, where K is defined
in (8.5). We define the metric gα := (ϕ?g̃)(ϕ−1(xα) + rαx) for x ∈ r−1

α (ϕ−1(Ux0)−
ϕ−1(xα)). With a change of variables, equation (1.3) rewrites

∆g̃α ṽα + εαr
2
αṽα =

(
µα
rα

)2

ṽ2?−1
α

weakly in BR(0). It then follows from standard elliptic theory that (8.28) holds in
C1
loc. This proves (8.7), and this concludes the proof of Proposition 6 in Case 6.2.

Proposition 6 is a direct consequence of Cases 6.1 and 6.2. �

8.2. Convergence at appropriate scale. We fix i ∈ {1, ..., N}. We define

Ji := {j 6= i/ µi,α = O(µj,α) when α→ +∞}.

We define also

si,α :=


min

{
µ

1
2
i,α

ū
1

n−2
α

,minj∈Ji

(
µi,α
µj,α

(µ2
j,α + |xj,α − xi,α|2)

) 1
2

}
if xi,α ∈ ∂Ω

min

{
µ

1
2
i,α

ū
1

n−2
α

,minj∈Ji

(
µi,α
µj,α

(µ2
j,α + |xj,α − xi,α|2)

) 1
2

, d(xi,α, ∂Ω)

}
if xi,α 6∈ ∂Ω

(8.29)
Applying Proposition 6, we get the two following propositions:

Proposition 7. Let i ∈ {1, ..., N} and assume that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= +∞.
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For x ∈ s−1
i,α(Ω− xi,α), we define

vi,α(x) :=
sn−2
i,α

µ
n−2
2

i,α

uα(xi,α + si,αx).

We define

Ii := {j ∈ {1, ..., N}/ xj,α − xi,α = O(si,α) and µj,α = o(si,α) when α→ +∞}

and

θj := lim
α→+∞

xj,α − xi,α
si,α

for all j ∈ Ii.

Then there exists vi ∈ C2(Rn \ {θj/ j ∈ Ii}) such that

lim
α→+∞

vi,α = vi in C2
loc(Rn \ {θj/ j ∈ Ii}). (8.30)

In addition, there exists K ≥ 0 and λj > 0 for all j ∈ I ′i := {j ∈ Ii/ µi,α � µj,α}
such that

vi(x) = K +
∑
j∈I′i

λj |x− θj |2−n for all x ∈ Rn \ {θj/ j ∈ Ii}. (8.31)

Moreover, there exists δ > 0, there exists λ′i > 0 and ψi ∈ C2(B2δ(0)) harmonic
such that

vi(x) :=
λ′i
|x|n−2

+ ψi(x) for all x ∈ B2δ(0) \ {0} with ψi(0) > 0. (8.32)

Proposition 8. Let i ∈ {1, ..., N} and assume that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= ρ ∈ [0,+∞).

In particular limα→+∞ xi,α = x0 ∈ ∂Ω. We let ϕ be a chart around x0 as in Lemma

2. For x ∈ s−1
i,α(Ω− xi,α), we define

ṽi,α(x) :=
sn−2
i,α

µ
n−2
2

i,α

ũα ◦ ϕ(ϕ−1(xi,α) + si,αx).

We define

Ii := {j ∈ {1, ..., N}/ xj,α − xi,α = O(si,α) and µj,α = o(si,α) when α→ +∞}

and

θ̃j := lim
α→+∞

ϕ−1(xj,α)− ϕ−1(xi,α)

si,α
for all j ∈ Ii. (8.33)

We define σ(x1, x
′) := (2ρ − x1, x

′) for all (x1, x
′) ∈ Rn. Then there exists ṽi ∈

C2(Rn \ {θ̃j , σ(θ̃j)/ j ∈ Ii}) such that

lim
α→+∞

ṽi,α = ṽi in C1
loc(Rn \ {θ̃j , σ(θ̃j)/ j ∈ Ii}). (8.34)

In addition, there exists K ≥ 0 and λj > 0 for all j ∈ I ′i := {j ∈ Ii/ µi,α � µj,α}
such that

ṽi(x) = K+
∑
j∈I′i

λj

(
|x− θ̃j |2−n + |x− σ(θ̃j)|2−n

)
for all x ∈ Rn\{θj , σ(θ̃j)/ j ∈ Ii}.

(8.35)
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Moreover, there exists δ > 0, there exists λ′i > 0 and ψ̃i ∈ C2(B2δ(0)) harmonic
such that

ṽi(x) :=
λ′i
|x|n−2

+ ψ̃i(x) for all x ∈ B2δ(0) \ {0} with ψ̃i(0) > 0. (8.36)

Proof of Propositions 7 and 8: We apply Proposition 6.

Step 7.1: we claim that points (i) to (v) of Proposition 6 hold with

µα := µi,α and rα := si,α for all α ∈ N.
We prove the claim.

Step 7.1.1 We claim that (i) holds.

We prove this claim via two claims. We first claim that

lim
α→+∞

si,α = 0. (8.37)

We prove the claim. Indeed, it follows from the estimate (8.15) and the definition
(8.29) of si,α that

sn−2
i,α ≤

µ
n−2
2

i,α

ūα
≤ Cεα = o(1) when α→ +∞.

This proves (8.37). This proves the claim.

We claim that
µi,α = o(si,α) when α→ +∞. (8.38)

We prove the claim by contradiction. Assume that si,α = O(µi,α) when α→ +∞.

Since limα→+∞ µ−1
i,αd(xi,α, ∂Ω) = +∞ if xi,α 6∈ ∂Ω (see Proposition 2), it then

follows from the definition of si,α that there exists j ∈ Ji such that

µ2
j,α + |xj,α − xi,α|2 = O(µi,αµj,α) when α→ +∞. (8.39)

In particular, µj,α = O(µi,α) when α → +∞. Since j ∈ Ji, we then get that
µj,α � µi,α when α → +∞. It then follows from (8.39) that xj,α − xi,α = O(µi,α)
when α→ +∞. A contradiction with point (ii) of Proposition 2. This proves that
(8.38) holds. This proves the claim.

These two claims prove that (i) holds. This ends Step 7.1.1.

Step 7.1.2: Let k ∈ {1, ..., N}. We assume that xk,α − xi,α = O(si,α) when
α→ +∞. We claim that

si,α 6� µk,α when α→ +∞. (8.40)

We prove the claim by contradiction and we assume that

si,α � µk,α when α→ +∞. (8.41)

Since µi,α = o(si,α) when α→ +∞, we then get that µi,α = o(µk,α) when α→ +∞,
and therefore k ∈ Ji. It then follows from the definiiton of si,α that

s2
i,α ≤

µi,α
µk,α

(µ2
k,α + |xi,α − xk,α|2) = o(µ2

k,α) + o(s2
i,α)

when α → +∞, and then si,α = o(µk,α) when α → +∞: a contradiction with
(8.41). Then (8.40) holds and the claim is proved. This ends Step 7.1.2.

Step 7.1.3: Point (iii) is a straightforward consequence of the definition (8.29) of
si,α.
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Step 7.1.4: We let j ∈ {1, ..., N} be such that xj,α − xi,α = O(si,α) and µj,α =
o(si,α) when α→ +∞. We claim that

µj,α = O(µi,α) when α→ +∞. (8.42)

We prove the claim by contradiction and we assume that

µi,α = o(µj,α) when α→ +∞. (8.43)

Therefore, j ∈ Ji and we have with (8.38) that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2) = o(µ2

j,α) + o(s2
i,α) = o(s2

i,α)

when α→ +∞. A contradiction. Then (8.43) does not hold and (8.42) holds. This
proves the claim and ends Step 7.1.4.

Step 7.1.5: Let j ∈ {1, ..., N} be such that limα→+∞
|xi,α−xj,α|

si,α
= +∞. We claim

that
s2
i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

= O(1) when α→ +∞. (8.44)

We prove the claim. Assume first that µj,α = o(µi,α) when α→ +∞: we then get
that

s2
i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

= O

(
µj,α
µi,α

·
s2
i,α

|xi,α − xj,α|)

)
= o(1)

when α→ +∞. This proves (8.44), and the claim is proved in this case.

Assume that µi,α = O(µj,α) when α → +∞. Then j ∈ Ji and (8.44) follows from
the definition of si,α.

In the two cases, we have proved (8.44). This proves the claim and ends Step 7.1.5.

Step 7.1.6: Let j ∈ {1, ..., N} be such that xi,α−xj,α = O(si,α) and si,α = o(µj,α)
when α→ +∞. We claim that

s2
i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

= O(1) when α→ +∞. (8.45)

We prove the claim. We first assume that µj,α = o(µi,α) when α→ +∞. We then
get that

s2
i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

= O

(
µj,α
µi,α

·
s2
i,α

µ2
j,α

)
= o(1)

when α → +∞. Then (8.45) holds in this case. The case µi,α = O(µj,α) when
α → +∞ is dealt as in Step 7.1.5. This proves (8.45) and then the claim. This
ends Step 7.1.6.

Step 7.1.7: point (v) is a consequence of Steps 7.1.5 and 7.1.6.

Therefore, points (i) to (v) of the hypothesis of Proposition 6 are satisfied with
µα := µi,α and rα := si,α. This ends Step 1. �

Then we can apply Proposition 6 with rα := si,α and µα := µi,α.

Step 7.2: we assume that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= +∞. (8.46)
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It then follows from Proposition 6 that there exists vi as in Proposition 7 such that
(8.30) and (8.31) hold. Moreover, there exists (τj)j such that

K = lim
α→+∞

sn−2
i,α ūα

µ
n−2
2

i,α

+
∑
j 6∈Ii

τj lim
α→+∞

(
s2
i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

)n−2
2

. (8.47)

Step 7.2.1: We claim that

K > 0 or ∃j ∈ I ′i such that θj 6= 0. (8.48)

We prove the claim. If K > 0, then (8.48) holds. We assume that K = 0. It then
follows from (8.47) that

si,α = o

 µ
1
2
i,α

ū
1

n−2
α

 and s2
i,α = o

(
µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

)
for all j 6∈ Ii (8.49)

when α → +∞. The definition (8.29) of si,α, (8.46) and (8.49) yield the existence
of j ∈ Ii ∩ Ji such that

s2
i,α =

µi,α
µj,α

(µ2
j,α + |xj,α − xi,α|2) (8.50)

for all α ∈ N. Since j ∈ Ji, we have that

µi,α = O(µj,α) when α→ +∞ and j 6= i. (8.51)

Moreover, since j ∈ Ii, we have that

xj,α − xi,α = O(si,α) and µj,α = o(si,α) (8.52)

When α→ +∞. It then follows from (8.50), (8.51) and (8.52) that

µi,α � µj,α and |xi,α − xj,α| � si,α when α→ +∞. (8.53)

In particular, j ∈ I ′i and θj 6= 0. This proves (8.48) when K = 0. This proves the
claim and ends Step 7.2.1. �

We set

δ :=
1

2
min{|θj |/ j ∈ Ii and θj 6= 0}.

We define
ψi(x) := K +

∑
j∈I′′i

λj |x− θj |2−n

for all x ∈ B2δ(0) where Ii” := {j ∈ Ii/ θj 6= 0}. Clearly ψi is smooth and harmonic
on Bδ(0). We define λ′i =

∑
j∈I′i\Ii”

λj , so that one has that

vi(x) =
λ′i
|x|n−2

+ ψi(x) for all x ∈ B2δ(0) \ {0}.

Note that λ′i ≥ λi > 0.

Step 7.2.2: We claim that
ψi(0) > 0.

We prove the claim. Indeed, if K > 0, the claim is clear. If K = 0, it follows from
(8.48) that there exists j ∈ Ii”, and then ψi(0) ≥ λj |θj |2−n > 0. This proves the
claim.

Proposition 7 is a consequence of Steps 7.1 and 7.2. �
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Step 7.3: we assume that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= ρ ≥ 0. (8.54)

In this case, the proof of Proposition 8 goes basically as the proof of Proposition 7.
We stress here on the differences.

It follows from Proposition 6 that there exists ṽi as in Proposition 8 such that (8.34)
and (8.35) holds. We define

δ :=
1

2
min{|θ̃j |/ j ∈ Ii and θ̃j 6= 0}.

We define

ψ̃i(x) := K+
∑
j∈I′′i

λj(|x−θ̃j |2−n+|x−σ(θ̃j)|2−n)+

{
λ′i|x− σ(θ̃i)|2−n if σ(θ̃i) 6= 0

0 if σ(θ̃i) = 0

for all x ∈ B2δ(0) where Ii” := {j ∈ Ii”/ θj 6= 0} and λ′i > 0 is as in Step 7.2.1. In
particular, as in Step 7.2, we have that

ṽi(x) =
λ′i
|x|n−2

+ ψ̃i(x)

for all x ∈ B2δ(0).

We claim that

ψ̃i(0) > 0. (8.55)

We prove the claim. As in Step 7.2.2, (8.55) holds if K > 0. Assume that K = 0.
Arguing as in Step 7.2.1, we get that{

either si,α = d(xi,α, ∂Ω) and xi,α 6∈ ∂Ω
or there exists j ∈ Ii ∩ Ji such that s2

i,α =
µi,α
µj,α

(µ2
j,α + |xj,α − xi,α|2)

Step 7.3.1: we assume that

si,α := d(xi,α, ∂Ω)

for all α ∈ N. In particular, it follows from (8.54) that that ρ = 1 > 0 and then

σ(θ̃i) = σ(0) = (2ρ, 0) 6= 0 and then ψ̃i(0) ≥ λ′i|σ(θ̃i)|2−n = λ′i(2ρ)2−n > 0.

Step 7.3.2: we assume that there exists j ∈ Ii ∩ Ji such that

s2
i,α =

µi,α
µj,α

(µ2
j,α + |xj,α − xi,α|2)

for all α ∈ N. Mimicking what was done in Step 7.2.2, we get again that ψ̃i(0) > 0.

In all the cases, we have proved that ψ̃i(0) > 0. This proves (8.55), and then ends
Step 7.3. �

Proposition 8 is a consequence of Steps 7.1 and 7.3. �
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9. Estimates of the interior blow-up rates

This section is devoted to the analysis of the concentration at the points xi,α
away from the boundary.

Theorem 3. Let i ∈ {1, ..., N}. We assume that

lim
α→+∞

d(xi,α, ∂Ω)

µi,α
= +∞. (9.1)

Then n ≥ 4 (equation (9.1) does not hold in dimension n = 3). Concerning the
blow-up rate, there exists ci > 0 such that

lim
α→+∞

εαs
n−2
i,α

µn−4
i,α

= ci if n ≥ 5, (9.2)

lim
α→+∞

εαs
2
i,α ln

1

µi,α
= ci if n = 4. (9.3)

and

si,α = o(d(xi,α, ∂Ω)) (9.4)

when α→ +∞. Moreover, when n ≥ 7, we have the following additional informa-
tion:

si,α = o

 µ
1
2
i,α

ū
1

n−2
α

 when α→ +∞, (9.5)

and there exists j ∈ {1, ..., N} such that µi,α = o(µj,α) when α→ +∞ and

si,α =

(
µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

) 1
2

for all α ∈ N.

Proof of Theorem 3:

For x ∈ s−1
i,α(Ω− xi,α), we define

vi,α(x) :=
sn−2
i,α

µ
n−2
2

i,α

uα(xi,α + si,αx).

Step 3.1: We claim that there exists δ > 0 such that vi,α is well defined on Bδ(0)
and such that there exists vi ∈ C2(Bδ(0) \ {0}) such that

lim
α→+∞

vi,α = vi in C2
loc(B2δ(0) \ {0}) (9.6)

where there exists λ′i > 0 and ψi ∈ C2(B2δ(0)) such that ∆ψi = 0 and

vi(x) =
λ′i
|x|n−2

+ ψi(x) for all x ∈ B2δ(0) \ {0} with ψi(0) > 0. (9.7)

We prove the claim. Indeed, since xi,α 6∈ ∂Ω, it follows from the definition of si,α
that

d(xi,α, ∂Ω)

si,α
≥ 1 (9.8)

for all α ∈ N. In particular, vi,α is well defined on B1/2(0).
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Assume that limα→+∞
d(xi,α,∂Ω)

si,α
= +∞: then (9.6) and (9.7) are direct conse-

quences of Proposition 7.

Assume that limα→+∞
d(xi,α,∂Ω)

si,α
= ρ ≥ 0: it follows from (9.8) that ρ ≥ 1 and that

limα→+∞ xi,α = x0 ∈ ∂Ω. Using that the chart ϕ around x0 is such that dϕ0 is an
orthogonal transformation and that ũα coincides with uα on Ω, we get (9.6) and
(9.7) thanks to Proposition 8.

This proves the claim and therefore ends Step 3.1.

Taking δ > 0 smaller if needed, for any j ∈ {1, ..., N}, we have that

xj,α − xi,α 6= o(si,α) when α→ +∞ ⇒ |xj,α − xi,α| ≥ 2δsi,α for all α ∈ N. (9.9)

Step 3.2: Let U be a smooth bounded domain of Rn, let x0 ∈ Rn be a point and
let u ∈ C2(U). We claim that∫

U

(x− x0)k∂ku∆u dx+
n− 2

2

∫
U

u∆u dx (9.10)

=

∫
∂U

(
(x− x0, ν)

|∇u|2

2
− ∂νu

(
(x− x0)k∂ku+

n− 2

2
u

))
dσ

We prove the claim. Indeed, this is the celebrated Pohozaev identity [23]. We
sketch a proof here for convenience for the reader. We have that∫

U

(x− x0)k∂ku∆u dx+
n− 2

2

∫
U

u∆u dx

=

∫
U

−∂j∂ju
(

(x− x0)k∂ku+
n− 2

2
u

)
dx

=

∫
U

∂ju∂j

(
(x− x0)k∂ku+

n− 2

2
u

)
dx−

∫
∂U

∂νu

(
(x− x0)k∂ku+

n− 2

2
u

)
dσ

=
n

2

∫
U

|∇u|2 dx+
1

2

∫
U

(x− x0)k∂k|∇u|2 dx−
∫
∂U

∂νu

(
(x− x0)k∂ku+

n− 2

2
u

)
dσ

=

∫
U

∂k

(
(x− x0)k

|∇u|2

2

)
dx−

∫
∂U

∂νu

(
(x− x0)k∂ku+

n− 2

2
u

)
dσ

=

∫
∂U

(
(x− x0, ν)

|∇u|2

2
− ∂νu

(
(x− x0)k∂ku+

n− 2

2
u

))
dσ.

This proves (9.10), and therefore the claim. This ends Step 3.2.

As a consequence, differentiating (9.10) with respect to x0, we get that∫
U

∂ku∆u dx =

∫
∂U

(
νk
|∇u|2

2
− ∂νu∂ku

)
dσ (9.11)

Taking u := uα, using equation (1.3) and integrating by parts, we get that

εα

∫
U

u2
α dx =

∫
∂U

(
(x− x0, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
(9.12)

−∂νuα
(

(x− x0)k∂kuα +
n− 2

2
uα

))
dσ
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where here and in the sequel, we define cn := n(n− 2). Taking i ∈ {1, ..., N} such
that (9.1) holds, and δ > 0 as in Step 3.1, we let U := Bδsi,α(xi,α) ⊂⊂ Ω and
x0 := xi,α in (9.12). This yields

εα

∫
Bδsi,α (xi,α)

u2
α dx =

∫
∂Bδsi,α (xi,α)

(
(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
−∂νuα

(
(x− xi,α)k∂kuα +

n− 2

2
uα

))
dσ. (9.13)

We now estimate the LHS and the RHS separately.

Step 3.3: We claim that there exists c > 0 such that∫
Bδsi,α (xi,α)

u2
α dx = (c+ o(1))µ2

i,α ·
{

1 if n ≥ 5
ln

si,α
µi,α

if n = 4 (9.14)

when α→ +∞.

We prove the claim. We assume here that n ≥ 4. It follows from (7.1) and the
estimate (11.33) that∫
Bδsi,α (xi,α)

u2
α dx ≥ C

∫
Bδsi,α (xi,α)

U2
i,α dx = Cµ2

i,α

∫
Bδsi,α/µi,α (0)

1

(1 + |z|2)n−2
dz

≥ Cµ2
i,α ·

{
1 if n ≥ 5
ln

si,α
µi,α

if n = 4 (9.15)

for all α ∈ N.

We now deal with the upper estimate. With the upper bound (7.3), we get that∫
Bδsi,α (xi,α)

u2
α dx (9.16)

≤ C
∫
Bδsi,α (xi,α)

ū2
α dx+ C

N∑
j=1

∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx

We deal with the different terms separately.

Step 3.3.1: We claim that∫
Bδsi,α (xi,α)

ū2
α dx = O(µ2

i,α) when n ≥ 4 (9.17)

when α→ +∞. We prove the claim. Indeed, with the definition (8.29) of si,α, we
have that ∫

Bδsi,α (xi,α)

ū2
α dx = O(sni,αū

2
α) = O(µ

n
2
i,αū

n−4
n−2
α ) = o(µ2

i,α)

when α→ +∞ since n ≥ 4. This proves (9.17) and ends Step 3.3.1.

Step 3.3.2: We let j ∈ {1, ..., N} such that

µj,α = O(µi,α) (9.18)

when α→ +∞. We claim that∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx ≤ Cµ2
i,α ·

{
1 if n ≥ 5
ln

si,α
µi,α

if n = 4 (9.19)
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when α → +∞. We first assume that n ≥ 5. Estimating roughly the integral, we
get with the change of variable x = xj,α + µj,αz and with (9.18) that∫

Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx ≤
∫
Rn

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx

= µ2
j,α

∫
Rn

dz

(1 + |z|2)n−2
= O(µ2

j,α) = O(µ2
i,α)

when α→ +∞ since n ≥ 5. This proves (9.19) when n ≥ 5. When n = 4, we must
be a little more precise. Assume first that xi,α − xj,α = O(si,α) when α → +∞.
Then we have that∫

Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)2

dx ≤
∫
BRsi,α (xj,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx

= µ2
j,α

∫
B
δsi,αµ

−1
i,α

(0)

dz

(1 + |z|2)2
= O

(
µ2
j,α ln

si,α
µj,α

)
= O

(
µ2
i,α ln

si,α
µi,α

)

when α → +∞. Assume now that s−1
i,α|xi,α − xj,α| → +∞ when α → +∞. Then

for any x ∈ Bδsi,α(xi,α), we have that |x− xj,α| ≥ si,α and then

∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)2

dx ≤ C
s4
i,αµ

2
j,α

s4
i,α

= O(µ2
j,α) = O

(
µ2
i,α ln

si,α
µi,α

)
when α→ +∞. These estimates prove (9.19) in case n = 4. This ends Step 3.3.2.

Step 3.3.3: We let j ∈ {1, ..., N} such that

µi,α = o(µj,α) and xi,α − xj,α 6= o(si,α) (9.20)

when α→ +∞. We claim that when n ≥ 4, we have that∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx = O(µ2
i,α) (9.21)

when α→ +∞. We prove the claim. It follows from (9.20) and the definition (9.9)
of δ that |xi,α − xj,α| ≥ 2δsi,α for all α ∈ N. In particular,

x ∈ Bδsi,α(xi,α) ⇒ |x− xj,α| ≥
|xi,α − xj,α|

2

and therefore∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx = O

sni,α
(

µj,α
µ2
j,α + |xi,α − xj,α|2

)n−2


(9.22)
when α→ +∞. Moreover, it follows from (9.20) that j ∈ Ji, and then

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2) (9.23)
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for all α ∈ N. It then follows from (9.22), (9.23) and (8.38) that∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx = O

sni,α
(
µi,α
s2
i,α

)n−2


= O

(
µ2
i,α

(
µi,α
si,α

)n−4
)

= O(µ2
i,α)

when α→ +∞ since n ≥ 4. This proves (9.21) and ends Step 3.3.3.

Step 3.3.4: We let j ∈ {1, ..., N} such that

µi,α = o(µj,α) and xi,α − xj,α = o(si,α) (9.24)

when α→ +∞. We claim that∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx = O(µ2
i,α) when n ≥ 4 (9.25)

when α → +∞. We prove the claim. As in Step 3.3, it follows from (9.24) that
j ∈ Ji. In particular, using the definition (8.29) of si,α and the second assertion of
(9.24), we get that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2) ≤ µi,αµj,α + o(s2

i,α)

when α→ +∞, and then s2
i,α = O(µi,αµj,α) when α→ +∞. Consequently, we get

that ∫
Bδsi,α (xi,α)

(
µj,α

µ2
j,α + |x− xj,α|2

)n−2

dx = O

(
sni,α

µn−2
j,α

)
= O

(
µ
n
2
i,α

µ
n
2−2
j,α

)

= O

((
µi,α
µj,α

)n
2−2

µ2
i,α

)
= O(µ2

i,α)

when α→ +∞ since n ≥ 4. This proves (9.25) and ends Step 3.3.4.

Plugging together (9.17), (9.19), (9.21) and (9.25) into (9.16) and combining this
with (9.15), we get (9.14). This proves the claim and ends Step 3.3.

We define

Ai,α : =

∫
∂Bδsi,α (xi,α)

(
(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
−∂νuα

(
(x− xi,α)k∂kuα +

n− 2

2
uα

))
dσ. (9.26)

for all α ∈ N.

Step 3.4: Assume that n ≥ 3. We claim that

Ai,α =

(
(n− 2)2ωn−1λ

′
iψi(0)

2
+ o(1)

)
·
(
µi,α
si,α

)n−2

(9.27)

when α→ +∞. Here, ωn−1 denotes the volume of the unit (n− 1)−sphere of Rn.
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We prove the claim. With the change of variable x = xi,α + si,αz and using the
definition of vi,α, we get that

Ai,α =

(
µi,α
si,α

)n−2 ∫
∂Bδ(0)

(
(z, ν)

(
|∇vi,α|2

2
− cn

(
µi,α
si,α

)2 v2?

i,α

2?
+
εαs

2
i,αu

2
α

2

)

−∂νvi,α
(
xk∂kvi,α +

n− 2

2
vi,α

))
dσ

for all α ∈ N. Since vi,α → vi in C2
loc(B2δ(0) \ {0}) when α→ +∞, passing to the

limit, we get that

Ai,α =

(
µi,α
si,α

)n−2
(∫

∂Bδ(0)

(
(z, ν)

(
|∇vi|2

2

)
(9.28)

−∂νvi
(
xk∂kvi +

n− 2

2
vi

))
dσ + o(1)

)
when α → +∞. We let ε ∈ (0, δ) and we apply the Pohozaev identity (9.10) to vi
on Bδ(0) \Bε(0) with x0 = 0. Since ∆vi = 0, we get that the map

ε 7→
∫
∂Bε(0)

(
(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

))
dσ

is constant on (0, δ]. With the explicit expression (9.7) of vi, we have the asymptotic
expansion

(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

)
=

(n− 2)2λ′iψi(0)

2
|x|1−n +O(|x|2−n)

when |x| → 0. Consequently, we get that

lim
ε→0

∫
∂Bε(0)

(
(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

))
dσ =

(n− 2)2λ′iψi(0)ωn−1

2
,

and then∫
∂Bδ(0)

(
(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

))
dσ =

(n− 2)2λ′iψi(0)ωn−1

2
.

Plugging this equality in (9.28) yields (9.27). This ends Step 3.4.

Step 3.5: We claim that there exists ci > 0 such that

lim
α→+∞

εαs
n−2
i,α

µn−4
i,α

= ci if n ≥ 5 and lim
α→+∞

εαs
2
i,α ln

1

µi,α
= ci if n = 4. (9.29)

Indeed, plugging (9.14) and (9.27) into (9.13) yields

(c+ o(1))εαµ
2
i,α =

(
(n− 2)2ωn−1λ

′
iψi(0)

2
+ o(1)

)
·
(
µi,α
si,α

)n−2

when α→ +∞ when n ≥ 5. Since c, λ′i, ψi(0) > 0, we get that

lim
α→+∞

εαs
n−2
i,α

µn−4
i,α

=
(n− 2)2ωn−1λ

′
iψi(0)

2c
> 0.

This proves the claim when n ≥ 5. The proof is similar when n = 4.
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Step 3.6: we claim that

si,α = o

 µ
1
2
i,α

ū
1

n−2
α

 when n ≥ 7. (9.30)

when α → +∞. We prove the claim by contradiction. Indeed, if (9.30) does not
hold, it follows from the definition (8.29) of si,α that

si,α �
µ

1
2
i,α

ū
1

n−2
α

when α→ +∞. Plugging this identity into (9.29) yields

εα � µ
n−6
2

i,α ūα

when α→ +∞. With (2.4), we then get that

1 = O
(
µ
n−6
2

i,α ε
n−6
4

α

)
,

a contradiction since n ≥ 7. Then (9.30) holds and the claim is proved. This ends
Step 3.6.

Step 3.7: Assume that n ≥ 3. We claim that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= +∞. (9.31)

We prove the claim. We argue by contradiction and we assume that

lim
α→+∞

d(xi,α, ∂Ω)

si,α
= ρ ≥ 0.

It follows from the definition (8.29) of si,α that ρ ≥ 1 > 0. We adopt the notations
of Proposition 8. We let j0 ∈ I ′i such that

θ̃j0,1 = min
j∈I′i
{θ̃j,1}. (9.32)

Here, θ̃j,1 denotes the first coordinate of θ̃j .

Step 3.7.1: We claim that there exists ε0 > 0 such that

d(xj0,α, ∂Ω) ≥ ε0si,α (9.33)

for all α ∈ N. We prove the claim by contradiction and we assume that d(xj0,α, ∂Ω) =
o(si,α) when α→ +∞. In particular, via the chart ϕ, we get that

lim
α→+∞

(ϕ−1(xj0,α))1

si,α
= 0 and lim

α→+∞

(ϕ−1(xi,α))1

si,α
= −ρ < 0.

Coming back to the definition (8.33) of θ̃j0 , we get that

θ̃j0,1 = lim
α→+∞

(ϕ−1(xj0,α)− ϕ−1(xi,α))1

si,α
= ρ > 0.

A contradiction since θ̃j0,1 ≤ θ̃i,1 = 0. This proves (9.33) and ends Step 3.7.1.

Step 3.7.2: We let δ0 > 0 such that

δ0 <
ε0
2

and θ̃j 6= θ̃j0 ⇒ |θ̃j − θ̃j0 | ≥ 2δ0.
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Taking the Pohozaev identity (9.12) with U := Bδ0si,α(xj0,α) ⊂⊂ Ω and differenti-
ating with respect to x0, we get that∫

∂Bδ0si,α (xj0,α)

(
νk

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
− ∂νuα∂kuα)

)
dσ = 0 (9.34)

for all α ∈ N and all k ∈ {1, ..., n}. With the change of variable x = xi,α + si,αz
and using the function vi,α, we get that∫
∂Bδ0 (θ̃j0,α)

(
νk

(
|∇vi,α|2

2
− cn

(
µi,α
si,α

)2 v2?

i,α

2?
+
εαs

2
i,αv

2
i,α

2

)
− ∂νvi,α∂kvi,α)

)
dσ = 0

(9.35)
for all α→ 0. Letting α→ 0, we get with (9.6) that∫

∂Bδ0 (θ̃j0 )

(
νk
|∇vi|2

2
− ∂νvi∂kvi)

)
dσ = 0 (9.36)

for all k ∈ N. It follows from (8.35) that

vi(x) = K +
∑
j∈I′i

λj(|x− θj |2−n + |x− σ(θj)|2−n

=
λ′i,j0

|x− θj0 |n−2
+ ψi,j0(x)

where λ′i,j0 > 0 and

ψi,j0(x) := K + λj0 |x− σ(θj0)|2−n +
∑
j∈Ii”

λj(|x− θj |2−n + |x− σ(θj)|2−n

where Ii” := {j ∈ I ′i/ θj 6= θj0} Arguing as in Step 3.4, we get that (9.36) holds on
balls with arbitrary small positive radius and then we get that

∂kψi,j0(θj0) = 0.

Taking k = 1, we get that

λj0
(θj0 − σ(θj0))1

|θj0 − σ(θj0)|n
+
∑
j∈Ii”

λj

(
(θj0 − θj)1

|θj0 − θj |n
+

(θj0 − σ(θj))1

|θj0 − σ(θj)|n

)
= 0. (9.37)

Recall that if θj = (θj,1, θ
′
j), then σ(θj) = (2ρ − θj,1, θ

′
j). In particular, since

xj,α ∈ Ω, we have that θj ∈ {x1 ≤ ρ} and then for all j ∈ Ii”, we have that

θj0,1 ≤ θj,1 ≤ (σ(θj))1. (9.38)

In addition, we have that

(θj0 − σ(θj0))1 = 2(θj0,1 − ρ) = −2(|θj0,1|+ ρ) < 0. (9.39)

Plugging (9.38) and (9.39) into (9.37) yields a contradiction. This proves that (9.31)
holds. This ends Step 3.7.

Step 3.8: We assume that n ≥ 3. We claim that

xj,α − xi,α = o(si,α) when α→ +∞ for all j ∈ I ′i. (9.40)

We prove the claim. Since (9.31) holds, we define vi,α and vi as in Proposition 7.
In particular, we have that

vi(x) = K +
∑
j∈I′i

λj |x− θj |2−n
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for all x ∈ Rn \ {θj/ j ∈ Ii}. We fix k ∈ {1, ..., n} and we let j0 ∈ I ′i such that

θj0,k = min{θj,k/ j ∈ I ′i}.
We let Ii” := {j ∈ I ′i/ θj 6= θj0}. Therefore, there exists λ′i,j0 > 0 such that

vi(x) =
λ′i,j0

|x− θj0 |n−2
+ ψi,j0(x)

where
ψi,j0(x) := K +

∑
j∈Ii”

λj |x− θj |2−n.

Taking δ < min{|θj |/ θj 6= θj0}, we use the identity (9.34) as in Step 3.7. Performing
the change of variable x = xi,α + si,αz, we get again that

∂kψi,j0(θj0) = 0.

With the explicit expression of ψi,j0 , this yields∑
j∈Ii”

λj
(θj − θj0)k
|θj − θj0 |n

= 0.

Since (θj − θj0)k ≥ 0 for all j ∈ Ii” by definition, we get that θj,k = θj0,k for all
j ∈ Ii”, and therefore for all j ∈ I ′i. In particular, θj,k = θi,k for all k ∈ N, and
therefore θj = θi = 0 for all j ∈ I ′i. Coming back to the definition (8.33) of θj , we
get that (9.40) holds. This ends the proof of the claim and of Step 3.8.

Step 3.9: Assume that n ≥ 7. We claim that there exists j0 ∈ Ji such that

si,α =

(
µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

) 1
2

and µi,α = o(µj,α) (9.41)

when α → +∞. We prove the claim. Indeed, it follows from the definition (8.29)
of si,α and (9.30) of Step 3.6 and (9.31) of Step 3.7 that there exists j ∈ Ji such
that

si,α =

(
µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

) 1
2

(9.42)

for all α ∈ N (up to a subsequence, of course). Since j ∈ Ji, we have that µi,α =
O(µj,α) when α → +∞. Assume that µi,α � µj,α when α → +∞: then it follows
from (9.42) that xj,α − xi,α = O(si,α) when α → +∞, and then j ∈ I ′i. It then
follows from (9.40) of Step 3.8 that we have that xi,α − xj,α = o(si,α). Coming
back to (9.42), we get that si,α � µi,α when α→ +∞: a contradiction with (8.38).
Therefore (9.41) holds, and the claim is proved. This ends Step 3.9.

Step 3.10: We assume that n = 3. It follows from (9.27) and (9.13) that∫
Bδsi,α (xi,α)

u2
α dx �

µi,α
si,α

(9.43)

when α→ +∞. It follows from (7.1) that∫
Bδsi,α (xi,α)

u2
α dx = (1 + o(1))

∫
Bδsi,α (xi,α)

ūα +

N∑
j=1

Vj,α(x)

2

dx

� s3
i,αū

2
α +

N∑
j=1

µj,α

∫
Bδsi,α (xi,α)

(µ2
j,α + |x− xj,α|2)−1 dx
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when α→ +∞. We distinguish three cases to get a contradiction.

Step 3.10.1: we assume that∫
Bδsi,α (xi,α)

u2
α dx � s3

i,αū
2
α (9.44)

when α → +∞. It then follows from (9.43) that εαs
4
i,αū

2
α � µi,α when α → +∞.

Moreover, since si,α ≤ µ
1/2
i,α ū

−1
α by the definition (8.29), we get that ū2

α = o(µi,α)

when α→ +∞. This is a contradiction with (8.15). Then (9.44) does not hold.

Step 3.10.2: we assume that there exists j ∈ {1, ..., N} such that si,α = O(|xi,α−
xj,α|) and∫

Bδsi,α (xi,α)

u2
α dx � µj,α

∫
Bδsi,α (xi,α)

(µ2
j,α + |x− xj,α|2)−1 dx (9.45)

when α→ +∞. Here again, since |x− xj,α| � |xi,α − xj,α| for all x ∈ Bδsi,α(xi,α),
it follows from (9.45) and (9.43) that

εαµj,αs
3
i,α

µ2
j,α + |xi,α − xj,α|2

� µi,α
si,α

(9.46)

when α → +∞. In particular, since si,α = O(|xi,α − xj,α|), we get that µi,α =
o(µj,α) when α→ +∞, and then j ∈ Ji. Therefore, we have that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

for all α ∈ N, and it then follows from (9.46) that 1 = O(εαs
2
i,α) = o(1). A

contradiction. Therefore, (9.45) does not hold.

Step 3.10.3: we assume that there exists j ∈ {1, ..., N} such that |xi,α − xj,α| =
o(si,α) and∫

Bδsi,α (xi,α)

u2
α dx � µj,α

∫
Bδsi,α (xi,α)

(µ2
j,α + |x− xj,α|2)−1 dx (9.47)

when α→ +∞. A change of variable then yields∫
Bδsi,α (xi,α)

u2
α dx � µj,αs3

i,α

∫
Bδ

(
xi,α−xj,α

si,α

)(µ2
j,α + s2

i,α|z|2)−1

when α→ +∞. Therefore,∫
Bδsi,α (xi,α)

u2
α dx � µj,αs3

i,α max{µj,α, si,α}−2

when α→ +∞. It then follows from (9.43) that

εαµj,αs
4
i,α � µi,α max{µj,α, si,α}2 (9.48)

when α → +∞. In particular, we have that µi,α = o(µj,α), and then j ∈ Ji.
Therefore, we have that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2) ≤ µi,αµj,α + o(s2

i,α)

and then si,α = O(
√
µi,αµj,α) = o(µj,α) when α → +∞. Then (9.48) becomes

εαs
4
i,α � µi,αµj,α when α → +∞, a contradiction since s2

i,α = O(µi,αµj,α) when
α→ +∞. Therefore, (9.47) does not hold.
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In all the situations, we have proved a contradiction. Therefore the hypothesis (9.1)
of Theorem 3 does not hold in dimension n = 3. This ends Step 3.10.

Step 3.10: Theorem 3 is a direct consequence of Steps 3.5, 3.6, 3.7, 3.8 and 3.10.
This ends the proof of Theorem 3. �

In the sequel, we need to translate slightly the boundary concentration points: we
fix θ ∈ Rn−1 and for all i ∈ {1, ..., N} such that xi,α ∈ ∂Ω, we define x̃i,α :=
ϕ(ϕ−1(xi,α)+µi,αθ) ∈ ∂Ω for all α ∈ N. The parameter θ is chosen such that there
exists ε0 > 0 such that

|x̃i,α − x̃j,α| ≥ ε0µi,α (9.49)

for all i, j ∈ {1, ..., N} distincts such that x̃i,α, x̃j,α ∈ ∂Ω and all α ∈ N. We define
s̃i,α as si,α with replacing xi,α by x̃i,α: as easily checked, for any i ∈ {1, ..., N}
such that xi,α ∈ ∂Ω, we have that s̃i,α � si,α when α → +∞. From now on, we
replace xi,α by x̃i,α. As easily checked, the convergence Propositions 7 and 8 and
the estimates (7.2) and (7.3) continue to hold with this new choice of points (with
τi > 0 only in the propositions). Note that the convergence (4.1) of the ũi,α in
Proposition 2 is changed as follows:

lim
α→+∞

‖ũi,α − U0(·+ θ)‖C1(K∩Ω̄i,α) = 0. (9.50)

10. Estimates of the boundary blow-up rates

In this section, we deal with the case when the concentration point is on the
boundary.

Theorem 4. Assume that n ≥ 3. Let i ∈ {1, ..., N}. We assume that

xi,α ∈ ∂Ω (10.1)

for all α ∈ N. We assume that for all j ∈ {1, ..., N} \ {i}, we have that

xj,α ∈ ∂Ω ⇒ xj,α − xi,α 6= o(si,α) when α→ +∞ (10.2)

when α→ +∞. Then there exists c′i > 0 such that

limα→+∞
µn−3
i,α

sn−2
i,α

= −c′iH(x0) if n ≥ 4,

limα→+∞
1

si,α ln 1
µi,α

= −c′iH(x0) if n = 3,
(10.3)

Where x0 := limα→+∞ xi,α and H(x0) denotes the mean curvature of ∂Ω at x0. In
particular, H(x0) ≤ 0.

Proof of Theorem 4: As for Theorem 3, the proof relies on a Pohozaev identity.
Here, we have to consider the boundary of Ω. For any α ∈ N, we define

Uα := Bδsi,α(ϕ−1(xi,α)) (10.4)

Step 4.1: we apply the Pohozaev identity (9.12) on ϕ(Uα)∩Ω = ϕ(Uα ∩Rn−) with
x0 = xi,α. This yields

εα

∫
ϕ(Uα∩Rn−)

u2
α dx =

∫
∂ϕ(Uα∩Rn−)

Fα dσ (10.5)

=

∫
ϕ((∂Uα)∩Rn−)

Fα dσ +

∫
ϕ(Uα∩∂Rn−)

Fα dσ
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where for convenience, we have defined

Fα := (·−xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
−∂νuα

(
(· − xi,α)k∂kuα +

n− 2

2
uα

)
for all α ∈ N.

Step 4.2: We deal with the LHS of (10.5). We claim that∫
ϕ(Uα∩Rn−)

u2
α dx =

{
o(µi,α) if n ≥ 4
O(µi,α) if n = 3

(10.6)

when α→ +∞. Indeed, the proof goes exactly as in the proof of (9.14) of Step 3.3
of the proof of Theorem 3.

Step 4.3: We deal with the first term of the RHS of (10.5). When n ≥ 3, we claim
that there exists ci > 0 such that∫

ϕ((∂Uα)∩Rn−)

Fα dx =

(
µi,α
si,α

)n−2

(ci + o(1)) (10.7)

when α→ +∞.

We prove the claim. The proof proceeds basically as in the proof of (9.27) of Step 3.4
of the proof of Theorem 3. Since xi,α ∈ ∂Ω, we have that limα→+∞ xi,α = x0 ∈ ∂Ω.
We take a domain Ux0 , a chart ϕ and the extension g̃ of the metric and ũα of uα
as in Lemma 2. Therefore, there exists x′α ∈ Rn−1 such that xi,α = ϕ(0, x′i,α) for
all α ∈ N with limα→+∞ x′α = 0. We define ṽi,α as in Proposition 8, that is

ṽi,α(x) :=
sn−2
i,α

µ
n−2
2

i,α

ũα((0, x′i,α) + si,αx) (10.8)

for all α ∈ N and for all x ∈ s−1
i,α(ϕ−1(Ux0)− (0, x′i,α)). Recall that it follows from

Proposition 8 that there exists ṽi ∈ C2(B2δ(0) \ {0}) such that

lim
α→+∞

ṽi,α = ṽi in C1
loc(Rn \ {0} (10.9)

In addition, there exists ψ̃i ∈ C2(Bδ(0)) harmonic such that

ṽi(x) :=
λ′i
|x|n−2

+ ψ̃i(x) for all x ∈ Bδ(0) \ {0} with ψ̃i(0) > 0. (10.10)

We define the metric g̃α(x) := (ϕ?g̃)((0, x′i,α) + si,αx) for all x. With the change of
variable x = ϕ((0, x′i,α) + si,αz), we get that∫

ϕ((∂Bδsi,α (ϕ−1(xi,α)))∩Rn−)

Fα dx

=

(
µi,α
si,α

)n−2 ∫
∂Bδ(0)∩Rn−

(
(z, ν)gα

(
|∇ṽi,α|2gα

2
− cn

(
µi,α
si,α

)2 ṽ2?

i,α

2?
+
εαs

2
i,αṽ

2
i,α

2

)

−∂ν ṽi,α
(
xk∂kṽi,α +

n− 2

2
ṽi,α

))
dσα



62 OLIVIER DRUET, FRÉDÉRIC ROBERT, AND J.WEI

Passing to the limit α→ +∞ and using (10.9), we get that∫
ϕ((∂Bδsi,α (ϕ−1(xi,α)))∩Rn−)

Fα dx

=

(
µi,α
si,α

)n−2
(∫

∂Bδ(0)∩Rn−

(
(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

))
dσ + o(1)

)

=

(
µi,α
si,α

)n−2
(

1

2

∫
∂Bδ(0)

(
(z, ν)

(
|∇vi|2

2

)
− ∂νvi

(
xk∂kvi +

n− 2

2
vi

))
dσ + o(1)

)
when α → +∞. Similarly to what was done in the proof of (9.27) of Step 3.4 in
the proof of Theorem 3, and using (10.10), we get that∫

ϕ((∂Bδsi,α (ϕ−1(xi,α)))∩Rn−)

Fα dx =

(
µi,α
si,α

)n−2(
(n− 2)2ciψi(0)ωn−1

4
+ o(1)

)
This proves (10.7) and ends Step 4.3.

We define

L := {j ∈ {1, ..., N}/ xj,α − xi,α = O(µi,α) when α→ +∞}.
Given R > 0 and α ∈ N, we define

DR,α := ϕ

(
BRµi,α(ϕ−1(xi,α)) \

⋃
k∈L

BR−1µi,α(ϕ−1(xk,α)) ∩ Rn−

)
. (10.11)

Step 4.4: Assume that n ≥ 4. We claim that

lim
R→+∞

lim
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−)\DR,α

(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
dσ = 0

(10.12)
We prove the claim. Indeed, it follows from (7.2) that∣∣∣∣ |∇uα|22

− cn
u2?

α

2?
+
εαu

2
α

2

∣∣∣∣ ≤ Cū2
α + C

N∑
j=1

µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 (10.13)

for all x ∈ Ω and all α ∈ N.

Step 4.4.1: We claim that

|(x− xi,α, ν(x))| ≤ C|x− xi,α|2 (10.14)

for all α ∈ N and all x ∈ ∂Ω∩ ∂Ux0 . We prove the claim. Indeed, for x ∈ Rn− small
enough, we get via the chart ϕ that

(· − xi,α, ν) ◦ ϕ((0, x′i,α) + x) (10.15)

=
(
ϕ((0, x′i,α) + x)− ϕ(0, x′i,α), ν ◦ ϕ((0, x′i,α) + x)

)
=

(
dϕ(0,x′i,α)(x) +

1

2
d2ϕ(0,x′i,α)(x, x) +O(|x|3), ν ◦ ϕ((0, x′i,α) + x)

)
= −1

2

(
d2ϕ(0,x′i,α)(x, x), ν ◦ ϕ(0, x′i,α)

)
+O(|x|3).

Inequality (10.14) is a straightforward consequence of (10.15). This proves (10.14)
and ends Step 4.4.1.
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As a consequence of (10.13) and (10.14), we have that∣∣∣∣∣
∫
ϕ(Uα∩∂Rn−\DR,α)

(x− xi,α, ν)

(
|∇uα|2

2
− u2?

α

2?
+
εαu

2
α

2

)
dσ

∣∣∣∣∣ (10.16)

≤ C
∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2ū2
α dσ

+C

N∑
j=1

∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ

for all α ∈ N and all R > 0. We are going to estimate these terms separately.

Step 4.4.2: We claim that∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2ū2
α dσ = o(µi,α) when α→ +∞ (10.17)

We prove the claim. Indeed, using the definition (8.29) of si,α, we get that∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2ū2
α dσ ≤ Csn+1

i,α ū2
α = O(µ

n+1
2

i,α ū
n−5
n−2
α )

when α → +∞. Moreover, since µ
n−2
2

i,α = o(ūα), we get that the above expression

is o(µi,αū
n−3
n−2
α ) = o(µi,α) when α→ +∞ since n ≥ 3. This proves (10.17) and ends

Step 4.4.2.

Step 4.4.3: We claim that

lim
R→+∞

lim
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
i,α(

µ2
i,α + |x− xi,α|2

)n−1 dσ = 0 if n ≥ 4.

(10.18)
We prove the claim. Recall that for convenience, we let Rn−1 := ∂Rn−. Noting that

ϕ(Uα ∩ ∂Rn− \ DR,α) ⊂ Rn−1 \
(
BRµi,α(xi,α) \ ∪k∈LBR−1µi,α(xk,α)

)
,

we get with the change of variables x = xi,α + µi,αz that∫
ϕ(Uα∩∂Rn−)\DR,α

|x− xi,α|2µn−2
i,α(

µ2
i,α + |x− xi,α|2

)n−1 dσ

≤ Cµi,α
∫
Rn−1\(BR(0)\∪k∈LBR−1 (θk,α))

|z|2 dz
(1 + |z|2)n−1

where θk,α := µ−1
i,α(xk,α − xi,α) for all α ∈ N and all k ∈ L. Letting θk :=

limα→+∞ θk,α, we get that

lim sup
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
i,α(

µ2
i,α + |x− xi,α|2

)n−1 dσ

≤ C
∫
Rn−1\(BR(0)\∪k∈LBR−1 (θk))

|z|2 dz
(1 + |z|2)n−1

for all R > 0. Then, letting R → +∞ and using that n ≥ 4, we get (10.18). This
ends Step 4.4.3.
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Step 4.4.4: Let j ∈ {1, ..., N} such that

xj,α − xi,α 6= o(si,α) when α→ +∞.

Then∫
ϕ(Uα∩∂Rn−)\DR,α

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ =

{
o(µi,α) if n ≥ 4
O(µi,α) if n = 3

(10.19)

when α → +∞. We prove the claim. Taking δ > 0 smaller if necessary, we have
that

|xj,α − xi,α| ≥ 2δsi,α (10.20)

for all α ∈ N. In particular, for all x ∈ DR,α ⊂ ϕ(Uα ∩ Rn−), we have that

|x− xj,α| ≥ δsi,α.

Therefore, we have that∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ = O

(
sn+1
i,α µn−2

j,α(
µ2
j,α + |xj,α − xi,α|2

)n−1

)
(10.21)

for all α ∈ N. We distinguish two cases:

Case 4.4.4.1: assume that µj,α = o(µi,α) when α → +∞. Then it follows from
(10.20) and (10.21) that∫

ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ

= O

(
sn+1
i,α µn−2

j,α

s2n−2
i,α

)
= o

((
µi,α
si,α

)n−3

µi,α

)
= o(µi,α)

when α→ +∞. This proves (10.19) in Case 4.4.4.1.

Case 4.4.4.2: assume that µi,α = O(µj,α) when α → +∞. Then, we have that
j ∈ Ji and it follows from the definition (8.29) of si,α that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

for all α ∈ N. Plugging this inequality in (10.21), we get that∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ = O

(
µn−1
i,α

sn−3
i,α µj,α

)
(10.22)

= O

(
µi,α
µj,α

·
(
µi,α
si,α

)n−3

µi,α

)
=

{
o(µi,α) if n ≥ 4
O(µi,α) if n = 3

(10.23)

when α→ +∞. This proves (10.19) in Case 4.4.4.2.

We have proved (10.19) in all cases. This ends Step 4.4.4.

Step 4.4.5: Let j ∈ {1, ..., N} such that

xj,α ∈ Ω and xj,α − xi,α = o(si,α) when α→ +∞. (10.24)

Then we claim that

µj,α = o(µi,α) when α→ +∞.
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We prove the claim by contradiction and we assume that µi,α = O(µj,α) when
α→ +∞. Then j ∈ Ji and it follows from the definition (8.29) of si,α that

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

for all α → +∞. It then follows from (10.24) that s2
i,α = O(µi,αµj,α) = O(µ2

j,α)
when α → +∞. It then follows from (10.24) that xi,α − xj,α = o(µj,α) when
α→ +∞. Since xi,α ∈ ∂Ω, we then get that d(xj,α, ∂Ω) = o(µj,α) when α→ +∞,
and then xj,α ∈ ∂Ω (see (i) of Proposition 2): a contradiction with our assumption
(10.24). This proves the claim.

Step 4.4.6: Let j ∈ {1, ..., N} such that

xj,α 6∈ ∂Ω and xj,α − xi,α = o(si,α) when α→ +∞. (10.25)

We claim that

lim
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−)\DR,α

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ = 0 when n ≥ 3. (10.26)

We prove the claim. Since limα→+∞ xj,α = x0, we write xj,α = ϕ(xj,α,1, x
′
j,α) for

all α ∈ N. Here again, since dϕ0 is an orthogonal transformation (see Lemma 2, we
get that

d(xj,α, ∂Ω) = (1 + o(1))|xj,α,1|

when α → +∞. For simplicity, we let dj,α := d(xj,α, ∂Ω) for all α ∈ N. With the
change of variables x = ϕ(z), we get that∫

ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ

≤ C
∫
∂Rn−

µn−2
j,α(

µ2
j,α + |(0, z)− (xj,α,1, x′j,α)|2

)n−1 dz

≤ C
∫
∂Rn−

µn−2
j,α(

d2
j,α + |z|2

)n−1 dz ≤ C
µn−2
j,α

dn−1
j,α

for all α ∈ N. Since xj,α 6∈ ∂Ω, we apply (9.2) and (9.4) and we get that∫
ϕ(Uα∩∂Rn−\DR,α)

|x− xi,α|2µn−2
j,α(

µ2
j,α + |x− xj,α|2

)n−1 dσ = O

(
µn−2
j,α

dn−1
j,α

)
= o

(
µn−2
j,α

sn−1
j,α

)

= o

 µn−2
j,α

µ
(n−1)(n−4)

n−2

j,α

 = o(µ
n
n−2

j,α ) = o(µj,α) = o(µi,α)

when α→ +∞, where we have used Step 4.4.5. This proves (10.17) and ends Step
4.4.6.

Step 4.4.7: Plugging (10.17), (10.18), (10.19) and (10.26) into (10.16), we get
(10.12). This ends Step 4.4.
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Step 4.5: We claim that there exists c > 0 such that

lim
R→+∞

lim
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−)∩DR,α

(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
dσ

=
H(x0)

2n

∫
∂Rn−
|x|2

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ

− (∂ijϕ(0), ν(x0))

2
θiθj

∫
∂Rn−

(
|∇U0|2ξ

2
− n(n− 2)

U2?

0

2?

)
dξ when n ≥ 4, (10.27)

where θ is as in (9.50). We prove the claim. We assume that n ≥ 4. As a preliminary
remark, using the definition (10.11) of DR,α and (9.4), note that

ϕ(Uα ∩ ∂Rn−) ∩ DR,α = DR,α ∩ ∂Ω

for all α ∈ N. We define

ũi,α(x) := µ
n−2
2

i,α uα ◦ ϕ((0, x′i,α) + µi,αx)

for all x ∈ µ−1
i,α(ϕ−1(Ux0)−ϕ−1(xi,α))∩Rn−. It follows from Theorem 4.1 modified

by (9.50) that

lim
α→+∞

ũi,α = U0(·+ θ) in C1
loc

(
Rn− \ {θk/ k ∈ L}

)
. (10.28)

where U0(x) := (1 + |x|2)1−n2 for all x ∈ Rn and θ ∈ Rn−1. With the change of
variable x = ϕ((0, x′i,α) + µi,αz), we get that∫

DR,α∩∂Ω

(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
dσ

= µi,α

∫
BR(0)∩∂Rn−\∪k∈LBR−1 (θk,α))

Gα(z)

(
|∇ũi,α|2gα

2
− cn

ũ2?

i,α

2?
+
εαµ

2
i,αũ

2
i,α

2

)
dσα

where gα(x) := (ϕ?ξ)((0, x′i,α) + µi,αx) is the pull-back of ξ by the chart ϕ and σα
is the surface area associated to the metric gα and

Gα(z) :=
(ϕ((0, x′i,α) + µi,αz)− ϕ(0, x′i,α), ν ◦ ϕ((0, x′i,α) + µi,αz))

µ2
i,α

.

With (10.15), (10.28), using that ϕ?ξ(0) = ξ and that n ≥ 4, we get that

lim
R→+∞

lim
α→+∞

µ−1
i,α

∫
DR,α∩Ω

(x− xi,α, ν)

(
|∇uα|2

2
− n(n− 2)

u2?

α

2?
+
εαu

2
α

2

)
dσ(10.29)

= lim
R→+∞

∫
DR

−(∂klϕ(0), ν(x0))

2
xkxl

(
|∇U0|2ξ(x+ θ)

2
− cn

U2?

0 (x+ θ)

2?

)
dξ

=

∫
∂Rn−

−(∂klϕ(0), ν(x0))

2
(x− θ)k(x− θ)l

(
|∇U0|2ξ(x)

2
− cn

U2?

0 (x)

2?

)
dξ

=

∫
∂Rn−

−(∂klϕ(0), ν(x0))

2
xkxl

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ

− (∂klϕ(0), ν(x0))

2
θkθl

∫
∂Rn−

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ (10.30)
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where in these computations, we have defined

DR := BR(0) ∩ ∂Rn− \ ∪k∈LBR−1(θk)).

We let A(ϕ, θ, x0) be the right-hand-side of this expression. Since U0 is radially
symmetrical, we get that

A(ϕ, θ, x0) =
−
∑
k(∂kkϕ(0), ν(x0))

2n

∫
∂Rn−
|x|2

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ

− (∂klϕ(0), ν(x0))

2
θkθl

∫
∂Rn−

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ

Since dϕ0 is an orthogonal transformation, the first and second fundamental formes
of ∂Ω at x0 in the chart ϕ are respectiveley Ikl = δkl and IIkl = −(∂klϕ(0), ν(x0)).
Therefore the mean curvature of ∂Ω at x0 is H(x0) =

∑
k IIkk and then∫

∂Rn−

−∂klϕ(0)

2
xkxl

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ

=
H(x0)

2n

∫
∂Rn−
|x|2

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ.

Combining (10.29) and (10.31) yields (10.27). This ends Step 4.6.

Step 4.6: we claim that
∫
∂Rn−
|x|2

(
|∇U0|2ξ

2 − cn U
2?

0

2?

)
dξ > 0

and
∫
∂Rn−

(
|∇U0|2ξ

2 − cn U
2?

0

2?

)
dξ = 0

 when n ≥ 4. (10.31)

We prove the claim and assume that n ≥ 4. Using the explicit expression of U0, we
get that∫
∂Rn−
|x|2

(
|∇U0|2ξ

2
− cn

U2?

0

2?

)
dξ =

ωn−2(n− 2)2

2

∫ ∞
0

(r2 − 1)rn

(1 + r2)n
dr

=
ωn−2(n− 2)2

2

[∫ 1

0

(r2 − 1)rn

(1 + r2)n
dr +

∫ ∞
1

(r2 − 1)rn

(1 + r2)n
dr

]

=
ωn−2(n− 2)2

2

[∫ 1

0

(r2 − 1)rn

(1 + r2)n
dr +

∫ 1

0

(1− r2)rn−4

(1 + r2)n
dr

]

=
ωn−2(n− 2)2

2

∫ 1

0

(1− r2)(rn−4 − rn)

(1 + r2)n
dr > 0.

Similarly, we prove that the second integral in (10.31) vanishes. The claim is
proved. This ends Step 4.6.

Step 4.7: Assume that n ≥ 4. Plugging together (10.12), (10.27) and (10.31), we
get that there exists di > 0 such that

lim
α→+∞

µ−1
i,α

∫
ϕ(Uα∩∂Rn−)

(x− xi,α, ν)

(
|∇uα|2

2
− cn

u2?

α

2?
+
εαu

2
α

2

)
dσ = diH(x0)

(10.32)
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Plugging (10.6), (10.7) and (10.32) into (10.5), we get that(
µi,α
si,α

)n−2

(ci + o(1)) + (diH(x0) + o(1))µi,α = 0

when α→ +∞, and then there exists c′i > 0 such that

lim
α→+∞

µn−3
i,α

sn−2
i,α

= −c′iH(x0). (10.33)

In particular, H(x0) ≤ 0. This ends the proof of Theorem 4 when n ≥ 4. We are
now left with the case n = 3.

Step 4.8: We assume that n = 3. We define ũi,α as above. We let (zα)α ∈ Rn be
such that

lim
α→+∞

|zα| = +∞.

Then, we have that

|zα| ≤ δ
si,α
µi,α

⇒ |zα|n−2ũi,α(zα) = O(1) when α→ +∞ (10.34)

and

|zα| = o

(
si,α
µi,α

)
⇒ lim

α→+∞
|zα|n−2ũi,α(zα) = 1 when α→ +∞. (10.35)

We prove the claim. As in Case 6.2 of the proof of Theorem 6, we have that

ũα(x) = (1 + o(1))

(
ūα +

N∑
i=1

Vj,α(x)

)
for all x ∈ Bδ0(x0) and all α ∈ N for δ0 > 0 small enough. Therefore, we have that

|zα|n−2ũi,α(zα) = (1 + o(1))
(
|zα|n−2µ

n−2
2

i,α ūα

+
N∑
i=1

|zα|n−2µ
n−2
2

i,α Vj,α(ϕ(ϕ−1(xi,α) + µi,αzα))

)
for all α ∈ N. It follows from Theorem 3 that there is no blowup point in the
interior when n = 3: therefore, (10.2) rewrites

|xi,α − xj,α| ≥ 2δsi,α for all j 6= i and all α ∈ N. (10.36)

We fix j 6= i. Similar to what was done in Step 6.1.2 of the proof of Theorem 6, we
have that∣∣∣|zα|n−2µ

n−2
2

i,α Vj,α(ϕ(ϕ−1(xi,α) + µi,αzα))
∣∣∣ ≤ C ( s2

i,αµj,α

µi,α(µ2
j,α + |xi,α − xj,α|2)

)n−2
2

for all α ∈ N (we have used that |zα| ≤ δµ−1
i,αsi,α). Therefore, if µi,α = O(µj,α)

when α → +∞, it follows from the definition of si,α that the right-hand-side is
bounded. If µj,α = O(µi,α), using (10.36), we get that the right-hand-side is also
bounded.
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In the case j = i, it follows from Case (i) of Proposition 13 that

|zα|n−2µ
n−2
2

i,α Vj,α(ϕ(ϕ−1(xi,α) + µi,αzα)) = (1 + o(1))

(
|zα|2µi,α

(µ2
i,α + |µi,αzα|2)

)n−2
2

= 1 + o(1)

when α→ +∞ since limα→+∞ |zα| = +∞.

Finally, noting in addition that |zα|n−2µ
n−2
2

i,α ūα = O(sn−2
i,α µ

−n−2
2

i,α ūα) = O(1) by

definition of si,α, we get that (10.34) holds. With a little more careful analysis, we
get (10.35). This ends Step 4.8.

Step 4.9: We still assume that n = 3 and we let (zα)α ∈ Rn be such that
limα→+∞ |zα| = +∞. Then, we claim that

|zα| = o

(
si,α
µi,α

)
⇒ lim

α→+∞
|zα|n−1|∇ũi,α(zα)|gα = n− 2, (10.37)

where gα(x) := (ϕ?g̃)(ϕ(ϕ−1(xi,α) + µi,αx)).

We prove the claim by contradiction and assume that there exists (zα)α as above
and ε0 > 0 such that

||zα|n−1|∇ũi,α(zα)|gα − (n− 2)| ≥ ε0 (10.38)

for all α ∈ N. We define rα := |zα| and wα(x) := rn−2
α ũi,α(rαx) for x 6= 0:

this is well defined and it follows from Step 4.8 that limα→+∞ wα(x) = |x|2−n
in C0

loc(Rn \ {0}). Moreover, ∆g′α
wα + εα(µi,α|zα|)2wα = cn|zα|−2w2?−1

α where

g′α(x) = r2
αgα(rαx), and therefore, it follows from standard elliptic theory that wα

converges in C1
loc(Rn \{0}). Computing ∇wα(r−1

α zα) and passing to the limit when
α→ +∞ contradicts (10.38). This ends Step 4.9.

The rough estimate (7.3) and computations similar to the case n ≥ 4 yield∫
ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

∣∣∣∣(x− xi,α, ν)

(
cn
u2?

α

2?
− εαu

2
α

2

)∣∣∣∣ dx = O(µi,α)

when α→ +∞. Similarly, we have that∫
ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

|x− xi,α|2|∇uα|2 dx = O

(
µi,α ln

si,α
µi,α

)
when α→ +∞. Therefore, we have that∫

ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

(x− xi,α, ν)Fα(x) dx (10.39)

= − (∂klϕ(0), ν(x0))

4

∫
ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

xkxl|∇uα|2 dx+ o

(
µi,α ln

si,α
µi,α

)
when α→ +∞ and n = 3.

Step 4.10: Assume that n = 3. We claim that

lim
α→+∞

∫
ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

xkxl|∇uα|2 dx

µi,α ln
si,α
µi,α

=
2π

3
δkl (10.40)

We prove the claim. We let (δα)α ∈ (0,+∞) be such that limα→+∞ δα = 0 and
limα→+∞ µ−1

i,αδαsi,α = +∞. The sequence (δα) will be chosen later. With a change
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of variables and noting that the element of volume satisfies dvgα = (1 + o(1))dσ,
we have that∫

ϕ(Bδαsi,α (ϕ−1(xi,α))∩∂Ω

xkxl|∇uα|2 dx = µi,α

∫
B δαsi,α

µi,α

(0)∩∂Rn−
xkxl|∇ũi,α|2gαdvgα

= µi,α

∫
B δαsi,α

µi,α

(0)∩∂Rn−\BR(0)

(1 + o(1))xkxl|∇ũi,α|2gαdσ +O(µi,α)

= µi,α

∫
B δαsi,α

µi,α

(0)∩∂Rn−\BR(0)

(1 + o(1))
xkxl

|x|2(n−1)
(|x|n−1|∇ũi,α|gα)2dvgα +O(µi,α)

when α → +∞ for R > 0 arbitrary large. With (10.37), we then get that there
exists εR such that limR→+∞ εR = 0 and∫

ϕ(Bδαsi,α (ϕ−1(xi,α))∩∂Ω

xkxl|∇uα|2 dx

= µi,α(n− 2)2

∫
B δαsi,α

µi,α

(0)∩∂Rn−\BR(0)

xkxl

|x|2(n−1)
dvσ + (o(1) + εR)

(
µi,α ln

δαsi,α
µi,α

)

=
(n− 2)2ωn−2δ

kl

n
µi,α ln

δαsi,α
µi,α

+ o

(
µi,α ln

δαsi,α
µi,α

)
(10.41)

We now estimate the complementing term. It follows from (10.37) and the local
convergence of ũi,α that there exists C > 0 such that |∇ũi,α|gα(x) ≤ C|x|1−n for
all x ∈ Bµ−1

i,αδsi,α
(0). Therefore, we have that∫

ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω\Bδαsi,α (ϕ−1(xi,α))

xkxl|∇uα|2 dx

≤ Cµi,α

∫
B
µ
−1
i,α

δsi,α
(0)\B

µ
−1
i,α

δαsi,α
(0)

|z|2(1 + |z|2)1−n dz

≤ Cµi,α ln
δ

δα
(10.42)

We now choose (δα)α such that

lim
α→+∞

δα = 0 , lim
α→+∞

δαsi,α
µi,α

= +∞ and ln
1

δα
= o

(
ln
si,α
µi,α

)
when α → +∞. Clearly, this choice is possible: combining (10.41) and (10.42)
yields (10.40). This ends Step 4.10.

Step 4.11: Assume that n = 3. We claim that there exists ci > 0 such that

lim
α→+∞

1

si,α ln 1
µi,α

= −ciH(x0).

We prove the claim. Putting (10.40) into (10.39) and arguing as in Step 4.5 yields
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ϕ(Bδsi,α (ϕ−1(xi,α))∩∂Ω

(x− xi,α, ν)Fα(x) dx

= −
π
∑
k(∂kkϕ(0), ν(x0))

6
µi,α ln

si,α
µi,α

+ o

(
µi,α ln

si,α
µi,α

)
=
πH(x0)

6
µi,α ln

si,α
µi,α

+ o

(
µi,α ln

si,α
µi,α

)
When α → +∞. Plugging this asymptotic behavior into (10.5) and using (10.6)
and (10.7) yields the existence of ci > 0 such that

ci(H(x0) + o(1))si,α ln
si,α
µi,α

+ 1 = 0

when α→ +∞. This yields the desired result and this ends Step 4.11. Theorem 4
is proved for n = 3.

11. Proof of Theorems 1 and 2

Let (uα)α∈N ∈ C2(Ω) be as in the statement of Theorem 1. We let

Ŝ :=

{
lim

α→+∞
xi,α/ i ∈ {1, ..., N}

}
.

Step 1: We claim that

Ŝ = S
where S is as in Definition 1. We prove the claim. Let x0 ∈ Ŝ and let i ∈ {1, ..., N}
such that limα→+∞ xi,α = x0. In particular, we have that limα→+∞ uα(xi,α) =

+∞: then x0 is a singular point, and then x0 ∈ S. This proves that Ŝ ⊂ S.

Let x0 ∈ Ŝc: then there exists δ > 0 such that |x0−xi,α| ≥ 2δ for all i ∈ {1, ..., N}.
In particular, it follows from (7.3) that there exists C > 0 such that uα(x) ≤ C for
all x ∈ Bδ(x0) ∩ Ω, and then x0 is not a singular point, that is x 6∈ S. This proves

that Ŝc ⊂ Sc.

These two assertions prove that Ŝ = S, and the claim is proved. This ends Step 1.
�

Step 2: Let x0 ∈ S. Assume that n ≥ 7. We claim that

there exists (xi,α)α∈N ∈ ∂Ω such that lim
α→+∞

xi,α = x0.

We prove the claim by contradiction and assume that for all i ∈ {1, ..., N} such
that limα→+∞ xi,α = x0, then xi,α ∈ Ω. We let i ∈ {1, ..., N} such that

µi,α := max{µj,α/ j ∈ {1, ..., N} such that lim
α→+∞

xj,α = x0}.

It then follows from Theorem 3 that

εαs
n−2
i,α � µ

n−4
i,α (11.1)

when α → +∞ and there exists j ∈ {1, ..., N} such that µi,α = o(µj,α) when
α→ +∞ and

s2
i,α =

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

for all α ∈ N.
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Assume that limα→+∞ xj,α = x0. Then it follows from the definition of µi,α that
µi,α ≥ µj,α: a contradiction with µi,α = o(µj,α) when α→ +∞.

Assume that limα→+∞ xj,α 6= x0. Then xi,α − xj,α 6→ 0 and we have that

s2
i,α �

µi,α
µj,α

when α→ +∞. Plugging this estimate in (11.1), we get with (8.15) that

εα � µ
n−6
2

i,α µ
n−2
2

j,α = o(µ
n−2
2

j,α ) = o(εα)

when α→ +∞. A contradiction since n ≥ 7.

This proves the claim, and this ends Step 2. �

Step 3: Let x0 ∈ S. Assume that n = 3 or n ≥ 7. We claim that

x0 ∈ ∂Ω and that H(x0) ≤ 0.

We prove the claim. We let i ∈ {1, ..., N} be such that

si,α = min{sj,α/ xj,α ∈ ∂Ω and lim
α→+∞

xj,α = x0}.

This minimum is well-defined: this follows from Theorem 3 for n = 3 and from
Step 2 when n ≥ 7. In particular, xi,α ∈ ∂Ω and x0 ∈ ∂Ω. We claim that for all
j ∈ {1, ..., N} \ {i}

xj,α ∈ ∂Ω ⇒ xj,α − xi,α 6= o(si,α) when α→ +∞ (11.2)

We prove the claim by contradiction and we assume that there exists j ∈ {1, ..., N}\
{i} such that limα→+∞ xj,α = x0, xi,α−xj,α = o(si,α) and xj,α ∈ ∂Ω for all α ∈ N.

We claim that µi,α = o(µj,α) when α → +∞. We argue by contradiction and
assume that µj,α = O(µi,α) when α → +∞: then i ∈ Jj and it follows from the
definition (8.29) of sj,α that

s2
j,α ≤

µj,α
µi,α

(
µ2
i,α + |xi,α − xj,α|2

)
for all α ∈ N. Since |xi,α−xj,α| = o(si,α) and µi,α = o(si,α) when α→ +∞, we get
that sj,α = o(si,α) when α → +∞: a contradiction since si,α ≤ sj,α for all α ∈ N.
This proves that µi,α = o(µj,α) when α→ +∞.

In particular, we have that j ∈ Ji, and then

s2
i,α ≤

µi,α
µj,α

(µ2
j,α + |xi,α − xj,α|2)

for all α ∈ N. Since xi,α − xj,α = o(si,α) and µi,α = o(µj,α) when α → +∞, we
then get that si,α = o(µj,α) and then xi,α − xj,α = o(µj,α) when α → +∞. A
contradiction with (9.49). This proves that (11.2) holds.

Therefore, we can apply Theorem 4 to i, and we get that H(x0) ≤ 0 when n = 3
or n ≥ 7. This proves the claim, and therefore this ends Step 3.

Theorem 1 is a consequence of Step 3.

Theorem 2 is a consequence of Theorem 1 and Proposition 1.
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Appendix A: Construction and estimates on the Green’s function

This appendix is devoted to a construction and to pointwise properties of the
Green’s functions of the Laplacian with Neumann boundary condition on a smooth
bounded domain of Rn. These proof are essentially self-contained and require only
standard elliptic theory.

Let Ω be a smooth bounded domain of Rn (see Definition 2 in Section 3). We
consider the following problem:{

∆u = f in Ω
∂νu = 0 in ∂Ω

(11.3)

where u ∈ C2(Ω) and f ∈ C0(Ω). Note that the solution u is defined up to the
addition of a constant and that it is necessary that

∫
Ω
f dx = 0 (this is a simple

integration by parts). Our objective here is to study the existence and the properties
of the Green kernel associated to (11.3).

Definition 6. We say that a function G : Ω×Ω\{(x, x)/ x ∈ Ω} → R is a Green’s
function for (11.3) if for any x ∈ Ω, noting Gx := G(x, ·), we have that

(i) Gx ∈ L1(Ω),

(ii)
∫

Ω
Gx dy = 0,

(iii) for all ϕ ∈ C2(Ω) such that ∂νϕ = 0 on ∂Ω, we have that

ϕ(x)− ϕ̄ =

∫
Ω

Gx∆ϕdy.

Condition (ii) here is required for convenience in order to get uniqueness, symmetry
and regularity for the Green’s function. Note that if G is a Green’s function and
if c : Ω → R is any function, the function (x, y) 7→ G(x, y) + c(x) satisfies (i) and
(iii). The first result concerns the existence of the Green’s function:

Theorem 5. Let Ω be a smooth bounded domain of Rn. Then there exists a unique
Green’s function G for (11.3). Moreover, G is symmetric and extends continuously
to Ω×Ω \ {(x, x)/ x ∈ Ω} and for any x ∈ Ω, we have that Gx ∈ C2,α(Ω \ {x}) and
satisfies {

∆Gx = − 1
|Ω| in Ω \ {x}

∂νGx = 0 in ∂Ω.

In addition, for all x ∈ Ω and for all ϕ ∈ C2(Ω) we have that

ϕ(x)− ϕ̄ =

∫
Ω

Gx∆ϕdy +

∫
∂Ω

Gx∂νϕdy.

A standard and useful estimate for Green’s function is the following uniform point-
wise upper bound:

Proposition 9. Let G be the Green’s function for (11.3). Then there exist C(Ω) >
0 and m(Ω) > 0 depending only on Ω such that

1

C(Ω)
|x−y|2−n−m(Ω) ≤ G(x, y) ≤ C(Ω)|x−y|2−n for all x, y ∈ Ω, x 6= y. (11.4)

Concerning the derivatives, we get that

|∇yGx(y)| ≤ C|x− y|1−n for all x, y ∈ Ω, x 6= y. (11.5)



74 OLIVIER DRUET, FRÉDÉRIC ROBERT, AND J.WEI

Estimate (11.4) was proved by Rey-Wei [27] with a different method. We also
refer to Faddeev [10] for very nice estimates in the two-dimensional case.

Notations: in the sequel, C(a, b, ...) denotes a constant that depends only on Ω,
a, b... We will often keep the same notation for different constants in a formula,
and even in the same line.

We will intensively use the following existence and regularity for solutions to the
Neumann problem (this is in Agmon-Douglis-Nirenberg [4]):

Theorem 6. Let Ω be a smooth bounded domain of Rn and let f ∈ Lp(Ω), p > 1
be such that

∫
Ω
f dx = 0. Then there exists u ∈ Hp

2 (Ω) which is a weak solution to{
∆u = f in Ω
∂νu = 0 in ∂Ω

The function u is unique up to the addition of a constant. Moreover, there exists
C(p) > 0 such that

‖u− ū‖Hp2 (Ω) ≤ C(p)‖f‖p.

If f ∈ C0,α(Ω), α ∈ (0, 1), then u ∈ C2,α(Ω) is a strong solution and there exists
C(α) > 0 such that

‖u− ū‖C2,α(Ω) ≤ C(α)‖f‖C0,α(Ω).

A.1. Construction of the Green’s function and proof of the upper bound.
This section is devoted to the proof of Theorem 5.

A.1.1. Construction of Gx.
We define kn := 1

(n−2)ωn−1
. We fix x ∈ Ω and we take ux ∈ C2(Ω) that will be

chosen later, and we define

Hx := kn| · −x|2−n + ux.

In particular, Hx ∈ Lp(Ω) for all p ∈ (1, n
n−2 ). We let u ∈ C2(Ω) be a function.

Standard computations (see [13] or [28]) yield∫
Ω

Hx∆u dy = u(x) +

∫
Ω

u∆ux dy +

∫
∂Ω

(−∂νuHx + u∂νHx) dσ. (11.6)

We let η ∈ C∞(R) be such that η(t) = 0 if t ≤ 1/3 and η(t) = 1 if t ≥ 2/3. We
define

vx(y) := η

(
|x− y|
d(x, ∂Ω)

)
kn|x− y|2−n

for all y ∈ Ω. Clearly, vx ∈ C∞(Ω) and vx(y) = kn|x − y|2−n for all y ∈ Ω close
to ∂Ω. It follows from Theorem 6 that there exists u′x ∈ C2,α(Ω) for all α ∈ (0, 1)
unique such that  ∆u′x = ∆vx −∆vx in Ω

∂νu
′
x = 0 in ∂Ω

u′x = 0

We now define ux := u′x − vx ∈ C2,α(Ω) and cx := ∆vx ∈ R so that{
∆ux = −cx in Ω
∂νux = −∂ν(kn| · −x|2−n) in ∂Ω
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Therefore, ∂νHx = 0 on ∂Ω and (11.6) rewrites∫
Ω

Hx∆u dy = u(x)− cx
∫

Ω

u dy −
∫
∂Ω

∂νuHx dσ

for all u ∈ C2(Ω). Taking u ≡ 1 yields cx = 1
|Ω| , and then, we have that∫

Ω

Hx∆u dy = u(x)− ū−
∫
∂Ω

∂νuHx dσ

for all u ∈ C2(Ω). Finally, we define Gx := Hx −Hx and we have that:∫
Ω

Gx∆u dy = u(x)− ū−
∫
∂Ω

∂νuGx dσ

for all u ∈ C2(Ω). Therefore G is a Green’s function for (11.3). In addition,

Gx ∈ C2,α(Ω \ {x}) ∩ Lp(Ω) for all α ∈ (0, 1) and p ∈
(

1,
n

n− 2

)
.

Taking u ∈ C∞c (Ω \ {x}) above, and the definition of Gx, we get that{
∆Gx = − 1

|Ω| in Ω \ {x}
∂νGx = 0 in ∂Ω.

(11.7)

A.1.2. Uniform Lp−bound.

Lemma 3. Fix x ∈ Ω and assume that there exist H ∈ L1(Ω) such that∫
Ω

H∆u dy = u(x)− ū

for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. Then H ∈ Lp(Ω) for all p ∈
(

1, n
n−2

)
and there exists C(p) > 0 independent of x such that

‖H − H̄‖p ≤ C(Ω, p) (11.8)

for all x ∈ Ω.

Proof. For p as above, we define q := p
p−1 >

n
2 . We fix ψ ∈ C∞(Ω). It follows from

Theorem 6 that there exists u ∈ C2(Ω) such that ∆u = ψ − ψ̄ in Ω
∂νu = 0 in ∂Ω
ū = 0

It follows from the properties of H that∫
Ω

(H − H̄)ψ dy =

∫
Ω

H(ψ − ψ̄) dy = u(x).

It follows from Sobolev’s embedding that Hq
2 (Ω) is continuously embedded in

L∞(Ω): therefore, using the control of the Hq
2−norm of Theorem 6 yields∣∣∣∣∫

Ω

(H − H̄)ψ dy

∣∣∣∣ ≤ ‖u‖∞ ≤ C(q)‖u‖Hq2 ≤ C
′(q)‖ψ − ψ̄‖q ≤ C ′′(q)‖ψ‖q

for all ψ ∈ C∞c (Ω). It then follows from duality that H − H̄ ∈ Lp(Ω) and that
(11.8) holds. �

A.1.3. Uniqueness.
We prove the following uniqueness result:
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Lemma 4. Fix x ∈ Ω and assume that there exist G1, G2 ∈ L1(Ω) such that∫
Ω

Gi∆u dy = u(x)− ū

for all i ∈ {1, 2} and for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. Then there exists
c ∈ R such that G1 −G2 = c a.e on Ω.

Proof. We define g := G1 −G2. We have that∫
Ω

g∆u dy = 0

for all u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. We fix ψ ∈ C∞c (Ω). It follows from
Theorem 6 that there exists u ∈ C2(Ω) such that ∆u = ψ− ψ̄ in Ω, ∂νu = 0 on ∂Ω
and ū = 0 . Therefore, we get that∫

Ω

(g − ḡ)ψ dy =

∫
Ω

g(ψ − ψ̄) dy =

∫
Ω

g∆u dy = 0.

for all ψ ∈ C∞c (Ω). Moreover, it follows from Lemma 3 that g ∈ Lp(Ω) for some
p > 1, and then we get that g − ḡ = 0 a.e, and then G1 = G2 + ḡ. �

As an immediate corollary, we get that the function G constructed above is the
unique Green’s function for (11.3).

A.1.4. Pointwise control.
We let G be the Green’s function for (11.3). The objective here is to prove that
there exists C(Ω) > 0 such that

|Gx(y)| ≤ C(Ω)|x− y|2−n (11.9)

for all x, y ∈ Ω, x 6= y.

Proof. The proof of (11.9) goes through six steps.

Step 1: We fix K ⊂ Ω a compact set. We claim that there exists C(K) > 0 such
that

|Gx(y)| ≤ C(K)|x− y|2−n

for all x ∈ K and all y ∈ Ω, y 6= x.

We prove the claim. We use the notations ux, u
′
x, vx above. As easily checked,

vx ∈ C2(Ω) and ‖vx‖C2 ≤ Cd(x, ∂Ω)−n ≤ Cd(K, ∂Ω)−n ≤ C(K). Therefore, it
follows from Theorem 6 that ‖u′x‖∞ ≤ C(K), and then |Hx(y)| ≤ C(K)|x− y|2−n
for all y ∈ Ω, y 6= x. Since Gx = Hx −Hx and (11.8) holds, the claim follows.

Step 2: We fix δ > 0. We claim that there exists C(δ) > 0 such that

‖Gx‖C2(Ω\B̄x(δ)) ≤ C(δ) (11.10)

for all x, y ∈ Ω such that |x− y| ≥ δ.
We prove the claim. It follows from (11.7) and standard elliptic theory (see for
instance [4]) that for any p > 1, there exists C(δ, p) > 0 such that ‖Gx‖C2(Ω\B̄x(δ)) ≤
C(δ) + C(δ)‖Gx‖Lp(Ω). Step 2 is then a consequence of (11.8).

We are now interested in the neighborhood of ∂Ω. We fix x0 ∈ ∂Ω and we choose
a chart ϕ as in Lemma 1. For simplicity, we assume that ϕ : Bδ(0)→ Rn and that
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ϕ(0) = x0 and we define V := ϕ(Bδ(0)). We fix x ∈ V ∩ Ω and we let G̃x be the

extension G̃x := Gx ◦ π̃ϕ = Gx ◦ ϕ ◦ π̃ ◦ ϕ−1: we have that

G̃x : V \ {x, x?} → R with x? := π−1
ϕ (x) = ϕ ◦ π−1 ◦ ϕ−1(x) ∈ Ω

c
.

Moreover, since Gx is C2,α outside x and π̃ is Lipschitz continuous, we have that
G̃x ∈ Hq

1,loc(V \ {x, x?}) for all q > 1; in addition, it follows from (11.8) that

G̃x ∈ Lp(V ) for all p ∈
(

1, n
n−2

)
and that there exists C(p) > 0 independent of x

such that
‖G̃x‖p ≤ C(p).

Step 3: We claim that

∆g̃G̃x = δx + δx? −
1

|Ω|
in D′(V ). (11.11)

We prove the claim. We let ψ ∈ C∞c (V ) be a smooth function. Separating V ∩ Ω
and V ∩ Ωc and using a change of variable, we get that∫

V

G̃x∆g̃ψ dvg̃ =

∫
V ∩Ω

Gx∆
(
ψ + ψ ◦ π−1

ϕ

)
dy.

Noting that ∂ν
(
ψ + ψ ◦ π−1

ϕ

)
= 0 on ∂Ω (we have used that ν(ϕ(0, x′)) = dϕ(0,x′)(~e1))

and using the definition of the Green’s function Gx, we get that∫
V

G̃x∆g̃ψ dvg̃ = ψ(x) + ψ ◦ π−1
ϕ (x)− 1

|Ω|

∫
V ∩Ω

(
ψ + ψ ◦ π−1

ϕ

)
dy

= ψ(x) + ψ(x?)− 1

|Ω|

∫
V

ψ dvg̃.

This proves (11.11) and ends the claim.

Step 4: We fix z ∈ V . We claim that there exists Γz : V \ {z} → R such that the
following properties hold:

∆g̃Γz = δz in D′(V ),

|Γz(y)| ≤ C|z − y|2−n for all y ∈ V \ {z},

Γz ∈ C1(V \ {z})

 (11.12)

We prove the claim. We define r(y) :=
√
g̃ij(z)(y − z)i(y − z)j for all y ∈ V .

As easily checked, r2−n ∈ C∞(V \ {z}): we define f := ∆g̃r
2−n on V \ {z}. It

follows from the properties of g̃ that f ∈ L∞loc(V \ {z}). Moreover, straightforward
computations yield the existence of C > 0 such that

|f(y)| ≤ C|z − y|1−n for all y ∈ V \ {z}. (11.13)

Computing ∆g̃r
2−n in the distribution sense yields

∆g̃r
2−n = f +Kzδz in D′(V ),

where Kz := (n−2)
∫
∂B1(0)

(ν(y), y)g̃(z)r(y)2−n dvg̃(z) > 0. Moreover, limz→x0
Kz =

Kx0 > 0.

We define h such that {
∆g̃h = f in V
h = 0 on ∂V

}
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It follows from (11.13) and elliptic theory that h is well defined and that h ∈ Hp
2,0(V )

for all p ∈
(

1, n
n−1

)
and h ∈ C1,θ

loc (V \ {z}). Moreover, there exists C > 0 such that

‖h‖Hp2 ≤ C(p) for all p ∈
(

1,
n

n− 1

)
. (11.14)

We claim that for any α ∈ (n− 3, n− 2), there exists C(α) > 0 such that

|h(y)| ≤ C(α)|y − z|−α

for all y ∈ V \ {z}.
We prove the claim. We let ε > 0 be a small parameter and we define

hε(y) := εαh(z + εy) and fε(y) := ε2+αf(z + εy)

for all y ∈ B2(0) \ B̄1/2(0). We then have that

∆g̃εhε = fε in B2(0) \ B̄1/2(0), (11.15)

where g̃ε = g̃(ε·). Since α > n− 3, we have with (11.13) that

|fε(y)| ≤ Cεα−(n−3)|y|1−n ≤ 2n−1C (11.16)

for all y ∈ B2(0) \ B̄1/2(0). We fix p := n
α+2 ∈

(
1, n

n−1

)
and q := n

α . A change of

variable, Sobolev’s embedding theorem and (11.14) yield

‖hε‖Lq(B2(0)\B̄1/2(0)) ≤ C‖h‖q ≤ C‖h‖Hp2 ≤ C (11.17)

for all ε > 0 small. It then follows from (11.15), (11.16) and (11.17) that there
exists C > 0 such that

|hε(y)| ≤ C for all y ∈ Rn such that |y| = 1.

Therefore, coming back to h, we get that |h(y)| ≤ C|y − z|−α for all |y − z| = ε.
Since ε can be chosen arbitrary small and h is bounded outside y, the claim is
proved.

We now set Γz := 1
Kz

(
r2−n − h

)
. It follows from the above estimates that Γ

satisfies (11.12). This ends Step 4.

We define µx := G̃x − Γx − Γx? . It follows from Steps 2 and 3 above that

∆g̃µx = − 1

|Ω|
in D′(V ). (11.18)

Moreover, we have that µx ∈ Hq
1 (V \ {x, x?}) for all q > 1 and that

‖µx‖p ≤ C(p) for all p ∈
(

1,
n

n− 2

)
. (11.19)

Step 5: We claim that for all V ′ ⊂ V , there exists C(V ′) > 0 such that

‖µx‖L∞(V ′) ≤ C(V ′), (11.20)

where C(V ′) is independent of x.

We prove the claim. Since x ∈ Ω ∩ V , we have that g̃ = ξ in a neighborhood of x,
and then g̃ is hypoelliptic around x: therefore, it follows from (11.18) that µx is C∞

around x. Similarly, around x? ∈ V ∩ Ω
c
, g̃ = (ϕ ◦ π̃ ◦ ϕ−1)?ξ is also hypoelliptic,
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and therefore, µx is C∞ around x?. It then follows that µx ∈ Hq
1 (V ) for q > 1 and

(11.18) rewrites∫
V

(∇µx,∇ψ)g̃ dvg̃ = − 1

|Ω|

∫
V

ψ dvg for all ψ ∈ C∞c (V ).

Therefore, it follows from Theorem 8.17 of [13] that µx ∈ L∞loc(V ) and that there
exists C(V, V ′, p) > 0 such that

‖µx‖L∞(V ′) ≤ C(V, V ′, p)
(
1 + ‖µx‖Lp(V )

)
for all p > 1. Taking p ∈

(
1, n

n−2

)
and using (11.19), we get (11.20) and the claim

is proved.

Step 6: We are now in position to conclude. It follows from the definition of µx
from (11.20) and from (11.12) that there exists C(V ′) > 0 such that

|G̃x(y)| ≤ C + C|x− y|2−n + |x? − y|2−n

for all x, y ∈ V ′ such that x 6= y. As easily checked, one has that |x?− y| ≥ c|x− y|
for all x, y ∈ V ′ ∩ Ω, and therefore

|Gx(y)| ≤ C|x− y|2−n (11.21)

for all x, y ∈ V ′ ∩ Ω such that x 6= y. Recall that V ′ is a small neighborhood of
x0 ∈ ∂Ω. Combining (11.21) with Step 1, we get that there exists δ(Ω) > 0 such
that (11.21) holds for all x, y ∈ Ω distinct such that |x − y| ≤ δ(Ω). For points
x, y such that |x − y| ≥ δ(Ω), this is Step 2. This ends the proof of the pointwise
estimate (11.9). �

A.1.4. Extension to the boundary and regularity with respect to the two variables.
We are now in position to extend the Green’s function to the boundary.

Proposition 10. The Green’s function extends continuously to Ω×Ω\{(x, x)/ x ∈
Ω} → R.

Proof. As above, we denote G the Green’s function for (11.3). We fix x ∈ ∂Ω and
y ∈ Ω \ {x} and we define

Gx(y) := lim
i→+∞

G(xi, y) for all y ∈ Ω \ {x},

where (xi)i ∈ Ω is any sequence such that limi→+∞ xi = x.

We claim that this definition makes sense. It follows from (11.10) that for all δ > 0,
we have that

‖Gxi‖C2(Ω\B̄δ(x)) ≤ C(δ)

for all i. Let (i′) be a subsequence of i: it then follows from Ascoli’s theorem that
there exists G′ ∈ C1(Ω \ {x}) and a subsequence i” of i′ such that

lim
i→+∞

Gxi = G′ in C1
loc(Ω \ {x}).

Moreover, It follows from (11.9) that |G′(y)| ≤ C|x−y|2−n for all y 6= x. We choose
u ∈ C2(Ω) such that ∂νu = 0 on ∂Ω. We then have that

∫
Ω
Gxi∆u dy = u(xi)− ū

for all i. Letting i→ +∞ yields∫
Ω

G′∆u dy = u(x)− ū,
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and then it follows from Lemma 4 that G′ does not depend of the choice of the
sequence (xi) converging to x. We then let Gx := G′ and the definition above
makes sense.

We claim that G ∈ C0(Ω × Ω \ {(x, x)/ x ∈ Ω}). We only sketch the proof since
it is similar to the proof of the extension to the boundary. We fix x ∈ Ω and
we let (xi)i be such that limi→+∞ xi = x. Arguing as above, we get that any
subsequence of (Gxi) admits another subsequence that converges to some function
G” in C1

loc(Ω\{x}). We choose u ∈ C2(Ω) such that ∂νu vanishes on ∂Ω and we get
that

∫
Ω
Gxi∆u dy = u(xi)− ū for all i. With the pointwise bound (11.9), we pass to

the limit and get that
∫

Ω
G”∆u dy = u(x)− ū: it then follows from Lemma 4 that

G” = Gx, and then (Gxi) converges uniformly to Gx outside x. The continuity of
G outside the diagonal follows immediately. �

It is essential to assume that G satisfies point (ii) of the definition: indeed, for any
c : Ω → R, the function (x, y) 7→ G(x, y) + c(x) satisfies (i) and (iii), but it is not
continous outside the diagonal if c is not continuous.

A.1.5. Symmetry.

Proposition 11. Let G be the Green’s function for (11.3). Then G(x, y) = G(y, x)
for all x, y ∈ Ω× Ω, x 6= y.

Proof. Let f ∈ C∞c (Ω) be a smooth compactly supported function. We define

F (x) :=

∫
Ω

G(y, x)(f − f̄)(y) dy for all x ∈ Ω.

It follows from (11.9) and Proposition 10 above that F ∈ C0(Ω). We fix g ∈ C∞c (Ω)
and we let ϕ,ψ ∈ C2(Ω) be such that ∆ϕ = f − f̄ in Ω

∂νϕ = 0 in ∂Ω
ϕ̄ = 0

and

 ∆ψ = g − ḡ in Ω
∂νψ = 0 in ∂Ω
ψ̄ = 0

It follows from Fubini’s theorem (which is valid here since G ∈ L1(Ω × Ω) due to
(11.9) and Proposition 10) that∫

Ω

(F − F̄ )g dx =

∫
Ω

F (g − ḡ) dx =

∫
Ω

F∆ψ dx

=

∫
Ω

(f − f̄)(y)

(∫
Ω

G(y, x)∆ψ(x) dx

)
dy =

∫
Ω

(∆ϕ)ψ dy

=

∫
Ω

ϕ∆ψ dy =

∫
Ω

ϕ(g − ḡ) dy =

∫
Ω

gϕ dy,

and therefore
∫

Ω
(F − F̄ − ϕ)g dx = 0 for all g ∈ C∞c (Ω). Since F,ϕ ∈ C0(Ω),

we then get that F (x) = ϕ(x) + F̄ for all x ∈ Ω. We now fix x ∈ Ω. Using the
definition of the Green’s function and the definition of F , we then get that∫

Ω

G(y, x)(f−f̄)(y) dy =

∫
Ω

G(x, y)(f−f̄)(y) dy+
1

|Ω|

∫
Ω

(∫
Ω

G(y, x) dx

)
(f−f̄)(y) dy,

and then, setting

Hx(y) := G(y, x)−G(x, y)− 1

|Ω|

∫
Ω

G(y, z) dz
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for all y ∈ Ω \ {x}, we get that

0 =

∫
Ω

Hx(f − f̄) dy =

∫
Ω

(Hx − H̄x)f dy

for all f ∈ C∞c (Ω). Therefore, Hx ≡ H̄x, which rewrites

G(y, x)−G(x, y) =
1

|Ω|

∫
Ω

(G(y, z)−G(x, z)) dz + h(x),

for all x 6= y, where h(x) := 1
|Ω|
∫

Ω
G(z, x) dz − 1

|Ω2|
∫

Ω×Ω
G(s, t) ds dt for all x ∈ Ω.

Exchanging x, y yields h(x) + h(y) = 0 for all x 6= y, and then h ≡ 0 since h is
continuous. Therefore, we get that

G(y, x)−G(x, y) =
1

|Ω|

∫
Ω

(G(y, z)−G(x, z)) dz = Ḡy − Ḡy (11.22)

for all x 6= y. The normalization (i) in the definition of the Green’s function then
yields Proposition 11. �

If one does not impose the normalization (ii), we have already remarked that we
just get G′ : (x, y) 7→ G(x, y)+c(x) where G is the Green’s function as defined in the
definition and c is any function. We then get that G′(x, y)−G′(y, x) = c(x)− c(y)
for all x 6= y, which is not vanishing when c is nonconstant.

These different lemmae and estimates prove Theorem 5.

A.2. Asymptotic analysis
This section is devoted to the proof of general asymptotic estimates for the Green’s
function. As a byproduct, we will get the control (11.5) of the derivatives of Propo-
sition 9. The following proposition is the main result of this section:

Proposition 12. Let G be the Green’s function for (11.3). Let (xα)α ∈ Ω and let
(rα)α ∈ (0,+∞) be such that limα→+∞ rα = 0.

Assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= +∞.

Then for all x, y ∈ Rn, x 6= y, we have that

lim
α→+∞

rn−2
α G(xα + rαx, xα + rαy) = kn|x− y|2−n.

Moreover, for fixed x ∈ Rn, this convergence holds uniformly in C2
loc(Rn \ {x}).

Assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= ρ ≥ 0.

Then limα→+∞ xα = x0 ∈ ∂Ω. We choose a chart ϕ at x0 as in Lemma 1 and we
let (xα,1, x

′
α) = ϕ−1(xα). Then for all x, y ∈ Rn ∩ {x1 ≤ 0}, x 6= y, we have that

lim
α→+∞

rn−2
α G(ϕ((0, x′α)+rαx), ϕ((0, x′α)+rαy) = kn

(
|x− y|2−n + |π−1(x)− y|2−n

)
,

where π−1(x1, x
′) = (−x1, x

′). Moreover, for fixed x ∈ Rn−, this convergence holds

uniformly in C2
loc(Rn− \ {x}).
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Proof of Proposition 12:

Step 1: We first assume that

lim
α→+∞

d(xα, ∂Ω)

rα
= +∞. (11.23)

We define

G̃α(x, y) := rn−2
α G(xα + rαx, xα + rαy)

for all α ∈ N and all x, y ∈ Ωα := r−1
α (Ω − xα), x 6= y. We fix x ∈ Rn. It follows

from Theorem 5 that G̃α ∈ C2(Ωα × Ωα \ {(x, x)/ x ∈ Ωα}) and that

∆(G̃α)x = − r
n
α

|Ω|
in Ωα \ {x} (11.24)

for α ∈ N large enough. Moreover, it follows from (11.4) that there exists C > 0
such that

|(G̃α)x(y)| ≤ C|y − x|2−n (11.25)

for all α ∈ N and all y ∈ Ωα \{x}. It then follows from (11.23), (11.24), (11.25) and

standard elliptic theory that, up to a subsequence, there exists G̃x ∈ C2(Rn \ {x})
such that

lim
α→+∞

(G̃α)x = G̃x in C2
loc(Rn \ {x}). (11.26)

with

|G̃x(y)| ≤ C|y − x|2−n (11.27)

for all y ∈ Rn \ {x}. We consider f ∈ C∞c (Rn) and we define fα(y) := f(r−1
α (y −

xα − rαx)): it follows from (11.23) that fα ∈ C∞c (Ω) for α ∈ N large enough.
Applying Green’s representation formula yields

fα(xα + rαx)− fα =

∫
Ω

G(xα + rαx, z)∆fα(z) dz.

With a change of variable, this equality rewrites

f(x) =

∫
Rn
G̃α(x, y)∆f(y) dy + fα

for α ∈ N large enough. With (11.25), (11.26) and the definition of fα, we get that

f(x) =

∫
Rn
G̃x∆f dy,

and then

∆(G̃x − kn| · −x|2−n) = 0 in D′(Rn).

The ellipticity of the Laplacian, (11.27) and Liouville’s Theorem yield

G̃x(y) = kn|y − x|2−n for all y 6= x.

This ends Step 1.

Step 2:

lim
α→+∞

d(xα, ∂Ω)

rα
= ρ ≥ 0.

We take ϕ as in the statement of the Proposition and we define

G̃α(x, y) := rn−2
α G(ϕ((0, x′α) + rαx), ϕ((0, x′α) + rαy)
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for all x, y ∈ Rn−, x 6= y with α ∈ N large enough. We fix x ∈ Rn− and we symmetrize

G̃ as usual:
Ĝα(x, y) := G̃α(x, π̃(y))

for all y ∈ Rn close enough to 0 and where, as above, π̃ : Rn → Rn−. For simplicity,

we assume that x ∈ Rn− (only the notation has to be change in case x ∈ Rn+). As
in the first case, we get that there exists C > 0 such that

|Ĝα(x, y)| ≤ C
(
|y − x|2−n + |y − π−1(x)|2−n

)
for all y 6= x, π̃(x) and there exists Ĝx ∈ C2(Rn \ {x, π−1(x)}) such that

lim
α→+∞

(Ĝα)x = Ĝx in C2
loc(Rn \ {x, π−1(x)}).

Moreover, letting L = dϕ0 be the differential of ϕ at 0, arguing again as in the first
case, we have that

∆L?ξĜx = δx + δπ−1(x) in D′(Rn−).

Therefore, with a change of variable, we get that

∆ξ(Ĝx ◦ L−1) = δL(x) + δL◦π−1(x) in D′(Rn−),

and then

∆ξ

(
Ĝx ◦ L−1 − kn

(
|L(x)− ·|2−n + |L ◦ π−1(x)− ·|2−n

))
= 0 in D′(Rn−),

Arguing as above, we get that Ĝx◦L−1 = kn
(
|L(x)− y|2−n + |L ◦ π−1(x)− y|2−n

)
,

and then
Ĝx = kn

(
| · −x|2−n + | · −π−1(x)|2−n

)
since L is an orthogonal transformation. This ends Step 2.

Proposition 12 is a direct consequence of Steps 1 and 2. �

We now prove Proposition 9:

Corollary 1. Let G be the Green’s function for (11.3). Then there C,M > 0 such
that

1

C|x− y|n−2
−M ≤ G(x, y) ≤ C

|x− y|n−2

and

|∇yG(x, y)| ≤ C

|x− y|n−1

for all x, y ∈ Ω, x 6= y.

Proof of the corollary: We claim that there exists m ∈ R such that

G(x, y) ≥ −m for all x, y ∈ Ω, x 6= y. (11.28)

We argue by contradiction and we assume that there exists (xα)α, (yα)α ∈ Ω such
that

lim
α→+∞

G(xα, yα) = −∞. (11.29)

Assume that limα→+∞ |yα− xα| = 0. We then define rα := |yα− xα| and we apply
Proposition 12:

If limα→+∞
d(xα,∂Ω)

rα
= +∞, we have that

|yα − xα|n−2G(xα, yα) = rn−2
α G

(
xα, xα + rα

yα − xα
|yα − xα|

)
= kn + o(1)
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when α→ +∞. This contradicts (11.29).

If d(xα, ∂Ω) = O(rα) when α→ +∞, we get also a contradiction.

This proves that limα→+∞ |xα − yα| 6= 0. Therefore, with (11.4), we get that
G(xα, yα) = O(1) when α→ +∞: this contradicts (11.29). Therefore, there exists
m such that (11.28) holds.

We define M := m+ 1. With (11.4), there exists also C > 0 such that |G(x, y)| ≤
C|x− y|2−n for all x 6= y. We claim that there exists c > 0 such that

G(x, y) +M ≥ c|x− y|2−n (11.30)

for all x 6= y. Here again, we argue by contradiction and we assume that there
exists (xα)α, (yα)α ∈ Ω such that

lim
α→+∞

|xα − yα|n−2(G(xα, yα) +M) = 0. (11.31)

Since G + M ≥ 1, it follows from (11.31) that limα→+∞ |xα − yα| = 0. Therefore,
as above, we get that the limit of the left-hand-side in (11.31) is positive: a contra-
diction. This proves that (11.30) holds. In particular, this proves the first part of
the corollary.

Concerning the estimate of the gradient, we argue by contradiction and we use
again Proposition 12. We just sketch the proof. Assume by contradiction that
there exists (xα)α, (yα)α ∈ Ω such that

lim
α→+∞

|yα − xα|n−1|∇yG(xα, yα)| = +∞.

It follows from (11.10) that limα→+∞ |yα−xα| = 0. We set rα := |yα−xα|. Assume
that rα = o(d(xα, ∂Ω)) when α→ +∞. It then follows from Proposition 12 that

lim
α→+∞

|yα − xα|n−1|∇yG(xα, yα)| = 1

ωn−1
,

which contradicts the hypothesis. The proof goes the same way when d(xα, ∂Ω) =
O(rα) when α→ +∞. This ends the proof of the gradient estimate. �

Appendix B: Projection of the test functions

Proposition 13. Let (xα) be a sequence of points in Ω̄ and let (µα) be a sequence
of positive real numbers such that µα → 0 as α→ +∞. We set

Uα(x) = µ
n−2
2

α

(
|x− xα|2 + µ2

α

)1−n2
.

There exists Vα ∈ C1(Ω̄) which satisfies{
∆Vα = cnU

2?−1
α − cn |Ω|−1 ∫

Ω
U2?−1
α dx in Ω

∂νVα = 0 on ∂Ω
(11.32)

such that the following asymptotics hold for any sequence of points (yα) in Ω̄ :

(i) If xα ∈ ∂Ω, then

Vα (yα) =
(
1 + o(1)

)
Uα (yα) +O

(
µ
n−2
2

α

)
.

(ii) If d (xα, ∂Ω) 6→ 0, then

Uα (yα) = (1 + o(1))Uα (yα) +O
(
µ
n−2
2

α

)
.
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(iii) If d (xα, ∂Ω)→ 0 but d(xα,∂Ω)
µα

→ +∞ as α→ +∞, then

Vα (yα) =
(
1 + o(1)

)
Uα (yα) + Ũα (yα) +O

(
µ
n−2
2

α

)
where

Ũα(x) = µ
n−2
2

α

(
µ2
α +

∣∣x− π−1
ϕ (xα)

∣∣2)1−n2

with πϕ := ϕ ◦ π ◦ ϕ−1 where ϕ is a chart at x0 := limα→+∞ xα as in Lemma 2.

In addition, we have that Uα − Uα = o(Uα) +O(µ
n−2
2

α ) in cases (i) and (ii)

|Vα − Uα| ≤ C
(

µα
µ2
α+d(xα,∂Ω)2

)n−2
2

+ o(Uα) +O(µ
n−2
2

α ) in case (iii).

In any case, there exists C > 0 such that

1

C
Uα ≤ Vα ≤ CUα . (11.33)

Proof of Proposition 13: We let Vα ∈ C2(Ω) be as in (11.32). Indeed, Vα is defined
up to the addition of a constant: therefore, Vα will be determined later on. Let
(yα)α ∈ Ω: Green’s representation formula yields

Vα(yα)− Vα =

∫
Ω

G(yα, y)

(
cnU

2?−1
α − cn|Ω|−1

∫
Ω

U2?−1
α

)
dy

for all α ∈ N where G is the Green’s function for (11.3) with vanishing average.
With the explicit expression of Uα, we get that

Vα(yα)− Vα = cn

∫
Ω

G(yα, y)U2?−1
α dy +O(µ

n−2
2

α ) (11.34)

for all α ∈ N. The estimate of Vα(yα) goes through five steps.

Step 13.1. We first assume that limα→+∞ |yα − xα| 6= 0. It then follows from
(11.34), the pointwise estimates (11.4) on the Green’s function and the explicit
expression of Uα that

Vα(yα) = Vα + (G(yα, xα) + o(1))

∫
Ω

cnU
2?−1
α dx

−
(∫

Ω

G(yα, x) dx

)∫
Ω

cnU
2?−1
α dx

when α→ +∞. It then follows from this estimate that

Vα(yα) = Vα +O(µ
n−2
2

α )

when α→ +∞ and that there exists K > 0 independent of (yα)α such that

Vα(yα) ≥ Vα −Kµ
n−2
2

α

for all α ∈ N.

Step 13.2. We claim that

lim
R→+∞

lim
α→+∞

∫
Ω\BRµα (xα)

G(yα, y)U2?−1
α dy

Uα(yα)
= 0 if lim

α→+∞
|yα − xα| = 0. (11.35)
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We prove the claim. We let R0 > 0 such that Ω ⊂ BR0
(xα) for all α ∈ N. It follows

from the explicit expression of Uα and of (11.4) that∣∣∣∣∣
∫

Ω\BRµα (xα)

G(yα, y)U2?−1
α dy

∣∣∣∣∣ ≤ C
∫
BR0

(xα)\BRµα (xα)

|yα−x|2−n
µ
n+2
2

α

(µ2
α + |x− xα|2)

n+2
2

dx

(11.36)
for all α ∈ N. We define

Dα :=

{
x ∈ Rn/ |x− yα| ≥

1

2

√
µ2
α + |xα − yα|2

}
for all α ∈ N.

We split the RHS of (11.36) in two terms. On the one hand, we have that∫
Dα∩(BR0

(xα)\BRµα (xα))

|yα − x|2−n
µ
n+2
2

α

(µ2
α + |x− xα|2)

n+2
2

dx

≤ C

(µ2
α + |xα − yα|2)

n−2
2

∫
Rn\BRµα (xα)

µ
n+2
2

α

(µ2
α + |x− xα|2)

n+2
2

dx

≤ CUα(yα)

∫
Rn\BR(0)

1

(1 + |x|2)
n+2
2

dx (11.37)

for all α ∈ N. On the other hand, as easily checked, there exists ε0 > 0 such that

x 6∈ Dα ⇒ |x− xα|2 + µ2
α ≥ ε0

(
|yα − xα|2 + µ2

α

)
for all α ∈ N. Consequently, we have that∫

Dcα∩(BR0
(xα)\BRµα (xα))

|yα − x|2−n
µ
n+2
2

α

(µ2
α + |x− xα|2)

n+2
2

dx

Cµ
n+2
2

α

(µ2
α + |xα − yα|2)

n+2
2

∫
Dcα

|yα − x|2−n dy

≤ CUα(yα)
µ2
α

µ2
α + |xα − yα|2

= o(Uα(yα)) (11.38)

if µα = o(|xα − yα|) when α→ +∞. In case |yα − xα| = O(µα) when α→ +∞, it
is easily checked that for R large enough, Dc

α ∩ (BR0
(xα) \ BRµα(xα)) = ∅ for all

α ∈ N. Therefore (11.38) always holds.

Plugging (11.37) and (11.38) into (11.36) yields (11.35). This ends Step 13.2.

It follows from (11.34) and (11.35) that

Vα(yα) = Vα + cn

∫
Ω∩BRµα (xα)

G(yα, y)U2?−1
α dy + (o(1) + εR)Uα(yα) (11.39)

if limα→+∞ |yα − xα| = 0 when α→ +∞ where limR→+∞ εR = 0.

Step 13.3. Assume that

lim
α→+∞

|yα − xα| = 0 and lim
α→+∞

d(xα, ∂Ω)

µα
= +∞. (11.40)
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We claim that

Vα(yα) = Vα +

{
(1 + o(1))Uα(yα) if limα→+∞ d(xα, ∂Ω) 6= 0

(1 + o(1))(Uα(yα) + Ũα(yα)) if limα→+∞ d(xα, ∂Ω) = 0
(11.41)

when α→ +∞.

The proof of (11.41) goes through several steps. First note that due to (11.40), we
have that Ω ∩ BRµα(xα) = BRµα(xα) for α ∈ N large enough. Therefore, with a
change of variable, (11.39) rewrites

Vα(yα) = Vα

+Uα(yα)

(∫
BR(0)

(
µ2
α + |yα − xα|2

)n−2
2 G(yα, xα + µαx)cnU

2?−1
0 dx

)
+ (o(1) + εR)Uα(yα) (11.42)

for all R >> 1 and α→ +∞. We distinguish two cases:

Case 13.3.1: We assume that

|yα − xα| = O(µα) when α→ +∞. (11.43)

Then we claim that (11.41) holds. We prove the claim. We define θα := µ−1
α (yα −

xα) for all α ∈ N, and we let θ∞ := limα→+∞ θα. Let K be a compact subset of
Rn \ {θ∞}: it follows from Proposition 12 that

µn−2
α G(yα, xα + µαx) = (kn + o(1))|x− θα|2−n

when α→ +∞ uniformly for all x ∈ K. Moreover, the LHS is uniformly bounded
from above by the RHS on bounded domains of Rn when α→ +∞. It then follows
from Lebesgue’s theorem that (11.42) rewrites

Vα(yα) = Vα + Uα(yα)

(∫
BR(0)

(
1 + |θ∞|2

)n−2
2 kncnU

2?−1
0 (x)|x− θ∞|2−n dx+ o(1) + εR

)

= Vα + Uα(yα)

(
U0(θ∞)−1

∫
BR(0)

kn∆U0(x)|x− θ∞|2−n dx+ o(1) + εR

)
= Vα + Uα(yα) (1 + o(1) + εR)

since ∆(kn| · |2−n) = δ0 in the distribution sense. Letting R → +∞ and α → +∞
yields

Vα(yα) = Vα + Uα(yα)(1 + o(1))

when α→ +∞. As easily checked, this estimate yields (11.41) in Case 13.3.1.

Case 13.3.2: We assume that

lim
α→+∞

|yα − xα|
µα

= +∞.

We claim that (11.41) holds. We prove the claim. We define rα := |yα−xα| = o(1)
when α→ +∞. Given x ∈ BR(0), we define

Aα(x) :=
(
µ2
α + |yα − xα|2

)n−2
2 G(yα, xα + µαx)

for all α ∈ N.
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Case 13.3.2.1: We assume in addition that

lim
α→+∞

d(xα, ∂Ω)

rα
= +∞.

We claim that in this case, we have that

lim
α→+∞

Aα(x) = kn (11.44)

uniformly when α→ +∞. We prove the claim. Indeed, letting θα := r−1
α (yα − xα)

and using that G is symmetric, we have that

Aα(x) = (1 + o(1))rn−2
α G(xα + rα

µαx

rα
, xα + rαθα)

for all α ∈ N uniformly for x in any fixed compact of Rn. Then (11.44) follows from
Proposition 12.

Case 13.3.2.2: We assume here that

lim
α→+∞

d(xα, ∂Ω)

rα
= ρ ≥ 0.

In this case, Ũα is well defined. We claim that in this case, we have that

Aα(x) = (kn + o(1))

(
1 +

Ũα(yα)

Uα(yα)

)
(11.45)

uniformly for x in any fixed compact of Rn when α → +∞. We prove the claim.
We denote ϕ a chart as in Lemma 2 and we define (x1,α, x

′
α) := ϕ−1(xα) and

(y1,α, y
′
α) := ϕ−1(yα) for all α ∈ N. Defining

Xα :=

(
x1,α

rα
, 0

)
+ o(1) and Yα :=

(
y1,α

rα
,
y′α − x′α
rα

)
,

using Proposition 12 and the symmetry of G, we get that

Aα(x) = (1 + o(1))rn−2
α G(xα + µαx, yα) + o(1)

= (1 + o(1))rn−2
α G(ϕ((0, x′α) + rαXα), ϕ((0, x′α) + rαYα)) + o(1)

= kn

(
|Xα − Yα|2−n +

∣∣Yα − π−1(Xα)
∣∣2−n)+ o(1)

= kn

(
1 +

∣∣∣∣( (y1,α, y
′
α)

rα
− π−1(x1,α, x

′
α)

rα

)∣∣∣∣2−n
)

+ o(1) (11.46)

since dϕ0 is an orthogonal transformation. independently, using again that dϕ0 is
orthogonal, we have that

Ũα(yα)

Uα(yα)
=

(
µ2
α + |yα − π−1

ϕ (xα)|2

µ2
α + |yα − xα|2

)−n−2
2

= (1 + o(1))

∣∣∣∣(ϕ−1(yα)− π−1(ϕ−1(xα))

rα

)∣∣∣∣2−n
when α→ +∞. Plugging this estimate into (11.46) yields (11.45). This proves the
claim.

Since∫
BR(0)

cnU
2?−1
0 dx =

∫
BR(0)

∆U0 dx = −
∫
∂BR(0)

∂νU0 dx =
(n− 2)ωn−1R

n

(1 +R2)n/2
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for all R > 0, it follows from (11.42), Cases 13.3.2.1 and 13.3.2.2 that

Vα(yα) = Vα+

{
(1 + o(1))Uα(yα) if rα = o(d(xα, ∂Ω)) when α→ +∞
(1 + o(1))(Uα(yα) + Ũα(yα)) if d(xα, ∂Ω) = O(rα) when α→ +∞

These estimates and a careful evaluation of the quotient Uα(yα)−1Ũα(yα) yields
(11.41) in Case 13.3.2. This ends Case 13.3.2.

Step 13.4. We assume that

lim
α→+∞

|yα − xα| = 0 and xα ∈ ∂Ω. (11.47)

We claim that

Vα(yα) = Vα + Uα(yα)(1 + o(1)) (11.48)

when α→ +∞. We choose a chart ϕ as in Lemma 2. In this case, (11.39) rewrites

Vα(yα) = Vα

+Uα(yα)

(∫
BR(0)∩Rn−

cn(1 + o(1))Tα dx

)
+(o(1) + εR)Uα(yα) (11.49)

for all R >> 1 and α→ +∞, where

Tα(x) :=
(
µ2
α + |yα − xα|2

)n−2
2 G(yα, ϕ((0, x′α) + µαx))U2?−1

0 (x).

Here again, we have to distinguish two cases.

Case 13.4.1: Assume that yα − xα = O(µα) when α → +∞. We define θα :=
µ−1
α (yα − xα) for all α ∈ N. Using Proposition 12, we get as in Step 13.3.2.1 that

for all x ∈ BR(0) ∩ Rn− \ {θ∞},

lim
α→+∞

µn−2
α G(yα, ϕ((0, x′α) + µαx)) = kn

(
|x− θ∞|2−n + |x− π−1(θ∞)|2−n

)
and this convergence holds uniformly with respect to x. Plugging this limit into
(11.49) yields

Vα(yα) = Vα

+Uα(yα)

(
(1 + |θ∞|2)

n−2
2

∫
BR(0)∩Rn−

kn
(
|x− θ∞|2−n + |x− π−1(θ∞)|2−n

)
∆U0(x) dx

)
+ (εR + o(1))Uα(yα)

when α→ +∞. With a change of variable and using that U0 is radially symmetrical,
we get that ∫

BR(0)∩Rn−
kn
(
|x− θ∞|2−n + |x− π−1(θ∞)|2−n

)
∆U0(x) dx

=

∫
BR(0)

kn|x− θ∞|2−n∆U0(x) dx

for all R > 0. The, arguing as in Step 13.3.2.2, we get that (11.48) holds in Case
13.4.1.
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Case 13.4.2: Assume that limα→+∞ µ−1
α |yα−xα| = +∞. Using again Proposition

12 and arguing as in Step 13.3.2.1, we get that (we omit the details)

lim
α→+∞

(
µ2
α + |yα − xα|2

)n−2
2 G(yα, ϕ((0, x′α) + µαx)) = 2kn

uniformly for all x ∈ BR(0). Plugging this limit into (11.49) yields

Vα(yα) = Vα + Uα(yα)

(∫
BR(0)∩Rn−

2kn∆U0(x) dx+ εR + o(1)

)

= Vα + Uα(yα)

(∫
BR(0)

kn∆U0(x) dx+ εR + o(1)

)
when α→ +∞. We then get that (11.48) holds in Case 13.4.2.

Step 13.5. We are now in position to prove Proposition 13. We let K > 0 be as
in Step 1 and we let Vα be the unique solution to (11.32) such that

Vα := (K + 1)µ
n−2
2

α

for all α ∈ N. Clearly points (i), (ii) and (iii) of Proposition 13 hold. Moreover, we

immediately get with the estimates above that limα→+∞
Vα(yα)
Uα(yα) is a positive real

number. This proves Proposition 13. �
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F-54506 Vandoeuvre-lès-Nancy Cedex, France

E-mail address: frobert@iecn.u-nancy.fr

Juncheng Wei. Department of Mathematics, Chinese University of Hong Kong,

Shatin, Hong Kong
E-mail address: wei@math.cuhk.edu.hk


