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THE LIN-NI'S PROBLEM FOR MEAN CONVEX DOMAINS

OLIVIER DRUET, FREDERIC ROBERT, AND JUNCHENG WEI

ABSTRACT. We prove some refined asymptotic estimates for postive blowing

up solutions to Au+eu = n(n—2)u::7i—g on 2, dyu = 0 on 992; 2 being a smooth
bounded domain of R™, n > 3. In particular, we show that concentration can
occur only on boundary points with nonpositive mean curvature when n = 3 or
n > 7. As a direct consequence, we prove the validity of the Lin-Ni’s conjecture
in dimension n = 3 and n > 7 for mean convex domains and with bounded
energy. Recent examples by Wang-Wei-Yan [32] show that the bound on the
energy is a necessary condition.

Frédéric Robert dedicates this work to Clémence Climaque
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Let © be a smooth bounded domain of R™, n > 2. In [21], Lin, Ni and Takagi

got interest in solutions u € C?(Q) to the elliptic problem

Au+eu=n(n—2)u?™t inQ
u>0 in Q
O,u=0 on 0N
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where € > 0 is a parameter and ¢ > 2. Here and in the sequel, A := —div(V) is
the Laplace operator with minus-sign convention. This problem has its origins in
the analysis of the Gierer-Meinhardt model in mathematical biology: this model
is a system of nonlinear evolution equations of parabolic type, and the stationary
problem with infinite diffusion constant splits into two equations like (E,). We refer
to the surveys [24, 33] for the justifications of the model and its simplification.

Problem (E;) enjoys a variational structure, since its solutions are critical points
of the functional
u»—>1 \Vu\zda:+i/u2dx—1/|u|qu,
2 Ja 2 Ja qJa

a functional that is defined for all u € HZ(Q) N L9(2), where HZ(f2) is the standard
Sobolev space of L?—functions with derivatives also in L? endowed with the norm
I “ll2+ IV - |l2. In particular, it follows from Sobolev’s embedding theorem that
H?(Q) < L9() continuously in case 2 < ¢ < 2* where 2* := 22 (we assume here
that n > 3): therefore the functional above is defined on HZ(Q) when 2 < ¢ < 2*.
Moreover, the Sobolev embedding above is compact in case g < 2*.

The system (E,) enjoys at least a solution, namely the constant solution v =

(m) “*. In a series of seminal works, Lin-Ni-Takagi [21] and Ni-Takagi [25,
26] got interest in the potential existence of nonconstant solutions to (E,). In
particular, it is showed in [25, 26] that for € large, solutions concentrate at boundary
points of maximum mean curvature. In the present article, we restrict our attention
to that case when € > 0 is small. In case 2 < ¢ < 2*, variational techniques and the
compactness of the embedding imply that for small positive €, the constant solution
is the sole solution to (E,). This uniqueness result incited Lin and Ni to conjecture
the extension of this result to the critical case ¢ = 2*:

Question (Lin-Ni [20]): Is the constant solution the only solution to (Ea2+) when
e >0 is small?

The mathematical difficulty of this question comes from the conformal invariance
of (Fy+) and its associated unstability. Indeed, for u > 0 and zy € R™, define

n—2

1 2
. =7 for all R™. 1.1
Usou(@) <,u2+|x—a:02> orall z € (1.1)

The scalar curvature equation for the pulled back of the spherical metric via the
stereographic projection (or direct computations) yields AU, , = n(n — 2)U§;;1
in R". Therefore, there is an abundance of solutions to Au = u2 !, some of them
being peaks blowing-up to infinity since lim,,_,o Uy, ,.(20) = +00: in this sense, the
equation is unstable since it enjoys many solutions that are far from each other.
There are no such solutions in the subcritical case ¢ < 2* (see [5]). This conformal
dynamic transfers on the Lin-Ni’s problem and it follows from the famous Struwe
decomposition [30] that families of solutions (uc)eso to (E2+) with bounded energy
may develop some peaks like (1.1) when ¢ — 0: more precisely, there exists N € N
such that for any ¢ € {1,..., N}, there exists sequences (z;¢)e € R", (1ie)i € Rso
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such that lim¢_,q it;,c = 0 and, up to the extraction of a subfamily,

N
Ue = Z Uzi e pi,c T Re (1.2)

i=1
where lim,_,o R, = 0 in HZ(Q2). This decomposition is refered to as the integral de-
composition. When there is at least one peak, then there are nonconstant solutions.

Conversely, in case there is no peak, elliptic estimates and simple integrations by
parts (see Section 2) yield the sole constant solution for small e.

In the radial case, that is when 2 is a ball and when u is radially symmetrical,
Adimurthi-Yadava solved the problem in [2, 3]: when n = 3 or n > 7, the answer to
Lin-Ni’s question is positive, and it is negative for n € {4,5,6}. In the asymmetric
case, the complete answer is not known yet, but there are a few results. When
n = 3, it was proved independently by Zhu [35] and Wei-Xu [34] that the answer
to Lin-Ni’s question is positive when  is convex. When n = 5, Rey-Wei [27]
constructed solutions to (Es«) as a sum of peaks like (1.1) for ¢ — 0. In the present
paper, we concentrate on the localization of the peaks in the general case.

Let (€0)aen € (0,1] be a sequence such that

lim e, =0.
a—r+00

We consider a sequence (uy)aen € C2(Q) such that

Aug + eqtiq =n(n —2)u2 =1 in Q

Ug >0 in Q (1.3)
Oyig =0 on 02
We assume that there existe A > 0 such that
/ u? dr < A (1.4)
Q

for all o € N.

Definition 1. We say that x € Q is a non-singular point of (us) if there exists
6 >0 and C > 0 such that

luallLoe(Bs@)ne) < C
for all « € N. We say that x € Q is a singular point if it is not a non-singular

point.

The singular points are exactly the points where the peaks are located. In the
sequel, H(x) denotes the mean curvature at x € 9 of the oriented boundary 9.
With our sign convention, the mean curvature of the oriented boundary of the unit
ball is positive. We prove the following theorem:

Theorem 1. Let (uq)aeny € C2(Q) and € > 0 such that (1.3) and (1.4) hold. Let
S denote the (possibly empty) set of singular points for (u,). Assume that n = 3
orn >T: then S is finite and

S {z €09/ H(zx) <0}

As a consequence, we get the following:



4 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

Theorem 2. [Lin-Ni’s conjecture for mean convex domains] Let Q be a smooth
bounded domain of R", n =3 orn > 7. Assume that H(x) > 0 for all z € 0.
Then for all € > 0, there existe eo(€2,A) > 0 such that for all € € (0,€60(2,A)) and
for any u € C%(Q), we have that

Au+eu=n(n—-2)u>"! inQ

u >0 mn Q o= € N
Ou=0 on 09 “= n(n —2) '
fQuT de < A

The method we use to prove Theorem 1 relies on a sharp control of the solutions
to (1.3) in the spirit of Druet-Hebey-Robert [9], our first result being that (see
Proposition 5 and (7.3) in Section 7)

N
Uy < C (ua +> Ul.i,m,“,a> (1.5)
i=1
where 1, is the average of u, on € and the peaks are as in Struwe’s decomposition
(1.2). In particular, we pass from an integral description to a pointwise descrip-
tion. As in Druet [6] (see also Ghoussoub-Robert [12] and Druet-Hebey [8]), this
pointwise description allows us to determine exactly where two peaks may interact,
and to describe precisely the behavior of u, there. The localization of the singular
points then follows from a succession of Pohozaev identities.

These results appeal some remarks. In dimension n = 3, our result must be com-
pared to Zhu’s result: in [35], no bound on the energy is assumed, but the convexity
is required; in our result, we require the bound on the energy, but a weak convexity
only is needed. The assumption on the energy (1.4) may seem technical for who is
familiar with the Yamabe equation: indeed, in general, see Druet [7], Li-Zhu [19],
Schoen [29] and Khuri-Marques-Schoen [18], any solution to the Yamabe equation
automatically satisfies a bound on the energy like (1.4). For the Lin-Ni’s problem,
this is not the case: recently, it was proved that solutions to (E2+) may accumulate
with infinite energy when the mean curvature is negative somewhere (see Wang-
Wei-Yan [31]) or when € is a ball (see Wang-Wei-Yan [32]), a domain with positive
mean curvature: therefore, the answer to Lin-Ni’s question is negative if one does
not impose the bound (1.4).

The influence of curvature is reminiscent in the asymptotic analysis of equations like
(1.3). For instance, in Druet [6, 7] and in Li-Zhu [19], it is proved that for Yamabe-
type equations, the peaks are located where the potential of the equation touches
the scalar curvature; we refer to Hebey-Robert-Wen [17] and Hebey-Robert [16]
for the corresponding localization for fourth-order problems. In Ghoussoub-Robert
[11, 12], that is for a singular Dirichlet-type problem, the peaks are located where
the mean curvature is nonnegative: in Theorem 1 above, that is for a Neumann
problem, we conversely prove that the peaks are located at points of nonpositive
mean curvature. For Neumann-type equations like (1.3), the role of the mean
curvature has been enlighted, among others, by Adimurthi-Mancini-Yadava [1],
Lin-Wang-Wei [22] and Gui-Lin [15].

The present paper is devoted to the asymptotic analysis of solutions () of (1.3)
satisfying (1.4) when n > 3. In Sections 2 to 7, we prove the pointwise control
(1.5). Section 8 is devoted to the convergence of the (uq)qs’s at the scale where
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peaks interact. In Sections 9 and 10, we prove an asymptotic relation mixing the
heights of the peaks, the distance between peaks and the mean curvature. Finally,
we prove Theorems 1 and 2 in Section 11.

Notations: in the sequel, we define R™ := {(z1,2’) € R"/x; < 0} and we assim-
ilate OR™ = {(0,2')/2' € R""1} to R""1. Given two sequences (a,)o € R and
(ba)a € R, we say that a, =< b, when @ — 400 if an, = O(b,) and b, = O(a,)
when o — +o0o. For U an open subset of R”, k € N, k > 1, and p > 1, we define
HY(U) as the completion of C*>(U) for the norm Zle Vel

Acknowledgements: This work was initiated and partly carried out during the visits
of F.Robert in Hong-Kong. He expresses his thanks J.Wei for the invitations and his
gratitude for his friendly support in April 2010. F.Robert was partially supported
by the ANR grant ANR-08-BLAN-0335-01 and by a regional grant from Université
Nancy 1 and Région Lorraine. The research of J.Wei is partially supported by RGC
of HK and “Focused Research Scheme” of CUHK.

2. L°*°—BOUNDED SOLUTIONS

Let Q C R™ be a smooth domain (see Definition 2 of Section 3 below), n > 3.
We consider a sequence (uq ),y Of positive solutions of

Aug + eqtiq =n(n—2)u2 ™' in Q

Ug >0 in Q (2.1)
81/“(1 =0 on 0f)
We assume in the following that
/ u? drz < A (2.2)
Q
for some A > 0. We claim that
U — 0 weakly in H? () as a — +o0. (2.3)

We prove the claim. Indeed, after integrating (2.1) on €, it follows from Jensen’s
inequality that

2*—1
1 1 . €a [ Ua dz
— od < 271 g = 20 T T
(|Q|/Q“ ””) Sl T a2

for all & € N. Then, we get that

n—2
4

for all « € N, where, given @, := ﬁ fQ uq dxr denote the average of u, on ).
Multiplying (2.1) by u, and integrating on Q, we get that (u,)s is bounded in
HZ2(Q). Therefore, up to a subsequence, (uq)o converges weakly. The convergence
(2.3) then follows from (2.4). This proves the claim.

We prove in this section the following:

Proposition 1. Assume that the sequence (uq),, is uniformly bounded in L™ (£2).
n—2

Then there exists ag > 0 such that u, = (%) ! for all a > .
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Proof of Proposition 1: Assume that there exists M > 0 such that u, < M in
for all @ > 0. By standard elliptic theory (see Theorem 9.11 in [13] together with
Theorem 6 of Section 11), we deduce then thanks to (2.3) that u, — 0 in L™ (Q).
Multiplying equation (2.1) by u, — @a (4q is the average of u, defined above) and
integrating by parts, we then get that

/ Vg | dx—|—ea/ (ug — 1)’ dz
Q Q

=n(n— 2)/ U2 " (ug — Gg) da
Q

=0 ((Iuall 4022 [ (0o~ 10)" )
o</Q (U — 1)’ d:c) 0</Q|Vua|2 dz)

when o — +o0 thanks to Poincaré’s inequality. This yields [, |Vug|? dz = 0 for

« large and thus u, is a constant for a > g for some ag > 0. The constant is
n—2

easily seen to be (m)T thanks to equation (2.1). This ends the proof of
Proposition 1. (I

For the rest of the article, we assume that

i g = +oo. (2.5)
Under this assumption, the sequence (u,) will develop some concentration points.
In sections 4 to 7, we provide sharp pointwise estimates on u, and thus describe
precisely how the sequence (uq) behaves in C! (Q). In section 8 to 10, we get
precise informations on the patterns of concentration points which can appear.
This permits to conclude the proof of the main theorems in section 11.

3. SMOOTH DOMAINS AND EXTENSIONS OF SOLUTIONS TO ELLIPTIC EQUATIONS
We first define smooth domains:

Definition 2. Let Q be an open subset of R™, n > 2. We say that § is a smooth
domain if for all x € 0X), there exists 6, > 0, there exists U, an open neighborhood
of x in R™, there exists ¢ : Bs, (0) — U, such that
(1) @ is a C™ — diffeomorphism
(1)  (0) =z
(iii)  @(Bs, (0) N {z1 < 0}) = ¢(B5,(0)) NQ
(i) @(Bs,(0) N{z1 = 0}) = (B, (0)) N OQ

The outward normal vector is then defined as follows:
Definition 3. Let Q2 be a smooth domain of R™. For any x € 05}, there exists a
unique v(z) € R™ such that v(z) € (T,0Q)*, |[v(x)| = 1 and (81p(0),v(x)) > 0 for

@ as in Definition 2. This definition is independent of the choice of such a chart ¢
and the map x — v(zx) is in C°(08, R™).
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Let ©Q be a smooth bounded domain of R™ as above. We consider the following

problem:
Au=f inQ
{ Bu=0 ind9 (8:1)

where u € C?(Q2) and f € C°(Q). Note that the solution u is defined up to the
addition of a constant and that it is necessary that fQ fdx = 0 (this is a simple
integration by parts). It is useful to extend solutions to (3.1) to a neighborhood of
each point of 992. For this, a variational formulation of (3.1) is required: multiplying
(3.1) by ¥ € C>(Q) and integrating by parts leads us to the following definition:

Definition 4. We say that u € H{(Q) is a weak solution to (3.1) with f € L1(Q)
if
/(Vu,Vz/J) dx = / fdx for all p € C=(Q).
Q Q

In case u € C?(Q), as easily checked, u is a weak solution to (3.1) iff it is a classical
solution to (3.1).

We let ¢ be the standard Euclidean metric on R™ and we set

7: R" — R™
(xlvx/) = (—|IE1|7.T/)

Given a chart ¢ as in Definition 2, we define
Ty ::gooﬁ'ogo*l.

Up to taking U,, smaller, the map 7, fixes Uy, N Q and ranges in Q. We prove the
following useful extension lemmas:

Lemma 1. Let xg € 02. There exist 0, > 0, Uy, and a chart ¢ as in Definition
2 such that the metric § := 75§ = (poTo e H*¢ is in COY(U,,) (that is Lipschitz
continuous), §jo = &, the Christoffel symbols of the metric g are in L>(U,,) and
dypo is an orthogonal transformation. Let u € H{ (QNUy,) and f € LY(QNU,,) be
functions such that

/Q(Vu, Vi) dr = /wa dz for all ) € C(QANUy,). (3.2)
For allv: QN Uz, — R, we define
Vi=vom, i Ug.
Then, we have that @ € H} (Uy,), Gy = u, f € L' (Uy,) and
Azt = f in the distribution sense,
where Ay == —divg(V).

Here, by "distribution sense”, we mean that

)

zQ

(Vii, Vip) g dvg = / f dug for all ¢ € C=°(Us,),
Usg

where dvg is the Riemannian element of volume associated to ¢ and (-,-)s is the
scalar product on 1—forms.
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Proof of Lemma 1: Given a chart ¢ at zg defined on BSIO (0) as in Definition 2, we
define the map

{ ¢: B; (0) — R»
zQ
(1‘1,-17/) — $1V(¢(0,$/)) + @(O,.T/)
The inverse function theorem yields the existence of d;, > 0 and U,, C R™ open

such that ¢ : Bs, (0) — Uy, is a smooth diffeomorphism being a chart at z¢ as in
Definition 2. Moreover, the pull-back metric satisfies the following properties:

(11 =1, (¢*§1 =0Vi# 1.

In particular, up to a linear transformation on the {x; = 0} hyperplane, we can
assume that dyg is an orthogonal transformation. It is easily checked that ((¢ o
7)*E€)ij = (¢*€)ij o7 outside {z1 = 0} for all 4, j, and then we prologate (@ o7)*¢{ as
a Lipschitz continuous function in Uy, and so is § := (p o 7 o ¢~ 1)*¢. In addition,
as easily checked, if f‘fj’s denote the Christoffel symbols for the metric g, we have
that f‘fj € L°°. Therefore, the coefficients of Aj are in L> and the principal part
is Lipschitz continuous.

We fix ¢ € C2°(Uy,). For convenience, in the sequel, we define 7 := TR that is
m: RY} - R”
(z1,2") — (—z1,2").
Clearly, 7 is a smooth diffeomorphism. As for 7, we define

— -1
Mo = QOTOP

that maps (locally) Q° to 2. With changes of variable, we get that

/ (Vit, Vi) duvy = / (Vu, V4 por oo ) de
U QNU,,

zo

and
/ fwdvg:/ f(z/)Jrq/Jow;l)dx.
Usg N,

It then follows from (3.2) that Aza = fin U,, in the distribution sense. This ends
the proof of Lemma 1. O

In the particular case of smooth solutions, we have the following lemma;:

Lemma 2. Let xg € Q2. There exist §5, > 0, Uy, and a chart ¢ as in Definition
2 such that the metric g := (p o 7 o = 1)*¢ is in COY(U,,) (that is Lipschitz
continuous), gio = &, the Christoffel symbols of the metric § are in L>°(Uy,) and
dypg is an orthogonal transformation. We let u € C?*(QNUy,) and all f € C} (R)
be such that .
Au= f(u) in QNU,,
{ O,u=0 in 022 N Uy,
and we define
1

U:=uopomop = in Uy,.

Then, in addition to the reqularity of g, we have that
i € C*(Uy,), g =u and Ay = f(@) for all z € Uy,
where Ay := —divg (V).
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4. EXHAUSTION OF THE CONCENTRATION POINTS

We prove in this section the following :

Proposition 2. Let (uy)aen € C?() and A > 0 such that (1.3) and (1.4) hold
for all « € N. Then there exists N € N*, N sequences (T;q),_,  of points in Q
and N sequences [t11,q > [2,q > -+ 2> [IN,a Of positive real numbers such that, after
passing to a subsequence, the following assertions hold :

(i) For any 1 <i < N, x; o — x; as o = +00 for some x; € Q and tia — 0 as

o — +o00. Moreover, either w — 400 as a@ = +00 or T; o € 0f).
(i) For any 1 <i<j <N,
2
T s ) )
[Tia = Zjal” Hia y Hia 4 hsa— 400 .
Hiallj,o M Hi, o
(iii) For any 1 <1 < N, we define
. n_2 Lo d(mia,00)
Uiyo 1= [ o Ua (Tia + fia-) if agl}rloo Mzi; = o0,

and
Wio 1= p:?zﬁa op (gpfl(xiya) + Lio ) if ¥ € 00 for all € N
where @, is the extension of ug around xo = lim,_s 4o Tio and ¢ are as in Lemma
2. Then
oA Nia = Vollos (o) =0 (4.1)
for all compact subsets K CC R™\'S; if z;,0 € 0Q and K CC R™\ (S; Un~(S;))
if ;o € 02 where the function Uy is given by

1—n
Uo() := (1 + |zf*)
and S; is defined by
gﬁz{hm %amﬂw<j§N},
a—r+00 /J'i,a

In the definition of S;, we allow the limit to be 400 (and in fact, we discard these
points).
(iv) We have that

n-2 N _
Ro? |ug _ZUW‘ — 0 L= (Q) as o — 400
i=1
where
R, (z) := 1gi§nN \/|mza — x|2 + uia
and
wﬂwyzugs%(x—%a)_
’ Hi«

Proof of Proposition 2: For N > 1, we say that property Py holds if there exist N
sequences (xiﬂ)i:l,...,N of points in 2 and N sequences Mo = P20 = - 2 N«
of positive real numbers such that, after passing to a subsequence, assertions (i)-
(ii)-(iii) of the claim hold for these sequences. We divide the proof of Proposition

2 in three steps.
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Step 2.1: We claim that there exists N4, > 1 such that (Py) can not hold for
N 2 Nmaz-

Proof of Step 2.1: Let N > 1 be such that (Py) holds. Let (zia);_; 5 be N
sequences of points in M and fi1,o > 2, = -+ > [tN,o be N sequences of positive
real numbers such that the assertions (i)-(ii)-(iii) of Proposition 2 hold after passing
to a subsequence. Let R > 0 and set

Qi o (R) = Bry, .., (xi,a) \ B (xj,a) .

RHMHi«
i<j<N
It easily follows from (ii) that
Qo (R) N1 Q0 (R) =
for « large enough. Thus we can write that
N
w2 dx > / u? dx
\/Q ¢ ; Qi’a(R)ﬁQ “

for « large enough. It follows then from (iii) that
* N *
/ u? dr > — UZ dx —n(R) +o(1)
Q 2 RTI,

where n(R) — 0 as R — +00. Letting R — 400 and thanks to (2.2), we then get

that
2A

< — .

- fR" Ug* dx

This ends the proof of Step 2.1. O
Step 2.2: We claim that P; holds.

Proof of Step 2.2. We let x, € Q be such that

N

Uq (To) = MaxX Uy (4.2)
Q
and we set )
U (To) = fla 2 - (4.3)
Thanks to (2.5), we know that p, — 0 as @ — +o0o. We set
2
Vo () = pd o (T + pax) (4.4)
for x € Q, = {x € R" s.t. x4 + pox € Q}. It is clear that
Av, + ea,uiva =n(n— 2)1)(2;71 in Q,
with 9,v, = 0 on 99, and
0<vq <ve(0)=11inQ,, .
Step 2.2.1: we assume that
d(xq,00
lim d(2a, 00 = +o0. (4.5)
a—+400 Mo

It follows from standard elliptic theory (see [13]) that, after passing to a subse-
quence,
Vo — vin C}, (R™) as a — 400
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where v € C2(R™) is such that
Av=n(n—-2)v> !
and
0<v<w(0)=1.
By the classification result of Caffarelli-Gidas-Spruck [5], we then get that v = Uy.
This proves P; in case (4.5). This ends Step 2.2.1.

Step 2.2.2: we assume that there exists p > 0 such that

lim d(za,00) =p. (4.6)
a— 400 /j,a
We let g := limy_y 4o . We then have zp € 0Q and we choose ¢ and d, > 0,
U,, as in Lemma 2. Let 6 € (0,6,,). Denoting by i, € C%(U,,) the local extension
of u, on U, with respect to ¢, we then have that

2~1in U,,. (4.7)
Since dpy is an orthogonal transformation, we have that
d(p(x), 09) = (14 o(1))]x1] (4.8)
/

for all z € Bs,(0)NR™, where lim, o o(1) = 0 uniformly locally. We let (z4.1,2)) €
{z1 <0} x R"~! be such that z, := (24,1, 2,) for all @ € N. It follows from (4.6)
and (4.8) that

Agii + €afliq = @

i Zetl _ (4.9)

a—r 400 /J'Ot

‘We define
n—2

Ua () == pia? Ua(p((0,z,) + piax)) for all x € By, (0).
It follows from (4.7) that
Ag. Vo + €apito = n(n —2)02 " in By, (0), (4.10)

where go (2) = (©*9)((0,27,) + paw) = (¢~ 0 7)*€)((0,2,,) + paz). Since 0 < Ty <
Do (pa,0) =1 and (4.9) holds, it follows from standard elliptic theory (see Theorem
9.11 in [13]) that there exists V € C'(R™) such that

lim 9, =V in CL.(R"), (4.11)

a——+00

where 0 <V < V(p,0) = 1. Passing to the limit &« — +o00 in (4.10) and using that
dpo is an orthogonal transformation, we get that AV = n(n — 2)V2*_1 weakly in
R™. Since V € C*(R"), one gets that V € C%(R™) and it follows from Caffarelli-
Gidas-Spruck [5] that

n—2

V(z) = <1+|$1(,00)|2>

for all x € R®. The Neumann boundary condition d,u, = 0 rewrites 019, = 0 on
OR™. Passing to the limit, one gets that 9;V = 0 on JR”, and therefore p = 0 and
V = Up. In particular, we have that

. T,
lim
a— 400 Ma

=0.

Taking Z, := ¢(0,z.,), we can then perform the above analysis of Step 2.2.2 with
Zo € 0N instead of z,. This proves P; in case (4.6). This ends Step 2.2.2.
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Steps 2.2.1 and Step 2.2.2 prove that P; holds. Step 2.2 is proved. ([
Remark: For P;, we can be a little more precise and prove the following claim:
Zo € 0N for a € N large. (4.12)

We prove the claim by contradiction and assume that x, & Q for a subsequence.
Define p,, := x:—al Then p, < 0 for « large. Since (p4,0) is a maximum point of
U4, we have that 0104(pa,0) = 0. Since 9194(0) = 0 (Neumann boundary condi-
tion), it then follows from Rolle’s Theorem that there exists 7, € (0,1) such that
01100/(Tapa, 0) = 0. Letting o — +o0, we get that 911Up(0) = 0: a contradiction.

This proves the claim.

Step 2.3: Assume that Py holds for some N > 1. Let (z;,4)

of points in Q and Mo = 2,0 = -+ > [IN,o be N sequences of positive real numbers
such that assertions (i)-(ii)-(iii) of the claim hold. We claim that if assertion (iv)
of Proposition 2 does not hold for this sequence of points, then Py 41 holds.

i=1,...n be IV sequences

Proof of Step 2.3: We assume that (iv) does not hold for these sequences. In other
words assume that there exists ¢y > 0 such that

n—2
max | Ru?
Q

) > € (4.13)

for all & € N where

and
1-% T — Tio
Uia(z) == tio” Uo <) .

We let y, € Q be such that

n-2 N n=—2 N
max (Raz o = Uia|l| = Ra (o) 7 |ta (W) =D Uia (Ya) (4.14)
i=1 i=1
and we set
U (Yo) = Vo * . (4.15)
Step 2.3.1: We claim that
R, (ya)%2 Uia (Ya) > 0asa— oo forall 1 <i< N . (4.16)
Indeed, assume on the contrary that there exists 1 <7 < N such that
n=2
Ra (ya) 2 Ui,oc (yoc) Z To (417)
for some 79 > 0. This means that
R(x [ =25 a — Li,a 2
(Ya) > (14 K i, ) (4.18)
Hi,o 22

24 uf,a, we get in particular that, up to a subsequence,

Since R, (yo,)2 <|Ya — Ti,a

|ya — Tj,a

Hi,a

— Rasa— 4+ (4.19)
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for some R > 0. Coming back to (4.18), we can also write that

|Zj,0 — ya|2 M?,a e 2)2
T+M2—zn0 (1+ R?)" +o(1) (4.20)

for all 1 < j < N. These two equations permit to prove thanks to (ii) of Proposition
2 (which holds by assumption) that \%:7—%\ > 175%2 (1+ R?) +o(1) foralli < j <
N. Thus

lim Yo" Tie g,

a——+00 Hi.o

and we use (iii) of Proposition 2 to get that

n

—2
tia o (Ya) = Uia (Ya)| = 0
as a — +00. Since Ry (Ya) = O (li,o), we thus get that

n=2
Ro (Ya) 7 |ta (Ya) = Uia (ya)| — 0
as o — +oo. Let 1 < j < N, j #i. We write now that

oy —1
_2 Mi,a ya_m,’a
R () Uy (00) ™= = 0 [ L2 (14 e Zael) ) oy
Hj,a M5 o

thanks to (4.19), (4.20) and assertion (ii) of Proposition 2. Thus we arrive to

n—2

Ry (ya) = -0

N
Uq (ya) - Z Ui,oz (ya)
i=1

as a — +oo which contradicts (4.17) and thus proves (4.16). This ends Step 2.3.1.
Note that, coming back to (4.13), (4.14), (4.15) with (4.16), we get that

Ro (Yo =l
Ralha) 5 = 4 o). (4.21)
Vo
Step 2.3.2: We claim that
Vo = 0as a— +oo. (4.22)

We prove the claim. If R, (yo) — 0 as @ — 400, then (4.22) follows from (4.21).
Assume now that R, (y) > 200 for some §y > 0. Using (4.14) and (4.16), we get
that
Ua < Q%Ua (Ya) + o(1)

in Bs,(ya) N Q for a large enough. If uy(ys) — +0o when a — +oo, then (4.22)
holds. If uq (yo) = O(1), we then get by standard elliptic theory (see [13] and
Lemma 2) and thanks to (2.3) that us (yo) = 0 as & — +o00, which contradicts
(4.21) since Q is a bounded domain. This proves (4.22) and ends Step 2.3.2.

Note also that (4.16) directly implies that

2
[Pia = yal” | Pia s too (4.23)
Hi,aVa Va

for all 1 <7< N. We set now

2 Uy (Yo + Vo) (4.24)
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in Q= {z € R" s.t. yo +vox € Q}. We then have that
Awg + €qvwy = n(n — 2)w? ~! (4.25)
in Q, and J,w, = 0 on 9,. We define

S::{ lim M,lgiSNs.h |%i.0 — Ya| = O (vo) and ui’azo(z/a)} .

a——+oo Ve
Let us fix K CC R™\ S a compact set. We note that, thanks to (4.16) and (4.14),
n—2
ROL [e3 (03 I
((@/*”)> we () < 1+ 0(1) (4.26)

R, (ya)

for all z € K N Qq, where limg—4oo SUpgng, 0(1) = 0. Let z4 € Br(0) N Q4 \
Uses Br-1 () for some R > 0 fixed.

Step 2.3.3: We claim that

Wo (20) =0 (1) . (4.27)
We prove the claim. It is clear from (4.26) if W 4 0as a — 4o00. Assume

now that
Ro (Yo + Vaza)

Ro (Ya)
Up to a subsequence, we let 1 < i < N be such that

—0asa— +o00. (4.28)

Ra (ya + Vaza)2 - |5L'i,o¢ - ya - Vaza|2 + 1“’12,04 .
We then write thanks to (4.28) that

|$i,a —Ya — Vaza|2 + :uzz,a =0 (|xi,a ) +o /% a

which implies that |z; o — Y| = O (Vo) and that p; o = o (v,). This leads to
2

Lo —
Tie ~ Yo —0asa— +oo,

Va
which is absurd since, thanks to the definition of § and to the fact that d (z4,S) >

1
R

— Zq

Tia — Ya — z, > i

Ve ~ 2R
for o large. Thus (4.27) is proved. This ends Step 2.3.3.
Thanks to (4.21), we easily get that 0 € Q, \ S.

Step 2.3.4: Assume first that

lim 4 (Y, ) (Yo, 09) = 4o00.
a—r+00 Ve

It follows from Step 2.3.3 that (wq)e is bounded in L™ on all compact subsets of
R™\ S. Then, by standard elliptic theory (see [13]), it follows from (4.25) that,
after passing to a subsequence,

we — wo in CL, (R™\ S)

where wg satisfies
Acwy = n(n — 2w 7!

in R™\ S and wy(0 ) = 1. Noting that, since (us) is uniformly bounded in H? (), we

have that wy € H7 . (R™), we easily get that wy is in fact a smooth solution of the
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above equation and that, by Caffarelli-Gidas-Spruck [5], wo(z) = "2 Uy (Az + )
for some A\ > 0 and some zy € R". If we set
Vo
IN+1,a = Ya — 7330

and

MUN+1,00 = )\_1Va 5
it is easily checked that, up to reorder the concentration points such that the se-
quence of weights is non-increasing, assertions (i)-(ii)-(iii) of Proposition 2 hold for
the N + 1 sequences (ja; fli,a);—1 _ n41- Here one must use in particular (4.23)

to get (ii). This ends Step 2.3.4.
Step 2.3.5: Assume now that
d (Yo, 00
lim (yi) =p>0.

a—+0o0 Ve

One proceeds similarly, using the extension 1, of u, as in Lemma 2 as was done for
Step 2.2.2. More precisely, let yo := lima— 400 Yo € 9. We choose ¢ and 6, > 0,
Uy, as in Lemma 2. Let § € (0,4,,). Denoting by @, € C%(U,,) the local extension
of u, on Uy, we then have that

Agii + €alia = 12 "1 in Uy,. (4.29)

As in Step 2.2.2, we let Yo = ©(Ya,1,Y,) and we have
. Ya,1
lim —=

a—~400 1229

=—-p<0.

We define
Vo) = V,;%Qﬂa(@(((),y;) + vx)) for all z € By, (0).
It follows from (4.29) that
Ag, W + GQI/iﬁ)a =n(n— 2)1?)5:*1 in Bs,,, (0), (4.30)
where ga(2) = (¢*9)((0,y5) + vaw) = ((¢71 0 7)*E)((0,y5,) + vaz). We define
I={ic{l,.,N}st. |Tia—Yal =0 (a) and p; o = 0 ()}

and

~ -1 . — ! ~

- { i P (@ia) (O,ya)/i c I} _
a—>+00 Ve

We let K C R™\ (5’ U 77_1(3)) a compact set. Here, (4.27) rewrites 0 < wq(z) <

C(K) for all z € K NR™. The symmetry of w,, yields

0 < Wo(z) < C(K) for all z € K and all o > 0.

We are then in position to use elliptic theory to get the convergence of w, in
CL _(R™\ (S U 7r*1(3)>), and the proof goes as in Step 2.3.4. This ends Step 2.3.5.

loc

Proposition 2 follows from Step 2.1 to Step 2.3. Indeed, Step 2.2 tells us that P
holds. Then we construct our sequences of points and weights thanks to Step 2.3.
Thanks to Step 2.1, we know that the process has to stop. When it stops, (i)-(iv)
of the claim holds for these points and weights. This proves Proposition 2. [
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5. A FIRST UPPER-ESTIMATE

We consider in the following the concentration points (2 q, ti,q)
Proposition 2. We recall that they are ordered in such a way that

1<i<N given by
H1,a =2 KN«

and we shall denote in the following p1o = pt1,o. Let us fix some notations and make
some remarks before going on. We let

S:{ lim a:m,lgigN} (5.1)
a——+00

where the limits do exist, up to a subsequence. For § > 0 small enough, we let

Na(0) = sup  ua. (5.2)
on{d(z,5)>24}

Thanks to Proposition 2 (iv) and to standard elliptic theory (see Theorem 9.11 of
[13]), we get that
Na (0) > 0 as o — oo forall § > 0. (5.3)

Note that, as a consequence of (iii) of Proposition 2, there exists C' > 0 such that

n—2 N
Cua? S/Qu?I —Ldz

while
/ uX "l dr = e |Q] g
Q

thanks to equation (2.1). This proves that

n—2

pa® =0 (eqlia) = 0(ly) (5.4)
when o — +o00. At last, we fix Ry > 0 such that
R
forany 1<i< N, |m|§70forallx68i (5.5)
where S; is as in Proposition 2, (iii). And we let

ro (z) = min o |ia — x| . (5.6)

We prove in this section the following :

Proposition 3. There exists C1 > 0 and some sequence B, — 0 as a — 400 such
that

n—2
o (z) — ti| < Cipia® Ra (2)°7" + Balia (5.7)
for all x € Q and all o > 0.

Proof of Proposition 3: We divide the proof in two main steps. We start by proving
the following :

Step 3.1: We claim that for any 0 < v < %, there exists R, > 0, 6, > 0 and
Cy > 0 such that

n—20q_
Ua(z) < C, (Ma2 A=2) ()@m0=) 4 (57)74&(:5)(2_”)0

for all @ > 0 and all z € Q\ Ufil Br ;o (Tia).
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Proof of Step 3.1. We divide the proof in two parts, depending whether we work
in the interior of €2 or near its boundary. Let 0 < v < % We define

Q. (z,y) = |z — y|Z0=Y) for all z,y € R™, = # y.

Step 3.1.1: We fix 2y € Q and we let 9 > 0 such that Bs,(x) CC . We claim
that there exists 2, > 0 such that

(@) < O (a”

for all @ > 0 and all z € Bs, (z0) \ U, Br,ui.. (Tia)-

2 172'7)7%1 (x)(an)(lf’Y) + N (57) T (IL‘)(Qin)A/) (58)

We prove the claim. We let

‘p%a( >_M +77a Z(I)l ol xzou (59)

=1
where ®, and ®;_, are as above and 6 > 0 will be chosen later on. We let
Zo € Bs,(x0) \ Ufil BRry, . (i) be such that
sup Yo _ Yo (o) ) (5.10)
Bso (z0)\UiL; Bry, o (i) Pra Pralta)

In particular, z, € Q.

We claim that, up to choose § > 0 small enough and R > 0 large enough, we have
that

N
ZTo €0 (U BRy,-,J%,a)) or ro (Tq) > 6 (5.11)

i=1
for a > 0 small. We prove (5.11) by contradiction. We assume on the contrary that

N
To &0 (U BRMQ(Q:W)> and 7, (24) < 6 (5.12)

i=1
for all & > 0. Since z, € Q, we write then thanks to (5.12) and the second order
characterization of the supremum (5.10) that

Aug (74) > Apy o (Ta)

Ua (Ta) — Pry.a(Ta)
Thanks to (2.1), we have that
g €A
which leads to
APy (Ta) < n(n —2)ug (gca)z*f2 . (5.13)
Py,a (Ta)

Direct computations yield the existence of D, > 0 such that

(A) D' <o — y|"DE) ., (z,y) < D, forall z, y e R", z #y.
(5.14)

A x, —
(B)gj’gix{y;f)zi\xfm 2D, forallz,y e x+#y.
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Let us write now thanks (5.14) that

N
1 32 (1-2 _
A(P'y,a (-Ta) 2 ny lua2 ( ) § ‘xi,a - xa| 2(I)~/ (xi,ayxa)
i=1

N
+D1__1,y77a (5) Z |xi,a - xa|_2 (I’l—'y (xi,ou xa)
=1

n 2
(1—-27)
D pio? E Q. (Ti,a) Ta)

_le'yna (6) Z (1)1,7 (mi,on .'I}a)

N (D;zra (2a)~ —NDQ) 22 (1- 2, (xa)—(n—Q)(l—’v)

+ (D*_2

1—"a (ma)7 - ND%fv) Na (0) Ta (ma)i(niz)v

We choose § > 0 such that
D;?67% > 2ND? and D% 67% > 2ND}_

so that, using once again (5.14), the above becomes

n—2

1 _
A‘P%a(xa) > §D72ra(xa) 2#!}42

(1—2"Y)TCY (xa)f(n#)(l*v)
1 _ (e
+§Dlim (2a) " e (8) 7 (wa) "7

N
-2 232(1-27)
D'Y (.’ﬂa) Mo K Z(I)'y (xi,avma)
i=1

v

2N

N
1 _ _
+ﬁD1—377aa (xa) 277(1 (6)2(1)1—'7 (mi,aaxa)

1 —2
> N (max {D.,, Dy _ 'y}) Ta (Ta) = Oy,a (@a) -

Coming back to (5.13), we thus get that

ro (2a) o (24)° 7 (max {D, D1_,})"°

> 1
~ 2n(n—2)N

Using point (iv) of Proposition 2, it is easily check that one can choose R > 0
large enough such that this is absurd. And with these choices of § and R, (5.11) is
proved.

Assume that r, (z4) > §. Then we have that u, (z4) < 74 (8) so that, thanks to
(5.14), we get in this case that uq (o) = O (©q,a (a)).

Assume that z, € 9Bry,, (%) for some 1 < i < N. Then, up to increase a little
bit R so that R > 4R, Ro as in (5.5), we get thanks to (iii) of Proposition 2 that

Uq (xa) =0 (/%1;7)
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while, using (5.14),

P (T0) 2 D7 pia® U (Rpy) 7O
so that, once again,
U (l‘a) =0 (‘P%a (xa))

since ;o < fa-
Thus we have proved so far that there exists C' > 0 such that

N
Uq () < Coy o) in By, (zo) U Bry, . (Tia) -

i=1

It remains to use point (A) of (5.14) above to prove (5.8) and therefore Step 3.1.1.
Step 3.1.2: We fix zg € 092. Then there exists dg > 0 such that

()<C(

for all & > 0 and all « € (Bs,(z9) N )\ Uiil Br ;o (Tia).

712

(1— 2’Y) ( )(27n)(17'y) +770c (57) ra(x)@fn)’y) (515)

We prove the claim. Indeed, via the extension of Lemma 2, the proof goes roughly
as in Step 3.1. We only enlight here the main differences. As usual, since xg € 952,
we consider §,,, Uy, and a chart ¢ as in Lemma 2. We let i, be the C?—extension
of uy on Ug,: it satisfies that
NGl + €4l = n(n — 2)ug, 2'—1 4y Uzp- (5.16)
Welet J:={ie{l,..,N}/ limy_400 Tio = To} and we let o > 0 such that
Bsy(x0) C Uy, and |x;q — 20| > 2dp for all ¢ € {1,..., N} \ J.
For all i € J, we define
i =T, (Tia) = pom T o (Tia),
where 7(z1,2") = (—x1,2’) is the usual symmetry. We define
n-2(1_2 -
pral@) = e TN (@, (310,7) + Dy (Fiar )
icJ
o (5) Z(q)lfv (xi,a, J}) + (131,7 (‘%i,om CE))
=
(1-2
+Ma W)Z(I) xzaa +77a Z(I)l ~ Izaa
ieJe icJe

where ®, and ®;_, are as above and 0 € (0,dy) will be chosen later on. For the
sake of clearness, we define

N
Wa,R = Bao (xo) naQ \ <U BR;Li,a(xi,a) U U BR#i,a(ji,a)> .

i=1 ieJ
We let z, € W, r be such that

Uq - o (Ta)
sup = )
2€Warn Pra  Pya(Ta)
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We claim that, up to choose > 0 small enough and R > 0 large enough,

N
ZTo €0 (U BRry, o (Tia) U U BRMQ(@)Q)) or ro () >0 (5.17)

i=1 icJ

for a > 0 small. We prove it by contradiction. We assume on the contrary that

N
To &0 (U Bry, . (i) U | BR,M(QEW)> and 74 (24) < 6 (5.18)

i=1 i€J
for all &« > 0. First, it follows from the choice of §y and of 1,(d) that z, € Bs,(z4).
Therefore, if x, ¢ 0N, we write then thanks to (5.18) that

Agﬂa (xa) > Ag@'y,a (xoc) .

o (Ta) Py, (7a)
Thanks to (5.16), we have that
which leads to
Ag%f)'y,a (l‘a) < g (z )2*—2 )
Pya (o) o

Since the coefficients of Ay are in L> with a continuous principal part (the metric
g is Lipschitz continuous), direct computations yield the existence of D, > 0 such
that

(A) D' < |z — y| "D G (2,y) < D, for all z, y € R™, £ y.

N (Bg)y Py (z, —2
(B)WZD%W—M —D,forallz,yeQ, z#y.

And then the proof goes exactly as in Step 3.1.1, using the convergence of the
rescalings of 4, proved in Proposition 2. In case x, € 02, we approximate it by
a sequence of points in €2 and also conclude. This proves that there exists C > 0
such that

n—2 _
ta(z) < C,uaT(l ) Z(|~T - xi,a|(2_n)(l_7) + |z — fi,a|(2—n)(1—’y))
i€
T S TS
ic€J
n—=20_
a0 S o= o0 4 (0) Y = O
el ieJe

for all x € W, r. As easily checked, there exists C' > 0 such that |x — Z; o] >
Clx — 24| for all x € Bs,(z9) N Q. Therefore, we get that there exists C' > 0 such
that (5.15) holds. This ends the proof of Step 3.1.2.

Since € is compact, Step 3.1 is a consequence of Steps 3.1.1 and 3.1.2. (]
Step 3.2: We claim that there exists C' > 0 such that

ue(z) < C (M?Ra(x)%" + aa)

for all z € Q and all a > 0.
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Proof of Step 3.2: We fix 0 < v < %—&-2 in the following. We let (x,) be a sequence
of points in € and we claim that

i (7a) < o+ O (™ R (1)) +0(a (55)) (5.19)

Note that this clearly implies the estimate of Step 3.2 if we are then able to prove
that 74 (64) = O (@a). Let us prove this last fact before proving (5.19). A direct
consequence of (5.19) and (5.4) is that

n—2

o (8,) = O (Ha® ) + 0 () = O (1a) |

thus proving the above assertion. We are left with the proof of (5.19).

Step 3.2.1: Assume first that R, (z4) = O (fta). We use then (iv) of Proposition
2 to write that

N
n—2 n—2

Ro (Ta) 2 Ua (xa) = ZRa (ma) 2

i=1

We can thus write that

po 2R (2a)"  ta (2a)

N n
1-2 n_3 n— -3
0 <Z Po * i Ra (za) 2 (N?,a + |Ti,a — xa|2) )
i=1
(2
fia
Nl ow
0 (Zua Pl ) +o(1) = O(1)
=1

since ,uia +|zia — xa|2 < R, (xa)2 and fi; o < po for all 1 < ¢ < N. Thus the
estimate (5.19) clearly holds in this situation. This ends Step 3.2.1.

Step 3.2.2: Assume now that
R, (z4)
Ho

We use the Green representation formula, see Appendix A, and equation (2.1) to
write that

U (To) — Ug = /QG (Tas ) (n(n — ug(z)? 7! — eaua(x)) dx

— 400 as @ = +00 . (5.20)

where G is the Green’s function for the Neumann problem. Since adding a constant
to G does not change the representation above and using the pointwise estimates
of Proposition 9, we get that

Ua (Ta) < o+ /Q (G (za,z) +m()) (n(n — Dug(z)? " — eaua(x)) da

< ﬁa+n(n—2)/ﬂ(G (2, ) + m(Q))ug(x)* 1 da

IN

Ua + C’/ |20 — 2> " ug (2)? " dz .
Q
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Using now Step 3.1, this leads to

U (xa) < U +0 (’I]a (5,),)2*71\/ |xa _ x|27n T (x)f(n+2)'y dl‘)
Q

n+2 _
+0 (w 0= / o — 2| g ()~ HDUY) dw)
{Ta(m)ZRHa}

o </ [0 — P ()2 dm) ’
{TQ(I)SRNa}

for some R >> 1. The first term can easily be estimated since 2 — (n + 2)y > 0.
We get that

o (57 ™ [ o =l (270 e = 0 (30 (6)7 ) = o (5,)

thanks to (5.3). We estimate the second term:

/ |za _ $|27n ’I"a (I)f(n+2)(17'y) df[’
{ra(z)=Rpa}

N
Z/ o s

i—1 {lzi,a—z|>Rpa}

N
10) (Z pl D= g mi7a|2—">
i=1

=0 (Ng—(n”)(l—w)Ra (xa>2*")

~(n4+2)(1-7) g

IN

since n—(n+2) (1 —v) < 0and |20 — Ta| > 3Ra (za) for alargeforall 1 <i < N
thanks to (5.20). The last term is estimated thanks to (2.2), to (5.20) and to
Hoélder’s inequalities by

/ 2o — 2" ug (@) "' da
{TG(Z)SN«X}

=0 (ra (a:a)z_"/ ua(x)yfl da:)
{TQ(I)SP«I}

5
n—2 .
=0 |71, (xa)%" o (/ g (z)? dx)
{ra(®)<pa}

2

=0 (,u;; To, (:Ea)%n) .

Combining all these estimates gives (5.19) in this second case. This ends Step 3.2.2.
As already said, this ends the proof of Step 3.2. O

The proof of Proposition 3 is now straightforward, using once again the Green
representation formula. We write that, for any sequence (x,,) of points in €2,

Ug (To) — Ug = n(n — 2)/9(;(1'6“3;‘) Ug (95)2*71 dx — ea/QG(xa,x) Uq (x) dx .
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Let us write thanks to Appendix A, Step 3.2 and Giraud’s lemma that

|G de = 0(n [ lon -l " Roe i)
@ Q

+0 <ua/ |Ta — x|27n dx)
Q
- 0 (ME R (xa)H) + O (i)

(here one needs to spearate the case n < 4, n =4 and n > 4) and that

n—2
2

/QG(xa,w) Ua (x)yi1 dxzo(ﬂa)JrO(pa R, (xa)27"> .

Note that this last estimate has been proved in Step 3.2.2. Combining these equa-
tions, we get the existence of some C; > 0 and some sequence 8, as o — +0oo such
that (5.7) holds. This proves Proposition 3. O

6. A SHARP UPPER-ESTIMATE

Let us fix some notations. We let in the following

Tia(x) == igiﬁnN |zi.o — 2| and Ri,a(:z:)2 = Zéle_ignN (|:17,7a - £E|2 + ;Lfa) . (6.1)

Note that Ry o(x) = Rq(x) and 71 o(z) = ro(2).

Definition 5. For 1 <i < N, we say that (Z;) holds if there exists C; > 0 and a
sequence B, as a — +0o such that

i—1 i—1 ez
Ua() = tia — ¥ Via(@)| < Ba | ia+ D Ujal@) | +Cip; 2 Ria (@)™ (6.2)
j=1

Jj=1

for all z € Q and all o > 0. Here, V; o is as in Appendiz B.

This section is devoted to the proof of the following :

Proposition 4. (Zy) holds.

Proof of Proposition 4: Thanks to Proposition 3, we know that (Z;) holds. The
aim of the rest of this section is to prove by induction on « that (Z,;) holds for all
1 < k < N. In the following, we fix 1 < k < N —1 and we assume that (Z) holds.
The aim is to prove that (Z,.11) holds. We proceed in several steps. Let us first set
up some notations. In the following, we fix

0<y< (6.3)

n+2°
We let, for any 1 < i < &,

n n;2(

. n=2(1-2
U, o(z) := min {,ui; ( 7)@7 (@i, ) 5 Aol o

3

T (@)} (64)
for x € Q\ {z; o} where

1 —(n—2)(1—
AO : (4R0) (n=2)(1-27) . (65)

"~ DDy,
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Here ®,, ®,_,, D, and D;_ are given by (5.14) and Ry is as in (5.5). With this
choice of Ag, we have with (5.14) that
_n=201_9
Uia(r) = AO.Ui,a = 7)@1—7 (Tiyar T)
n—2
if |#; o — x| < 2Ropti,q. Similarly, U; ,(z) = Hia (
from x; . Note also that we have that

\I/i7a(l')
Usa (@) (Lot 4 hioa

Hi, o |'£1¥,a_37|

1727)4)7 (4,0, x) if z is far enough

ATl <

<A (6.6)

)(n—2)v

for all z € Q\ {7;} and all & > 0 for some A; > 0 independent of a. We also
define

N
o () := max {aa ; uaT(ka} Z Q1 (Tj,0,) (6.7)
i=1
and
N
Oq () 1= D Oy (Tia,2) - (6.8)
i=k+1

We set, for 1 < i <k,
Qi ={zeQst. U (2) >V, (z)forall 1 <j <k} . (6.9)
We also fix Ay > 0 that will be chosen later and we define v;; o by

n—2 n—2 .
2 (1-27) 7 (1-27) Yia
Vg 2 := max ; max su : 6.10
Ko lu’m+1,o¢ ’ 1§i§f€@ p ®a ( )
i,
where
2% —2

Qo =7 € Qast |Tia—2|ta(@) = o — Y Vjalz) > Ay 3 . (6.11)
j=1

In the above definition, the suprema are by definition —oo if the set is empty.
Remark that, in all these notations, we did not show the dependence in  of the
various objects since -y is fixed for all this section.

Step 4.1: We claim that v, o = O (ts,o) when a — +o00.
Proof of Step 4.1: This is clearly true if vy, o = ftit1,0 SiNCE Lkt1,0 < tia-

Step 4.1.1: Let us assume that there exists x, € QW for some 1 < ¢ < K such
that

n—2

\Ili7a (ma) = Vﬁ,?x (1_2’Y)®a (l‘a)

which implies thanks to (5.14) that
v = 0 (Rurna (0a) 7 Wi (@) 72) (6.12)

Since (Z,;) holds and z,, € Qi,a, we also have that

2}{_1 22 uia |Zi,0 *Ioz‘Q
Ay <o(l)+o | |zia —al Z Uj.o(za) +O0 |\ —F"F77— | -
RK,O{ (xa)

j=1
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Noting that

-2
210 — Tal* Uta (za)” 7 = (lml’a ol SR )
i o |zi,a - xa|

and using (6.6), we get since xz, € Q; o that

Kk—1 .
|Zi,a — xa|2 Z Uj,a (xa)z -

Jj=1

Kk—1 4y—2 —4y
=0 Z (|$i,a — T 4 Hior ) (mj,a — Za + Hj,o )
=1 M, |-Ti,oz - xoz| /~Lj,o¢ |xj,oz - xoz|

—0(1)

since v < % Thus the previous equation leads to

Rn,a (ma)Q = O(.un,a |xi,o¢ - 93()¢|) . (613)
If Ry o (%a) = Ret1,0 (Ta), then (6.12) and (6.13) together with (6.6) lead to

_ _2
v = 0 (i wia — vl Wi (2a) 77
2y -1
_ _ xX; — X i
] VP Ll (et L RN R D)
Hi, |xi,a - x(x‘

O 1—vy,,— <x1a — Zq| T i, )371
:U’H,oz Mz,a Ui,a |-ri,o¢ _ xa|

= O (i tia) =0 (ns)

since v < % and i < k so that 1; o > fik,. The estimate of Step 4.1 is thus proved
in this case. This ends Step 4.1.1.

Step 4.1.2: Assume now that R, o (%q) < Re+1,a (Ta) so that Ry o (xa)2 =
|0 — xa|2 + ui,a. Then (6.13) becomes
|Ifi,a - :COL|2 + ,u'i,a = O(,“K,a |Ii,(x - I(x|) . (614)

If i = K, we then get that |2, o — Za| = O (li0)- Since Ruy1.q (Ta) > Realza) >
Wi in this case, we can deduce from Proposition 2, (iii), that

2*—2

K
Tia = Tal” [ta(Ta) = e = D Vja(ta) -0
j=1

as o — +0o, thus contradicting the fact that z,, € Q,a If i < Kk, we write thanks
to (6.6) and to the fact that U, o (x) > ¥y o (za) (since zo € ;o) that

2 — 2y
Uda’ (o) <|x,{,a Zal 4 Hma >

Mn,oz |-T/i,oz - xal

o , 2y
=0 (Ui (2a)7 (Ix““ Tal | Hio )
Hi |$i,(x - xa|
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which gives thanks to (6.14) that

<£En,oz - Ia| + Hr o )27
/J'H,a |x/{,a - xa|
( 2<xia_$a| Hi,o )2’7>
=0 |xia _xa‘Uia(xa)"72 ” + :
’ ’ /f’fi,(x |xi,(x - $u|

|xia _xa| i, st
=0 : + : .
Hi o |xi,oc - xa|

Since v < %, this leads clearly to

< C and 01 < [Pra = %l
/~Li,o¢ - - /1%,04

for some C' > 0 independent of «. This implies that px o = 0 (i) thanks to
Proposition 2, (ii). One then easily deduces from (6.6) that

n—2
\I]i [} leY K,Q 2
y(x):O (M») :0(1)7
\Ijﬁ,,(x (xa) PJl()/
which contradicts the fact that z, € ;. This ends Step 4.1.2, and therefore this
proves Step 4.1. ([l

‘mi,a - xa|

c1l< <C

Step 4.2: We claim that there exists As > 0 such that
0, 23 (1-27) (2-n)(1-)
’U,a(I) < AS Z \I/z,oz(x) + Vi, Tﬁ+17a(m)
i=1

n—2
+ max {ﬂa ; ,LLQTU?QW) } Ta(x)@*")”) (6.15)

for all z € Q\ Uf\;,ﬁ_l BRropi o (Tia)-

Proof of Step 4.2: As in the proof of Step 3.1, the proof of Step 4.2 requires to
distinguish whether we consider points in the interior or on the boundary of .
We only prove the estimate for interior points and we refer to Step 3.1.2 for the
extension of the proof to the boundary. We fix zg € Q and §y > 0 such that
Bs,(xg) CC Q. We let x4 € Bs, (o) \ U?;{H BRrou; . (Zi,a) be such that

Ue (To)
K L—Z(l,g )
Zi:l Ui o (xa) + Uk, K A4 (xa) + Yq (xa) (6 16)
U ’
= sup - =21 1) .
Béo (IO)\U?,:HJA BROM,a (Zi,a0) Zi:l \Iji,a + Vm,?x 904 + "/}a
and we assume by contradiction that
ta (Ta) — t+ooasa— +oo.  (6.17)

=2
S Wi (@a) +vnd 00 (20) + v (a)
Thanks to the definition (6.7) of 1, and to the fact that (Z,;) holds, it is clear that

To (Tq) = 0 as o — 400 (6.18)
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We claim that
|xﬁa _'xal
i o
Assume on the contrary that there exists k +1 < 4 < N such that |z; o — 2| =
O (Wi o). Since |z o — za| > Ropti,o and by the definition (5.5) of Ry, we then get

thanks to Proposition 2, (iii), that u, (z4) = O (le;%) But, thanks to (6.10) and
to (5.14), we also have that

— tooasa—t+ooforallk +1 << N . (6.19)

n—2/q_ o2 i

ez 00, (1) > DT |y, — @O
n—2 _

2 D»;lﬂg(l 27) |xi,o¢ o $|(27n)(17'y)

so that

n—2)(1—
U (0) o <<|xm _ x|)< a v)) o
V;{,Ta(lizv)@a (xa) Mio

thus contradicting (6.17). So we have proved that (6.19) holds. With the same
argument performed with ¥, ,, we also know that, for any 1 <i < &,

|xi,o¢ - xa|

either |z; o — 2o| < Ropti,q Or — 400 as o — +00 . (6.20)

In particular, we can write thanks to (6.16), to (6.19) and to (6.20) (which ensures
that the W¥; ,’s are smooth in a small neighbourhood of z,, see the remark following
(6.5)) that

" 232 (1-27)
Aug (o) > A (Zi:l Via +Vnd ! Oa + 1[%1)

()

- n—2
U (-'L‘a) Zf:1 \I/i,a + VR,TOL(172’Y)C~)Q 4 wa
for « large. We write thanks to (2.1) that
At (x4 .
1;:(;:2)) < nln —2)ug (24)% 72

so that the above becomes

d n—2
A (Z Vi +vnd O+ %) (o)

i=1
22 [ 22 (1-2)
<n(n — 2)uq (Ta) <Z Ui o+ Vo O + 1/’a> (za) -
i=1
Writing thanks to (A), (B) that
1

quia a Z -, N
)= (55—
for all 1 <14 < &k, that

AO, (:Ea) > <]];[D;3r,{+1’a (xa)72 _ ND7> O, ({Ea)

|xi,a - zal_Q - D’y - Dl—’y) \Iji,a (Ia)

and that

B 20) 2 (D% (@) = N1y ) (20
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we get that

0> i (|xi,o¢ - -'L'ocl_2 - Cy — Cry'U/a (l'a)2*_2) \IJi701 (Z‘a)

i=1

*_ n—=2(1_
+ (st (20) 7 = Oy = Cytta (22)” ™) vk 70 ()

+ (Ta (£a) 2 = Cy — Crtn (xa)2*_2) Vo (Ta)

where C, > 0 is large enough and independent of o and §. We let in the following
1 <4 <k be such that z, € €; o. We can then deduce from (6.21) that

(6.21)

0> (|£Ei7a — xa|_2 — kCy — kCyuq (:ca)z*_Q) U o (o)
+ (etta (@a) 7 = Oy = Cya ()" ) wek 00 (ma)  (6:22)

=+ (Ta (ma)72 —Cy — Chuq (ma)yiz) Vo (Ta)
Thanks to (6.7) and to (6.17), we know that

Uy = o(ua (:ca)) . (6.23)
We also know thanks to (6.17) that
Uja (2a) = 0(ua (o)) (6.24)

for all 1 < 7 < k since
ija ((Ea) = O(\I/i’a (l’a))
for all 1 < j < k. Note also that, thanks to (6.19), we have that

Riti1.a (a?a)2 Uj,a (Jca)2*_2 —0asa—+ooforallk+1<j<N. (6.25)
Thus we can deduce from Proposition 2, (iv), together with (6.24) and (6.25) that
Ry (26)° g (ma)2*72 —+0asa—+o00. (6.26)

Thanks to (6.18) and to this last equation, we can transform (6.22) into

0> (|:cwé - $a|72 — kCy — kCyuq (xa)2*72) U o (o)

n—

n (rw}a (@)% = Oy — Coig (xa)z*—2) ez 0 (20) (6.27)

+ (1 + 0(1))7"04 (xa)iz Yo (Ta)
Since (Z,;) holds, we get thanks to (6.23) and (6.24) that

Uy (xa)Q*_2 =0 (ui,QR,@a (xa)_4) ) (6.28)
We claim that we then have that
o ()" 7 = O (2 o Rt (20) ") (6.29)

Indeed, if (6.29) does not hold, then R,.i1.4 (o) = 0(Rk.a (o)) when a — +00
and then Ry o (z4) = \/,ui)a + |Za — Tk,a|?, which contradicts (6.24) and (6.28).
This proves (6.29).

We claim that this implies that

Rit1.a (:Eoé)2 Ug, (xa)?*2 —0asa— +oo. (6.30)
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Indeed, if not, (6.29) would imply that

Rit1,a (r0) =0 (Mrﬁ,a)

while (6.26) would imply that R, (o) = 0 (Rk+1,a (o)), which would in turn imply
that there exists 1 < j < k such that

P 1o = Ra (20)” = 0 (Rutra (7)) = 0 (2.)

which turns out to be absurd since ;.o > ftx,o. Thus (6.30) holds. Note that (6.29)
together with (6.23) also implies that

|Zj,a — Tisa

Rit1,a (Ta) = 0 as a = +00 (6.31)
thanks to (5.4). Thanks to (6.30) and (6.31), we can transform (6.27) into

0> <|wla — xa|72 — kCy — kKCyuq (xa)z*ﬂ) U, o (zq)

n—=

—201_ _
+ (14 0o(1))resro (o) 2 vmd 04 (2a) + (14 0(1))ra (Ta) 2 ta (2a) -
(6.32)
Ifx, & Qi@, we can transform this into
0o > (1 +o0(1) — kCy Az — KO, |z 0 — xa\Q) |0 — xa|_2 U, o (za)
-2 "3 (1-27) -2
+(1 + o(l))r,.H_La (o) "k On (x4) + (1 + 0(1))7’a (0) "o (za)
thanks to (6.23) and (6.24). Up to taking A; > 0 small enough, this leads to
n—=2q__
ra (@) Yo () =0 (2 "7
Thanks to (6.18), (6.7) and (5.14), this is clearly absurd. Thus we have that
ZTo € Q; o. Coming back to (6.32), we have that
n—=2c1_ *_
Vet 0 (10) = O ((ta (20)” 77 1) at1.0 (80)” Wia (20)) -

Using (6.30) and (6.31), this leads to

n—2

Vn,za (1_27)6(1 (xa) = O(\I/i,oz (xa)) )

which clearly contradicts the definition (6.10) of v, o since zo € QW. We have
thus proved that (6.17) leads to a contradiction. Using (5.14), this proves (6.15)
and permits to end the proof of Step 4.2. (]

Step 4.3: We claim that there exists A4 > 0 such that
- = 2 2—n
U () < Ay Z Uia(z) + ta + Ve Reti,a(x) (6.33)
i=1
for all z € Q and all o > 0.

Proof of Step 4.3: We let (z4) be a sequence of points in Q. We aim at proving
that

Ug (To) = O (Z Uia(Ta) + o + V%RKH,Q(J:Q)Q_") ) (6.34)

i=1
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Since (Z,) holds, and distinguishing whether Ry o(z4) = 0(Rx+1,0(2a)) or not, we
already know that (6.34) holds if

/J:,%a Rn+1,a (xa)an = O(Ui,a (xa))

for some 1 < ¢ < k. Thus we can assume from now on that

R/@+1,o¢ (xa)z =0 (,ui,ozl/%,oz) +o (IU% = |xz a 1'04|2> (635)

[Ne"

for all 1 <4 < k. This implies in particular that, for « large,
Ry (o) = Ret1,a (o) = 0(1) . (6.36)

Using Step 4.1 and (iv) of Proposition 2, we also get that (6.34) holds as soon as
Rit1.0 (2q) = O (Vs,o). Thus we can assume from now on that

Rrita(a) — 400 as @ — +00 . (6.37)

Vi, a

We now use the Green representation formula to estimate u, (z,). Asin Step 3.2.2,
we write that

Ug (Ta) < Uy +n(n — 2) /Q(G (Za, ) + m(Q))uq ($)2*71 du

since u,, satisfies equation (2.1). This leads to
oy () — Ty < Com(n — 2)/ o — 2 e () "V dz. (6.39)
Q

Noting that rx+1,0(2a) X Ret1,a (o), we write thanks to (6.37) and to Step 4.1
that

2-n 2% _1 _ 2 2-n
‘xa — gj| Uq (Jj) dr =0 Vik,a Rn-‘rl,a (Jfa)

(6.39)
using Holder’s inequalities and (2.2), where Ry is as in Step 4.2. Noting that

~/{I€Q, Tet1l,a(T)SRoVe o}

N

U BRom,a (xi,a) - {;L‘ € Qa Trh+1l,a (l’) < ROVH,O&}?
i=k+1

we write now thanks to this last inclusion, to (6.39) and to (6.15) that

/ |Ta — 2| " ug (2)? ! da
)

=0 <Z/Q |20 — 2?7 Wy 0 (2)° dw)
i=1

n+2
vo (30 27)/ (e — 2P " rap e ()" TDA) gy
{z€Q, ret1,a(x)>Rovi,a}
« ni2
+0 (max T T (1= 27 / 2o — 2?7 v (z) " (DY dm)

n—2 2-n
+O (Vrc, N+1 «@ a) ) .




LIN-NI'S PROBLEM 31

Here all the integrals have a meaning since v < We write that

n+2

/ |Ta — x|27n Th+1,a (x)i(n+2)(liw dx
{z€Q, 7h11,0(T) >V o}

N

i=rt1 {z€Q, |zi,a—x|>Vk,a}
N
- ( > v = w)
i=k+1

_ O( n—(n+2)(1-7) g il (xa)2_">

since 7 < —=5 and thanks to (6.37). We can also write since v < %5 that

/ (e — 22" ra ()~ DY 4 = O(1)
Q

and that
+2 (1—

g2 )—o(aa)+o<u?2>=0(ﬂa)

thanks to (2.3) and (5.4). Collecting these estimates, we arrive to

/ |Za — 2?7 ta (3:)2*_1 dx
Q

=0 (Z/ |zg — " U; o (513)2*_1 dx)
— Jo

+o (o) + O (l/ﬁ ;2 Rit1,0 (:ra)%") .

Since v < n+2, we get that (see Step 13.2 in the proof of Proposition 13 in Appendix
B for the details)

/ |Ta — x|27n Vi (33)2*71 dr = O(Ui,a (xa))
Q

for all 1 <4 < k. Thus we have obtained that

/ [T — I\Q_n U (x)T_l dx
Q

k
- O (Z Ui’a (xa)> + O(EQ) + O (V:,%anJrl,a ($a)27n) .
=1

Coming back to (6.38) with this last estimate, we obtain that (6.34) holds. This
ends the proof of Step 4.3. O

Step 4.4: We claim that there exists A5 > 0 such that for any sequence (x,) of
points in €2, we have that

Uy (xa) - 7-_Loz - Z Vvi,oz (xa)
=1

n—2

< Asvied Ritia (xa)Q_” +o0(tg)+o (Z Uia (xa)> .

(6.40)
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Proof of Step 4.4: Let (z,) be a sequence of points in 2.
Step 4.4.1: Assume first that
Rit1.0 (o) = O (Vko) when a — 400 and Ret1.4 (%) = Ra (za) -

We can apply Proposition 2, (iv), to write that

N

Uq (To) — U — Z Ui,a (Ta)

i=1

2-1
Rn+1,a ((Ea) 2

=o(1).

This leads to

K N
(9 (xa) - ﬂoz - Z Ui,a (xa) S Z Ui,a (xa) +o (Rn—i-l,a (3304)17
i=1 i=k+1

Noting that, for any k +1 <17 < N,

n—2 9 9 1-3
Uia () = /J'i,é <|xi,a — Za|” + Mi,a)
n—2 29—
S ﬂi,; R/ﬁ»l,a (xa) "
n—2 2—n
< ﬂnil,aRH+1,a ((Ea)
n—2
S VN,?I Rﬁ—&-l,a (za)27n

thanks to (6.10), we then get that

K

Ug (To) — U — Z Ui, ()

i=1

Thanks to (6.41), we also know that

n—2

Rii1.a (xa)k% =0 (l/,{fa Rit1,0 (xa)zfn) )

We then get that

Ua (To) = Ga — Vi (Ta)

=1

n-2 _
S NVH,?X RK+1,()L (xa)2 " +o (Rn+l,o¢ (xa)

(6.41)

kg) .

<OV Riyra (10)""+ D |Usa (2a) = Via(za)| -
=1

(6.42)

We are left with estimating |U; o (2q4)—Vi,a(2q)| when o — oo foralli € {1, ..., x}.
We use the estimates of Proposition 13 and we let ¢ € {1, ..., k}. We have that

n—

Uz’,a (xa) - ‘/;,a(‘ra) = O(Ui)a(ﬁﬂa)) =0 ( i o >

2 .2
Hi o + |'r04 - ‘/EZ,Ol|
n—2
2
Mi,a _n—=2

O | min

. Ky
= O | min I
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Using (6.41) and Ry (za) = Rut1,o(Za), we get that

"o "2 n—2

. Hi,a 2 Vi,a ’ Vr.a
U; -V = 0 : ! Rorio(za)2
o)t = 0w (22) ©(32) )

Ui,a (xa) - W,a(wa) = 0 (m) (643)

Plugging (6.43) into (6.42) yields (6.40) up to take As large enough if (6.41) holds.
This ends Step 4.4.1.

Step 4.4.2: Assume now that
Rit10(a) = O (Vk,a) when a — 400 and Ry (Ta) < Ret1,a (Ta) - (6.44)
Then there exists 1 < i < k such that
(Ti0 — Tal® + 12 o < Rutra (@)’ = O (12,)

thanks to Step 4.1. This implies that p; o = O (ts,o) and that |z;4 — zo| =
O (fr,o) when a — 4o00. This also implies that Rut1.q (Ta) > . Since we have
that p o < fi,q, using Proposition 2, (ii) and (iii), we then obtain that

[ua (o) = Uia (Ta)| = O(U@a (xa))
and that
1-%

:ui,a = O(Ui,a (xa)) . (645)

This leads in particular to

Ua (Ta) = o = Y Uja (€a)| = 0(Uia (za)) + O > Uja(za)
Jj=1 1<j<k, j#i
Now, for any 1 < j < K, j # i, we have that

n—2

- n—-2 2 1-3
Hi o Uja (Ta) = (fiakja) ® (|xj,a_xa‘ +/~L?,a>

2 1=
. <W+M> — o) (6.46)

Hialbj o Hia

©l3

thanks to Proposition 2, (ii), since ft;.o = O (ltr,o) and fig o < fjq. In particular,
(6.45) and (6.46) yield

Ujva(xoz) = O(Ui,a(za)) (647)

when o — 400 for all 1 < j < k, j # 4. Thus we arrive in this case to

Ug (To) — Uo — Z Uja (@a)| =0(Uia (za)) - (6.48)

j=1
To obtain (6.40), we need to remark that, thanks to Proposition 13 and (6.47), we
have that

Uj,a(xa) - ija(xa) = O(ija(xa)) = 0(Uia(z4a)) (6.49)
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when o« — 400 for all 1 < j < k, j # i. Concerning U, o(z,), we refer again to
Proposition 13: if z;  is such that case (i) or (ii) holds, then U; o(24) — Vi o(2a) =
0(Ui,a(74)) when o — 4o00. In case (iii) of Proposition 13, we get with (6.45) that

n—2
2

Usa(a) = Via(za) = O ( Fio ) +0(Usa(za)) + O 2 )

,uf’a + d(z; 0, 002)2

n—2

= O(Ni_,a * ) +o(Uia(za)) = o(Uia(za))

when o — +oo. Therefore (6.49) holds for all j € {1,...,k}: associating this
equation with (6.48) yields (6.40) for any choice of As > 0 if (6.44) holds. This
ends Step 4.4.2.

Step 4.4.3: From now on, we assume that

Rm+1,a (xa)

Vi,

— 400 as @ — 400 . (6.50)

As a preliminary remark, let us note that

rli-i-l,a(a) = RH-&-La(ma) (651)

for large «’s (the argument goes by contradiction). We use Green’s representation
formula and (5.4) to write that

U (xa) - 'Z_/Ja - Z ‘/i,a (xa)
=1

<n(n-— 2)00/ [T — aj|2_n dx (6.52)
Q

Ug (aj)Q*—l _ Z Ui,a (.1',')2*_1
=1

—i—Coea/ Za — 2° " ta (2) da + 0 (tia) -
Q

Let us write thanks to (6.33) that

- n—2 _
/ |2a — 2° " uq (z) da < A4ZM‘,; / |zo — 2> " (|xla —a*+ Mz%a) * da
Q — Q

n

2-n nz I 2-n 2 2 \'7%
+A4ﬂa/ w0 — 2P do + Agvd Y / |Zo — | (\xa —z]* + ua) dx
Q i=r 179

n

Pon-2 1-3
=0 <Z“i,<21 (‘xla *xa|2+ﬂzz,a> 2) + O (ta)
i=1

w2 NV 1—2
+0 <ua > (|xi,a—ma\2+uia) )

i=k+1

=0 <Z Ui.a (xa)> + O (o) + O (Vf:,Tij-&-La (xa)Q_n> .
i=1



LIN-NI'S PROBLEM 35

Thus (6.52) becomes

K

U (fa) - ﬂa - Z V;,a (xa)

dr  (6.53)

e, (;z:)T_l _ Z Ui (x)Q*_l
i=1

i=1
<n(n-— 2)00/ [T — x|2_n
Q

+o0(ta) + 0 <Z Ui (ma)> +o (Vi:%:RnJrl,a (xa>2_n) .

i=1

Thanks to Proposition 2, (ii) and (iii), there exists a sequence L, — 400 as o —
400 such that, for any 1 <17 < &,

Uy — U;
& ha —0asa— 400

Uia L2 (Q2;,4N8)

and
Sies L. U;
1<5< Ja
‘ SISk, j7 —0as a— 4+

Uia L (Q4,N8)

where

Qi)a = BL(in,a (./Ei,a) \ U Biu’i,a ('/I:Ja)

and such that these sets are disjoint for « large enough. Then we can write that

K
R i RS SN P
QI'TQLQ j=1

=0 / |To — :c|27" Uiya(:c)z**l dx
Qﬁﬂiya

=0(Uj,a (za))

for all 1 <17 < k. We also remark that
/ (0 — 27" Uia(2)* " dz = o(Uia (za))
Q\Qi o

for all 1 <4 < k. Thus, using (6.33), we transform (6.53) into

U (xoz) - ﬁa - Z ‘/i,a ((EQ)
i=1

n+2
< Cria

|To — :c|27” Rii1,0 (:c)f(nJrz) dz

\/Qr‘l{m+1,a(1)>l’n,a}

+0 / 2o — 2* " ua ()2 " da
QN {res1,0(x)<Vi,a}

+0(tg)+o0 (i Ui (xa)> +o0 (V,:%azRHH,a (xa)Q_") .

i=1

(6.54)
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Following the proof of Step 4.3, it remains to notice that

/Q [t (@) }|wa-—a42”?Rn+La<xy*”+2>dx
M{Tr+1,a(T) 2Vk o
N _1-n
<Y/ ta =l (Jria —al?+12,)  do
i=rt1” Br(zio)N{|2—2i,a>Ve,a} ’

Fix ¢ > k 4+ 1. Assume first that
1i ‘xi,a - xa|
im ——

a—+00 Ni,oc

= +o00.

Then, we get with changes of variables that
—1-n

/ ra — " (fria — ol +da)  do
BR(xi‘a)m{‘x_mi,a‘ZVw,a}

< / |To — x|27" |70 — m|7(n+2) dz
BR(wi,a)m{lm_li,a‘zym,a}
Tiag—T v 2
= |ZTia — Ta 27”1/;?!/ |z| 727 | 222 @ 522 dz
B R |Zia — Zal  |Tia — Tal
. — _ -2

= O|zia = wal* "1 2) = O (Vi (1950 — 20l + 12a) 77)

when o — +00. Assume now that
|Ti,a — Ta| = O(Hi,a) (6.55)
when a — +o00. With the change of variables = := x; o + f1i,o 2, We get that
_ -1-3 _
/ 2o = ol (Jia o +4da) T do=0(2)
Br(zio){|z—2i,a|>Ve,a}

when a — +oo. It follows from (6.55) that Ret1,q4(2a) = O(i,), and then, with
(6.50), we get that v o = o(p;,«) and then

2-n 2 o \“l7%
o —al* " (loia =l +4d,) da
BR(xi,a)m{lx_xi,a‘ZVn,a}

= 0(2"v2) = 0 (V2 (Jmia — mal® + 12.) %)

In all the cases, we have then proved that

n

2—n 2 2 —1=3
20 ol (J2ia ol +4da) T do (6.56)
BR(xi,a)m{lx_xi,a‘ZVm,a}

_ 1-z
=0 (Vn,i (‘xi,a - CL’a|2 + :u’zz,a) 2)

when o« — +oo for all 4 > k + 1.
independently, using Holder’s inequality and (6.51), we have that

* n—2
To — 2] " U (@) T de = O(Wn? Tesra(®a)?™)  (6.57)

/fzﬂ{rn+1,(x(w)<um,(y}
when o« — +o00.

Plugging (6.56) and (6.57) into (6.54), we get that (6.40) holds up to take A5 large
enough if (6.50) holds. This ends Step 4.4.3.
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Plugging together Steps 4.4.1 to 4.4.3, we get that (6.40) holds up to taking As
large enough. This ends the proof of Step 4.4. (]
Step 4.5: We claim that v, o = O (Ux+1,o) when o — +o00.

Proof of Step 4.5: We proceed by contradiction and thus assume that, up to a
subsequence, there exists 1 < i < k and z, € Q;, such that (see the definition
(6.10))

n—2 _
l/ﬁ,?l (1 27)904 (xa) - \Iji,a (xoz) . (658>
Since z,, € Qiﬂ, we also have that
2% -2
|Ti,0 — xa|2 Ug (To) — U — Z Via (za) > Ay (6.59)

j=1
At last, since z, € €); o, we have that
\I/j,oz (l‘a) S \I’i,a (Ia) (660)
for all 1 < j < k. In particular, we can write thanks to (6.6) that

* _ *
‘xi,a - xa|2 Uj,a (xa)Q ? S CA%* 2 |xi,o¢ - xa|2 \Ili,a (xa)Q 2

* * . — . 4’Y
S CAf(Q -2 |1'i,a - xa‘Q Ui,a (1’@)2 -2 <|x2,a xa' -+ Hio >

Hia Ixi7a - -ra|

4y—2

< CA%(z*fz) <l‘z‘,a - 30a| + i, ) 7 < CA?(Q*fz)
Hi, o |xi,a - xa|

for all 1 < j < kK since v < % Applying (6.40) to the sequence (z,) and coming

back to (6.59), we thus obtain that
Ay < A§*72 %0 — xa|2 V:%,ozRK+La (xoc)74 +o(1) .

This leads to

Rt (Ta)? = O (Ve |[Tia — Tal) - (6.61)
Using (5.14), we can write thanks to (6.58) that
Vi = 0 (Wia (82) ™7 Rusra (2a)*0 ) (6.62)

which leads with (6.61) to
v =0 (\I/i,a (ma)% |Ti 0 — ma\lfv) .

It is easily checked thanks to (6.6) that this leads to |z; o — 4| = O (Vo). Since

Vg,a = O (i) thanks to Step 4.1 and since z; 4 — o # 0(fi,o) When a — 400,
this leads in turn to

Hia = O (|xi,a - 3504|177 V;Z,a) =0 (Vn,a) =0 (:“ma) .
Thanks to (6.62), we have obtained so far that |z; 4 — Za| = O (ti,a), that p; 6 =
O (pr,o) and at last that p;q = O (Ret1,0 (Ta)) using again (6.62). Note that
since fiiq X fr,o, We have that p; o = O(p),«) for j < k when o — +o00. Using
Proposition 2, (ii) and (iii), we then get that
2" 2

K
|$i,a—xa|2 Ug (xa)—ﬁa—ZVjﬂ (za) —0as a — +oo,
j=1
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thus contradicting (6.59) This ends the proof of Step 4.5. O

Steps 4.4 and 4.5 give that, if (Z,) holds for some 1 < K < N — 1, then (Z;41)
holds. Since we know that (Z;) holds thanks to Proposition 3, we have proved that
(Zn) holds and thus we have proved Proposition 4. O

7. ASYMPTOTIC ESTIMATES IN C* (Q)
In this section, we prove the following;:

Proposition 5. There exists a sequence B, as o — +00 such that

N N
Uq — 'aa - Z ‘/i,a S ﬂa (ﬂ(x + Z Ui,a) (71)
=1 =1

for all z € Q and all o > 0. In addition, there exists Ag > 0 such that

-1

N
n—2 -
Vo (@)| < o(ita) + As > 12 (1o + lwia —af) (7.2)
i=1

for all z € Q and all o > 0.
Proof of Proposition 5: We first prove the pointwise estimate on u,. Then we will
prove the pointwise estimate in C'* (Q)

Step 5.1: We claim that there exists a sequence 8, — 0 as a — +o0o such that
(7.1) holds. In particular, there exists C' > 0 such that

n—2
2

N 2
_ i,
U () < C | tg + E <M2 n |$a_ - |2> (7.3)

i=1

for all x € Q and for all & € N.

Proof of Step 5.1: The proof of (7.1) goes as in Step 4.4. We omit the details. The
estimate (7.3) is a consequence of (7.1) and the inequality (11.33) of Proposition
13.

Step 5.2: We claim that (7.2) holds.

Proof of Step 5.2: Green’s representation formula yields

U (T) — U = /QG(;E, ) (ui*_l - eaua> dy
for all x € Q2 and all « € N. Differentiation with respect to x yields
/QVxG(a:,~) (ufﬁl — eaua) dy‘

/Q|VIG(:U, I (ui*_l + eaua) dy

Plugging (7.3) and the estimate of V.G of in (11.5) of Proposition 9 yield (7.2):
we omit the details.

Vg (2)]

IN

IN

These two steps prove Proposition 5. (]
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8. CONVERGENCE TO SINGULAR HARMONIC FUNCTIONS

8.1. Convergence at general scale. We prove the following general convergence
result

Proposition 6. Let (uq)aen € C?*(Q) such that (1.3) and (1.4) hold. Let (z1.4), ..., (Tn.a) €
Q and (p1,0), - (UN,a) € (0,+00) such that (7.1) holds. Let (zo)aen € 2 and
(ta) aeN, (Ta)aen € (0,+00) be sequences such that

(i) limg— oo o = 0 and po = o(ry) when a — +00,
(11) 7o % i when oo — 400 for alli € {1,..., N} such that z; o — zo = O(ry)
when o — 400,
(iii) r" 2, = O(u;%z) when o — +00,
(1) pio = O(pe) when a — +oo for all i € I where
I={ie{l,. . .N}/2x;0 — 2o =0(ry) and p; o = 0(ro) when a — 400},

(v) 2150 = O(pa (17 o + 2o — Ti,0|?)) when a — +oo for all i € I¢.
Then we distinguish two cases:
e Case 6.1: Assume that

lim 7d(za,3§2) = +00.
a—r+00 Ta
We define
n—2 _
Vo () 1= —SFuq (o + rax) for all xz € Ta (8.1)
fa® Ta
Then,
. _ . _p.12—n 2 n /g
all}r_sr_loo vo(x) = K + ; iz — ;] in Ci(R*"\ {0;/i€eI}) (8.2)
where
I''={iel/ o=t} (8.3)
and
f; := lim Tia ~ %o forallie I and \; >0 forallieT'. (8.4)
a—+0o0 "o
And

n—2

r2q r2u-
K= lim =24 5 lim alta 8.5
oy | 9

n—=2 2 2
a—4o00 a—+oo \ Lo (s  —+ | ZT;
[ ’LEIC a( 7,00 | [0 7,

with 7, > 1 for all i € I€

e Case 6.2: Assume that
lim d(xq,00)

a——+00 Ta

=p € [0, +00).

Then there exists ©o € 02 such that limgy_, 4o 2o = xo. We take ¢, Uy, and the
extension U, as in Lemma 2. We define

7,.77,72

Vo () = S5 lia © o(p N za) + rox) for all x €

Ha®

9071(Uxo> — ¢ ' (2a) '

Ta

(8.6)
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Then,
im (o) = K+ 30 (e8P o —oB)]2 ) in Clo(R\{B, 08/ € 1))

iel’

(8.7)

where K >0, I', \; are as above,

~ N |

f; = lim P (Tia) = 97 (Ta) foralliel

a—+00 "o

and o : R™ — R"™ is the orthogonal symmetry with respect to the hyperplane {x1 =
p}, that is
o(z1,2") = (2p — x1,2") for all (xq,2") € R™. (8.8)

Proof of Proposition 6: As in the statement of the proposition, we distinguish two
cases.
Case 6.1: we assume that
d(xq, 080
lim d(@a, )
a—+00 To

= +00. (8.9)

We let R > 0 so that, for « € N large enough, it follows from (8.1) that v, (x)
makes sense for all x € Br(0). We fix € Bg(0). It follows from (7.1) that

20, N "2V o (T + "o
va<x>—<1+o<1>>< sy te Teltetrtl) ()
Ma2 i1 ’uaz
when a = +00. We estimate the right-hand-side with Proposition 13. We have to
distinguish whether 7 € I or not

Step 6.1.1: Let i € I. We define

91‘,,(1 — Tia — Lo

T
for all @ € N. In particular, limy_4o0 05,0 = 6; where 6; is defined in (8.4).
Therefore

n—2
172U, o (T + 7o) _ WiaT2 ?
M:Td lla(,“%,a +|Ta = Tia +1azl?)
n—2
5
_ Hi,a
= 2

N T 7770 S W
_ (aﬂloo(ua) )1‘ B2 +o(1) (8.11)

for all z € Bg(0)\{6;} when o — +00. Note that these quantities are well-defined
due to point (iv) of the hypothesis of Proposition 6.

Step 6.1.2: Let ¢ € I€ such that

‘xi,a - $a|

lim
a—+00 Ta

= +o00.
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Let ag € N be large enough such that |z; o — zo| > 2Rr, for all & > ag. Then
[Ta = Tia + Tat] = |Tia — Tal| < ralz| = O(ra) = o(|2a — Tial)

when o — 400 and uniformly for all z € Bg(0). Therefore, we have that

n—2
Tg_QLha(xa'+Tax) _ Nharz
N§%2 ﬂa(ﬂia'+|$a'_xha‘kraxp)
n—2

(1+0(1)) < HioTa ) 2 (8.12)

Ho (17 o + 70 = Tial?)
for all x € Bg(0) and all & € N.
Step 6.1.3: Let ¢ € I¢ such that
|0 — x| = O(rq) when o — +o0.

Since i ¢ I and points (ii) and (iv) of the hypothesis of Proposition 6 hold, we then
have that 7o, = o(;,o) when o — +o0: in particular, |4 — ;o] = 0(fti,o) When
a — +o0o. We then get that

72U, o (T + 7o) _ ( [hi,aT2 )

pz fro (12 o +0(p2 )

n—2

n—2

_ (1+o(1))< HiaT ) (8.13)

,uoc(/%z,a + |xi,a - xa‘Q)

for all x € Bg(0) and all & € N.
Step 6.1.4: Let i € {1,..., N}. We claim that

e (i
Ha
when a — 400. Indeed, it follows from Point (iii) of Proposition 2 that
n-2 * *
p, 2 <C u tde < C | wE tde = Cea/ U dx = 0(TUy,) (8.15)
' QNB, , (ia) Q Q

when o — +o0o. Therefore, (8.14) follows from point (iii) of the hypothesis of
Proposition 6.

Step 6.1.5: We let ¢ € {1,..., N} such that the hypothesis of point (iii) of Propo-
sition 13 hold. Since 77;1(331-,@) ¢ Q, we have that |z, — ﬂ;l(.ﬁi,a” > d(xq,00).
Moreover, since (8.9) holds, we have that

n—2
Tg_QUi,a(xa + 7o) = Mi’arz 2
ja Ha(lF o + o + Tat — 757 (21,0)]2)

2 2
Hi,aTq
(140(1)) S
Ha (1 o + |20 = 75" (21,0)[?)
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Assume that ¢ € I: in this case, we have that p; o = O(uq) when o — +o00. Since

in addition |zq — 7 (24,0)] > d(24, ) and (8.9) holds, we have that

— 277
lim 02U 0 (T + 7o)
a——+o0o

=0ifiel. (8.16)

n=2
o
Assume that i ¢ I. Since 2o — ia| = O(|za — 7, (ia)]) When a — +o00, we
have that

n—2

n_20i a\La « [Re" 2 o
,r‘ot ) Elqiz + T .13) — O 5 Il'l/ ) TOA 5 (817)
Lo ,ua(l%',a + |20 — Zial?)

when o — +o00.

Plugging (8.11)-(8.17) into (8.10) and using Proposition 13, we get that
lim wv,(z) = K + Z iz — 0;)>™ (8.18)

a—+00
iel’
for all z € R™\ {6;/i € I}, where K, I, 0, and \; are as in (8.3), (8.4) and (8.5).

Moreover, as easily checked, this convergence is uniform on every compact subset
of R*\ {6;/i € I}.

Step 6.1.6: We claim that (8.2) holds. We prove the claim. It follows from
equation (1.3) that

Ta «

2
Avg + 12 €0 = n(n — 2) (““) 02 =1 in Bg(0) (8.19)

for all @ € N. Since p = 0(r,) when a — +o0, it follows from (8.18) and standard
elliptic theory that (8.2) holds. This proves the claim.

This ends the proof of Proposition 6 in Case 6.2.

Case 6.2: We assume that
(2o, O)

I — =
with p € [0, 400). In particular, lim,— 1o To = o € IQ. We consider the domain
Us,, the extension g of the Euclidean metric &, the chart ¢ and the extension
defined in Lemma 2. Let R > 0 and let a > 0 large enough such that

Br(0) C 3 (97! (Usy) = ¢ (2a))-

Let us define (21 4,)) = ¢ (z4) with 1 , < 0 and 2/, € R*~1. Therefore, as is
easily checked, we have that for any x € Br(0),
-1 o 21,0l
oo™ (xa) +r0x) €Q & 21 < =
«@
We consider the extension #, of u, defined as in Lemma 2. In particular, the maps
@, ™, T, Ty, T, refer to the point zg. Given i € {1,...,N}, it follows from the
properties of the V; ,’s (see Proposition 13) that

2

Via(m; (@) = (1 4+ 0(1))Via(@) + O, 2 ) (8.20)
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when o — 400 uniformly for x € Uy, (up to taking U,, a sufficiently small neigh-
borhood of xy in R™). Therefore, it follows from (7.1) that

N
o (2) = (1+ o(1) <u + Zm,a<x>>

when o — +oo uniformly for x € U, N . Consequently, using (8.20) and (8.14),
for x € Br(0), we have that

7nn72ﬂ0‘ N 7nn72 " o x1 a’x/ T o
@a(x)(uo(l))( a4y = Via(#((@1.0,20) + ))> (8.21)

n—2
2

when o — +o0 uniformly for € Bg(0). Here again, we distinguish whether i € T
or not.

Step 6.2.1: we fix i € I¢. Then there exists 7; > 1 such that

n—2
n_2‘/i a « : feY [Ne" 2 ’
T'a ) ((p((x}kg ‘Toc) + 7 LL’)) _ (1 + 0(1))7_1 . Hi,aly 5
fa? Ma(ﬂi,a + [Ti0 — Tal?)
(8.22)

for all x € Br(0) and all « € N. The proof goes as in Case 6.1 above and we omit
it.

Step 6.2.2: We fix i € I. Mimicking what was done in Case 6.1.1, we define

~ 71 . —_ 71 ~ ~
0; o = P (i) = ¢ (Ta) and #; := lim 6,
Ta a—r—+o00

)

for all ¢ € I. Using that dyg is an orthogonal transformation and proceeding as in
Step 6.1.1, we get that

n—277. / . "772 N
ra” Uia(p((@1a, ) £ 7a2)) _ ( lim <“”a> ) & — 6;>" +o(1) (8.23)

fa

n_2 a—+oo Ko

for all z € Br(0)\ {6;} when @ — +oc0. Here again we omit the proof and we refer
to Step 6.1.1.

Step 6.2.3: We fix ¢ € I. In particular, limy— 400 Zi,a = To. We assume that
Zi,o & OS) for all o« € N. We then have that

2

rZ_Qﬁi’a(gp((xl,mx;)+7"a33)) _ ( ,U/i’a'r'i (>S21)

par P (17 o+ 10((@1,0,20) + Tat) = 75" (i,0)[2)

for all @ € N and all z € Bgr(0). Here, note that since we work in a neighborhood
of o, we use the maps ¢, 7 defined above. We define ((zi,0)1,2},) == ¢ ' (2i,a)
for all & € N. We have that

(@10, 70) + 7a) = 15 (@i0)] = [9((@1,0,75) + 1a2) — @01 (21,0, 70) + Tabia)]
= (1+0(1))(21,0,70) + oz = 7 (@10, 20) = T (fi0)]

(zxrl"“ , 0> vz -1 0;0) (8.25)

[e3%

= (1 +o(1))ra
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independently, since dpg is an orthogonal transformation (this is due to the choice
made in Lemma 2), we have that
d(za,00) = (1+ 0(1))|x1,q] (8.26)

when o — +o00. In particular,

lim 210 =p

a—+o0o Ty

Since z1 o < 0, plugging together (8.24), (8.25) and (8.26), we have that

n—2 a—too e

o
when o — o0 uniformly on compact subsets of R \ {o(6;)}.

Step 6.2.4: Given i € I’, we define

n—2
. Mia) 2 if x; 0 €00 foralla € N

A= lim | —— . e

a—+oo \ g ifx; o €0QforalaeN

It then follows from (8.21), (8.22), (8.23), (8.27), Step 6.1.4 and Proposition 13 that
lim () = K+ S Al — 62" + o —o@)F")  (3.28)

a—r+00
iel’

W=

uniformly for all z in compact subsets of R\ {0;, 0(6;)/i € I}, where K is defined
in (8.5). We define the metric g, := (0*3) (¢ (za) +rax) for x € r (=1 (Uy,) —
¢ Yz4)). With a change of variables, equation (1.3) rewrites

2
~ 2~ Ha '\ ~ox_1
Ng Vo + €aT3 00 = <7‘> o,
(63

weakly in Br(0). It then follows from standard elliptic theory that (8.28) holds in
CJ .. This proves (8.7), and this concludes the proof of Proposition 6 in Case 6.2.

Proposition 6 is a direct consequence of Cases 6.1 and 6.2. ([
8.2. Convergence at appropriate scale. We fix i € {1,..., N}. We define

Ji ={Jj # i/ ti,a = O(1tj,o) when oo — +00}.
We define also

1 1
L 1
. Hia : Mia (,,2 2y 2 :
min ¢ —y-, minje j, (H:‘ 2 (K50 + [Tj0 — Tial )) if 25 € 00
. as '
Si,a += % 1
: Hi o e Mi, o 2 . . 2 2 . i :
min 4 —-, minj e, (Hm (1 o +1Tja —Tial?)) d(Ti0, 0Q) if ;o & ON
al

(8.29)
Applying Proposition 6, we get the two following propositions:

Proposition 7. Leti € {1,..., N} and assume that
d(l‘i@” 89)

Si,a

lim

a—r+00

= +00



LIN-NI'S PROBLEM 45

For x € sfé(Q — T ), we define

Via(T) 1= g Ua(Tiq + Siak).
i o
We define
L ={je{l,...N}/2ja—Tia=0(siq) and pj o = 0(s;,o) when o = +0o0}
and
6= lim_ 7”“8;”“ forall j € 1.

Then there exists v; € C*(R™\ {0;/j € I,}) such that
lim ;o =v; in Ch (R"\ {0;/7 € I,}). (8.30)

a—+00
In addition, there exists K > 0 and X\; > 0 for all j € I] := {j € I/ pti,a < lja}t
such that
vi(z) =K+ Nl —0;>7" for all x € R\ {0,/ j € I}. (8.31)
jEI!
Moreover, there exists § > 0, there exists N; > 0 and 1; € C?(Bas(0)) harmonic
such that

!
vilz) ==

= W +;(z) for all x € Bas(0) \ {0} with 1;(0) > 0. (8.32)
Proposition 8. Leti € {1,..., N} and assume that
(3.0, 09)

Si,a

lim

a—+00

=p € [0,+00).

In particular limqg s 1 oo Ti 0 = o € 0S2. We let ¢ be a chart around xo as in Lemma
2. Forz € S;é(Q — Tia), we define

n—2
172’,&(35) = Zﬁz Ug © @(‘P_l(xi,oz) + 8i,a).
Hia
We define
L ={je{l,..N}/zja0—2ia=0(sia) and f1; o = 0(S;,o) when a — +oo}
and ) .
G, = lim P Gae) 20T (@ia) p g (8.33)
a—+00 31-7(1

We define o(x1,2") := (2p — x1,2") for all (x1,2") € R". Then there exists v; €
C*:R"\{0;,0(0;)/j € I,}) such that
lim 'Ei,a =0; n CllocaRn \ {5],0'(9])/] S Il}) (834)

a——+o0o
In addition, there exists K > 0 and X\; > 0 for all j € I] == {j € I/ pti,a < lja}
such that
171(1') = K+Z )\j (|CE — éj|2—n —+ |£L' — O'(éj)P_n) fO’/‘ all T € R"\{Gj,a(éj)/] S Iz}
JEI;
(8.35)



46 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

Moreover, there exists § > 0, there exists N, > 0 and ¢; € C?(Ba;s(0)) harmonic
such that
hV ~ -
Bi(2) i= —is + Py(x) for all & € Bas(0) \ {0} with 15;(0) > 0. (8.36)

- |$‘"

Proof of Propositions 7 and 8: We apply Proposition 6.

Step 7.1: we claim that points (i) to (v) of Proposition 6 hold with
Ha = [io and 7o 1= 8; o for all @ € N.

We prove the claim.

Step 7.1.1 We claim that (i) holds.
We prove this claim via two claims. We first claim that

lim s;,=0. (8.37)

a—r—+oo
We prove the claim. Indeed, it follows from the estimate (8.15) and the definition
(8.29) of s; o that

n—2

o Hia
sio? < 2% < Cey = o(1) when a — 4o0.
: T

This proves (8.37). This proves the claim.
We claim that
Wioo = 0(Si,o) Wwhen oo — +00. (8.38)
We prove the claim by contradiction. Assume that s; o = O(p;,) when o — 4o0.
Since limq— o0 u;éd(zi7a,89) = 400 if z; o & OQ (see Proposition 2), it then
follows from the definition of s; ,, that there exists j € J; such that
u?’a +|Zj0 — xi’a|2 = O(pi,altja) when o — +o00. (8.39)

In particular, pjo = O(tio) When @ — +oo. Since j € J;, we then get that
Wia = fhi,q When o — 4o00. It then follows from (8.39) that ;0 — i = O(fi,a)
when o — 400. A contradiction with point (ii) of Proposition 2. This proves that
(8.38) holds. This proves the claim.

These two claims prove that (i) holds. This ends Step 7.1.1.
Step 7.1.2: Let £ € {1,..,N}. We assume that x4 — ;o = O(S; o) When
a — 4o00. We claim that

Si,a & Pk,o When a — +o00. (8.40)
We prove the claim by contradiction and we assume that

Si,a X [k,q When o — +o00. (8.41)

Since ;0 = 0(8i,o) When a — +00, we then get that p; o = o(uk,o) when o — 400,
and therefore k € J;. It then follows from the definiiton of s; o, that

P € (1o i = Tal®) = ol ) + o(s2)

when a — 400, and then s, o = o(ptk,o) When @ — +o0: a contradiction with
(8.41). Then (8.40) holds and the claim is proved. This ends Step 7.1.2.

Step 7.1.3: Point (iii) is a straightforward consequence of the definition (8.29) of

S

Si o
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Step 7.1.4: We let j € {1,..., N} be such that =, — z;0 = O(s;,«) and p; =
0(8i,o) when oo — +00. We claim that

Wja = O(pi,a) when a — +o0. (8.42)
We prove the claim by contradiction and we assume that
Wi = 0(ftj,o) when o — +o00. (8.43)
Therefore, j € J; and we have with (8.38) that
Mi,a
812704 < f(/u‘?,a + |xi704 - mj7a|2) = O(/u‘?,a) + 0(812,(1) - 0(812,&)
ja

when a — +00. A contradiction. Then (8.43) does not hold and (8.42) holds. This
proves the claim and ends Step 7.1.4.

Step 7.1.5: Let j € {1,..., N} be such that lim,_, o0 w‘ji%” = +o00. We claim
that '

82 Hjo
B = O(1) when a — +o0. (8.44)
fia (15 o +1Tia — Tjal?)

We prove the claim. Assume first that p; . = o(ti,o) when o — 4o00: we then get

that
512 alj,a Hj,a 522 «
5 s ’ - =0 ), > — 0(1)
thia (15 o + |Tia — T5.0]%) Pia |Tia —Tjal)

when a@ — 400. This proves (8.44), and the claim is proved in this case.

Assume that p; o« = O(tj,«) when o — +oo. Then j € J; and (8.44) follows from
the definition of s; 4.

In the two cases, we have proved (8.44). This proves the claim and ends Step 7.1.5.

Step 7.1.6: Let j € {1,..., N} be such that z; o — 2, o = O(s; o) and s; o = 0(j.a)
when a — +00. We claim that

2
8% i
5 el 5 = O(1) when o — +o0. (8.45)
Ni,a(ﬂj,a + |%i,a = Tjal?)

We prove the claim. We first assume that p; o = o(;,o) when o — +0o. We then

get that
822 altj,a Hja 812 «
R o = o =2 5 =o(1)
tia (5 o + [Tia — Tjal?) Hio 113

when o — +o0o. Then (8.45) holds in this case. The case p; o = O(jo) when
« — +oo is dealt as in Step 7.1.5. This proves (8.45) and then the claim. This
ends Step 7.1.6.

Step 7.1.7: point (v) is a consequence of Steps 7.1.5 and 7.1.6.

Therefore, points (i) to (v) of the hypothesis of Proposition 6 are satisfied with
Ha = [i,o and 7o 1= S; o. This ends Step 1. O
Then we can apply Proposition 6 with 7, 1= s; o and pq := i q-
Step 7.2: we assume that
d(x; o, 09
lm A9V (8.46)

a—»—+00 Sia



48 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

It then follows from Proposition 6 that there exists v; as in Proposition 7 such that
(8.30) and (8.31) hold. Moreover, there exists (7;); such that

n—2

sn—2g, 52 1 ?
K= lm =213 7 lim Cualiie _ . (847)
amtoo B3m L T asteo \ pia(lfo F[Tia — Tjal?)
e i

Step 7.2.1: We claim that
K >0 or 3j € I] such that 6; # 0. (8.48)

We prove the claim. If K > 0, then (8.48) holds. We assume that K = 0. It then
follows from (8.47) that
1
o /’612,04 2 (/J’i,a 2 e |2 > y .
Sia =0 : and s;, =0 (1o + [Tia — Tjal7) ) forall j & I; (8.49)

—n—2 ]
Uey 7,

when a — +00. The definition (8.29) of s; o, (8.46) and (8.49) yield the existence
of j € I; N J; such that

Po= B2 a0 — 0l (8.50)

7,

for all @ € N. Since j € J;, we have that

Wio = O(lj,o) when o — 400 and j # i. (8.51)
Moreover, since j € I;, we have that

Tja — Tia = O(sia) and p; o = 0(si,a) (8.52)
When o — 4o00. It then follows from (8.50), (8.51) and (8.52) that

Wia =X Pjo and |z o — Tja| X Si,q when o — 400. (8.53)
In particular, j € I and 6; # 0. This proves (8.48) when K = 0. This proves the
claim and ends Step 7.2.1. O
We set 1
§:= §min{|9j\/j € I, and 6, # 0}.

We define

di(w) = K+ ) Ao —60;)>"
jer
for all z € Bys(0) where I;,” := {j € I;/ 0; # 0}. Clearly 1); is smooth and harmonic
on Bs(0). We define \; =3,/ 7» Aj, so that one has that

/

vi(x) = A + ¢;(z) for all x € Bys(0) \ {0}.

|I|n72

Note that A, > X\; > 0.
Step 7.2.2: We claim that
Uy (0) > 0.
We prove the claim. Indeed, if K > 0, the claim is clear. If K = 0, it follows from

(8.48) that there exists j € I;”, and then v;(0) > X;]6;/>~™ > 0. This proves the
claim.

Proposition 7 is a consequence of Steps 7.1 and 7.2. (]



LIN-NI'S PROBLEM 49

Step 7.3: we assume that
li d(xz,ou 0 )

a——+00 Si,a

—p>0. (8.54)

In this case, the proof of Proposition 8 goes basically as the proof of Proposition 7.
We stress here on the differences.

It follows from Proposition 6 that there exists v; as in Proposition 8 such that (8.34)
and (8.35) holds. We define

1 ~ ~
0:= §m1n{|9]‘/] € I; and 9]‘ 7é 0}
We define

5 (@) i (oot oo(@ -y Mle = e @) i o(6:) #0
() .—K+J§/&(|x 017" +la—a ()] )+{ 0 if 7(6;) =0

for all € Bys(0) where I,” := {j € I,”/6; # 0} and ] > 0 is as in Step 7.2.1. In
particular, as in Step 7.2, we have that

! ~

54(2) = i+ ()

|m|n—2

for all x € Bas(0).

We claim that

1;(0) > 0. (8.55)
We prove the claim. As in Step 7.2.2, (8.55) holds if K > 0. Assume that K = 0.
Arguing as in Step 7.2.1, we get that

{ either s; o = d(24,0,09Q) and ; o & OS2

or there exists j € I; N J; such that s? = Z"}‘" (M?a + %0 — Tial?)
> j,a ’

Step 7.3.1: we assume that
Si,a = d(.’lﬁi’a, GQ)

for all @ € N. In particular, it follows from (8.54) that that p = 1 > 0 and then
a(0;) = a(0) = (2p,0) # 0 and then ;(0) > Xi|o(0;)]>~" = Ni(2p)>~™ > 0.
Step 7.3.2: we assume that there exists j € I; N J; such that

i
Sta = (1 0+ W0 — Tial?)

7,0

for all & € N. Mimicking what was done in Step 7.2.2, we get again that ;(0) > 0.

In all the cases, we have proved that @1(0) > 0. This proves (8.55), and then ends
Step 7.3. 0

Proposition 8 is a consequence of Steps 7.1 and 7.3. (]
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9. ESTIMATES OF THE INTERIOR BLOW-UP RATES

This section is devoted to the analysis of the concentration at the points z; o
away from the boundary.

Theorem 3. Leti € {1,...,N}. We assume that
lim d(l‘@a, 89)

a—r+-00 i o

= +o0. (9.1)

Then n > 4 (equation (9.1) does not hold in dimension n = 3). Concerning the
blow-up rate, there exists ¢; > 0 such that

n—2
agrfoo :Z:;(Z =c¢ ifn>05, (9.2)
li 7.1 L= 4 9.3
Jm €asio ni—ci if n=4. (9.3)
and
Si,a = o(d(x4,0, ) (9.4)

when o — +00. Moreover, when n > 7, we have the following additional informa-
tion:
1
Hi
Siq =0 - when o — 400, (9.5)

—n—2
Ua

and there exists j € {1,..., N} such that p; o = o(pj o) when o — +00 and

Hi,
Si,a = ( “1 (U?,a + @i — xj7a|2))

7,0

N

for all a € N.

Proof of Theorem 3:
For 2 € 5; 1(Q — 2 4), we define
n—2
Uiﬂ(x) = Z;z,(iz ua(xi,oc + Si,ax)-

2
p’i,a

Step 3.1: We claim that there exists 6 > 0 such that v; o, is well defined on B;(0)
and such that there exists v; € C?(Bs(0) \ {0}) such that

lim v; 4 = v; in CE,.(Bas(0) \ {0}) (9.6)
a—»+00
where there exists \; > 0 and ; € C?(Bas(0)) such that Ay, = 0 and
\
vi(z) = Mﬁ + 9 (x) for all x € Bys(0) \ {0} with ;(0) > 0. (9.7)

We prove the claim. Indeed, since z; o ¢ 012, it follows from the definition of s;
that
d(ﬁbi,a, 69)
Si,a

for all o € N. In particular, v; o is well defined on By /2(0).

>1 (9.8)
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d(xi.omaQ)

Si,a

Assume that limg— 4o = +o00: then (9.6) and (9.7) are direct conse-
quences of Proposition 7.

W = p > 0: it follows from (9.8) that p > 1 and that

lima— 400 Ts.0 = xo € 0. Using that the chart ¢ around zg is such that dyg is an
orthogonal transformation and that @, coincides with u, on €, we get (9.6) and
(9.7) thanks to Proposition 8.

This proves the claim and therefore ends Step 3.1.

Assume that limg_, 4 o

Taking 0 > 0 smaller if needed, for any j € {1, ..., N}, we have that

Tjo — Tia 7 0(Sia) When o — +00 = |2j0 — Tial| > 208, for all « € N. (9.9)

Step 3.2: Let U be a smooth bounded domain of R", let xy € R" be a point and
let u € C%(U). We claim that

-2
/ (z — o) Opulu dz + HT/ uAudz (9.10)
U U

2 _
:/ ((x—xmy)'vu' —dyu ((x—;vo)kaku+ “ 2u>> do
oU 2 2

We prove the claim. Indeed, this is the celebrated Pohozaev identity [23]. We
sketch a proof here for convenience for the reader. We have that

/(x—xo)kﬁkuAuda:—&—L_Q/ uAu dx
U 2 Ju
:/ —0;0;u <(xmo)k8ku+ n;2u) dx
U
:/ 0;ju0; <(Jc—m0)k3ku—|— n2u> dm—/ Oyu <(x—xo)k3ku—|— n2u) do
U 2 oU 2
:E/ |Vu|2dx—|—1/(m—x0)k8k\Vu|2dx—/ oL u (x—mo)kﬁku—l—n_zu do
2 Ju 2 Ju U 2
2 _
:/8k (a:—xo)kﬂ da;—/ o,u (x—xo)kaku—i—n 2u do
U 2 ouU 2
2 _
:/ ((x—xo,y)|vu| —dyu <(x—a:0)k3ku—|— o 2u)> do.
U 2 2

This proves (9.10), and therefore the claim. This ends Step 3.2.

As a consequence, differentiating (9.10) with respect to xg, we get that

2
/3kUAUd$=/ <yk|Vu| —auuaku) do (9.11)
U U 2

Taking v := u,, using equation (1.3) and integrating by parts, we get that

2 2* 2
€a / ulde = / (z — o, V) [Vual® o 4 fola (9.12)
U ouU 2 2% 2

—0, Ug, <(x - xo)kﬁkua + 7122u(,>) do
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where here and in the sequel, we define ¢,, := n(n — 2). Taking ¢ € {1, ..., N} such

that (9.1) holds, and 6 > 0 as in Step 3.1, we let U := Bs,, ,(2ia) CC Q and
To 1= T o in (9.12). This yields

Vig|? u? u?
€a/ ulder = / ((x—xi,a,u)<| o —Cnpy 4 Ce a)
B, . (wi.a) OBss,; , (wi,0) 2 2 2

-2
—0OyUg <(33 — mi’a)kﬁkua + n2ua>> do. (9.13)

We now estimate the LHS and the RHS separately.
Step 3.3: We claim that there exists ¢ > 0 such that
1 ifn>5
/ Bdr=(toda-{ o jnZy 019
Bss; o (Ti,a) Hi,a
when o — 4-00.

We prove the claim. We assume here that n > 4. It follows from (7.1) and the
estimate (11.33) that

1
2 2 2
u,, dz C UiadeC/Lia/ ———dz
/%és%a(wi‘a) Bss; o (Ti,a) ’ B . (0) (1 + ‘Z|2)n72

854 0/ 1,

1 ifn>5
2 -
Cp’i,a ' { In 21172 ifn=4 (915)

Y

v

for all & € N.
We now deal with the upper estimate. With the upper bound (7.3), we get that

/ u? da (9.16)
Bési)a (xi,oz)

N n—2
— Hj,ox
<C wdr+C / dzx
Bso, (i) ; Bso, . (r1.0) \ Mo T 17— Tjal?

i, i,

We deal with the different terms separately.
Step 3.3.1: We claim that

/ u? dx = O(u?,a) when n > 4 (9.17)
BSsiﬁa(xi,a)

when a — 400. We prove the claim. Indeed, with the definition (8.29) of s; «, we
have that

n  n—4

/ a2 de = O(sP'12) = O(ud i ) = o(u2.,)
Bss; o (i) '

when a — 400 since n > 4. This proves (9.17) and ends Step 3.3.1.
Step 3.3.2: We let j € {1, ..., N} such that

.o = O(Hi,a) (9.18)
when o — +00. We claim that

n—2
- 1 ifn>5
/ 5 b, 3 dr < Cﬂzza ) { In St %f " _ 4 (9.19)
BSsi«a(xi,a) ’uj,oc + “T - x.7704| ’ n i, o nn=
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when o« — +o00. We first assume that n > 5. Estimating roughly the integral, we
get with the change of variable x = x; o + pj,o2 and with (9.18) that

n—2 n—2
/ 5 Mj,Oé 5 dx S / 3 luj7a 5 d.’L‘
Bsy o (w1.0) \ Mo T 1T = Zjal Re \ Mo 17— Tjal

dz
N BV
i [ e~ OWe) = 00

when a — 400 since n > 5. This proves (9.19) when n > 5. When n = 4, we must
be a little more precise. Assume first that ;o — 2j0 = O(S;,o) When o — +00.
Then we have that

2 n—2
/ L / o da
Bss, o (@i0) \Mja 18— Tja Bra, o (50) \Fia T |7 = Zjal

dz S; S;
2 2 i, 2 i,
Ky, /B o) (14 |2]?)? K, o i, [Lio

LEF

when o — +o0o. Assume now that sfolt|xi1a — Zjo| =& +00 when a — +o00. Then
for any = € Bys, , (%i«), we have that |z — x;4| > s; and then

2
/ Hj.a dr < C% =0(2,)=0 <M2 In SW)
Bsa, o (w1.0) \ i + 1T = Tjal T Sia e Y i

when o — +00. These estimates prove (9.19) in case n = 4. This ends Step 3.3.2.
Step 3.3.3: We let j € {1,..., N} such that
tia = 0(lj.q) and ;.o — Tja 7# 0(Sia) (9.20)

when o — +00. We claim that when n > 4, we have that

n—2
Hj,a 2
dr = 0(u2,) (9.21)
\/Bési'a (z4,0) <lu?,a + |aj - 'rj,leQ) ’

when a — +o0o. We prove the claim. It follows from (9.20) and the definition (9.9)
of 0 that |z; o — xja| > 20s;, for all & € N. In particular,

|Tia — Tja

2

T € Bss, (Tia) = |2 —Tja| >

and therefore

n—2 n—2
/ 2 ke 2 de =0 | sia | — Fo.o 2
Bsey o (w5.0) \ P T 17— Tja 1o+ | Tia — Tjal

(9.22)

when o — +00. Moreover, it follows from (9.20) that j € J;, and then

Hi,
57 < (5 o+ [Tiia — Tjal?) (9.23)

7,0
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for all & € N. It then follows from (9.22), (9.23) and (8.38) that

n—2 n—2
'uj7a n :u’i,a
dr =0 | s!
/13551,&(3:1-,&) (M?,a + |z — Ij,a|2> e <5$a>
1; n—4
=0 (u?,a (“) ) =0 )
Si,a

when o — 400 since n > 4. This proves (9.21) and ends Step 3.3.3.
Step 3.3.4: We let j € {1,..., N} such that

Wi = 0(ljq) and ;o — Tja = 0(Sia) (9.24)

when o« — +o0o. We claim that

n—2
/ ( Hj ) dr = O(,uia) when n > 4 (9.25)
Bési’a (Cl?i,a)

N?,a + |£C - xj’a|2

when a — +00. We prove the claim. As in Step 3.3, it follows from (9.24) that
j € Ji. In particular, using the definition (8.29) of s; , and the second assertion of
(9.24), we get that

Hi,
Sta < (10t |Tia = Tal?) < piakta t+o(sia)
o

when a — +00, and then s7 , = O(ui,altj,o) When o — +00. Consequently, we get

that
n—2 " n
j s! :
/ 2 e 2 dr=0|—5)=0 u;_az
Bssi o (@ia) Hj.a + \x ~ Tja Hj o /”Lj?;a
1L 52
- (() uh) = 0lut.)
Hij o

when o — 400 since n > 4. This proves (9.25) and ends Step 3.3.4.

Plugging together (9.17), (9.19), (9.21) and (9.25) into (9.16) and combining this
with (9.15), we get (9.14). This proves the claim and ends Step 3.3.

We define

Vg |? w2 e
Ai,a : = / ((.1? — xi7a7 l/) <| - — Cp, O: + 2 a
9Bs.; . (vi.0) 2 2 2

—0OUq ((z - a:i@)kakua + 77,22ua>> do. (9.26)

for all a € N.
Step 3.4: Assume that n > 3. We claim that

Ao = (5 RISLATIUN o)) (M) (9.27)

2 Si,a

when a@ — 4o00. Here, w,,_1 denotes the volume of the unit (n — 1)—sphere of R™.
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We prove the claim. With the change of variable x = z; o + 5; 4% and using the
definition of v; o, we get that

n—2 2 2 2% 2 2

7,0 \Y% e [N Vi o €aSi aUn
Ai,a = <M7 ) / (Z,l/) | e | —Cn (N, ) ; + ,
Si,a 8B5(0) 2 Sia/) 2 2

-2
—0,Vi.q (zkakviva —+ n Ui,a)) do

2

for all o € N. Since v; o — v; in C?,
limit, we get that

to = (8 ([ (e (55) e
_21;1)) do—|—o(1))

when o — +o0o. We let € € (0,6) and we apply the Pohozaev identity (9.10) to v;
on Bs(0) \ B(0) with xyp = 0. Since Av; = 0, we get that the map

12 _
€ ((z,l/) <Vv1 ) — 0, (:vkakvi + i 201-)) do
9B.(0) 2 2

is constant on (0, 6]. With the explicit expression (9.7) of v;, we have the asymptotic
expansion

V|2 -2 —2)2\;(0
(27y) (| 72}| ) _auvi (wk(?kvi—i— 77/2 'Ui) _ (TL )2 z’(/}< )|$|1_n+0(|$|2_n)

(B2s5(0) \ {0}) when o — 400, passing to the

—0,v; (xkakvi + n

when |z| — 0. Consequently, we get that

e—0 2 2 2

and then

12 B oy
/ ((Z»V) (|sz| ) — Oyv; <$k5kvi + z 2Ui)> do = (n—2) )‘lwl(o)wnfl.
8B5(0) 2 2 2

Plugging this equality in (9.28) yields (9.27). This ends Step 3.4.

Step 3.5: We claim that there exists ¢; > 0 such that

n—2
. ECYSi.a
hm 74
a—+o0o ,LLZL;
s

n S ¢ ifn=4. (9.29)

i,

. . 2
=c¢;ifn>5and lim e,s7 1
v - a—r+oo a7

Indeed, plugging (9.14) and (9.27) into (9.13) yields
B 2 Loy ) n—2
(c+o(1))eariia = <(n et +o<1>> ' <M>

when @ — 400 when n > 5. Since ¢, A}, 1;(0) > 0, we get that

n—2
€aS; o *22n—>\,‘i0
lim ;4:(" Jen1dibi0)
a—r—+00 :u‘Za 2¢

This proves the claim when n > 5. The proof is similar when n = 4.

12 B v
lim <(z, v) <|V1}z| > — Oy v; <xk8k.vi + n 2%‘)) do — (n —2)° N9 (0)wy,—1
8B.(0)

)
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Step 3.6: we claim that

1

w2
Sia =0 2| whenn >7. (9.30)
S n—2

when a — +00. We prove the claim by contradiction. Indeed, if (9.30) does not
hold, it follows from the definition (8.29) of s; o that

1

2
- ,U,Z’a
Si,a = T

Us

2

when o — +o00. Plugging this identity into (9.29) yields

—6

€a X [l 5 Ua

when o — 400. With (2.4), we then get that
n—6 n—=6
1=0 (u“i €a’ ) ,

a contradiction since n > 7. Then (9.30) holds and the claim is proved. This ends
Step 3.6.
Step 3.7: Assume that n > 3. We claim that
d(l‘i@” 89)

Si,a

3

lim

a—r+00

= +00. (9.31)

We prove the claim. We argue by contradiction and we assume that

lim 7d(xi’o” o) =p>0.

a—»—+00 Sia

It follows from the definition (8.29) of s; o that p > 1 > 0. We adopt the notations
of Proposition 8. We let jo € I} such that

0j,1 = min{f;,}. (9.32)
JEI,

Here, 0;; denotes the first coordinate of 6;.
Step 3.7.1: We claim that there exists eg > 0 such that
d(xjoﬂlvaﬂ) > €0Si,a (9.33)

for all @ € N. We prove the claim by contradiction and we assume that d(z,,q, 9Q) =
0(8i,o) when o« — +o00. In particular, via the chart ¢, we get that

(0" (Tjp.a)) (¢ (zia)

lim L' ~0and lim =—p<0.
a—+00 Si,a a—+00 Si,a
Coming back to the definition (8.33) of 6;,, we get that

é, — lim (gp—l(ijaa) B @_1(Ii,a))1
ol a—+oo Si,a

=p>0.

A contradiction since ;, 1 < ;1 = 0. This proves (9.33) and ends Step 3.7.1.
Step 3.7.2: We let §p > 0 such that

dg < 650 and éj 7é éjo = ‘éj — éj0| > 24p.
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Taking the Pohozaev identity (9.12) with U := Bss, . (7j,,o) CC Q and differenti-
ating with respect to xg, we get that

Vg |2 22
/ <Vk (' tal” _ Cnu% + Eua) - ayuaﬁkua)> do=0 (9.34)
OBsys; o (T50,0) 2 2 2

i,

for all @« € N and all k£ € {1,...,n}. With the change of variable z = z; o + $; .02
and using the function v; ., we get that

\Y ia2 7,0 21}%’2; easzzav'?a
/ ~ Vi | Y, | — Cp, (M : ) ’* + — ] - 8,,vi,a8kvi7a) do =0
9By (85,0 2 Sia/) 2 2

(9.35)
for all « — 0. Letting o — 0, we get with (9.6) that

|2

/ i (ka — &,Uiakvi)) do =0 (9.36)
9Bs, (05) 2
for all k € N. It follows from (8.35) that
vile) = K+ N(le—0,>"+z—o(6;))> "
JEI;

M\
= P+ i (2)
PR TR
where A ;> 0 and
Vigo (@) = K+ Njglz = 0 (00) P + D Nj(Jw = 6,177 + |z — o (6;) "
Jjel”
where I,” :={j € I/ 0; # 0;,} Arguing as in Step 3.4, we get that (9.36) holds on
balls with arbitrary small positive radius and then we get that
i o (05,) = 0.
Taking k = 1, we get that

(0o, — o (65,))1 ((% —0)1 (0 0(93‘))1>
Njo Tim———— + Aj + =0. 9.37
10 —or * 25 =g 16, = o0 (937

Recall that if 0; = (0;1,0;), then o(6;) = (2p — 0;1,0;). In particular, since
Zja € Q, we have that 0; € {z1 < p} and then for all j € I,”, we have that
0jo.1 < 05,1 < (0(0;))1- (9.38)
In addition, we have that
(0o — (0j0))1 = 2051 — p) = —2(|0j,,1] + p) <O. (9.39)

Plugging (9.38) and (9.39) into (9.37) yields a contradiction. This proves that (9.31)
holds. This ends Step 3.7.

Step 3.8: We assume that n > 3. We claim that
Tja — Tia = 0(8i o) when a — 400 for all j € I. (9.40)

We prove the claim. Since (9.31) holds, we define v; , and v; as in Proposition 7.
In particular, we have that

vi() = K+ Njle—6,[>"
JEI;
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for all z e R*\ {6,/j € I,}. We fix k € {1,...,n} and we let jo € I/ such that
0o, =min{b; ./ j € Il}.
We let I;” := {j € I}/ 0; # 0;,}. Therefore, there exists \{ ; > 0 such that

/

v
vi(z) = W + i jo (@)

where
Vigo(@) i= K + Y Ajlw — 0,77
JeL;”
Taking § < min{|0;|/0; # 0}, }, we use the identity (9.34) as in Step 3.7. Performing
the change of variable x = x; o + 5i,4%, We get again that

6kwi7j0 (ejo) = 0.
With the explicit expression of 1; j(,, this yields

Aj = 0.
];7 |@ - 0]o|

Since (8; — 0;,)r > 0 for all j € I;” by definition, we get that 6, = 0;, 5 for all

j € I,”, and therefore for all j € I/. In particular, 0 = 60, for all £ € N, and

therefore 0; = 0; = 0 for all j € I]. Coming back to the definition (8.33) of 0;, we

get that (9.40) holds. This ends the proof of the claim and of Step 3.8.

Step 3.9: Assume that n > 7. We claim that there exists jy € J; such that

1
. 2
Sia = ('ula(u?a +|Tia — l'j’a|2)> and f;.o = o(ltj,a) (9.41)
7,
when a — +00. We prove the claim. Indeed, it follows from the definition (8.29)
of s« and (9.30) of Step 3.6 and (9.31) of Step 3.7 that there exists j € J; such
that .
Hi,a 2 2
Si,a = < (/-L]7 + |xla xj,a| )) (942)
J «@
for all & € N (up to a subsequence, of course). Since j € J;, we have that p; o =
O(j,o) when oo — +o00. Assume that 1, o < 15, when oo — +o00: then it follows
from (9.42) that ;4 — ®i,o = O(Si,a) When a — 400, and then j € I]. It then
follows from (9.40) of Step 3.8 that we have that x; o — zj o = 0(S;,o). Coming
back to (9.42), we get that s; o < 1t; o When o — +o00: a contradiction with (8.38).
Therefore (9.41) holds, and the claim is proved. This ends Step 3.9.

Step 3.10: We assume that n = 3. It follows from (9.27) and (9.13) that

/ u? dr = Hia (9.43)
Bésiya(xi,a) 5":70‘

when o — +o00. It follows from (7.1) that
2

N
/ g d (1+0(1))/ o+ Y Via(z) | dz
BéSL,u(wi a) Basi a(wi,a) =1

)

B

LYo Ti
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when o — +00. We distinguish three cases to get a contradiction.

Step 3.10.1: we assume that
/ u? dr = s?aﬁi (9.44)
Bésiya(l'i.a)
when a — 4oc0. It then follows from (9.43) that eqs} 42 = i, When a — 4o0.
Moreover, since s; o < ;L;{fﬂ;l by the definition (8.29), we get that 42 = o(f;.«)

when o — +o0. This is a contradiction with (8.15). Then (9.44) does not hold.

Step 3.10.2: we assume that there exists j € {1,..., N} such that s; o = O(|z; o —
zjq|) and

/ ui dr =< uj,a/ (u?’a +lz— a:j’a|2)_1 dx (9.45)
BSsiﬁa(ici,a) B(SSj)a (7511,@)

when o — +o00. Here again, since |z — 24| X [2io — 2j,o| for all z € B,  (T4,a),
it follows from (9.45) and (9.43) that

€aﬂj,a823,a _ Mia

B o+ i = 2jal® " Sia

(9.46)

when a — +o0. In particular, since s; o = O(|Z;,0 — Zj,a|), we get that p; o =
o(f4j.o) when oo — 400, and then j € J;. Therefore, we have that

S? < Hi, o
)

2 2
a—iﬂ'a"'_xi,a_x‘,a

Bl (2 4l = 250
for all @ € N, and it then follows from (9.46) that 1 = O(eqsi,) = o(1). A
contradiction. Therefore, (9.45) does not hold.

Step 3.10.3: we assume that there exists j € {1,..., N} such that |z; o — 2j 0| =
0(8i,) and

/ ui dr =< ,uj@/ (H?,a + |z — zj,a|2)71 dx (9.47)
Bss; o (Ti,a) Bss; o (Ti,a)

when o — 400. A change of variable then yields
[ ddrmmasta [ sl
Bss; o (@i a) B&(%)

when o — +o0. Therefore,
2 - 3 -2
/ Uq dx = :uj,(lsi,oc ma‘X{u’ja(M Si,a}
Bss; o (Ti,a)

when o — 4o00. It then follows from (9.43) that
ealuj’asz{l,a = Hi,o maX{Mj,ou Si,a}2 (948)

when a@ — +oco. In particular, we have that p; o = o(j ), and then j € J;.
Therefore, we have that

3»52 < i, o
)

S (13 o+ |Tisa — Tj0l?) < Hiattia +0(s7 )

and then s; o = O(/Hi.alja) = 0(itj,o) when a@ — +o0o. Then (9.48) becomes
€aSto =X Mialtja When a — +00, a contradiction since 57, = O(ti,aftj,a) when
o — +00. Therefore, (9.47) does not hold.
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In all the situations, we have proved a contradiction. Therefore the hypothesis (9.1)
of Theorem 3 does not hold in dimension n = 3. This ends Step 3.10.

Step 3.10: Theorem 3 is a direct consequence of Steps 3.5, 3.6, 3.7, 3.8 and 3.10.
This ends the proof of Theorem 3. O

In the sequel, we need to translate slightly the boundary concentration points: we
fix § € R""! and for all i € {1,..., N} such that z;, € 99Q, we define ;o =
o(p (@i 0) + 1iab) € O for all a € N. The parameter 6 is chosen such that there
exists €y > 0 such that
[Zi0 — Tjal > €oftia (9.49)
for all 4,5 € {1, ..., N} distincts such that Z; o, %, € 0Q and all & € N. We define
Si.a 88 S; o with replacing x; o by &;q: as easily checked, for any i € {1,..., N}
such that z; , € 012, we have that §; 5, < s; o when o = +00. From now on, we
replace x; o by Z; . As easily checked, the convergence Propositions 7 and 8 and
the estimates (7.2) and (7.3) continue to hold with this new choice of points (with
7; > 0 only in the propositions). Note that the convergence (4.1) of the @; , in
Proposition 2 is changed as follows:
lim ||G;,6 — Uo(- + G)H(Jl(fmﬁi,a) =0. (9.50)

a—+00
10. ESTIMATES OF THE BOUNDARY BLOW-UP RATES

In this section, we deal with the case when the concentration point is on the
boundary.

Theorem 4. Assume thatn > 3. Leti € {1,..., N}. We assume that

Tio € ON (10.1)
for all o € N. We assume that for all j € {1,..., N} \ {i}, we have that
Tja €00 = Tj o — Tia 7 0(Sia) When a — 400 (10.2)

when a — +00. Then there exists ¢; > 0 such that

limg_s 100 l;j,—i:z = —c,H(x) if n >4, 103
limg_s 100 ﬁ = —c,H(zg) ifn=23, (10.3)

Fia

Where x¢ = limy—s 400 i« and H(zg) denotes the mean curvature of 0 at xo. In
particular, H(xzg) < 0.

Proof of Theorem 4: As for Theorem 3, the proof relies on a Pohozaev identity.
Here, we have to consider the boundary of €. For any a € N, we define

Ua = Bss, ., (¢ (@ia)) (10.4)

Step 4.1: we apply the Pohozaev identity (9.12) on (U, ) NQ = (U, NR™) with
o = Tj,o. This yields

ea/ u? dr = / F,do (10.5)
©(UaNR™) 0p(UaNR™)

= / F,do + / F,do
»((0Ua)NR™) ©(UaNOR™)
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where for convenience, we have defined

v o 2 2* o 2 . 2
Fy:=(—ia,v) (| Ual” _ o eua) — Oy g, (( — %4.0) Opua + n2ua)

2 " ox 2
for all « € N.

Step 4.2: We deal with the LHS of (10.5). We claim that

i ifn>4
ug do = { iia) M2 10.6
/go(Uar‘]R’_‘) “ O(pia) ifn=3 (10.6)

when a — +o0o. Indeed, the proof goes exactly as in the proof of (9.14) of Step 3.3
of the proof of Theorem 3.

Step 4.3: We deal with the first term of the RHS of (10.5). When n > 3, we claim
that there exists ¢; > 0 such that

n—2
/ Fode = (““) (ci + o(1)) (10.7)
((8UL)NR™) SiLa

when o — +o00.

We prove the claim. The proof proceeds basically as in the proof of (9.27) of Step 3.4
of the proof of Theorem 3. Since z; o € 09, we have that limg_, {00 Zi,o = 2o € OS2
We take a domain Uy,, a chart ¢ and the extension g of the metric and %, of u,
as in Lemma 2. Therefore, there exists 2/, € R"~! such that z; o, = ©(0,; ) for

all @ € N with lim,_, 4o ), = 0. We define 9; o, as in Proposition 8, that is

Bia(2) = 225 100((0, 2} ) + 5i.02) (10.8)

for all @ € N and for all x € sgi(ap_l(Um) — (0,2} ). Recall that it follows from

» Vi

Proposition 8 that there exists 9; € C?(Bas(0) \ {0}) such that

lim 94 = 9; in CL(R™\ {0} (10.9)

a—r+00

In addition, there exists 1; € C2(Bs(0)) harmonic such that

A ~ B

0i(x) == mﬁ + v (x) for all z € Bs(0) \ {0} with ;(0) > 0. (10.10)

We define the metric go () := (#*§)((0,2} ,) + si.ax) for all z. With the change of
variable x = ((0, 2] ,) + $i,a2), We get that

/ F, dx
©((0Bss; (071 (wi,a)))NR™)

1,0

-2 -~ 2 2 ~2% 2 ~2
Hi,a " |vvi,a o Hi, Vi o €aSi aVia
= (27 l/)ga — Cp * +
Si,a 8B;(0)NR™ 2 Sia /) 2 2

-2
*8u7~}z',a <xkak1~71,a + n27~}z,a>) doa
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Passing to the limit & — 400 and using (10.9), we get that

/ F, dx
©((9Bss; o, (71 (2i,a)))NRE)

S\ "2 12 _
— <“’a> / <(z,u) (W) — O, <x’“8kvi 4+ 21@)) do + o(1)
Si,a 8Bs(0)NR™ 2 2
.\ "2 12 _
_ (“W> 1/ ((z,y) <W> — O, (mkakvi + 2%)) do + o(1)
Si,a 2 8Bj5(0) 2

when a — +o0. Similarly to what was done in the proof of (9.27) of Step 3.4 in
the proof of Theorem 3, and using (10.10), we get that

n—2
i — 2)2¢;1h;(0)wy, —
/ Raar= (f) (MR o)
¢((9Bss, ,, (9= (w1,0)))"R™) Sia 4

i,

This proves (10.7) and ends Step 4.3.
We define

L:={je{1,...N}/zj0—Tia=O(l;q) when o = +o0}.
Given R > 0 and o € N, we define

Dra = (BRM,A@*(@,Q))\ U Bros (07 (000)) mR”) o
keL
Step 4.4: Assume that n > 4. We claim that
2 2* 2
lim lim ,u;é/ (T = Zja, V) <|Vua| - Cnui n €aua> do =0
R—+o00 a—+00 ’ w(UQDBRE)\DR,Q 2 2 2
(10.12)
We prove the claim. Indeed, it follows from (7.2) that
2 2% n—2
|V | _ nu;:( 4 2 a €ally < Cu —|—C’Z Hia 1 (10.13)
iT (ot = 250l?)

for all z € Q and all « € N.
Step 4.4.1: We claim that
[(x — zjq,v(x))] < Clx — :17,-70(|2 (10.14)

for all &« € N and all x € 92N OU,,. We prove the claim. Indeed, for z € R” small
enough, we get via the chart ¢ that

— Tia,V ) ((Ox o)+ 1) (10.15)
( 0,77 4) + ) = (0,27 ,),v 0 (0,27 ) + )

(d%% )+ e (2) + O(f?). o (0 m>+w>)

-3 (d%(o,m;,a)(w),uoso(O,xza)) + ().

Inequality (10.14) is a straightforward consequence of (10.15). This proves (10.14)
and ends Step 4.4.1.
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As a consequence of (10.13) and (10.14), we have that

2 2* 2
/ (T — Ty v) Vuol? _wa | ata o (10.16)
(UaNOR™ \Dp o) ’ 2 2 2
< C’/ |z — 2 0202 do
(UaNOR™\Dg.a)
+C ZN:/ [ — @ialps’
n—1
j=17¢(UaNIRZ\Dg,«) (M?,a + “T - fj,a‘z)

for all @ € N and all R > 0. We are going to estimate these terms separately.
Step 4.4.2: We claim that

/ |z — 2;.0|*u2 do = o(i o) When a — 400 (10.17)
@(UaMOR™ \ DR, o)

We prove the claim. Indeed, using the definition (8.29) of s; o, we get that

n+1 n—>s

& — @i o|*us do < CsPltul = O(p; 2 s ?)

1, «

/S;(Uo/ ﬁBR’j \DR,Q)

n—2
when o — +oo. Moreover, since y; > = 0(ia), we get that the above expression
n—3
is o(pi atia >
Step 4.4.2.

Step 4.4.3: We claim that

) = o(pti,o.) Wwhen oo — +o00 since n > 3. This proves (10.17) and ends

2, n—2
. . 1 "T — Tial i o Y
Rgr—{-loo agr};loo Za‘/ 2 2\n—1 do=0ifn > 4.
P(UaNOR™\Dr.a) (7, + |2 — Tial?)
(10.18)

We prove the claim. Recall that for convenience, we let R"~! := 9R". Noting that

SD(Uoz N aRﬁ \DR,Q) C Rnil \ (BR,U‘LQ (zi,a) \ UkELBRflp,i,a (xk,oz)) ’
we get with the change of variables x = x; o + ;o2 that

|z — zi0l?pf

/g;(UamaRn)\DR,a (N%,a + |z — xiﬂp)nﬂ
|2]2 dz
<o | e
Bn=1\(Br(0)\Uker By-1(0x.0)) (11 12[3)"7
where 0 = u;;(mk,a —x;4) for all @ € N and all £ € L. Letting 60, :=
limg s 4 oo Ok,0, We get that

2 n—2

T — A
limsupu;i/ | Z7Ot| uz,a s do
astoo 0 Jo(UandR™ \Dr.o) (M%(x + |z — zi0/?)

2
<C |z|* dz

Rr=1\(Br(0\Urer Byt (0)) (14 [21%)"71

for all R > 0. Then, letting R — 400 and using that n > 4, we get (10.18). This
ends Step 4.4.3.
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Step 4.4.4: Let j € {1,..., N} such that
Tja — Tia 7 0(Si,a) When a — +o0.
Then

|2 — @i 0|20 O\ ifn >4
/ 2 S ={ Ol ftazs (010
P(UaNOR2)\Dr,a (15 + |2 = 2jal?) e b

when o — +00. We prove the claim. Taking § > 0 smaller if necessary, we have
that

|Zj.0 = Tial 2 2080 (10.20)
for all @ € N. In particular, for all z € Dg o C ¢(Uy NR™), we have that
|2 = Tjal > 08ia-

Therefore, we have that

|z — 25 o

o' a0 St i
2 o\n—1 0= 9 o\n—1
P(UanORZ\Dr.a) (1 o + |2 = Tjal?) (43 0 + |7j.0 = Tial?)
(10.21)

for all a € N. We distinguish two cases:

Case 4.4.4.1: assume that ;o = 0(fti,o) when o — +00. Then it follows from
(10.20) and (10.21) that

/ | — zialp)
1
pUanoR \Dr o) (12, + |2 — zj0[?)"

S’(LJrl'u/'r_L72 L n—3
=0 <l"a2n]§a ) =0 (( m) Mm) = 0o(ti,a)
Si,oz Si,a

when o — 4o00. This proves (10.19) in Case 4.4.4.1.

Case 4.4.4.2: assume that p; o = O(t;,o) when a@ — 4o00. Then, we have that
j € J; and it follows from the definition (8.29) of s; , that

812,04 < %(M?,a + |xi,0€ - -'L'j,a|2)
7,
for all o € N. Plugging this inequality in (10.21), we get that

T — 2020 ha
/ \ il 1 o R n‘ﬁsia (10.22)
@(UaNOR™\Dr, o) (ﬂ?a + |z — ffj,a|2) s o

ia Mj

n—3 .
= M . @ . — O(ﬂi,a) if n >4
= (Nj’a (Si’a ) Nz,a) - { O(,uzya) 1f n = 3 (1023)
when o — 4o00. This proves (10.19) in Case 4.4.4.2.

We have proved (10.19) in all cases. This ends Step 4.4.4.
Step 4.4.5: Let j € {1,..., N} such that

Tja € Qand x4 — Ti o = 0(s;,n) When a — +o0. (10.24)

Then we claim that
Kja = 0(fia) when a — +oo.
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We prove the claim by contradiction and we assume that p; o = O(pj o) when
a — +o00. Then j € J; and it follows from the definition (8.29) of s; o that
20 < B2 4 |ia — 7i0l?)

],

for all & — 4o0. It then follows from (10.24) that s7 , = O(ui,aftj.e) = O(pia)
when o — +o0. It then follows from (10.24) that z; o — Zj o = 0(tja) When
a — +oo. Since x; o € 00, we then get that d(z;a,0) = o(ft),o) when o — +00,
and then z, , € 0 (see (i) of Proposition 2): a contradiction with our assumption
(10.24). This proves the claim.

Step 4.4.6: Let j € {1,..., N} such that
Tjo €0 and x4 — ;o = 0(S;,q) When o — +00. (10.25)
We claim that

|x_xi,a|2

n—2
. s
lim L&

1
L / — do =0 when n > 3. (10.26)
a=rtoo’ Y f o AORT \Dr. o (12, + |z — 250 1

We prove the claim. Since lim,_, 4o )0 = %o, We write z,, = <p(a:j7a71,a:;-,a) for
all @ € N. Here again, since dipg is an orthogonal transformation (see Lemma 2, we
get that

(.0, 00) = (1 + o(1))|zj,0,1]
when o — +o00. For simplicity, we let d; o := d(z;,0Q) for all o € N. With the

change of variables = ¢(z), we get that

—2
|(L‘ - xi:a|2:u’;‘l,a do

—1
/@(Uamaﬂ«z\DR,a) (,u?’a + |z — xj,a|2)n

n—2
Hja

<
= C/a L2 0.2) — (2 roy12)* L
R™ (,Uzj,a + |( 72) (x]7a717xjva)‘ )
—92 n—2
o Hj.o
dz < C—1—

OR™ (dia + |z|2)nf1 di,,

dz

<C

for all @ € N. Since z;,, & 09, we apply (9.2) and (9.4) and we get that

.2, n—2 n—2 n—2
|aj - xz,al Mj,a do = O Mj,oz o /’Lj,oz
2 o\n—1 0= dnfl =0 n—1
P(UaNOR?\DRg,a) (/’Lj,a + |‘T - Ij,a‘ ) J sj,a

IU/T.L72 n
e | = o)) = o(ija) = o(fia)
n—2

Hja

when a — +00, where we have used Step 4.4.5. This proves (10.17) and ends Step
4.4.6.

Step 4.4.7: Plugging (10.17), (10.18), (10.19) and (10.26) into (10.16), we get
(10.12). This ends Step 4.4.
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Step 4.5: We claim that there exists ¢ > 0 such that

Vg |2 2* Sl
(sc—mi,a,u)<| Z | —cnl;‘i —|—62uo‘> do

lim lim ia/
R—+ocoa—+oo 7 @(UaNOR™ )NDr . a

:H(ajo)/ ]2 |VU0|§_C Uz i«
o Joun 2 "o

g o VU|? ’
_wgzgy / ('2("5 —n(n— 2)(]2‘1) d¢ when n > 4, (10.27)
OR™

where 6 is as in (9.50). We prove the claim. We assume that n > 4. As a preliminary
remark, using the definition (10.11) of D, and (9.4), note that

(p(UQ n 8R’1) N DR,a e DR,a N o2
for all & € N. We define

n—

n=2
Uia(T) = 11; 3 Ua (0,27 4) + fti,a®)

for all z € u;;(w_l(Uwo) — ¢ H2ia)) NR™. It follows from Theorem 4.1 modified
by (9.50) that

lim @6 = Up(-+0) in CL. (R™ \ {6/ k € L}). (10.28)

a—r+00

where Up(z) := (1 + |2|})!=% for all z € R™ and § € R*~!. With the change of
variable z = ¢((0, 2] ) + 1i %), We get that

s Vi

A\ T w2 equl
/ (= Tjq,v) (| o — e+ 2 ) do
'DRYC,PIBQ 2 2 2

=2 o 2 ~2
= u; / G (z |v’u’i701|gC¥ c ui,a Eaui,aui,a do
= Mi,« «a — — (n T e— o
BR(0)NOR™ \Uker By 1 (0k.0)) 2 2 2

where gq () := (¢*€)((0,2} ) + pi,ov) is the pull-back of £ by the chart ¢ and o,
is the surface area associated to the metric g, and
(((0, 27 0) + 1i,a2) — @(0, 77 4), v 0 p((0, 7 o) + 1ia2))
5 .
/u‘i,a

With (10.15), (10.28), using that ©*£(0) = £ and that n > 4, we get that

Gu(z) =

2

i . 4 _ |V |? w2 equ
i it /DRN@ ~ Tia¥) ( 5 =25+ A1)
~ lim —(5k1@(0)a1/($0))kaz WUO@(:”+9) e U (z+96) de

R—+o0 Jp 2 2 n 9x
[ =(Oup(0), v(x0)) ‘ (IVUlE(@) U (2)

_ /i9 . . (@ — 0)*(x — 0) ; en 0 ) de
:/ — (O (0), V(o)) . 1 VUl _CnUo* de
oR™ 2 2 2+

VU2 :
( 20‘5 —cnUQO* ) de (10.30)
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where in these computations, we have defined
Dpgr = BR(O) N oR™ \ UkeLBRfl(Gk)).

We let A(p,0,x0) be the right-hand-side of this expression. Since Uy is radially
symmetrical, we get that

2n 2 2*

- OulO: el | VUOIE U5 g
2 AR™ 2 A

Since dyy is an orthogonal transformation, the first and second fundamental formes
of 90 at xg in the chart ¢ are respectiveley I = dx; and Iy = —(0rip(0), v(x0)).
Therefore the mean curvature of 00 at zo is H(zo) = >, I and then

— VUy|? .
/ aklsﬁ(o)xkxl <| 0|£ - CnUo > de
omn 2 2 2%

:H(xo)/ of? VOl U p
2n Jorn 2 "o '

Combining (10.29) and (10.31) yields (10.27). This ends Step 4.6.
Step 4.6: we claim that
2 .
e (5 — 0, 55 a0
. VU, 2 a*
and faRﬁ (% fcnUQ‘L ) dé =0

We prove the claim and assume that n > 4. Using the explicit expression of Uy, we
get that

VU, |2 * B _9)2 [P (92 _ 1)y
/ |$|2 | 0|§ —c, UO dé— Wn 2(” ) / (T Z)T dr
OR™ 2 2* 2 0 (1 + T )n

_ Wy _a(n — 2)? [/1 (r2 —1)rm i+ /°° (r2 —1)rm dr]
0 1

when n > 4. (10.31)

2 (L +r2)n 1 +r2)n

_ wna(n =2 (2 =" L=t

B 2 Vo (1+r2)m d’“*/o wdrl
 wpea(n—2)2 [T (1 =)t — )
- 2 /0 (1+r2)n

Similarly, we prove that the second integral in (10.31) vanishes. The claim is
proved. This ends Step 4.6.

Step 4.7: Assume that n > 4. Plugging together (10.12), (10.27) and (10.31), we
get that there exists d; > 0 such that

dr > 0.

. 1 |Vug|? w2 equ?
QEIE“ Hise /w(UmaR")(x T Ther) < ; oo 2(1 * "‘2 © ) do = it (o)

(10.32)




68 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI

Plugging (10.6), (10.7) and (10.32) into (10.5), we get that

Si,a

n—2
(B2) e o) + @) + oDz =0
when a — 400, and then there exists ¢; > 0 such that
o
lim —% = —c/H (o). (10.33)

a—+00 5?;2

In particular, H(zp) < 0. This ends the proof of Theorem 4 when n > 4. We are
now left with the case n = 3.

Step 4.8: We assume that n = 3. We define @, , as above. We let (z4)o € R™ be
such that

lim |ze] = 4o00.
a—+00

Then, we have that

20l < 672 5 |20 | %@ 0(20) = O(1) when a — 400 (10.34)
and
70| = 0 <Sza) = liIJIrl |za|"*2ﬂi7a(za) =1 when a — +o0. (10.35)
i a—r—+o0

We prove the claim. As in Case 6.2 of the proof of Theorem 6, we have that

N
o (x) = (14 0(1)) (ﬁa +y Vm(ﬂ?))
i=1
for all x € Bs,(xo) and all a € N for §p > 0 small enough. Therefore, we have that

n—2
2l Ziia(za) = (1+0(1) (2207 e

N n_2
+Y 1zl 2 Vialp( (@ia) + tiaza))
=1

for all @« € N. It follows from Theorem 3 that there is no blowup point in the
interior when n = 3: therefore, (10.2) rewrites

|Zi 0 — Tjal > 208; o for all j # i and all o € N. (10.36)

We fix j # i. Similar to what was done in Step 6.1.2 of the proof of Theorem 6, we
have that
n—2
2al" 202 Via(p(e™ (@) DI Lot 2
Za " /’Lz; V‘:Ot ¥ 90_ Ti o +/J/i,ozza ‘ S - .
o /li,a(l‘?,a + |Ti0 — Tj,al?)

for all @ € N (we have used that |z,| < (M;isi,a). Therefore, if p; o = O(1),q)
when a — 400, it follows from the definition of s; , that the right-hand-side is
bounded. If p; o = O(pi,q), using (10.36), we get that the right-hand-side is also
bounded.
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In the case j = ¢, it follows from Case (i) of Proposition 13 that

n—2

—2 2 . 2
n—2 “5- —1 ‘Za| Hio

zol" o Via(p(e™ (@ia) + tiaza)) = (1+0(1))

|24l o Vial ) W2+ Jr.0za)

= 14o0o(1)
when o — +00 since limgy— oo |2a| = +00.
=2 —
Finally, noting in addition that |z|™"~ 2/11& U = O(sfﬁula"’ Uq) = O(1) by

definition of s; o, we get that (10.34) holds. With a little more careful analysis, we
get (10.35). This ends Step 4.8.

Step 4.9: We still assume that n = 3 and we let (24)o € R™ be such that
limg—s 400 |2a| = +00. Then, we claim that

|za|:o<8i_’a> = lm |z Y Vila(za)

- Jdim g =7n—2, (10.37)

where go(7) := (¢*§)(@(¢ ™ (Tia) + pia®))-
We prove the claim by contradiction and assume that there exists (z4) as above
and €y > 0 such that

20l Vi a(2a) g0 — (n = 2)| > €0 (10.38)
for all @« € N. We define 7, = |z4| and wo(z) = 12720, o(rox) for © # 0:
this is well defined and it follows from Step 4.8 that lim, 400 wo(z) = |2277

in CP.(R™\ {0}). Moreover, Ay wa + €a(Hial?al)?Wa = cplzal2w2 ~1 where
gl (z) = riga(rax) and therefore, it follows from standard elliptic theory that w,,
converges in C} (R™\ {0}). Computing Vw,(r;'2,) and passing to the limit when

o — +o0o contradicts (10.38). This ends Step 4.9.
The rough estimate (7.3) and computations similar to the case n > 4 yield
w2 2

@ E(Jéua
(x — ia,v) <cn2* -3 )‘ dz = Ol )

[p(Bgs (71 (zi,a))NOQ

i,

when o — +o00. Similarly, we have that

|z — 2i0|*|Vua|? dz = O <m,a In Si’a)

1,0

/‘P(B(isiya (‘Pil(rt,a))maﬂ

when a — 400. Therefore, we have that

/ (& — 4.0y V) Fo () da (10.39)
(Bss; o (071 (Ti,6))NOQ

_ (31@180(0)7 I/(ﬂvo)) / xk:cl|Vua|2 dz + o </Li,oé In Si,a)
4 0(Bss. (91 (1.0))NOQ i

i,

when o — +o00 and n = 3.
Step 4.10: Assume that n = 3. We claim that

2F 2 | Vue|? do

a 2
lim = 27 5kl (10.40)
a—+0o0 Ml o In Sia 3

Hi,a

fcp(Bésm (0= (24.0))NON

We prove the claim. We let (d4)a € (0,+00) be such that lim,— 1o do = 0 and
limg— 400 ui_’iéasi,a = +00. The sequence (d,) will be chosen later. With a change
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of variables and noting that the element of volume satisfies dv,, = (1 + o(1))do,
we have that

xk:cl|Vua|2 dr = ,ui,a/ xkxl|Vﬂi,a|§advga
Bsas, . (0)NOR™

Hi o

(14 o(1))2*2! Vit o2, do + O(pia)

/<p<Baasi,a<so—1<wi,a>>nm

= /’Li,a/
Bsas,.o (0)NOR™\BR(0)

Hi o

zhg!

(1+ 0(1))|33|2(T1)(

- ’“‘“"/ 2" Vit g, )2 dvg, + O (i)
Bisqsi o (0)NOR™\Br(0)

P o

when o — 400 for R > 0 arbitrary large. With (10.37), we then get that there
exists eg such that limg_, 4 er = 0 and

/ zkxl|Vua|2dz
P(Bsgs; o (P71 (T4,0))NO0

i,

kol 5o s
= taln —27 i+ (o) + ex) 25 )
Bsassn (ONOR™\Br(0) 1| i
Hi o
_22n— (Skl 60zia 5aio¢
= (n—2) w2 Hi o ln %, +o0 (ui,a In 8’) (10.41)
n Hi,a i,00

We now estimate the complementing term. It follows from (10.37) and the local
convergence of 1; , that there exists C' > 0 such that [V 4,4, () < Cla]'~™ for
allz € B -15.. (0). Therefore, we have that

/ * 2| Vu, | de
‘P(Brisiya (‘Pil(xl,a))maQ\Béas,;va (e~ H=i,a))

Chiva | oL+ ) e
B

CEFI (0)\3%(11% i ©)

s

IA

“i,a
4]

< Cpialn 5 (10.42)

We now choose (04 )q such that

, 1 ,
lim 6, =0, lim @:—Fooand ln:o<lnsl’a)

a—r+00 a—r+00 Hi,o 604 Hi, o

when o — +o00. Clearly, this choice is possible: combining (10.41) and (10.42)
yields (10.40). This ends Step 4.10.

Step 4.11: Assume that n = 3. We claim that there exists ¢; > 0 such that

1
lim — = —¢;H(xp).
a—400 5; o In T‘l v ( )

We prove the claim. Putting (10.40) into (10.39) and arguing as in Step 4.5 yields
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/ (x — i 0,V)Fo(z)de
?(Bss; o (@71 (24,0))NON

i,

:77er(akk§0(O)7V(x0)) _ lnsi’a+0<p- In 5i,a>

6 #i,

H 1,0 7,0
_7 (xO),uiyalnsi’ To (Hialn S, >
6 Mo ’ i,
When o — +o0. Plugging this asymptotic behavior into (10.5) and using (10.6)
and (10.7) yields the existence of ¢; > 0 such that

ci(H(zo) +0(1))s;,01n

Si

= +1=0

when o — +00. This yields the desired result and this ends Step 4.11. Theorem 4
is proved for n = 3.

11. PROOF OF THEOREMS 1 AND 2

Let (ua)aen € C%(Q) be as in the statement of Theorem 1. We let

S = {agr}rloowi’a/z e {1, ...,N}} .
Step 1: We claim that

S=§
where S is as in Definition 1. We prove the claim. Let 2o € S and let i € {1, ..., N}
such that lim,_, 4o ;o = zo. In particular, we have that lima— oo ta(Zia) =
+o00: then g is a singular point, and then xy € S. This proves that Scs.

Let 2o € 8¢ then there exists § > 0 such that |zg — ;.| > 26 for all i € {1,..., N}.
In particular, it follows from (7.3) that there exists C' > 0 such that u,(z) < C for
all x € Bs(zp) N2, and then z( is not a singular point, that is & S. This proves
that S¢ C S°.

These two assertions prove that S =8, and the claim is proved. This ends Step 1.
|

Step 2: Let xp € S. Assume that n > 7. We claim that

there exists (%; 4 )aen € O such that lim z;, = xo.
a—+o00

We prove the claim by contradiction and assume that for all ¢ € {1,..., N} such
that limg_, o ;0 = To, then x; o € Q. We let ¢ € {1,..., N} such that

Wio = max{p;a/j € {1,..., N} such that all)rfoo Tja =T}
It then follows from Theorem 3 that
easzj = ,u;f;‘l (11.1)

when o — +oo and there exists j € {1,...,N} such that p; o = o(ftj,«) when

o — +oo and
2 _ M
i, T

(U?,a + |zi0 — xj7a|2)

7,

for all o € N.
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Assume that limg— 400 T, = 0. Then it follows from the definition of p; o that
Mo > [hjob & contradiction with p; o = o(ft),o) When o — +o0.

Assume that limg_y o0 .o 7# 0. Then x; o — 2 # 0 and we have that

2 Mo
§i . X ——
" B
when o — +00. Plugging this estimate in (11.1), we get with (8.15) that
n—=6 n—2 n—2
€a =X Pig Mo =o0(p;a ) =o(ca)

when oo — 4+00. A contradiction since n > 7.

This proves the claim, and this ends Step 2. (]
Step 3: Let 29 € S. Assume that n = 3 or n > 7. We claim that
2o € 09 and that H(xg) < 0.

We prove the claim. We let i € {1, ..., N} be such that
Si,q = min{s; o/ ;. € 0 and agrfoo Tja =0}

This minimum is well-defined: this follows from Theorem 3 for n = 3 and from
Step 2 when n > 7. In particular, ;o € 092 and z¢ € 0Q2. We claim that for all

je{L,... N}\ {i}

Tja €00 = Tjq— Tia 7 0(8in) When o — +00 (11.2)
We prove the claim by contradiction and we assume that there exists j € {1,..., N}\
{i} such that limy—s {00 Tj,a = To, Tija — Lj,a = 0(Si,a) and x4 € 0N for all & € N.

We claim that ;o = o(ije) when a — +o0o. We argue by contradiction and
assume that ;o = O(lio) when o — +oo: then ¢ € J; and it follows from the
definition (8.29) of s; o that

Hja
Hia

Sfa < (K o+ |2i0 — zj,0l%)

for all & € N. Since |z; o — 2| = 0(sia) and f1;, o = 0(s;,o) when a — +o00, we get
that s; o = 0(s;,o) When o« — 400: a contradiction since s; o < s;, for all & € N.
This proves that p; o = o(j,q) when o — +o0.

In particular, we have that j € J;, and then

20 < B2 4 |ia — wi0l?)
Hij o
for all @ € N. Since ;o — Zj,0 = 0(Si,a) and ;o = 0(j,«) when o = 400, we
then get that s; o = o(u;,o) and then x; o — o = 0(ftj,a) When @ — +oo. A
contradiction with (9.49). This proves that (11.2) holds.

Therefore, we can apply Theorem 4 to i, and we get that H(xzp) < 0 when n = 3
or n > 7. This proves the claim, and therefore this ends Step 3.

Theorem 1 is a consequence of Step 3.

Theorem 2 is a consequence of Theorem 1 and Proposition 1.
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APPENDIX A: CONSTRUCTION AND ESTIMATES ON THE GREEN’S FUNCTION

This appendix is devoted to a construction and to pointwise properties of the
Green’s functions of the Laplacian with Neumann boundary condition on a smooth
bounded domain of R™. These proof are essentially self-contained and require only
standard elliptic theory.

Let Q be a smooth bounded domain of R™ (see Definition 2 in Section 3). We
consider the following problem:

Au=f in{
{8 mon e

where v € C?(Q) and f € C°(2). Note that the solution u is defined up to the
addition of a constant and that it is necessary that fQ fdx = 0 (this is a simple
integration by parts). Our objective here is to study the existence and the properties
of the Green kernel associated to (11.3).

Definition 6. We say that a function G : Q x Q\ {(x,x)/x € Q} — R is a Green’s
function for (11.3) if for any © € Q, noting G, := G(z,-), we have that

(i) G, € L'(Q),

(i) Jo Gxdy =0,

(iii) for all p € C*(Q) such that &, = 0 on O, we have that

plx)—p= /QGmAsady-

Condition (ii) here is required for convenience in order to get uniqueness, symmetry
and regularity for the Green’s function. Note that if G is a Green’s function and
if ¢: Q — R is any function, the function (z,y) — G(x,y) + c(x) satisfies (i) and
(iii). The first result concerns the existence of the Green’s function:

Theorem 5. Let Q be a smooth bounded domain of R™. Then there exists a unique
Green’s function G for (11.3). Moreover, G is symmetric and extends continuously
to Ax Q\ {(z,z)/x € Q} and for any x € Q, we have that G, € C*>*(Q\ {z}) and
satisfies
AG, = —ﬁ in Q\ {z}
{ 0,G, =0 mn ON.

In addition, for all x € Q and for all ¢ € C?*(Q) we have that

plz)—p= / GzAsOdy-I-/ G0, dy.
Q 09

A standard and useful estimate for Green’s function is the following uniform point-
wise upper bound:

Proposition 9. Let G be the Green’s function for (11.3). Then there exist C'(2) >
0 and m() > 0 depending only on 2 such that
1
c(Q)
Concerning the derivatives, we get that

|VyG(y)| < Clo —y|'™™ for all z,y € Q, x # y. (11.5)

[z—y[* " =m(Q) < Gla,y) < CQ)|z—y|*™" for all z,y € Q, x #y. (11.4)
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Estimate (11.4) was proved by Rey-Wei [27] with a different method. We also
refer to Faddeev [10] for very nice estimates in the two-dimensional case.

Notations: in the sequel, C(a,b,...) denotes a constant that depends only on €,
a, b... We will often keep the same notation for different constants in a formula,
and even in the same line.

We will intensively use the following existence and regularity for solutions to the
Neumann problem (this is in Agmon-Douglis-Nirenberg [4]):

Theorem 6. Let Q be a smooth bounded domain of R™ and let f € LP(Q), p > 1
be such that [, f dx = 0. Then there exists u € HY () which is a weak solution to

Au=f inQ

d,u=0 1in 0N
The function u is unique up to the addition of a constant. Moreover, there exists
C(p) > 0 such that

lw = ullmz ) < CEOIfp-
If f € C%(Q), a € (0,1), then u € C*>*(Q) is a strong solution and there exists
C(a) > 0 such that
[u = ullc2ea@) < Cla)|| fll oo

A.1. Construction of the Green’s function and proof of the upper bound.
This section is devoted to the proof of Theorem 5.

A.1.1. Construction of G.
We define kn = m
chosen later, and we define

We fix x € Q and we take u, € C?(Q) that will be

Hy o= k| =27 + uy.

In particular, H, € LP(Q) for all p € (1, 25). We let u € C*(Q2) be a function.
Standard computations (see [13] or [28]) yield

/HIAudy:u(x)—i—/uAuzdy—i—/ (—OyuHy +ud, Hy) do. (11.6)
Q Q a0

We let n € C*°(R) be such that n(t) = 0if t < 1/3 and n(¢t) = 1if ¢t > 2/3. We

define
_ 2—n
( (.90 )knlw yl

for all y € Q. Clearly, v, € C*®(Q) and v,(y) = kn|z — y[>~™ for all y € Q close
to 0. It follows from Theorem 6 that there exists u), € C**(Q) for all a € (0,1)
unique such that

Aul, = Av, —Av, in Q

oul, =0 in 00

ul, =0

We now define u, := v/, — v, € C*%(Q) and ¢, := Av, € R so that

x

Au, = —cy in Q
Oy = =0, (ky| - —z|>~™)  in 0Q
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Therefore, 9, H, = 0 on 99 and (11.6) rewrites
/ H,Audy = u(x) — cz/ wdy — O, uH, do
Q Q 0

for all u € C%(Q). Taking u = 1 yields ¢, = &7, and then, we have that

Y]
/ H,Audy = u(z) —a — OyuH, do
Q o0
for all u € C%(Q). Finally, we define G, := H, — H, and we have that:
/ GzAudy = u(x) —u — OyuGy do
Q o0

for all u € C%(Q). Therefore G is a Green’s function for (11.3). In addition,

n—2
Taking u € C°(Q2\ {z}) above, and the definition of G, we get that

AG, = —ﬁ in Q\ {z}
0,G, =0 in 0.

G, € C2*(@Q\ {z}) N LP(Q) for all a € (0,1) and p € (1, ”) .

(11.7)

A.1.2. Uniform LP—bound.
Lemma 3. Fiz z € Q and assume that there exist H € L*(Q) such that

/HAudyzu(x) —u
Q

for all u € C?(Q) such that O,u =0 on Q. Then H € LP(Q) for all p € (1, ﬁ)
and there exists C(p) > 0 independent of x such that

I1H — Hl, < C(2,p) (11.8)
for all xz € Q.
Proof. For p as above, we define ¢ := p%l > 5. Wefix Y € C (). It follows from
Theorem 6 that there exists u € C?(£2) such that

Au=1—1 inQ

d,u=0 in 00

u =0

It follows from the properties of H that
[t =mwdy= [ Hw=5)dy = (o).

It follows from Sobolev’s embedding that Hj(Q) is continuously embedded in
L>(Q): therefore, using the control of the Hj —norm of Theorem 6 yields

/Q(H — H)pdy| < ||ulls < C(@)lullag < C" (@Y —2llq < C" (@Y,
for all v € C°(Q). Tt then follows from duality that H — H € LP(Q2) and that
(11.8) holds. O

A.1.3. Uniqueness.
We prove the following uniqueness result:



76 OLIVIER DRUET, FREDERIC ROBERT, AND J.WEI
Lemma 4. Fiz v € Q and assume that there exist G1,Go € L' () such that
/ G;Audy = u(z) —a
Q

for alli € {1,2} and for all u € C*(Q) such that d,u =0 on Q. Then there exists
c € R such that G1 — G = ¢ a.e on §Q.

Proof. We define g := G; — G3. We have that

/gAudy =0
Q

for all u € C*(Q) such that d,u = 0 on 9Q. We fix ¢ € C*(Q). Tt follows from
Theorem 6 that there exists u € C%(Q) such that Au = —1) in Q, d,u = 0 on 9N
and @ = 0 . Therefore, we get that

/Q(g—é)wdy=/Qg(@b—tﬁ)dy=/ﬂgAudy=0.

for all ¢ € C°(92). Moreover, it follows from Lemma 3 that g € LP(Q2) for some
p > 1, and then we get that g — g = 0 a.e, and then G; = G2 + g. O

As an immediate corollary, we get that the function G constructed above is the
unique Green’s function for (11.3).

A.1.4. Pointwise control.
We let G be the Green’s function for (11.3). The objective here is to prove that
there exists C'(2) > 0 such that

Ga(y) < C(Q)|z —y[>~" (11.9)
for all z,y € Q, x # y.

Proof. The proof of (11.9) goes through six steps.
Step 1: We fix K C © a compact set. We claim that there exists C(K) > 0 such
that
|Ga(y)l < CE)|z —y* ™"
forallz € K and all y € 0, y # .

We prove the claim. We use the notations Uy, ul, v, above. As easily checked,
vy € C?(Q) and ||vg]lc2 < Cd(z,09Q)™" < Cd(K,00)™" < C(K). Therefore, it
follows from Theorem 6 that ||u, | < C(K), and then |H,(y)| < C(K)|z —y|>~"

for all y € Q, y # x. Since G, = H, — H, and (11.8) holds, the claim follows.
Step 2: We fix 6 > 0. We claim that there exists C'(§) > 0 such that
|Gallc2o\B.(5)) < C(6) (11.10)

for all x,y € Q such that | — y| > ¢.

We prove the claim. It follows from (11.7) and standard elliptic theory (see for
instance [4]) that for any p > 1, there exists C(d, p) > 0 such that ||G. | 2o\ 5, (5)) <
C(6) +C(6)||GellLr(a)- Step 2 is then a consequence of (11.8).

We are now interested in the neighborhood of 92. We fix xy € 992 and we choose
a chart ¢ as in Lemma 1. For simplicity, we assume that ¢ : Bs(0) — R™ and that
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¢(0) = xo and we define V' := (Bs(0)). We fix z € V N Q and we let G, be the
extension G, := Gy o7, =Gropofop L

: we have that
G :V\{z,2*} = R with 2* := 77;1(:3) =portop Hz)e Q'

Moreover, since G, is C%® outside 2 and 7 is Lipschitz continuous, we have that
G, € H!,, (V\ {x,z*}) for all ¢ > 1; in addition, it follows from (11.8) that

1,loc
G, € LP(V) for all p € (1, #) and that there exists C'(p) > 0 independent of z
such that 3
1G2llp < C(p).
Step 3: We claim that

NGy = 6y + 8 — — in D'(V). (11.11)

B
€2
We prove the claim. We let ¢ € C°(V) be a smooth function. Separating V N
and V N Q¢ and using a change of variable, we get that

/ élAglﬂ dvg = G, A (¢+¢O7T;1) dy.
|4

vnQ
Noting that 8, (¢ 4+ ¢ o m;') = 0 on dQ (we have used that v(p(0, ")) = dp(o,.)(€1))
and using the definition of the Green’s function G,, we get that

[ Gegpany, = v +vor @ - [ @rvon)a
\% VN
1
= ¢(x)+1/)(m*)—@/vwdvg.

This proves (11.11) and ends the claim.

Step 4: We fix z € V. We claim that there exists I', : V' \ {z} — R such that the
following properties hold:

AT, =6, in D'(V),
T.(y)| < Clz—yl>™ forally eV \{z}, (11.12)

r,eC(V\{z})

We prove the claim. We define r(y) := \/3;;(z)(y — 2)i(y — z)7 for all y € V.
As easily checked, r?7" € C®(V \ {z}): we define f := Azr> ™ on V \ {z}. It
follows from the properties of § that f € L7 (V' \ {z}). Moreover, straightforward

computations yield the existence of C' > 0 such that
If(y) < Clz —y|' " forall y € V'\ {z}. (11.13)
Computing Azr?~™ in the distribution sense yields
Agr* " = f+ K.5, in D'(V),

where K, := (n—2) faBl(o)(V(y)’ Y)g(=)7(y)* ™ dvg(z) > 0. Moreover, lim,_,,, K, =
Ky, > 0.
We define h such that

Agh:f inV
h=0 on OV
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It follows from (11.13) and elliptic theory that h is well defined and that h € Hj ;(V)
for all p € (1 L) and h € C%(V'\ {z}). Moreover, there exists C' > 0 such that

' n—1 loc

Ihllng < 0 torattpe (1,7 (11.14)

We claim that for any a € (n — 3,n — 2), there exists C'(«) > 0 such that
[h(y)] < Cla)ly — 2|7
for all y € V'\ {z}.
We prove the claim. We let € > 0 be a small parameter and we define
he(y) := €*h(z + ey) and f.(y) :== €T f (2 + ey)
for all y € By(0) \ By /2(0). We then have that

Ag. he = fe in By(0) \ By/2(0), (11.15)
where g. = g(e-). Since a > n — 3, we have with (11.13) that
£o)] < Cea=9yji=n < an-ic (11.16)
for all y € By(0) \ B1/2(0). We fix p := aa3z € (1, %) and q := Z. A change of
variable, Sobolev’s embedding theorem and (11.14) yield
hell La(Ba0)0\By 2 (0)) < Clibllg < Cllbllgy < C (11.17)

for all € > 0 small. It then follows from (11.15), (11.16) and (11.17) that there
exists C' > 0 such that

|he(y)| < C for all y € R™ such that |y| = 1.

Therefore, coming back to h, we get that |h(y)| < Cly — 2|~ for all |y — z| = e.
Since € can be chosen arbitrary small and h is bounded outside y, the claim is
proved.

We now set I', := % (7“2_” - h) It follows from the above estimates that T’
satisfies (11.12). This ends Step 4.

We define i, 1= Gy — Ty — Dy It follows from Steps 2 and 3 above that

Ay = — in D'(V). (11.18)

L
]
Moreover, we have that p, € H{(V \ {z,z*}) for all ¢ > 1 and that

iy <€) forattpe (1,75 (11.19)

Step 5: We claim that for all V' C V, there exists C(V') > 0 such that
[tz Lo vy < C(V7), (11.20)
where C(V') is independent of x.

We prove the claim. Since x € Q NV, we have that § = £ in a neighborhood of z,
and then g is hypoelliptic around z: therefore, it follows from (11.18) that u, is C*°
around z. Similarly, around z* € VN Q°, § = (p o7 o 1)*¢ is also hypoelliptic,
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and therefore, y, is C* around z*. It then follows that u, € H{ (V) for ¢ > 1 and
(11.18) rewrites

1
/ (Vitg, V1) dvg = ——/ ¥ dv, for all 1 € C2(V).
v 1 Jv

Therefore, it follows from Theorem 8.17 of [13] that p, € LjS.(V) and that there
exists C'(V, V', p) > 0 such that

el Lo vy < C(V, V!, p) (1+ [l 2o (vy)
for all p > 1. Taking p € (1, ﬁ) and using (11.19), we get (11.20) and the claim
is proved.

Step 6: We are now in position to conclude. It follows from the definition of p,
from (11.20) and from (11.12) that there exists C (V') > 0 such that

Go(y)| <C+Cla—yf " + % —y "
for all z,y € V' such that = # y. As easily checked, one has that |z* —y| > c|z — y|
for all z,y € V' N, and therefore
Ga(y)| < Clz —y>~" (11.21)

for all z,y € V' N Q such that x # y. Recall that V' is a small neighborhood of
xo € 9. Combining (11.21) with Step 1, we get that there exists §(€2) > 0 such
that (11.21) holds for all z,y €  distinct such that |z — y| < §(Q). For points
x,y such that |z — y| > §(2), this is Step 2. This ends the proof of the pointwise
estimate (11.9). O

A.1.4. Extension to the boundary and regularity with respect to the two variables.
We are now in position to extend the Green’s function to the boundary.

Proposition 10. The Green’s function extends continuously to Q x Q\ {(z,z)/x €
Q} - R.

Proof. As above, we denote G the Green’s function for (11.3). We fix = € 92 and
y € Q\ {z} and we define

Galy) = lim G(z;y) for ally € Q\ {z},

where (z;); € Q is any sequence such that lim;_, o, z; = x.

We claim that this definition makes sense. It follows from (11.10) that for all § > 0,
we have that

|G llc2 0\ Bs (2)) < C(6)
for all i. Let (i’) be a subsequence of i: it then follows from Ascoli’s theorem that
there exists G’ € C1(Q\ {x}) and a subsequence i” of i’ such that

lim G, =G in C}(Q)\ {z}).

1——+o0
Moreover, It follows from (11.9) that |G’(y)| < Clx —y|?>~" for all y # x. We choose
u € C?(Q) such that d,u = 0 on 9Q. We then have that [, G, Audy = u(x;) — @
for all i. Letting i — 400 yields

/ G'Audy = u(z) — 4,
Q
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and then it follows from Lemma 4 that G’ does not depend of the choice of the
sequence (z;) converging to . We then let G, := G’ and the definition above
makes sense.

We claim that G € C°(Q x Q\ {(x,2)/z € Q}). We only sketch the proof since
it is similar to the proof of the extension to the boundary. We fix z € Q and
we let (z;); be such that lim; , . x; = x. Arguing as above, we get that any
subsequence of (G,) admits another subsequence that converges to some function
G” in C}(Q\{z}). We choose u € C%(Q) such that 9, u vanishes on 92 and we get
that [, Go, Audy = u(x;) —a for all i. With the pointwise bound (11.9), we pass to
the limit and get that [, G” Audy = u(x) — u: it then follows from Lemma 4 that
G” = Gy, and then (G,,) converges uniformly to G, outside x. The continuity of
G outside the diagonal follows immediately. O

It is essential to assume that G satisfies point (ii) of the definition: indeed, for any
c: Q — R, the function (z,y) — G(z,y) + c(x) satisfies (i) and (iii), but it is not
continous outside the diagonal if ¢ is not continuous.

A.1.5. Symmetry.

Proposition 11. Let G be the Green’s function for (11.3). Then G(z,y) = G(y, z)
forallz,y e QA xQ, z#£y.

Proof. Let f € C°(Q) be a smooth compactly supported function. We define
F(z) = / G(y,2)(f — f)(y) dy for all x € Q.
Q

It follows from (11.9) and Proposition 10 above that F' € C%(Q). We fix g € C=°(Q)
and we let ¢, 1 € C?(Q) be such that

Ap=f—f inQ AYy=g—g inQ
dyp=0 in 99 and O =0 in OS2
p=0 0=0

It follows from Fubini’s theorem (which is valid here since G € L'(Q2 x Q) due to
(11.9) and Proposition 10) that

/Q(FfF)gdx = /QF(gfg)dx:/QFAd)dx
Lo =0 ([ consvaa) a= [ aowd
= /Qsaﬁzbdy:/Qw(g*E)dy:/Qg@d%

and therefore [(F — F — ¢)gdxz = 0 for all g € C°(Q). Since F,p € C°(Q),
we then get that F(z) = p(x) + F for all x € Q. We now fix x € . Using the
definition of the Green’s function and the definition of F', we then get that

[ cwa-nwa= [ cen-nuarg [ ([ cwad) G-

and then, setting

H,(y) = G(y,z) — G(z,y) — |Q|/Gy7
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for all y € Q\ {z}, we get that
0= [ HAs -y = [ (- H)f dy
Q )
for all f € C2°(2). Therefore, H, = H,, which rewrites
1
Glo.) = Gla) = rr | (G(0:2) = Glan2) =+ o),

for all x # y, where h(x) := %‘ Jo G(z,2)dz — ﬁ Jaxq G(s,t)dsdt for all z € Q.

Exchanging z,y yields h(z) + h(y) = 0 for all  # y, and then h = 0 since h is
continuous. Therefore, we get that

Gy,z) — G(z,y) = ﬁ /Q(G(y,z) —G(x,2))dz =G, — G, (11.22)

for all  # y. The normalization (i) in the definition of the Green’s function then
yields Proposition 11. O

If one does not impose the normalization (ii), we have already remarked that we
just get G' : (xz,y) — G(z,y)+c(x) where G is the Green’s function as defined in the
definition and c is any function. We then get that G'(z,y) — G'(y, ) = ¢(x) — c(y)
for all x # y, which is not vanishing when ¢ is nonconstant.

These different lemmae and estimates prove Theorem 5.

A.2. Asymptotic analysis

This section is devoted to the proof of general asymptotic estimates for the Green’s
function. As a byproduct, we will get the control (11.5) of the derivatives of Propo-
sition 9. The following proposition is the main result of this section:

Proposition 12. Let G be the Green’s function for (11.3). Let (z4)q € Q and let
(ra)a € (0,400) be such that limy—s 400 7o = 0.

Assume that
lim d(xq, ON)
a——+o00 Ta

Then for all z,y € R™, x # y, we have that

= +o0.

m r27°G (2o + 1o, Ta + ray) = knlz — y[*7™
a——+oo

Moreover, for fized x € R", this convergence holds uniformly in C3_(R™\ {z}).

Assume that
lim d(zq,00)
a—+—+00 Ta

=p>0.

Then limg_s 0o To = g € O2. We choose a chart ¢ at x¢ as in Lemma 1 and we
let (xo1,20) = ¢ Y(xa). Then for all z,y € R" N{z; <0}, z # y, we have that

lim 73 "*G(p((0, 20)+ra), ((0,24)+ray) = kn (lx =y + 771 (@) —y*7")

a—+o00

where = (x1,2") = (—x1,2"). Moreover, for fized x € R™, this convergence holds

uniformly in CZ (R™ \ {x}).
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Proof of Proposition 12:
Step 1: We first assume that
d(x 4, 00
i 4 92
a——+00 Ta

= +00. (11.23)

We define
Ga(,y) = ry G(aa + 1o, Ta +10y)

for all & € Nand all z,y € Qq := roH(Q —x4), o #y. We fix x € R™. Tt follows
from Theorem 5 that G, € C%(Q X Qo \ {(z,2)/ 2 € Q4 }) and that

__Ta
Y]
for a € N large enough. Moreover, it follows from (11.4) that there exists C' > 0
such that

A(G.) in Q,\ {z} (11.24)

[(Ga)a(y)| < Cly — x>~ (11.25)

for all @« € Nand all y € Q4 \ {z}. It then follows from (11.23), (11.24), (11.25) and
standard elliptic theory that, up to a subsequence, there exists G € C2 (R™\ {z})
such that

lim (Gu)z = Gy in C2(R™\ {z}). (11.26)

a—»—+00
with
Ga(y)] < Cly —af™ (11.27)

for all y € R™ \ {z}. We consider f € C>(R") and we define f,(y) :== f(ry1(y —
To — rox)): it follows from (11.23) that f, € C°(Q) for o € N large enough.
Applying Green’s representation formula yields

falta +7ax) = fo = /QG(CCQ + a2, 2)Afo(2)dz.

With a change of variable, this equality rewrites

f@)= [ Galz,y)Af(y)dy+ fau

R’Vl
for @ € N large enough. With (11.25), (11.26) and the definition of f,, we get that

flz) = o G.Af dy,
and then
A(G, — ky| - —2]>™) = 0 in D'(R").
The ellipticity of the Laplacian, (11.27) and Liouville’s Theorem yield
Go(y) = knly — x>~ for all y # .
This ends Step 1.

Step 2.
a s ()Q
hm 7(1‘ )

a—+00 Ta

=p>0.
We take ¢ as in the statement of the Proposition and we define

Gal(z,y) =1y 2Gp((0,27,) +rax), (0, 25) + ray)
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for all z,y € R™, x # y with o € N large enough. We fix x € R and we symmetrize
G as usual: R y

Goz(x7 y) = Goc(xv 7~-‘-(y))
for all y € R™ close enough to 0 and where, as above, 7 : R® — R”. For simplicity,
we assume that z € R” (only the notation has to be change in case z € R%). As
in the first case, we get that there exists C' > 0 such that

Galz, )| <C(ly—al* " +ly—7 "))
for all y # x,7(x) and there exists G, € C?(R™ \ {z, 7~ (x)}) such that

Jim (Ga)o = Gy in CR(R"\ {2, 77 (@),
Moreover, letting L = dpg be the differential of ¢ at 0, arguing again as in the first
case, we have that )

ApeGy =0y +0p-1(y) in D'(R?).

Therefore, with a change of variable, we get that

A¢(Goo L7Y) = d1(0) + Opon—1(s) in D'(R™),
and then

Ae (Gw o L™ — ky (|L(z) — > "+ |Lor(z) — -|2—")) =0 in D'(R"),

Arguing as above, we get that G,oL ™' =k, (|L(z) — y|> " + [Lor ' (z) — y[>™),
and then X
Go =k (|- =27+ |- —nH2)]*")
since L is an orthogonal transformation. This ends Step 2.
Proposition 12 is a direct consequence of Steps 1 and 2. ([l

We now prove Proposition 9:

Corollary 1. Let G be the Green’s function for (11.3). Then there C, M > 0 such

that ) o
— M <G(z,y) L ————
o @y) < Ty

and
VG2, y)| < ——
| Yy ( )l “,L,_y|n—1
forallz,y € Q, x #y.

Proof of the corollary: We claim that there exists m € R such that
G(z,y) = —mforall 7,y € Q, x # y. (11.28)

We argue by contradiction and we assume that there exists (T4 )a, (Yo)a € Q such
that
lim G(xq,Ya) = —00. (11.29)

a—+00
Assume that limg— 400 [Yo — To| = 0. We then define r,, := |y, — 4| and we apply
Proposition 12:

d(z4,09) _

- 400, we have that

If limaﬁﬁ)o

_ _ — X
|ya - xa|n ZG(fEaa ya) = TZ 2G <xa7xo¢ + Tayaa) =k, + 0(1)
|ya - xal
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when o — +o00. This contradicts (11.29).
If d(xq,08) = O(ry) when o — 400, we get also a contradiction.

This proves that limg— 400 [Ta — Yo| # 0. Therefore, with (11.4), we get that
G (2, Ya) = O(1) when oo — 4o00: this contradicts (11.29). Therefore, there exists
m such that (11.28) holds.

We define M :=m + 1. With (11.4), there exists also C' > 0 such that |G(z,y)| <
Cloz —y|?>~™ for all z # y. We claim that there exists ¢ > 0 such that

G(x,y) + M > clz —y[* " (11.30)
for all x # y. Here again, we argue by contradiction and we assume that there
exists (Za)as (Ya)a € © such that

lim |70 — Ya|" 2(G(Ta,Ya) + M) = 0. (11.31)

a—r+00

Since G + M > 1, it follows from (11.31) that limy— oo |Za — Ya| = 0. Therefore,
as above, we get that the limit of the left-hand-side in (11.31) is positive: a contra-
diction. This proves that (11.30) holds. In particular, this proves the first part of
the corollary.

Concerning the estimate of the gradient, we argue by contradiction and we use
again Proposition 12. We just sketch the proof. Assume by contradiction that
there exists (Zq)as (Ya)a € © such that

im |y — 2a|" | VyG(2a,Ya)| = +o0.

a— 400

It follows from (11.10) that limy— 100 |Yo —2Za| = 0. We set 14, := |yo —ZTo|. Assume
that 7o = o(d(z4,09)) when o — +o00. It then follows from Proposition 12 that

. n— 1
lim |ya - xa' 1|vyG(xa7ya)| =

a—r+o00 wnfl’

which contradicts the hypothesis. The proof goes the same way when d(z,,99Q) =
O(rs) when a — +oo. This ends the proof of the gradient estimate. O

APPENDIX B: PROJECTION OF THE TEST FUNCTIONS

Proposition 13. Let (z,) be a sequence of points in Q and let (i) be a sequence
of positive real numbers such that po, — 0 as a — +o0o. We set

n-z
Ua(@) = pa® (|2 = wal* +1i2)
There ezists Vo, € C1(Q) which satisfies

AV, =, U2t —c, Q7' [LUZ Yde  inQ
0,V =0 on 0N

1-3

(11.32)

such that the following asymptotics hold for any sequence of points (ya) in Q :
(1) If zo € 092, then

Vo (9e) = (14 0(1))Ua () + O (ia® ) -
(i) If d (zq,00) 4 0, then

U (9a) = (1+ 0(1)Ua () + O (pa™ ) -
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(1) If d (x4, 00) — 0 but w — 400 as @ — 400, then

Va (ga) = (1 -+ 0(1)) Ua (9a) + Ua () + O (™)

where
7 2 (2 -1 2\'7%
Ua(@) = pa® (12 + o= 7" (za)[*)
with T, := pomo o~ ! where ¢ is a chart at xq := limy— 400 o as in Lemma 2.
In addition, we have that
n-2
Uy — Uy =0(Uy) + O(11a? ) in cases (i) and (ii)

n—2

2
Vo= Val < € (rsatizzmr)

In any case, there exists C' > 0 such that

+0o(Uq) + O(u(;%?) in case (iii).

éUa <V, <CU, . (11.33)

Proof of Proposition 13: We let V,, € C?(Q) be as in (11.32). Indeed, V,, is defined
up to the addition of a constant: therefore, V,, will be determined later on. Let
(Ya)o € Q: Green’s representation formula yields

Valwa) = Va = [ Glvart) (U ~eal ! [ Uz*—l) dy
Q Q

for all @ € N where G is the Green’s function for (11.3) with vanishing average.
With the explicit expression of U,, we get that

n—2

ValWa) = Va=cn | CWa,y)UZ "Ly + O(a® ) (11.34)
Q

for all & € N. The estimate of V,,(y,) goes through five steps.

Step 13.1. We first assume that limg— oo |Ya — Za| # 0. It then follows from
(11.34), the pointwise estimates (11.4) on the Green’s function and the explicit
expression of U, that

Volwe) = Vot (Clym ) +0(1) /Q U2 1 da

—(/ G(ya,x)dx)/cnUg_ldx
Q Q

when o« — +o00. It then follows from this estimate that

JE— n—2
Va(ya) - Va + O(MCE2 )
when o — +00 and that there exists K > 0 independent of (y4)q such that

n—2

Va(ya) > Vi(x* [(,Ufoz2

for all & € N.
Step 13.2. We claim that

oy Gya, y)UZ "t dy
thf ll}r_ilil fQ\BRua( a)[] ( ) =0if IH_E |ya — xa| =0. (1135)
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We prove the claim. We let Ry > 0 such that 2 C Br,(x,) for all a € N. Tt follows
from the explicit expression of U, and of (11.4) that

142

<C \ya—x|2_" Ho
BRo(xa)\BRua (la) (Mi -|— |x — xa‘Q)T
(11.36)

/ G (Yo, y)UZ ' dy
Q\BRua (za)

for all & € N. We define
1
D, = {a: ER"/|x —yq| > 5\/;@ + 2o —ya|2} for all & € N.

We split the RHS of (11.36) in two terms. On the one hand, we have that

/ Yo — 2
DaN(Bry @)\ Bryg (¥a)) (2 + |x —2a]2) T

C
n-2 nt2
(12 + 120 = yal?) 7 TR\Brua (ee) (03, + |2 = 2a]?)

1
< CUa(ya)/ —
R™\Br(0) (14 |z[?) 2

<

dxr

dz (11.37)

for all & € N. On the other hand, as easily checked, there exists ¢y > 0 such that
€T ¢ Da = |JJ - $a|2 +/-Li Z €0 (‘ya - $a|2 +/~Li)

for all @ € N. Consequently, we have that

2
/ |ya - $|2_n fo ) dx
DgN(Bry(za)\BRug (za)) (U2 + |z —z4]%) 2
nt2
Cua? _

= n+2 / |ya - 33|2 " dy

(Mi+|$a—ya|2) 2 D(Cx
2

< CUa(Wo) 53 = o(Ua(ya)) (11.38)

p2 + |za — Yal?

if 1o = o(|Za — Yao|) When a = +o00. In case |y, — 4| = O(1q) When o — 400, it
is easily checked that for R large enough, D¢ N (Bg,(%a) \ Bru. (Ta)) = 0 for all
« € N. Therefore (11.38) always holds.

Plugging (11.37) and (11.38) into (11.36) yields (11.35). This ends Step 13.2.
It follows from (11.34) and (11.35) that

Valye) = Vi + / G )UZ " dy + (0(1) + cr)Ua(ya)  (11.30)
QQBR“O’ (IQ)

if limg— 400 [Ya — Zo| = 0 when a — 400 where limg_, 1o €g = 0.
Step 13.3. Assume that

d(zq, 00
lim |yo — 2ol =0and lim Uza, Y = +o00. (11.40)

a—+00 a—+00 Ma
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We claim that

_v . [ A +0(1)Ua(ya) if lima s oo d(4, 02) # 0
Vo (Ya) = Vo + { (14 0(1)(Ua(ya) + Ua(ya)) if nma;oo (24, 00) T 0 |
11.41

when a — +o0.

The proof of (11.41) goes through several steps. First note that due to (11.40), we
have that Q N Bry, (¢a) = Bru, (%a) for o € N large enough. Therefore, with a
change of variable, (11.39) rewrites

Va(ya) = 7&

+Ua(Ya) (/ (12 + [y — 7al?) 7 G(Yar Ta + floz)enUE ™ dm)
BRr(0)

+(o(1) + €r) Ua(ya) (11.42)

for all R >> 1 and a — 4+00. We distinguish two cases:
Case 13.3.1: We assume that
|Yoo — To| = O(te,) when o — +o0. (11.43)

Then we claim that (11.41) holds. We prove the claim. We define 0, := p; ! (yo —
Zq) for all & € N, and we let 6, := lim,— 100 04. Let K be a compact subset of
R™\ {0}: it follows from Proposition 12 that

N2_2G(yaama + pat) = (kn + 0(1))|$ - 90¢|2_n

when o — +o00 uniformly for all € K. Moreover, the LHS is uniformly bounded
from above by the RHS on bounded domains of R™ when oo — +o00. It then follows
from Lebesgue’s theorem that (11.42) rewrites

=

Vo(Ya) = + Ua(Ya) (/ (1+ |9oc\2)% kncnUs ~H(@)]2 — o> da + o(1) + €R>
Br(0)

= Vo+Us(¥a) (Ug(ﬂw)_l / kn AU (z)|x — 900|2_" dx +o(1) + €R>
Br(0)

= Va+Ua(ya) (1 +0(1) +€r)

since A(k,| - |*>~™) = §o in the distribution sense. Letting R — +00 and a — 400
yields

Va(¥a) = Va + Ua(ya)(1 + 0(1))
when o — 400. As easily checked, this estimate yields (11.41) in Case 13.3.1.
Case 13.3.2: We assume that

lim La = T = 4-00.
a—r+00 J

We claim that (11.41) holds. We prove the claim. We define 74, := |yq — o] = 0o(1)
when o — +00. Given z € Bg(0), we define

Aa(@) = (8% + Yo = al®) T G(ya, Ta + pat)
for all o € N.
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Case 13.3.2.1: We assume in addition that
. d(xy,00)
lim ———2 = +o00.

a—+o00 Ta
We claim that in this case, we have that
lim A, (x) =k, (11.44)

a——+00
uniformly when a — +00. We prove the claim. Indeed, letting 6, := 7,1 (yo — 74

and using that G is symmetric, we have that
Aa(@) = (14 0())ra G w0 + 7025 20 + Taba)
Ta

for all @ € N uniformly for z in any fixed compact of R™. Then (11.44) follows from
Proposition 12.
Case 13.3.2.2: We assume here that
d Q
lim @0

a—r+00 Ta

In this case, U, is well defined. We claim that in this case, we have that

Ua(ya)
A, (x) = (k, + o1 1+ 11.45
() = ( ( ))< Uolya) (11.45)
uniformly for x in any fixed compact of R™ when o« — +o00. We prove the claim.
We denote ¢ a chart as in Lemma 2 and we define (71 4,2)) = ¢~ '(z,) and

(Y1.0,Yh) = ¢ }(ya) for all a € N. Defining

/

[
Xa = (wl!au()) +O(1) and Ya = (yl,ay ya xa) )

Ta Ta Ta

using Proposition 12 and the symmetry of G, we get that
Ag(z) = (1+01)r" 2G (x4 + pat,ya) + o(1)
— (L o())E2G (0, 2)) + raXa), 9((0, ) + TaYa)) + o1)
= oo (1Xa = Yol 7 [Ya - (X)) + (1)

K, (1 N ’((yl,a,y;) B w—l(xl,a,xfa)>

Ta Ta

zn) +o(1) (11.46)

since dygq is an orthogonal transformation. independently, using again that dypg is
orthogonal, we have that

Ua(ya) _ /’6(21 + |ya - 77321(‘/1301)‘2 s
Ua(ya) /‘(21 + |ya - xa‘Q

— (1+0(1))

(w‘l(ya) - W‘l(w‘l(afa))>

Ta

when a — +o0o. Plugging this estimate into (11.46) yields (11.45). This proves the
claim.

Since
. — 2)wy_1 R"
/ cnUg -1d:c:/ AUodx:—/ amm:%
Br(0) Br(0) 9B (0) (1+R2)
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for all R > 0, it follows from (11.42), Cases 13.3.2.1 and 13.3.2.2 that

(14+0(1)Ua(ya) if ro = o(d(xq,09)) when o — 400

Va(ya) = VQ+{ (14 o)) (Ua(ya) + Us(ya))  if d(za, Q) = O(rq) when o — +o0

These estimates and a careful evaluation of the quotient Up(ya) ™ 'Us(ya) yields
(11.41) in Case 13.3.2. This ends Case 13.3.2.

Step 13.4. We assume that

all)rfoo |yo — o| = 0 and z, € ON. (11.47)
We claim that
Va(Ya) = Va + Ua(ya) (1 +o(1)) (11.48)

when a — +o0o. We choose a chart ¢ as in Lemma 2. In this case, (11.39) rewrites

% (ya) =V,

+Uq (Ya) </ en(140(1)) 74 dm)
Br(0)NR™

+(o(1) + €r)Ua(Ya) (11.49)

for all R >> 1 and a — +00, where

n—2 *_
Tal(@) = (13 + Yo — 2al®) 7 G(ya, ¢((0,25) + paz))Ug " (2).
Here again, we have to distinguish two cases.

Case 13.4.1: Assume that yo, — o = O(pto) when @ — +o0o. We define 6, :=
ot (Yo — xo) for all & € N. Using Proposition 12, we get as in Step 13.3.2.1 that
for all x € Br(0) NR™ \ {0},

lim 152G (Yo, p((0,25) + pat)) = kn (|2 = 0[P + |z — 771 (00)]*7")

a—r+00

and this convergence holds uniformly with respect to x. Plugging this limit into
(11.49) yields

Va(ya) - 7{1

2

+Us(ya) ((1 + 0> / kp (|2 — 0o + |z — 71 (000)|*7™) AU (2) d:z:)
BR(O)OR’_L

+ (er +0(1)) Ua(¥a)

when o« — +o00. With a change of variable and using that Uy is radially symmetrical,
we get that

/ kn (|2 — 0o |* " + |z — 771 (00)[*7™) AU (2) da
Bgr(0)NR™
:/ bl — O |2 " AU () dae

Br(0)

for all R > 0. The, arguing as in Step 13.3.2.2, we get that (11.48) holds in Case
13.4.1.
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Case 13.4.2: Assume that lim, 1 o f15 ! [Yo —Za| = +00. Using again Proposition
12 and arguing as in Step 13.3.2.1, we get that (we omit the details)

n=2
Hm (2 + Yo — 2al®) T G(a, ¢((0,2},) + paz)) = 2k,

a—r—+o00

uniformly for all x € Br(0). Plugging this limit into (11.49) yields

Va(ya) = Va4 Ua(ya) / e AU () di + e + 0(1)
Br(0)NR™

= Vo+Us(ya) / knAUy(x) dx + e + 0(1)
Br(0)

when o — +00. We then get that (11.48) holds in Case 13.4.2.

Step 13.5. We are now in position to prove Proposition 13. We let K > 0 be as
in Step 1 and we let V,, be the unique solution to (11.32) such that

n—2
Vo = (K+1Dpa®
for all o € N. Clearly points (i), (ii) and (iii) of Proposition 13 hold. Moreover, we

immediately get with the estimates above that limg_ oo %ﬁf% is a positive real
number. This proves Proposition 13. ]
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