
HAL Id: hal-01240986
https://hal.inria.fr/hal-01240986v2

Submitted on 26 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Cooja for WSN Simulations: Some New Uses and
Limits

Kévin Roussel, Ye-Qiong Song, Olivier Zendra

To cite this version:
Kévin Roussel, Ye-Qiong Song, Olivier Zendra. Using Cooja for WSN Simulations: Some New Uses
and Limits. EWSN 2016 - NextMote workshop, ACM, Feb 2016, Graz, Austria. pp.319-324. �hal-
01240986v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49415301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01240986v2
https://hal.archives-ouvertes.fr


Using Cooja for WSN Simulations: Some New Uses and Limits

Kévin Roussel
INRIA Nancy Grand-Est

615, rue du Jardin Botanique
54600 Villers-lès-Nancy, France

kevin.roussel@inria.fr

Ye-Qiong Song
LORIA/INRIA Nancy Grand-Est
615, rue du Jardin Botanique

54600 Villers-lès-Nancy, France
ye-qiong.song@loria.fr

Olivier Zendra
INRIA Nancy Grand-Est

615, rue du Jardin Botanique
54600 Villers-lès-Nancy, France

olivier.zendra@inria.fr

Abstract
The Cooja/MSPSim network simulation framework is

widely used for developing and debugging, but also for per-
formance evaluation of WSN projects.

We show in this paper that Cooja is not limited only to the
simulation of the Contiki OS based systems and networks,
but can also be extended to perform simulation experiments
of other OS based platforms, especially that with RIOT OS.

Moreover, when performing our own simulations with
Cooja and MSPSim, we observed timing inconsistencies with
identical experimentations made on actual hardware. Such
inaccuracies clearly impair the use of the Cooja/MSPSim
framework as a performance evaluation tool, at least for time-
related performance parameters.

We will present in this paper, as our contributions: On the
one hand, how to use Cooja with projects not related to Con-
tiki OS; On the other hand, the detailed results of our inves-
tigations on the inaccuracy problems, as well as the conse-
quences of this issue, and give possible leads to fix or avoid
it.

1 Introduction
The research on Wireless Sensor Networks (WSN) and In-

ternet of Things (IoT) often resorts to simulation and/or emu-
lation tools. It is indeed often difficult to have enough devices
(or “nodes” or “motes” as one might call them) to perform the
large-size tests often needed in this domain; especially when
these “motes” need to be instrumented to return enough use-
ful information to design, evaluate or debug projects based on
this kind of technology.

Thus, the development of innovative, ambitious projects
such as those that are the focus of the NextMote workshop
will surely need such simulation/emulation tools, at least for
the first steps of design and test of new technologies, since the
number of involved devices is deemed to grow exponentially

(for example: smart dusts, seeds or pollens), and thus testing
such a lot of miniaturized devices may be more and more
difficult.

There are many of such simulation/emulation tools
(like, for example, the OpenSim tool from the OpenWSN
project [19], or TOSSIM [13] from TinyOS [14]). But
currently, one of the most used—if not the most used—
simulation/emulation tool used in the WSN/IoT domain is
the Cooja framework [16], which includes the MSPSim
and Avrora software to perform cycle-exact emulation of
“motes”.

The present paper is based on the two following subjects :
1. The ability, actually tested and used pervasively, to use

Cooja to run programs that are not designed with, nor
even related to, the Contiki operating system. Any pro-
gram running on the microcontroller (MCU) architec-
tures supported by the embedded emulators of Cooja—
MSPSim and Avrora—can be simulated (with the use of
a trivial trick).

2. The result inaccuracies we discovered while using Cooja
simulations for testing our own WSN-based projects
(note that we used the version of Cooja provided with
Contiki release 2.7). Since Cooja is widely used, es-
pecially for evaluating performances of WSN or IoT-
based projects, such inaccuracies may have strong con-
sequences on the validity of the many publications mak-
ing use of this framework.

In this paper, after a brief reminder about Cooja and MSP-
Sim in the following section 2, our contributions firstly con-
sist in describing, in section 3, how the Cooja Framework is
not limited to simulation of Contiki-based projects, but can—
thanks to its emulation features—run any program built for
one of the systems supported by its embedded emulators.
We then provide—in section 4—in a detailed description of
this timing inaccuracy problem, using a significant set of
comparisons between simulations and experimentations on
hardware; we then use these results to provide clues about
the origin of this issue, and possible means to fix or avoid it.
Then in section 5 we see this problem’s consequences on cur-
rent WSN/IoT-related literature, in terms of robustness and
reliability of the articles relying on such simulations.
Finally, we draw in section 6 some conclusions from all of
these contributions as an end to the present article.



2 Cooja and MSPSim
Provided by the Contiki OS project [7], the Cooja network

simulator [16] has become a widely used tool in the domain
of Wireless Sensor Networks (WSN). The research commu-
nity especially uses it extensively to perform simulations of
small to relatively large wireless networks of connected de-
vices embedding sensors and/or actuators, commonly named
“motes”, and thus to develop, debug and evaluate projects
based in the WSN technology.

The use of simulations is especially useful for perform-
ing virtual runs on large sensor networks, comprising a large
number of motes that would be difficult, long and costly to
operate with actual hardware.

Cooja itself is a Java-based application, providing three
main features:

1. a graphical user interface (GUI, based on Java’s standard
Swing toolkit) to design, run, and analyze WSN simula-
tions;

2. simulation of the radio medium underlying the wireless
communications of sensor networks;

3. an extensible framework, which allows integration of ex-
ternal tools to provide additional features to the Cooja
application.

This last feature is used to allow Cooja to actually emulate
the various motes constituting the WSNs. It indeed embeds
and uses dedicated emulator programs that perform cycle-
accurate emulation of the chips with which motes are built:
microcontroller units (MCUs), radio transceivers, etc.

This emulation mechanism is one of the main strong assets
of Cooja: thanks to it, very fine-grained, precise and low-
level simulations can be performed; this is why Cooja has be-
come a tool of choice especially for debugging and evaluating
WSN-related software (which happens to be often based on
Contiki OS).

Current versions of Cooja make use of two different em-
ulator software packages: Avrora [18] for emulation of At-
mel AVR-based devices, and MSPSim [8] for emulation of
TI MSP430-based devices.

(Also note that in the future, the structure of Cooja would
allow it to include more emulators, dedicated to other archi-
tectures: one might especially think to the ARM Cortex-M ar-
chitecture which is more and more used in “motes” and other
embedded devices.)

Of these two emulators, MSPSim is currently the most
used in literature including Cooja-based simulations, since
motes based on MSP430 MCUs are more commonly dis-
tributed and used: we can especially think to the pervasive
TelosB/SkyMote family, or to Zolertia’s Z1 platform. Since
the latter devices are the hardware we use, the present paper
will principally focus on the MSPSim emulator.

3 Using Cooja and MSPSim: Not Only for
Contiki!

While Cooja has been designed and built by the Contiki
project to perform simulations of Contiki-based networks of
motes, its structure is actually not tied at all to this operating
system.

As explained in the previous section 2, the Cooja Java ap-
plication itself only provides— besides a GUI—the simula-
tion of the radio medium, which by itself is, of course, to-
tally independent of anything but signal transmission: It only
cares about signal strength, propagation, diffusion and inter-
ferences. In other words, nothing related to the motes them-
selves, and a fortiori the programs they run is of any slightest
influence here.

All the handling of the motes and the programs they run
are handled by the emulators software embedded with Cooja,
the latter only process the radio signals that the emulated de-
vices emit and receive on the virtual radio medium, according
to the way the said medium is simulated. That is: All that
happens inside the motes themselves is actually ignored by
Cooja itself, and is handled by the emulators.

An emulator software being, by definition, a virtual in-
stance of an hardware piece, it is supposed to execute—as
much as possible—the same way that the hardware it emu-
lates. Since motes like the TelosB/SkyMote or Zolertia Z1
are in no way tied to the Contiki OS (they are powered by
general-purpose MCUs), nor are their emulators like MSP-
Sim.

Thus, like one can run many OSes like TinyOS, Contiki,
RIOT OS [12], Nano-RK [9], etc. on these motes, so should
we be able to run the same variety of operating systems on
these motes’ emulators.

Like one will see in the next sections of the present
paper, we were able to run RIOT OS applications using
Cooja/MSPSim without problem. We are also convinced that
running other OSes like, for example, Nano-RK under Cooja
simulations would work as well, provided the emulated motes
are supported by the versionsof MSPSim and Avrora pro-
vided with Cooja.

To run our RIOT OS applications under Cooja, we only
had to perform one very simple trick: MSPSim expects to
run executables whose name extension corresponds to the
emulated platform; for example: “executable.sky” for the
SkyMote/TelosB family, or “executable.z1” for the Zoler-
tia Z1. The Contiki build system (Makefiles) is designed
to give to the compiled executables such ad-hoc extensions
automatically. RIOT OS build system, on the contrary, al-
ways produces executables named like “executable.elf”
(since the compilation toolchain, which happens to be the
standard GNU toolchain for both OSes, produces executables
in the well-known ELF executable format). To be able to run
RIOT OS executables under Cooka simulations, we thus had
to change their extension accordingly to the target platform to
respect the Contiki build system naming scheme—Cooja will
refuse to load a file as an executable without the appropriate
extension. Once this renaming done, running RIOT OS com-
piled executables with Cooja simulations just works without
any problem: Contiki build system, apart from the specific
naming scheme, also produces standard ELF executables,
built with the appropriate version of the GCC toolchain (i.e.:
gcc-msp430 or gcc-avr, according to the platform). Note
that we were able to use the standard Debian-packaged ver-
sion of these cross-compilers to create executables for both
Contiki OS and RIOT OS without any problem.



To sum it up, the Contiki build system produces standard
ELF-formatted executables, adapted to the target MCU ar-
chitecture. Any WSN OS producing such standard ELF exe-
cutables should thus be able to be simulated/emulated as well
under Cooja simulations. The only manipulation needed is
a simple renaming trick as explained in the previous para-
graph, so as to follow Cooja naming scheme linking exe-
cutable name extension and platform (“exe.z1” for the Zol-
ertia Z1, “exe.sky” for SkyMote/TelosB, and so on).

If one needs to know the extension that Cooja expects for
a given hardware, one should simply compile a simple Con-
tiki example (like the ever classical “hello-world”) for the
wanted hardware, and see what extension the produced ex-
ectable has.

4 Timing Inaccuracy Problem in MSPSim
When performing our own simulations with virtual net-

works of MSP430-based motes, we noticed timing inaccura-
cies in comparison to experiences made on actual hardware.
More precisely, we noticed that our simulations showed unex-
plained delays during packet transmission (TX) over the radio
medium, that weren’t observed during similar experiences on
physical motes.

We searched the literature, but we found no article related
to any reported inaccuracy in Cooja or MSPSim.

We then investigated the problem, and discovered the fol-
lowing results.

The problem is with the emulation of MSP430-powered,
radio-enabled WSN devices (a.k.a. “motes”) by the MSPSim
software package.

The differences appear on one peculiar operation: when
loading packet data into the transmission (TX) buffer of the
emulated radio transceiver: MSPSim, when emulating the
mote, performs this TX buffer loading at a different speed
than the actual hardware.

Consequently, we wrote a simple test program, whose only
role is to send data packets of various sizes, chosen amongst:

• moderate size, with a payload of 30 bytes;

• medium size, with a payload of 60 bytes;

• large size, with a payload of 110 bytes (that is: near the
maximum size of 127 bytes for IEEE 802.15.4 packets).

The actually transmitted packet have 11 bytes of overhead
(headers and checksum) beyond their payload.

This program sends consecutively 50 packets of the chosen
size, at the rate of 1 packet per second, for each run: we thus
computed the mean and standard deviation for such a group
of 50 packets for each setup. The measured value is the dura-
tion or “delay” taken to load one of these packets into the TX
buffer of the radio transceiver.

In addition, many runs have been executed for each setup,
so as to verify the stability of the results.

It has been compiled for, and run on the following hard-
ware platforms:

• the well-known SkyMote/TelosB mote, powered by a
MSP430F1611 MCU;

• the more recent Zolertia Z1 mote powered by a MSP430
F2617 MCU.

Both devices have the same CC2420 radio transceiver.

These values are given for different operating systems—
the well-known Contiki OS, as well as the more recent RIOT
OS [12] which is also specialized in WSN—as well as for two
kinds of SPI drivers:

• a standard SPI model, which waits for every transmitted
byte to be validated by the hardware SPI interface be-
fore sending the next one: we also call it the “safe” SPI
access model, since it allows to detect any problem that
can occur during transmission on the SPI bus; this is the
write method used by default by the SPI driver of RIOT
OS;

• a so-called “fast write” SPI model, where a byte is writ-
ten to the bus every time the SPI hardware TX register
is empty, without waiting for the validation signals for
the previous byte to be returned; this is the write method
used by the SPI driver of Contiki OS. While this allows
for faster writes on the SPI bus, it makes transfers—at
least in theory—less reliable.

For completing the results obtained with default SPI
drivers for both OSes, we modified the RIOT OS SPI driver
to make it use the “fast write” SPI model, and thus obtained
an additional setup for our tests.

The results of the comparison between execution on sim-
ulated motes in Cooja/MSPSim (in the version from Contiki
release 2.7) and on physical hardware are shown in Table 1
for SkyMote/TelsoB hardware, and in Table 2 for Zolertia Z1
hardware.

Note that in both tables, delay values are given in “ticks”
of timers incrementing at a rate of 32,768 Hz. The unit is thus
a fixed period of time equal to about 30.5 microseconds.

The results with “standard” setups show that:
• for the Z1 hardware platform, the results are just catas-

trophic: the difference between experimental and sim-
ulation values represent an overestimation that amounts
from 100% to almost 200% of the actual delay! Such
overestimated values are clearly unusable for perfor-
mance evaluation purposes;

• for the SkyMote/Telosb, the differences are much
smaller, but still above 10% for Contiki OS, and even
15% for the RIOT OS setup, which is not negligible
for an accurate performance evaluation work; more-
over, these differences can go in both directions (that
is: under- and over-estimation), which makes the timing
inaccuracy of simulations quite unpredictable and thus
hard to estimate and correct without a comparison with
experimentation on actual hardware.

With the modified RIOT OS setup (“fast SPI”), we can see
that:

• there is absolutely no accuracy improvement for the Z1
platform, the timing results obtained are still overesti-
mated by about 170% of the actual value!

• for the SkyMote/TelosB platform, the situation im-
proves, leading to the obtention of quite accurate results
(2% or less of inaccuracy).



Table 1. Delays Observed for Loading One Packet into CC2420 TX Buffer of a SkyMote/TelosB Mote, Using Various
Software Setups.

Results with Contiki OS
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 6.4 0.50 7.2 0.40 –0.8 ticks (≈ 24 µsec.) ≈ 11% exp. value
Medium 10.7 0.46 12.7 0.48 –2.0 ticks (≈ 60 µsec.) ≈ 15% exp. value
Large 18.0 0.00 20.6 0.49 –2.6 ticks (≈ 80 µsec.) ≈ 13% exp. value

Results with RIOT OS (standard “safe” SPI driver)
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 58.0 0.00 50.3 0.46 7.7 ticks (≈ 235 µsec.) ≈ 15% exp. value
Medium 85.2 0.39 73.6 0.50 11.6 ticks (≈ 355 µsec.) ≈ 16% exp. value
Large 131.2 0.39 111.5 0.51 19.7 ticks (≈ 601 µsec.) ≈ 18% exp. value

Results with RIOT OS and modified “fast” SPI writes
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 39.2 0.39 38.4 0.49 0.8 ticks (≈ 24 µsec.) ≈ 2% exp. value
Medium 53.2 0.39 52.8 0.40 0.4 ticks (≈ 12 µsec.) ≈ 1% exp. value
Large 76.2 0.39 75.2 0.39 1.0 ticks (≈ 31 µsec.) ≈ 1% exp. value

This gives us leads about the cause of this inaccuracy prob-
lem: since it is largely dependent on the hardware platform
simulated and the method used to write on the SPI bus, it is
probably not (mainly) due to the emulation of the CC2420
transceiver chip, but rather to the estimation of the timing of
SPI bus transfers, made at the MCU level.

In that case, it is then obvious that:
a.] the emulation of the MSP430F2617 (the MCU powering

the Z1 mote) just overestimates largely the SPI delays ;

b.] the emulation of the MSP430F1611 (from Sky-
Mote/TelosB) performs better on that aspect.

We can guess that the MSPSim software has probably been
finely tuned for MSP430F1611 emulation — especially for
timing calibrations —, while MSP430F2617 emulation has
been less thoroughly tested.

We thus see that whatever the software environment used,
we can make the following observations about the inaccuracy
in timing for the TX buffer loading operation:

• for the Zolertia Z1 hardware platform, this inaccuracy is
just huge: the simulated loading delay is always 2 to 3
times larger than the actual delay on hardware, whatever
the setup (OS and SPI driver implementation)!

• for the SkyMote/TelosB hardware platform, the inac-
curacy is much less important in absolute value, but
less predictable, since it can go in both senses: under-
estimation or over-estimation of the actual delay on
hardware. Moreover, this inaccuracy can go up to 15%
of the real value with Contiki OS (and even more when
running RIOT OS) which is not a negligible fraction.

This just makes the time-related results obtained with
COOJA/ MSPSim simulations unreliable for performance
evaluation purposes, particularly on Zolertia Z1, but also on
the very popular SkyMote/TelosB hardware platform.

When computing the relative weight of TX buffer load-
ing in total packet transmission duration, we see that the TX
load delay always represent at least 10% —up to more than
50%—of the total duration taken to send a packet, especially
when running an OS different from Contiki (see Table 3 for
detailed results). Such an inaccuracy in the evaluation of
packet TX delay is obviously bound to have strong conse-
quences on the reliability of performance evaluations made
with Cooja/MSPSim simulations.

Moreover, since the problem seems to be caused by the
emulation of MCUs by the MSPSim emulator, we expect
the vast majority of the other MSP430-based motes and
evaluation boards emulated by the Contiki 2.7 version of
Cooja/MSPSim framework (i.e.: latest release at the moment
we are writing this paper) to be also similarly impacted by
this problem, at various levels.

Consequently, we believe that users of such devices should
perform their own tests to evaluate the possible inaccuracy
and its impact on their work. To help in that matter, we freely
provide the programs we used to perform the present work at
the following URL:

https://github.com/rousselk/tim-inacc-tst-prg

5 Consequences
We looked in recent literature, and found many recent arti-

cles (that is: published in year 2014 or later) relying on Cooja
simulations to perform, directly or indirectly, time-related
performance evaluation of WSN projects based on 802.15.4
networking.

Among them, we can see that most of these papers use
virtual SkyMote/TelosB nodes like [15], [11], [1], [6], [2],
[5], [3], and [10]; while some other use different, specific
MSP430-based motes (e.g.: EXP5438 for [17], or WisMote
for [4]) whose sensibility to the present inaccuracy problem
is unknown to us.



Table 2. Delays Observed for Loading One Packet into CC2420 TX Buffer of a Zolertia Z1 Mote, Using Various Software
Setups.

Results with Contiki OS
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 5.0 0.14 2.3 0.44 2.8 ticks (≈ 84 µsec.) ≈ 122% exp. value
Medium 8.9 0.27 4.2 0.37 4.8 ticks (≈ 145 µsec.) ≈ 114% exp. value
Large 14.0 0.14 7.2 0.39 6.8 ticks (≈ 209 µsec.) ≈ 95% exp. value

Results with RIOT OS (standard “safe” SPI driver)
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 46.0 0.00 16.2 0.39 29.8 ticks (≈ 910 µsec.) ≈ 184% exp. value
Medium 69.0 0.00 24.2 0.39 44.8 ticks (≈ 1368 µsec.) ≈ 185% exp. value
Large 106.8 0.39 38.0 0.00 68.8 ticks (≈ 2100 µsec.) ≈ 181% exp. value

Results with RIOT OS and modified “fast” SPI writes
Pkt. Size Cooja Simulation (ticks) Hardware Experiment (ticks) Mean Difference

Mean Std. Dev. Mean Std. Dev.
Moderate 27.0 0.00 10.0 0.00 17.0 ticks (≈ 519 µsec.) ≈ 170% exp. value
Medium 35.0 0.00 13.2 0.39 21.8 ticks (≈ 665 µsec.) ≈ 166% exp. value
Large 49.0 0.00 18.2 0.39 30.8 ticks (≈ 941 µsec.) ≈ 170% exp. value

Table 3. Relative Weight of TX Buffer Loading in Packet Transmission Timings.
HW Platform WSN OS Pkt. Size Loading delay TX delay Total Delay Loading / Total (percentage)
SkyMote/TelosB Contiki Moderate 196 1312 1508 13%
SkyMote/TelosB Contiki Medium 327 2272 2599 13%
SkyMote/TelosB Contiki Large 549 3872 4421 12%
SkyMote/TelosB RIOT OS Moderate 1770 1312 3082 57%
SkyMote/TelosB RIOT OS Medium 2599 2272 4871 53%
SkyMote/TelosB RIOT OS Large 4003 3872 7875 51%
Zolertia Z1 Contiki Moderate 153 1312 1465 10%
Zolertia Z1 Contiki Medium 272 2272 2544 11%
Zolertia Z1 Contiki Large 428 3872 4300 10%
Zolertia Z1 RIOT OS Moderate 1404 1312 2716 52%
Zolertia Z1 RIOT OS Medium 2106 2272 4378 48%
Zolertia Z1 RIOT OS Large 3260 3872 7132 46%
All delays in this table are in microseconds.
TX delays are computed using standard 802.15.4 rate (32 µsec. per byte), with 11 bytes of overhead per packet.

We also saw one paper that relies on both simulations and
experimental results for timing-related performance evalua-
tions: we especially found [20], which also presents purely
numerical, MATLAB-produced results. We expect such arti-
cles, (much) less common, to be less sensible to simulation
inaccuracies.

Almost all of these papers present work related to higher
layers of WSN network stacks, especially routing protocols
(like [15], [11], [2], and [3]) or application-level protocols
(e.g.: [1], [6], [10], and [17]). Some can even present alter-
nate network stacks ([5]).

Such studies, which rely on Cooja/MSPSim emulation
runs to evaluate time-related performance on WSN, have a
(potentially high) risk of suffering from inexact results due
to the timing inaccuracy described hereabove, which may go
from moderate up to critical bias. in the latter case, the issue
obviously goes as far as putting the discussions and conclu-
sions of these papers in jeopardy.

Due to the paper size constraints, we can’t go into further
details about actual consequences on previous works. Future
work should be undertaken to go deeper into that matter, as
well as to check for potential changes about these problems
in the newly released version of Cooja provided with Contiki
version 3.0.

6 Conclusion
In the present article, we provided the following contribu-

tions:

• We proved that the Cooja Framework is in no way lim-
ited to simulations of systems running Contiki OS, but
can—thanks to the use of embedded software to perform
cycle-exact emulation of devices— run any program de-
signed for one of the emulated architectures, whatever
the OS used (or not).

• We clearly showed that MSPSim emulation (at least for
the version provided with Contiki release 2.7) suffers



from a serious timing inaccuracy issue concerning SPI
bus access, which especially impacts communication be-
tween MCUs and radio transceivers—and thus, wireless
network operation—on WSN motes;
we described the extent of the problem with detailed ex-
perimentation results—extent which happens to be seri-
ous, especially for the emulation of the Zolertia Z1 hard-
ware platform;
we provided serious clues about the cause of the issue,
and consequently showed the area to investigate for fix-
ing it.

• We briefly enumerated a list of many recently published
articles in the WSN domain whose results are potentially
negatively impacted by this problem, because they rely
on Cooja/MSPSim simulations to evaluate their work.
The validity of such publications may be put in jeopardy
by the issue we describe here, especially when time-
related results obtained by simulation are involved.

Until a fix is made and published to correct this timing in-
accuracy in the MSPSim emulator, we believe the only way
to get robust and reliable results concerning timing and time-
related performance evaluation is to perform tests on actual
hardware, which will eliminate any bias that can be intro-
duced by inaccuracies in simulation.

Of course, such hardware tests are much more difficult,
long and costly to prepare, run and analyze.

Note that many published articles in the domain of WSNs,
including very recent publications, include simulations made
with the Cooja/MSPSim framework. This is clearly a testi-
mony of the usefulness of the this software package. That’s
why fixing the problem we describe in the present paper by
correcting MSPSim code as soon as possible is really impor-
tant.

Note also that while the issue described here can impair
the use of Cooja/MSPSim as a performance evaluation tool,
it does not affect its other applications, like the ability to
develop and debug WSN-related software much more easily
thanks to its emulation features.

7 References
[1] M. Amoretti, O. Alphand, G. Ferrari, F. Rousseau, and A. Duda. DI-

NAS: A Distributed Naming Service for All-IP Wireless Sensor Net-
works. In WCNC 2014, pages 2781–2786, April 2014.

[2] E. Ancillotti, R. Bruno, and M. Conti. Reliable Data Delivery With the
IETF Routing Protocol for Low-Power and Lossy Networks. Industrial
Informatics, IEEE Transactions on, 10(3):1864–1877, August 2014.

[3] E. Ancillotti, R. Bruno, M. Conti, E. Mingozzi, and C. Vallati. Trickle-
L2: Lightweight Link Quality Estimation through Trickle in RPL Net-
works. In WoWMoM 2014, pages 1–9, June 2014.

[4] M. Antonini, S. Cirani, G. Ferrari, P. Medagliani, M. Picone, and
L. Veltri. Lightweight Multicast Forwarding for Service Discovery in
Low-Power IoT Networks. In SoftCOM 2014, pages 133–138, Septem-
ber 2014.

[5] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel. TinySDN: Enabling
Multiple Controllers for Software-Defined Wireless Sensor Networks.
In LATINCOM 2014, pages 1–6, November 2014.

[6] B. Djamaa, M. Richardson, N. Aouf, and B. Walters. Towards Ef-
ficient Distributed Service Discovery in Low-Power and Lossy Net-
works. Wireless Networks, 20(8):2437–2453, November 2014.

[7] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a Lightweight
and Flexible Operating System for Tiny Networked Sensors.
In IEEE 29th Conference on Local Computer Networks, LCN
’04, pages 455–462. IEEE Computer Society, November 2004.
http://www.contiki-os.org/.

[8] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and J. Marrón. COOJA/MSPSim: Interoperability Testing
for Wireless Sensor Networks. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, Simutools ’09, pages
27:1–27:7. ICST, March 2009.

[9] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: an energy-aware
resource-centric RTOS for sensor networks. In Proceedings of the 26th
IEEE International Real-Time Systems Symposium, RTSS’05, pages
265–274. IEEE, December 2005. http://nanork.org/.

[10] E. Felemban, A. Sheikh, and M. Manzoor. Improving Response Time
in Time Critical Visual Sensor Network Applications. Ad Hoc Net-
works, 23:65–79, December 2014.

[11] O. Gaddour, A. Koubaa, R. Rangarajan, O. Cheikhrouhou, E. Tovar,
and M. Abid. Co-RPL: RPL Routing for Mobile Low Power Wireless
Sensor Networks Using Corona Mechanism. In SIES 2014, pages 200–
209, June 2014.

[12] O. Hahm, E. Baccelli, M. Günes, M. Wählisch, and T. C. Schmidt.
RIOT OS: Towards an OS for the Internet of Things. In INFOCOM
2013, Poster Session, April 2013. http://www.riot-os.org/.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In Proceedings
of the 1st International Conference on Embedded Networked Sensor
Systems, SenSys ’03, pages 126–137. ACM, November 2003.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Oper-
ating System for Sensor Networks. In Ambient Intelligence, pages 115–
148. Springer, Berlin Heidelberg, 2005. http://www.tinyos.net/.

[15] B. Marques and M. Ricardo. Improving the Energy Efficiency of WSN
by Using Application-Layer Topologies to Constrain RPL-Defined
Routing Trees. In MED-HOC-NET 2014, pages 126–133, June 2014.

[16] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
Level Sensor Network Simulation with Cooja. In IEEE 31st Confer-
ence on Local Computer Networks, LCN ’06, pages 641–648. IEEE
Computer Society, November 2006.

[17] S.-H. Seo, J. Won, S. Sultana, and E. Bertino. Effective Key Manage-
ment in Dynamic Wireless Sensor Networks. Information Forensics
and Security, IEEE Transactions on, 10(2):371–383, February 2015.

[18] B. L. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable Sensor Net-
work Simulation with Precise Timing. In Proceedings of the 4th Inter-
national Symposium on Information Processing in Sensor Networks,
IPSN ’05. IEEE Press, 2005. Article no. 67.

[19] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister. OpenWSN: a standards-based low-power wire-
less development environment. Transactions on Emerging Telecommu-
nications Technologies, 23(5):480–493, August 2012.

[20] X. Wu, K. Brown, and C. Sreenan. Contact Probing Mechanisms for
Opportunistic Sensor Data Collection. The Computer Journal, 2015.


