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Local distribution of the parts of unequal

partitions in arithmetic progressions I

Cécile Dartyge (Nancy) and Mihály Szalay (Budapest) ∗

To Kálmán Győry, Attila Pethő, János Pintz and András Sárközy,
on the occasion of their birthdays even if 260=70+70+60+60 is not an unequal partition.

Abstract. In [4], András Sárközy and the authors proved that for almost all unequal partitions
of an integer n, the parts are evenly distributed in residue classes modulo d for d = o(n1/2). In
this paper, we study very precisely the local distribution in arithmetic progressions of the parts
of unequal partitions. We obtain some asymptotic formulae for the number of unequal partitions
of n with exactly Nr parts congruent to r mod d, 1 6 r 6 d. Our results show that (N1, . . . , Nd)
behaves like a random Gaussian vector. This illustrates the fact that the distribution of the parts
of unequal partitions in residue classes is much more uniform that in the case of unrestricted
partitions.

1. Introduction

Recently András Sárközy and the authors obtained various statistical results on the
distribution of the summands of partitions in residue classes. In [3], they proved that the
parts of almost all partitions of n are well distributed in arithmetic progressions modulo d
for d < n1/2−ε. However, they also observed some limitation in this well distribution due
to the fact that the parts with small moduli are more frequent (cf. [13]). This leads the
authors to study precisely in [6] the distribution of the parts in residue classes. We obtained
an asymptotic formula and found that if Nr denotes the number of parts congruent to
r modulo d for a random partition of n then (N1, . . . , Nd) behaves like a random vector
with a vectorial gamma distribution. In particular we showed that if 1 6 a < b 6 d and
d 6 n1/8−ε then the number of partitions of n such that Na > Nb is

(1·1) (1 + o(1))
p(n)

Γ(a/d)Γ(b/d)

Z ∞

0
x

a
d−1e−x

≥Z ∞

x
y

b
d−1e−y dy

¥
dx,

where Γ is the Euler gamma function.
Next we observed that for fixed d and large enough n this quantity is

(1·2) > p(n)
°1
2

+
b− a

12d
¢
.

Thus this result reflects well the fact that the parts in small moduli residue classes are
more frequent. We also proved that for d fixed, the number of partitions of n such that
N1 > N2 > · · · > Nd is p(n)(c(d)+o(1)) with an explicit c(d) > 1

d! given by some multiple
truncated gamma integrals.

In this paper we investigate these questions for the unequal partitions. Since the parts are
all distinct, we conjectured in [1] and in [4] that the preponderance of the “small” residue
classes disappears, so that the distribution is more regular. In [4] we have already proved
that the parts are well-distributed modulo d for d = o(

√
n). Let d ∈ N∗, D a non-empty

subset of {1, . . . , d} and Dc = {1, . . . , d} r D its complement. Let RD = {Nr : r ∈ D} be
a multiset of |D| non-negative integers. The aim of this paper is to study now Π∗d(n,RD),
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the number of unequal partitions of n with exactly Nr parts congruent to r modulo d for
all r ∈ D. We adopt the convention Π∗d(0,RD) = 1 if RD = {0, ..., 0} and 0 otherwise.

Erdős and Lehner [8] proved that almost all of the q(n) unequal partitions of n contain

(1 + o(1))
2
√

3 log 2
π

√
n

parts. Furthermore, they also mentioned that the number of unequal partitions with at
most 2

√
3 log 2
π

√
n + y 4

√
n parts is given by a Gaussian integral. Moreover, in [4] we stated

that for 1 6 r 6 d, d = o(
√

n), for all but o(q(n)) unequal partitions of n the number of
parts congruent to r mod d is

(1 + o(1))
2
√

3 log 2
√

n

πd
.

Therefore one can expect each Nr “mostly close” to

(1·3) k0 :=
2
√

3 log 2
π

√
n

d
.

More precisely we will suppose that for all r ∈ D we have

(1·4) |Nr − k0| 6
n

1
4
√

log n

d1/3|D|2/3w(n)
,

where w(n) is a non-decreasing function such that w(n) →∞ if n →∞. We can already
note that the above cited result of Erdős and Lehner implies that the factor n

1
4 in the

upper bound of (1·4) is very important. During the different proofs, the following two
quantities will appear frequently:

(1·5) RD =
X

r∈D
rNr,

(1·6) QD = d
X

r∈D

Nr(Nr − 1)
2

.

When D = {1, . . . , d}, we will simply write R and Q. Let

(1·7) δ :=
Ω

g.c.d.(d, a1, . . . , ak) if Dc = {a1, . . . , ak}
d if Dc = ∅.

We remark that if n > 1 and Π∗d(n,RD) > 1 then n must satisfy:

(1·8) n ≡ RD (mod δ).

Theorem 1.1. Let ε > 0. The following two propositions hold.
(i) Let d 6 n1/4−ε, D = {1, . . . , d} and n ≡ RD (mod d). Let R = RD = {N1, . . . , Nd}

be a multiset of integers satisfying (1·4). Then we have

Π∗d(n,RD) = (1 + o(1))q(n)
dq

1− 12(log 2)2

π2

≥ d

2
√

3n

¥d/2

× exp
n
− 2

√
3 log2 2

π
°
1− 12(log 2)2

π2

¢√
n

≥ dX

r=1

(Nr − k0)
¥2
− πd

2
√

3n

dX

r=1

(Nr − k0)2
o
.
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(ii) We suppose now that d 6 n1/6−ε and D ⊂ {1, . . . , d}. Then under (1·8) and (1·4)
we have

Π∗d(n,RD) = q(n)
δ(1 + o(1))q

1− 12|D|(log 2)2

dπ2

≥ d

2
√

3n

¥|D|/2

× exp
≥
− 2

√
3(log 2)2

π
≥
1− 12|D|(log 2)2

dπ2

¥√
n

≥ X

r∈D
(Nr − k0)

¥2
− πd

2
√

3n

X

r∈D
(Nr − k0)2

¥
.

It is surprising to see that the range for the general D is only d 6 n1/6−ε and not
d 6 n1/4−ε as in assertion (i). We are obliged to add this condition only in Section 8 of
Part II [7] devoted to the terms S0(λ). It is perhaps possible with more care to have a
general result valid for d 6 n1/4−ε.

In this Theorem we already see that the distribution of the parts of unequal partitions
in residue classes is more regular than in the context of unrestricted partitions. This
distribution of (Nr : r ∈ D) behaves like a vectorial Gaussian whose associated density
depends only on the cardinality of D and not of its elements.

A first consequence is that the numbers Nr are almost surely very close to k0.

Corollary 1.2. Let D ⊂ {1, . . . , d}, d3|D| 6 n1/2−3ε with ε ∈]0, 10−2[, w(n) a non-
decreasing function such that limn→∞w(n) = ∞ and w(n) = O(nε). Suppose that

(1·9) w(n)|D|5/3

d1/6
√

log n
exp

≥
− πd1/3 log n

2
√

3|D|4/3w2(n)

¥
= o(1)

when n → ∞. Then for almost all unequal partitions of n the number of summands ≡
r (mod d) are between d2

√
3 log 2
π

√
n

d2 −
n1/4

√
log n

d4/3|D|2/3w(n)
ed and b2

√
3 log 2
π

√
n

d2 + n1/4
√

log n

d4/3|D|2/3w(n)
cd

simultaneously for all r ∈ D.

If |D| ≈ d then (1·9) becomes d3/2w(n)(log n)−1/2 exp
≥
− π log n

2
√

3dw2(n)

¥
= o(1). We can

apply Corollary 1.2 with d = o
≥q

log n
log log n

¥
, w(n) 6

q
log n

log log n . Then we have proved
that in almost all unequal partitions of n the number of summands ≡ r (mod d) are

between d2
√

3 log 2
π

√
n

d2 −
n1/4

√
log n

d2w(n) ed and b2
√

3 log 2
π

√
n

d2 + n1/4
√

log n

d2w(n) cd simultaneously for
r = 1, . . . , d.

This result implies Theorem 3.2 (resp. the estimate for Π∗1(n,R) implies Theorem 3.3)
of Erdős and Lehner [8]. For the moduli in question the above Corollary improves [4].

This is another illustration of the fact that for almost all unequal partitions of n the
parts are evenly distributed in residue classes.

When |D| is small, for example if D = {a, b}, then (1·9) becomes

w(n)
d1/6

√
log n

exp
≥
− πd1/3 log n

27/3
√

3w2(n)

¥
= o(1).

Thus this Corollary may be applied in all the range d 6 n1/6−2ε.
A first application of this corollary is the following result which announces that for

almost all unequal partitions, two residue classes don’t have the same number of parts.

Corollary 1.3. Let d 6 n1/6−ε with ε ∈]0, 10−2[, and 1 6 a < b 6 d. The number of
unequal partitions of n with the same number of summands in the residue classes a and
b modulo d is o(q(n)).

Another application is the following Corollary 1.4 which solves some conjecture of [1]
or [4].
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Corollary 1.4. Let d 6 n1/6−ε with ε ∈]0, 10−2[, and 1 6 a < b 6 d. There are
q(n)

2 +o(q(n)) unequal partitions of n with more parts ≡ a (mod d) than parts ≡ b (mod d).

This corollary shows that there are no dominant classes for the distribution of the parts
of unequal partitions. We recall that it is not the case for the unrestricted partitions (see
(1·1) and (1·2)). In the following last corollary we prove some other conjectures of [4]
illustrating again the fact that all the residue classes are very equitably represented by
the parts of the unequal partitions.

In particular we show that there exist q(n)( 1
d! + o(1)) unequal partitions of n such that

N1 > N2 > . . . > Nd.

Corollary 1.5. Let d be a fixed integer. The following two assertions are satisfied.
(i) For any 1 6 a 6 d, the number of unequal partitions of n with more parts≡ a (mod d)

than parts ≡ b (mod d) for all b ∈ {1, . . . , d} r {a} is q(n)( 1
d + o(1)).

(ii) Let σ be a permutation of the set {1, . . . , d}. The number of unequal partitions
of n such that there are more parts ≡ σ(i) (mod d) than parts ≡ σ(j) (mod d) for all
1 6 i < j 6 d is q(n)( 1

d! + o(1)).

Unfortunately, the proof of Theorem 1.1 is too long to be completely presented in this
paper. Thus we will state in this paper only few steps for the case D = {1, . . . , d} and the
main parts of the proofs will be in [7]. In the next section we will study the generating
function associated with Π∗d(n,RD), next we introduce the saddle point method and state
some preliminary formulae.

2. The generating function

Let HD(z) be the associated generating function of Π∗d(n,RD):

HD(z) =
∞X

n=0

Π∗d(n,RD)zn.

We will also need the generating function associated with the unequal partitions:

h(z) =
∞X

n=0

q(n)zn =
∞Y

j=1

(1 + zj).

Let Dc = {1, . . . , d} r D. We will prove the following lemma.

Lemma 2.1. For |z| < 1, we have:

HD(z) =
n Y

r∈Dc

j∈N

≥
1 + zr+jd

¥oz
P

r∈D
rNr+d

P
r∈D

Nr(Nr−1)
2

Q
r∈D

QNr

j=1(1− zjd)

= zRD+QDh(z)
Y

r∈D

n NrY

j=1

(1− zjd)−1
∞Y

j=0

(1 + zr+jd)−1
o
.

First proof of Lemma 2.1 in the case D = {1, . . . , d}. According to Euler’s theorem,
for |t| < 1 and |q| < 1, we have

(2·1) 1 +
∞X

n=1

tnqn(n−1)/2

(1− q)(1− q2) · · · (1− qn)
=

∞Y

n=0

(1 + tqn),
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for example, see [12] Theorem 348, p.280.
For z, wr ∈ C, |z| < 1, and |wr| < |z|−r (1 6 r 6 d) we have

(2·2)
dY

r=1

∞Y

kr=0

(1 + wrz
r+krd) =

∞X

N1=0

· · ·
∞X

Nd=0

≥ ∞X

n=0

Π∗d(n, {N1, . . . , Nd})zn
¥
wN1

1 · · ·wNd
d .

On the other hand, for 1 6 r 6 d, we write wrzr+krd = (wrzr)(zd)kr and we apply (2·1)
with t = wrzr, q = zd:

(2·3)

dY

r=1

∞Y

kr=0

(1 + wrz
r+krd) =

dY

r=1

∞Y

kr=0

(1 + (wrz
r)(zd)kr)

=
dY

r=1

≥
1 +

∞X

Nr=1

(wrzr)Nr(zd)Nr(Nr−1)/2

(1− zd)(1− z2d) · · · (1− zNrd)

¥

=
dY

r=1

∞X

Nr=0

wNr
r .zrNr+dNr(Nr−1)/2

QNr

j=1(1− zjd)

=
∞X

N1=0

· · ·
∞X

Nd=0

≥ zR+Q

Qd
r=1

QNr

j=1(1− zjd)

¥
wN1

1 · · ·wNd
d .

We finish the proof by comparing the coefficient of wN1
1 · · ·wNd

d in (2·2) and (2·3).
Second proof of Lemma 2.1. Let n ≡ RD (mod δ) and n > 1. To each unequal

partition Π∗ of n we can assign two integers a, b such that n = a + b and a is the sum of
all parts congruent to an r modulo d with r ∈ D and b is the sum of the other parts. Let
Q(a,RD,D) denote the number of unequal partitions of a with exactly Nr parts congruent
to r modulo d for r ∈ D and with no parts congruent to any j ∈ Dc. We also consider
Q̃(b,D), the number of unequal partitions of the integer b with no parts congruent to any
r ∈ D. With these notations we have

HD(z) =
X

a,b∈N
Q(a,RD,D)Q̃(b,D)za+b

=
X

a∈N
Q(a,RD,D)za

X

b∈N
Q̃(b,D)zb

= SaSb,

say. For the sum Sb, we have

(2·4) Sb =
Y

r∈Dc

j∈N

(1 + zr+dj).

Let λ be a partition counted in Q(a,RD,D) for some a > 1. This partition is of type:

a =
X

r∈D

NrX

i=1

(r + dλi,r), with 0 6 λ1,r < . . . < λNr,r (r ∈ D).

This gives

a =
X

r∈D
rNr + d

X

r∈D

NrX

i=1

λi,r.
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Inserting this in Sa we obtain

Sa = z
P

r∈D
rNr

Y

r∈D

X

06λ1,r<...<λNr,r

zd
PNr

i=1
λi,r .

The different sums in λi,r are geometric:

X

06λ1,r<...<λNr,r

zd
PNr

i=1
λi,r =

X

06λ1,r<...<λNr−1,r

zd
PNr−1

i=1
λi,r

+∞X

λNr,r=1+λNr−1,r

zdλNr,r

=
X

06λ1,r<...<λNr−1,r

zd
PNr−1

i=1
λi,r

zd(1+λNr−1,r)

1− zd
.

By iteration we obtain

(2·5) Sa =
zRD+QD

Q
r∈D

QNr

j=1(1− zjd)
.

Formulae (2·4) and (2·5) end the proof of Lemma 2.1. ut

Remark. The main part of the second proof was to obtain (2·5). It is also possible
to obtain this formula via the Euler identity like in the first proof given in the case
D = {1, . . . , d}. Thus the first method can be also used for general D.

We end this section with an elementary lemma on QD and RD.

Lemma 2.2. (i) If we suppose only

(2·6) |Nr − k0| = o
≥√n

d

¥
(r = 1, . . . , d),

then we have:

(2·7) RD = O(|D|
√

n),

(2·8) QD =
d|D|k2

0

2
+ d

X

r∈D
k0(Nr − k0) + O(d

X

r∈D
(Nr − k0)2) + O(|D|

√
n).

(ii) Under (1·4) we have

(2·9)
QD + RD =

d|D|k2
0

2
− d

2
|D|k0 + d

X

r∈D
k0(Nr − k0) +

d

2

X

r∈D
(Nr − k0)2 + k0

X

r∈D
r

+ O
≥n1/4|D|1/3d2/3

√
log n

w(n)

¥
.

Remark. If we use (2·6) in the first error term of (2·8) we obtain (for d = o(
√

n))

(2·10) QD =
d|D|k2

0

2
+ d

X

r∈D
k0(Nr − k0) + o

°
|D|n

d

¢
,

but we will need later a more precise estimate.
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Proof. By (2·6), Nr = O(d−1√n) for r ∈ D, thus we have

RD =
X

r∈D
rNr = O(|D|

√
n).

For QD we must be a little more precise :

QD =
d

2

X

r∈D
(N2

r −Nr) =
d

2

X

r∈D
(k0 + Nr − k0)2 + O(|D|

√
n)

=
d|D|k2

0

2
+ d

X

r∈D
k0(Nr − k0) +

d

2

X

r∈D
(Nr − k0)2 + O(|D|

√
n).

In the computation of the main term in the end of the proof of Theorem 1.1, we will
need stronger condition for Nr (see (1·4)). If we use this condition then we obtain :

(2·11) RD = k0

X

r∈D
r + O

≥ n1/4
√

log n

d1/3|D|2/3w(n)

X

r∈D
r
¥
,

and
(2·12)

QD =
d|D|k2

0

2
− d

2
|D|k0+d

X

r∈D
k0(Nr−k0)+

d

2

X

r∈D
(Nr−k0)2+O

≥n1/4|D|1/3d2/3
√

log n

w(n)

¥
.

Next it remains to sum (2·11) and (2·12) to obtain (2·9).

3. The saddle point method in the case D = {1, . . . , d}
For 0 < % < 1, it follows from Lemma 2.1 and the Cauchy formula that

Π∗d(n,RD) =
1

2iπ

Z

|v|=%
v−n−1HD(v) dv

=
1

2iπ

Z

|v|=%

v−n−1+RD+QD

Q
r∈D

QNr

j=1(1− vjd)
dv.

Let x > 0 to be specified later, % = e−x, z = x + iy, v = exp(−z). We also define the
following functions for <w > 0:

(3·1) f(w) =
+∞Y

j=1

(1− exp(−jw))−1;

(3·2) gk(w) =
kY

j=1

(1− exp(−jw))−1 = f(w)
+∞Y

j=k+1

(1− exp(−jw)).

For n > 1 and n ≡ RD (mod d), the integrand is periodic in y and we have

(3·3) Π∗d(n,RD) =
d

2π

Z π/d

−π/d

n dY

r=1

gNr(d(x + iy))
o

exp((n−RD −QD)(x + iy)) dy.
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4. A first upper bound in the case D = {1, . . . , d}
We begin this section by a lemma which gives a first simple estimation of the function

gk.

Lemma 4.1. Let w = t + ib with t > 0. We have

gk(w) = f(w) exp
≥
−

∞X

m=1

1
m

exp(−kmw)
° 1
mw

− 1
2
¢

+ O
°
|w|(kt)−1 + |w|2t−2k−1

¢¥
.

Proof. By the definition of gk we have:

gk(w) = f(w) exp
≥
−

∞X

ν=k+1

log
1

1− exp(−νw)

¥
.

We develop the log, intervert the summations and compute the geometric sum (since t > 0
all these manipulations are valid) :

gk(w) = f(w) exp
≥
−

∞X

ν=k+1

∞X

m=1

1
m

exp(−νmw)
¥

= f(w) exp
≥
−

∞X

m=1

1
m

exp(−(k + 1)mw)
(1− exp(−mw))

¥

= f(w) exp
≥
−

∞X

m=1

1
m

exp(−kmw)
(exp(mw)− 1)

¥
.

We want to approximate (exp(mw)−1)−1 by 1
mw −

1
2 . This is possible when m is “small”

and we will prove that the contribution of the “large” m’s is sufficiently small.

gk(w) = f(w) exp
≥
−

∞X

m=1

1
m

exp(−kmw)
° 1
mw

− 1
2
¢

+
∞X

m=1

1
m

exp(−kmw)
° 1
mw

− 1
2
− 1

exp(mw)− 1
¢¥

.

It remains to obtain an upper bound for the last sum in m. Let

T :=
ØØØ
∞X

m=1

1
m

exp(−kmw)
≥ 1

mw
− 1

2
− 1

exp(mw)− 1

¥ØØØ.

We have
T 6

X

m6|w|−1

1
m

exp(−kmt)
ØØØ

1
mw

− 1
2
− 1

exp(mw)− 1

ØØØ

+
X

m>|w|−1

1
|w|−1

exp(−kmt)
≥ 1

m|w| +
1
2

+
1

| exp(mw)− 1|

¥

6 T1 + T2,

say. Since for m|w| 6 1, (exp(mw)− 1)−1 = 1
mw −

1
2 + O(m|w|) we have for T1:

(4·1) T1 ø
X

m6|w|−1

1
m

exp(−kmt)m|w| ø |w|
ekt − 1

.
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For T2 we use the fact that | exp(mw)− 1| > exp(mt)− 1 > mt > |w|−1t:

(4·2)

T2 6 |w|
X

m>|w|−1

exp(−kmt)
≥
O(1) +

1
exp(mt)− 1

¥

6 O(|w|)
∞X

m=1

exp(−kmt) + |w|
X

m>|w|−1

exp(−kmt)
1

|w|−1t
.

By (4·1) and (4·2) we obtain

T 6
1

ekt − 1

≥
O(|w|) +

|w|2
t

¥
6

1
k

≥
O

° |w|
t

¢
+

|w|2
t2

¥
.

ut

For the sake of orientation, let us consider the case b = 0 in order to obtain a trivial upper
bound for the modulus of the last complex integral. (We will concentrate on the main term
in the exponent). For t > 0, by Lemma 4.1 we obtain (with R = RD, R = RD, Q = QD):

For n ≡ R (mod d),

Π∗d(n,R) 6
d

2π

Z π/d

−π/d

ØØØ
dY

r=1

gNr(d(x + iy))
ØØØ exp((n−R−Q)x) dy

6
d

2π

Z π/d

−π/d

n dY

r=1

gNr(dx)
o

exp((n−R−Q)x) dy

=
n dY

r=1

gNr(dx)
o

exp((n−R−Q)x).

Assume provisorily that

(4·3) d 6 n
1
2−ε

with some fixed positive ε and consider gk(t) for

(4·4) |k − k0| = o
≥√n

d

¥
,

this choice of k is motivated by the statistical result of Erdős and Lehner [8] on the number
of the parts of a generic unequal partition (cf. the introduction).

Let

(4·5) x0 :=
π

2
√

3n
, t := dx0.

Then

(4·6) k0t = k0dx0 = log 2.

During the computation of the main term S0 we will use the following constant

C2 :=
∞X

m=1

1
m22m

.
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Lemma 4.2. We have

C2 =
π2

12
− (log 2)2

2
.

This formula is probably well known but we however propose here a simple proof of it.
Proof. Since for 0 < x < 1,

≥ ∞X

m=1

xm

m2

¥0
=

∞X

m=1

xm−1

m
=

1
x

log
1

1− x
,

we have

C2 − 0 =
Z 1/2

0

1
x

log
1

1− x
dx

= −(log 2)2 −
Z 1/2

0
(log x)

dx

1− x
.

In the integral we write u = 1− x:

C2 = −(log 2)2 +
Z 1

1/2

1
u

log
1

1− u
du

= −(log 2)2 +
Z 1

0

1
x

log
1

1− x
dx−

Z 1/2

0

1
x

log
1

1− x
dx

= −(log 2)2 +
π2

6
− C2.

ut
Now we can give a first estimate of gk(dx0):

Lemma 4.3. Under (4·3) and (4·4) we have:

gk(dx0) = exp
≥ π2

12dx0
+

(log 2)2

2dx0
+ o

≥√n

d

¥¥
.

Proof.
As n →∞, by Lemma 4.1, we have

gk(t) = f(t) exp
≥
−

∞X

m=1

1
m

exp(−k0mt) exp(−(k − k0)mt)
° 1
mt

− 1
2
¢

+ O(k−1)
¥
.

Next we use the fact that k is close to k0:

gk(t) = f(t) exp
≥
−

∞X

m=1

1
m

exp(−k0mt)
° 1
mt

− 1
2
¢

× (1 + O(|k − k0|mt exp(|k − k0|mt)) + O(k−1
0 )

¥
.

We develop the different terms, for n →∞,

gk(t) = f(t) exp
≥
− 1

t

∞X

m=1

1
m2

(e−k0t)m +
1
2

∞X

m=1

1
m

(e−k0t)m+

+ O(|k − k0|)
≥ ∞X

m=1

1
m

exp(−k0mt/2) + t
∞X

m=1

exp(−k0mt/2)
¥

+ O(k−1
0 )

¥
.
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For t = dx0 we obtain

gk(dx0) = f(dx0) exp
≥
− 1

dx0

∞X

m=1

2−m

m2
+

1
2

∞X

m=1

2−m

m

+ O(|k − k0|)
≥ ∞X

m=1

2−m/2

m
+ dx0

∞X

m=1

2−m/2
¥

+ O(k−1
0 )

¥

= f(dx0) exp
≥
− 1

dx0

∞X

m=1

2−m

m2
+ o

≥√n

d

¥¥

= exp
≥ π2

6dx0
− 1

dx0

∞X

m=1

2−m

m2
+ o

≥√n

d

¥¥
.

This ends the proof of Lemma 4.3. ut
If

(4·7) |Nr − k0| = o
≥√n

d

¥
(r = 1, . . . , d)

as n →∞ then we have

(4·8)
dY

r=1

gNr(dx0) = exp
≥ π2

12x0
+

(log 2)2

2x0
+ o(

√
n)

¥

and
Π∗d(n,R) 6 exp

≥
(n−R−Q)x0 +

π2

12x0
+

(log 2)2

2x0
+ o(

√
n)

¥
.

Lemma 2.2, (1·3), (4·3), (4·6), and (4·7) yield that

(4·9) R + Q = o(n) +
d2k2

0

2
+ o(n) =

1
2

≥ log 2
x0

¥2
+ o(n).

Finally,

Π∗d(d,R) 6 exp(nx0 +
π2

12x0
+ o(

√
n)) = exp

≥π
√

n√
3

+ o(
√

n)
¥
.

This is trivial since

(4·10) q(n) = (1 + o(1))
1

4.31/4n3/4
exp

≥π
√

n√
3

¥
.

But we shall see in Part II [7] that the estimates can be improved.
We will use the classical splitting of the integral (3·3)

(4·11) Π∗d(n,RD) = S0 + S1 + S2,

with

S0 =
d

2π

Z

|y|6y1

n dY

r=1

gNr(d(x0 + iy))
o

exp((n−RD −QD)(x0 + iy)) dy,

S1 =
d

2π

Z

y16|y|6y2

..., S2 =
d

2π

Z

y26|y|6π/d
...

with y1 = n−
3
4+ ε

3 and y2 = 3πx0.
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Journ. de Théorie des Nombres de Bordeaux 18 (2006), 73-87.

[6] C. Dartyge and M. Szalay, Dominant residue classes concerning the summands of partitions,
Functiones et Approximatio XXXVII.1 (2007), 65-96.

[7] C. Dartyge and M. Szalay, Local distribution of the parts of unequal partitions in arithmetic
progressions II, to appear
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