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A LOCAL ENTROPY MINIMUM PRINCIPLE FOR DERIVING

ENTROPY PRESERVING SCHEMES.

CHRISTOPHE BERTHON ∗, BRUNO DUBROCA †‡ , AND AFEINTOU SANGAM §¶

AMS subject classifications. 65M60, 65M12
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Abstract. The present work deals with the establishment of stability conditions of finite volume
methods to approximate weak solutions of the general Euler equations to simulate compressible flows.
In oder to ensure discrete entropy inequalities, we derive a new technique based on a local minimum
principle to be satisfied by the specific entropy. Sufficient conditions are exhibited to satisfy the
required local minimum entropy principle. Arguing these conditions, a class of entropy preserving
schemes is thus derived.

1. Introduction. The numerical approximation of the weak solutions of hyper-
bolic systems of conservation laws was widely studied during the last three decades,
with a special attention to the so-called Euler equations. Several strategies, coming
from finite volume methods, have been introduced. Our purpose is not to detail these
techniques, but let us refer to the most famous of them: the Godunov scheme [18, 25],
the HLL scheme [21], the HLLC scheme [31], the Roe scheme [27], the Osher scheme
[13], the relaxation schemes [7, 22, 12, 3, 1], the VFRoe scheme [9, 5, 17, 26], BGK
scheme [18, 23, 8]... Of course, this list stays exhaustive and the reader is referred,
for instance, to Godlewski-Raviart [18] or Toro [32] or LeVeque [25] and references
therein. These kind of schemes have also been applied to general fluid equations, for
instance to 10-moment equations system [3, 28] or radiative transfer equations [4].

From the derivation of finite volume methods, the main questions arising concern
the robustness, the stability and the accuracy of the suggested method. In the present
work, we do not consider the delicate problem of the accuracy of the methods (see
[23, 24, 33, 2] where several strategies are devised). Concerning the robustness, we
classically admits this property as soon as the space of admissible states stays invari-
ant by the numerical method. Most of the usual schemes (Godunov, HLL, HLLC...)
are easily shown to be robust (see also [14, 15, 16]). However, some numerical approx-
imations need a special attention to prove the required robustness (for instance, see
[5] for an analysis of the VFRoe scheme). Now, some schemes violate this property
(the initial Roe scheme for instance). When considering the stability statements, one
adopts a discrete Lax entropy inequalities [21, 23, 7]. In general, the establishment
of such discrete entropy inequalities are very difficult to be obtained. Except for the
Godunov scheme or the HLL scheme where the proof is obvious [21], we need very
sophisticated arguments to demonstrate an entropy preserving property (see [7, 1, 10]
in the case of HLLC scheme and/or the Suliciu relaxation scheme).
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When focusing on the General Euler equations, we propose new arguments to en-
sure robustness and entropy preservation to be satisfied by the scheme. The interest of
our approach is twofold. First, it yields an immediate establishment of the robustness
and the satisfaction of discrete entropy inequalities of the HLLC scheme and relax-
ations schemes (for instance). From now on, let us note that we revisit these schemes
and the reader is referred to [7, 1, 10, 6, 14, 15, 16] where robustness and stability
are given for the proposed schemes. The second interest of our approach comes from
a derivation of a full class of robust and entropy preserving schemes to approximate
the weak solutions of the General Euler equations. We will give an example which
was, up to our knowledge, never proposed in the literature.

The present paper is devoted to the numerical approximation of the weak solutions
of the general Euler equations. Hence we consider the following system:











∂tρ + ∂xρu = 0,

∂tρu + ∂x(ρu2 + p(τ, e)) = 0,

∂tρE + ∂x(ρE + p(τ, e))u = 0,

(1.1)

where ρ > 0 is the density, u ∈ R the velocity and ρE > 0 the total energy. Here we
have set τ the specific volume and e the internal energy defined as follows:

τ =
1

ρ
and e = E − u2

2
. (1.2)

Concerning the pressure function p, we assume that it obeys the second law of ther-
modynamics. As a consequence, it exists a specific entropy s(τ, e) : R+ × R+ → R

which satisfies for some temperature T (τ, e) > 0:

Tds = de + pdτ, (1.3)

so that we have

∂s

∂τ
(τ, e) =

p(τ, e)

T (τ, e)
> 0 and

∂s

∂e
(τ, e) =

1

T (τ, e)
> 0. (1.4)

In addition, we assume that the function (τ, e) 7→ s(τ, e) is strictly convex and it is
asked, without restriction, to meet the following asymptotic condition for any given
fixed τ > 0:

lim
e→0+

s(τ, e) = −∞ and lim
e→+∞

s(τ, e) = +∞. (1.5)

Now, let us recall that the classical solutions of (1.1) satisfy the following addi-
tional transport law (see [18, 29]):

∂ts(τ, e) + u∂xs(τ, e) = 0. (1.6)

It follows that any function f of s satisfies the same transport equation:

∂tf(s(τ, e)) + u∂xf(s(τ, e)) = 0. (1.7)

Combining the continuity equation in (1.1) with (1.7) gives that smooth solutions of
Euler equations (1.1) satisfy in addition a formal conservation law in the form:

∂tρf(s(τ, e)) + ∂xρf(s(τ, e))u = 0.
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This leads to a convex generalized entropy function (ρ, ρu, ρE) 7→ ρf(s(τ, e)) such
that the weak solutions of (1.1) satisfy the following entropy inequality (in the sense
of distributions):

∂tρf(s(τ, e)) + ∂xρf(s(τ, e))u ≤ 0. (1.8)

From a numerical point of view this inequality will turn out to be crucial since it rules
out some non-physical solutions. After the work by Harten et al [21, 19], the conditions
to be satisfied in order to enforce the strict convexity of (ρ, ρu, ρE) 7→ ρf(s(τ, e))
imply:

f ′(s(τ, e)) < 0 and p(τ, e)
∂p

∂e
(τ, e) − ∂p

∂τ
(τ, e) > 0. (1.9)

From now on, let us emphasize that these assumed conditions to be put on the pressure
enforce the system (1.1) to be hyperbolic with eigenvalues u − c, u and u + c where
the sound speed c > 0 is given by

c2 =
1

ρ2

(

p(τ, e)
∂p

∂e
(τ, e) − ∂p

∂τ
(τ, e)

)

.

Let us add a supplementary property satisfied by the specific entropy. Indeed, after
[29, 30, 20], s(τ, e) satisfies the following minimum principle:

inf
x∈R

s(τ, e)(x, t) ≤ inf
x∈R

s(τ, e)(x, 0).

This property will be, once again, relevant from a numerical point of view. We will
ask the numerical approximations to satisfy such a minimum principle.

For the sake of simplicity, it is convenient to introduce notations to write (1.1) as
follows:

∂tU + ∂xF (U) = 0,

where the state vector U and the vector flux function are given by:

U = (ρ, ρu, ρE)
T

and F (U) =
(

ρu, ρu2 + p(τ, e), (ρE + p(τ, e))u
)T

.

Here, the state vector U belongs to an admissible state space Ω defined as follows:

Ω =
{

U ∈ R3; ρ > 0, u ∈ R, e > 0
}

.

In the sequel, it will be helpful to introduce the following (nonstandard) state space:

ω =
{

U ∈ R3; ρ > 0, u ∈ R, E > 0
}

.

In fact, we have Ω ( ω and ω can not be considered to define admissible solutions
with positive internal energy. However, this space ω will be useful to introduce some
intermediate robustness properties.

The aim of the present paper concerns the derivation of approximate Riemann
solvers to develop first-order finite volume schemes to approximate the weak solu-
tions of (1.1). The derived schemes must be Ω-invariant and preserve discrete entropy
inequalities issuing from (1.8). The paper is organized as follows. In the next sec-
tion, we introduce the main notations to define approximate Riemann solvers and
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t

x
0

UL UR

U⋆(x
t
; UL, UR)

a− a+

Fig. 2.1. Wave structure of the approximate Riemann solver

their associated Godunov type method. We recall the definition of robust schemes,
entropy preserving schemes and entropy minimum principle preserving schemes. In
addition, we complete this review by giving some basic results to enforce the required
robustness and stability. In section 3, we establish new criterion to obtain a new
class of entropic schemes. In fact, after [23], the suggested criterion are based on
a local entropy minimum principle to derive robust, entropy preserving and entropy
minimum principle preserving schemes. The following section is devoted to apply the
above results. In particular, we exhibit the stability properties satisfied by the Suliciu
relaxation scheme [7, 12, 1] or equivalently the HLLC scheme [32, 31]. In the present
work, the stability requirement needed by these two schemes will be seen as an easy
corollary of our main result. In addition, we supplement this apply when deriving
new entropy schemes. In the last section, we give a conclusion and we propose several
extensions.

2. Godunov-type schemes. We here recall the main elements to derive a con-
servative first-order finite volume scheme of Godunov-type. Motivated by the work of
Harten-Lax-van Leer [21], we introduce an approximation, denoted U∆x

R
(x

t
; UL, UR),

of the exact Riemann solution we defined as follows (see Figure 2.1):

U∆x
R (

x

t
; UL, UR) =























UL, if
x

t
< a−,

U⋆(
x

t
; UL, UR), if a− <

x

t
< a+,

UR, if
x

t
> a+,

(2.1)

where a− < a+ are some given constants we will define later on. The internal structure
U⋆(x

t
; UL, UR) can be simpler than the exact internal Riemann structure as long as

it does not violate the conservation and the entropy inequalities.

Now, we consider this approximate Riemann solution U∆x
R

(x
t
; UL, UR) to define a

finite volume scheme. We adopt a uniform structured mesh in space, defined by the
cells Ii = [xi− 1

2
, xi+ 1

2
), where xi+ 1

2
= xi + ∆x

2 with a constant space increment ∆x.

At the initial time, we set

U0
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, 0)dx, i ∈ Z.

At time tn we assume known a piecewise constant approximate solution U∆x(x, tn)



Entropy preserving schemes 5
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(
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(
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Fig. 2.2. Sequence of non interacting approximated Riemann solution

in Ω defined by

U∆x(x, tn) = Un
i , x ∈ Ii, i ∈ Z.

This approximation is now evolved in time to define an approximate solution at time
tn+1 = tn + ∆t. To address such an issue, at each cell interface, located at xi+ 1

2
, we

consider the approximate Riemann solver U∆x
R

(
x−x

i+ 1
2

t
; Un

i , Un
i+1). Under the CFL

like restriction:

∆t

∆x
max
i∈Z

(|a±

i+ 1
2

|) ≤ 1

2
, (2.2)

we have thus defined a juxtaposition of non interacting approximate Riemann solu-
tions for all t ∈ [0, ∆t) (see Figure 2.2):

U∆x(x, tn + t) = U∆x
R

(

x − xi+ 1
2

t
; Un

i , Un
i+1

)

, x ∈ (xi, xi+1).

The updated approximate solution at time tn+1 is then defined as follows:

Un+1
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

U∆x(x, tn + ∆t)dx. (2.3)

Due to Harten-Lax [19], the following statement shows that the adopted scheme
is consistent:

Theorem 2.1. Let U∆x
R be an approximation of the Riemann solution that sat-

isfies the following consistency condition:

1

∆x

∫ ∆x
2

−∆x
2

U∆x
R

( x

∆t
; UL, UR

)

dx =
1

2
(UL + UR) − ∆t

∆x
(F (UR) − F (UL)), (2.4)

where ∆t is given by the CFL condition (2.2). Then the updated approximation (2.3)
rewrites in conservation form as follows:

Un+1
i = Un

i − ∆t

∆x

(

F∆x(Un
i , Un

i+1) − F∆x(Un
i−1, U

n
i )
)

, (2.5)

where the numerical flux function is defined by

F∆x(UL, UR) = F (UL) +
∆x

2∆t
UL − 1

∆t

∫ 0

−
∆x
2

U∆x
R

( x

∆t
; UL, UR

)

dx. (2.6)
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Now, Let us introduce definitions to characterize the robustness and the stability
of schemes. Concerning the robustness, we have:

Definition 2.2. The scheme (2.5)-(2.6) is said positively invariant iff, for all i
in Z, Un+1

i ∈ Ω as soon as Un
i ∈ Ω.

The scheme is said weakly robust iff, for all i in Z, Un
i ∈ ω implies Un+1

i ∈ Ω.
Next, we define an entropy preserving scheme:
Definition 2.3. The scheme (2.5)-(2.6) is said entropy preserving iff, for all

i ∈ Z the updated state vector Un+1
i satisfies:

1

∆t

(

Sn+1
i − Sn

i

)

+
1

∆x

(

η∆x(Un
i , Un

i+1) − η∆x(Un
i+1, U

n
i )
)

≤ 0,

where Sn
i = ρn

i f(s(τn
i , en

i )) and the numerical entropy flux function satisfies the con-
sistency condition η∆x(U, U) = ρf(s(τ, e))u.

We conclude by defining a discrete entropy minimum principle:
Definition 2.4. The scheme (2.5)-(2.6) is said entropy minimum principle

preserving iff Un+1
i satisfies for all i in Z:

s(τn+1
i , en+1

i ) ≥ min
(

s(τn
i−1, e

n
i−1), s(τ

n
i , en

i ), s(τn
i+1, e

n
i+1)

)

. (2.7)

Based on such definitions, we examine conditions to be put on the approximate
Riemann solver (2.1) to obtain the required robustness and stability of the numer-
ical scheme. According to the L2-projection (2.3) to define the updated state, we
immediately note that such an approach is weakly robust as soon as the approximate
Riemann solver, U∆x

R
defined by (2.1), stays in ω for all UL and UR in ω. This remark

can be completed with the result stated by Harten-Lax-van Leer [21] concerning the
discrete entropy inequalities:

Theorem 2.5. Let U∆x
R

be an approximation of the Riemann solution which
satisfies the consistency condition (2.4). Under the CFL condition (2.2), assume the
following entropy consistency condition:

1

∆x

∫ ∆x
2

−
∆x
2

S
(

U∆x
R

( x

∆t
; UL, UR

))

dx ≤

1

2
(S(UL) + S(UR)) − ∆t

∆x
(S(UR)uR − S(UL)uL) ,

(2.8)

where we have set S(U) = ρf(s(τ, e)) for any given smooth function f : R → R so
that the function U 7→ S(U) is strictly convex. Then the scheme (2.5)-(2.6) is entropy
preserving.

We skip the proof of this well-known result (for instance, see [19, 21]).
From now on, let us note that this entropy preserving criterion (2.8) is cer-

tainly one of the most general condition we can find in the literature. As stated
in [21], such condition can be easily applied to the one intermediate constant state
(U⋆(x

t
; UL, UR) = cste in (2.1)) as suggested to derive the so-called HLL scheme.

Now, this criterion seems too weak to be easily applied when considering more so-
phisticated schemes. For instance, we refer to [7, 6, 10, 1, 3] where distinct arguments
are proposed to establish the entropy preserving property for the HLLC scheme or
the Suliciu relaxation method. Here, the main idea consists in introducing a stronger
entropy preserving condition in order to easily ensure the stability requirements when
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considering the HLLC or relaxation schemes. In addition, we will see that this new
condition will give a full class of entropy preserving and entropy minimum principle
preserving schemes.

3. A local entropy minimum principle. Arguing the work by Khobalatte-
Perthame [23] (see also [10] for relating ideas), our main assumption consists in en-
forcing a local entropy minimum principle into the approximate Riemann solver.

Theorem 3.1. Let U∆x
R be an approximate Riemann solver, defined by (2.1),

satisfying the consistency condition (2.4) and so that U∆x
R

(x
t
; UL, UR) ∈ Ω as long

as UL and UR are in Ω. Assume the existence of a⋆ ∈ (a−, a+) to get the following
decomposition of the intermediate state:

U⋆
(x

t
; UL, UR

)

=











U⋆
L

(x

t
; UL, UR

)

if
x

t
∈ (a−, a⋆),

U⋆
R

(x

t
; UL, UR

)

if
x

t
∈ (a⋆, a+).

(3.1)

Assume this decomposition satisfies an additional half consistency condition given by

1

∆x

∫ ∆x
2

a⋆∆t

ρ∆x
R

( x

∆t
; UL, UR

)

dx =
ρR

2
− ∆t

∆x
ρRuR. (3.2)

If the following local entropy minimum principle:

s
(

τ⋆
L

(x

t
; UL, UR

)

, e⋆
L

(x

t
; UL, UR

))

≥ s(τL, eL) if
x

t
∈ (a−, a⋆), (3.3a)

s
(

τ⋆
R

(x

t
; UL, UR

)

, e⋆
R

(x

t
; UL, UR

))

≥ s(τR, eR) if
x

t
∈ (a⋆, a+), (3.3b)

is satisfied, then the scheme (2.5)-(2.6) is positively invariant, entropy preserving and
entropy minimum principle preserving under the CFL restriction (2.2).

Let us note from now on that the half consistency condition (3.2) (firstly given in
[14, 15, 16] in a more restrictive form), when withdrawn from the consistency condition
(2.4), leads to an equivalent half consistency condition stated on the interval (a−, a⋆)
as follows:

1

∆x

∫ a⋆∆t

−
∆x
2

ρ∆x
R

( x

∆t
; UL, UR

)

dx =
ρL

2
+

∆t

∆x
ρLuL. (3.4)

As detailed in Section 4, the HLLC scheme or the Siluciu relaxation scheme involve
explicitely the intermediate velocity a⋆.

Proof. Here, we consider a sequence (Un
i )i∈Z defined in Ω, to study the updated

sequence (Un+1
i )i∈Z given by (2.5)-(2.6). Since Ω ⊂ ω, we have

ρ∆x
R

(

x − xi+ 1
2

∆t
; Un

i , Un
i+1

)

> 0 and (ρE)∆x
R

(

x − xi+ 1
2

∆t
; Un

i , Un
i+1

)

> 0.

By definition of Un+1
i , given by (2.3), we immediately deduce that the scheme (2.5)-

(2.6) is weakly robust and thus we have Un+1
i in ω.

Next, we prove the entropy preserving property by applying Theorem 2.5. Indeed,
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let us set S(U) = ρf(s(τ, e)) to write

1

∆x

∫ ∆x
2

−
∆x
2

S
(

U∆x
R

( x

∆t
; UL, UR

))

dx =

1

∆x

∫ a−∆t

−
∆x
2

ρLf(s(τL, eL))dx +
1

∆x

∫ a⋆∆t

−a−∆t

{ρ⋆
Lf(s(τ⋆

L, e⋆
L))}

( x

∆t
; UL, UR

)

dx

+
1

∆x

∫ a+∆t

−a⋆∆t

{ρ⋆
Rf(s(τ⋆

R, e⋆
R))}

( x

∆t
; UL, UR

)

dx +
1

∆x

∫ ∆x
2

a+∆t

ρRf(s(τR, eR))dx.

(3.5)
Let us assume the function U 7→ S(U) to be convex so that f is a decreasing function.
By involving the local entropy minimum principle (3.3), we get

f (s(τ⋆
L, e⋆

L))
( x

∆t
; UL, UR

)

≤ f(s(τL, eL)), if
x

t
∈ (a−, a⋆),

f (s(τ⋆
R, e⋆

R))
( x

∆t
; UL, UR

)

≤ f(s(τR, eR)), if
x

t
∈ (a⋆, a+).

Hence, we can rewrite (3.5) as follows:

1

∆x

∫ ∆x
2

−∆x
2

S
(

U∆x
R

( x

∆t
; UL, UR

))

dx ≤f(s(τL, eL))

∆x

∫ a⋆∆t

−∆x
2

ρ∆x
R

( x

∆t
; UL, UR

)

dx

+
f(s(τR, eR))

∆x

∫ ∆x
2

a⋆∆t

ρ∆x
R

( x

∆t
; UL, UR

)

dx.

Let us plug the half consistency conditions (3.2) and (3.4) into the above relation to
obtain:

1

∆x

∫ ∆x
2

−∆x
2

S
(

U∆x
R

( x

∆t
; UL, UR

))

dx ≤

1

2
(S(UL) + S(UR)) − ∆t

∆x
(S(UR)uR − S(UL)uL) .

From Theorem 2.5, we immediately deduce the expected entropy preserving property.
Next, let us establish the entropy maximum principle property. By the well-known

Jensen inequality, we have

ρn+1
i f

(

s(τn+1
i , en+1

i )
)

≤ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

S
(

U∆x(x, tn + ∆t)
)

dx

≤ 1

∆x

∫ xi

x
i− 1

2

S

(

U∆x
R

(

x − xi− 1
2

∆t
; Un

i−1, U
n
i

))

dx

+
1

∆x

∫ x
i+ 1

2

xi

S

(

U∆x
R

(

x − xi+ 1
2

∆t
; Un

i , Un
i+1

))

dx.

Since ρ∆x
R

( x
∆t

; UL, UR) > 0 and f monoton decreasing, we have

S

(

U∆x
R

(

x − xi+ 1
2

∆t
; Un

i , Un
i+1

))

≤

ρ∆x
R

(

x − xi+ 1
2

∆t
; Un

i , Un
i+1

)

f
(

min(s(τn
i , en

i ), s(τn
i+1, e

n
i+1)

)

.
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As a consequence, we immediately obtain

ρn+1
i f

(

s(τn+1
i , en+1

i )
)

≤
1

∆x
f
(

min(s(τn
i−1, e

n
i−1), s(τ

n
i , en

i ), s(τn
i+1, e

n
i+1)

)

∫ x
i+1

2

x
i− 1

2

ρ∆x(x, tn + ∆t)dx,

which gives the expected entropy minimum principle (2.7).
Now, the monoton property (1.4), satisfied by the function e 7→ s(τ, e), τ > 0

fixed, associated with the asymptotic assumption (1.5) implies en+1
i > 0 and then we

have Un
i ∈ Ω for all i in Z. The proof is achieved.

Let us emphasize that the above result is more restrictive than Harten-Lax The-
orem 2.5. Some entropy preserving schemes do not enter the proposed framework.
For instance, Theorem 3.1 can not be applied when considering the one constant in-
termediate state Riemann solver, namely the HLL Riemann approximation. Indeed,
with an intermediate state given by [21]:

U⋆
(x

t
; UL, UR

)

=
a+UR − a−UL

a+ − a−
− 1

a+ − a−
(F (UL) − F (UR)) ,

it is not possible to ensure simultaneously

s(τ⋆, e⋆) ≥ s(τL, eL) and s(τ⋆, e⋆) ≥ s(τR, eR).

However, many schemes enter the proposed approach. For instance, the HLLC
schemes and the Suliciu relaxation schemes are relevant candidate. In [7, 6, 3, 1, 10],
results similar to Theorem 3.1 can be found but specified for a given scheme. These
two scheme families will be consider later on. Several exemples will be detailed in the
next section.

Now, our main objective concerns the derivation of suitable conditions to satisfy
the local entropy minimum principle (3.3). Following ideas introduced by Chalons
[10] (see also [7, 3]), we will introduce some abstract functions to be invariant on each
side (a−, a⋆) and (a⋆, a+) of the approximate Riemann solver. Enforcing a relevant
choice of these invariant functions, we will obtain a minimum principle to get the
expected relations (3.3).

To address such an issue, we need some technical results. First, we introduce two
distinct functions (τ, e, α) 7→ ϕ(τ, e, α) and (τ, e, α) 7→ φ(τ, e, α) in C2(R+×R+×R, R)
and a smooth function (τ, e) 7→ π(τ, e) in C1(R+ × R+, R). These functions are now
assumed to satisfy several restrictions. For the sake of clarity in the presentation, we
denote Σ = (τ, e, α)T ∈ R+ × R+ × R and we set Σeq = (τ, e, π(τ, e))T . In addition,
we denote σ = (τ, e)T .

Next, in order to shorten the notations, it will be helpful to introduce the following
functions:

D(σ) =

(

∂ϕ

∂τ
(Σeq) +

∂π

∂τ
(σ)

∂ϕ

∂α
(Σeq)

)(

∂φ

∂e
(Σeq) +

∂π

∂e
(σ)

∂φ

∂α
(Σeq)

)

−
(

∂φ

∂τ
(Σeq) +

∂π

∂τ
(σ)

∂φ

∂α
(Σeq)

)(

∂ϕ

∂e
(Σeq) +

∂π

∂e
(σ)

∂ϕ

∂α
(Σeq)

)

,

(3.6)

and

J(Σ) = p(σ)

(

∂ϕ

∂α
(Σ)

∂φ

∂e
(Σ) − ∂φ

∂α
(Σ)

∂ϕ

∂e
(Σ)

)

−
(

∂ϕ

∂α
(Σ)

∂φ

∂τ
(Σ) − ∂φ

∂α
(Σ)

∂ϕ

∂τ
(Σ)

)

.

(3.7)
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In addition, we here denote

∇Σϕ(Σ) =

(

∂ϕ

∂τ
,
∂ϕ

∂e
,
∂ϕ

∂α

)T

,

to set for all pairs (Σ1, Σ2):

H(Σ1, Σ2) =
∂2ϕ

∂α2
(Σ2)

∂φ

∂α
(Σ1) −

∂2φ

∂α2
(Σ2)

∂ϕ

∂α
(Σ1)

+ γ(Σ1, Σ2)

(

∂ϕ

∂α
(Σ2)

∂2φ

∂α2
(Σ1) −

∂φ

∂α
(Σ2)

∂2ϕ

∂α2
(Σ1)

)

+
γ(Σ1, Σ2)

D(σ1)

(

∂ϕ

∂α
(Σ2)∇Σ

(

∂φ

∂α

)

(Σ1) −
∂φ

∂α
(Σ2)∇Σ

(

∂ϕ

∂α

)

(Σ1)

)

· (∇Σφ ∧∇Σϕ) (Σ1),

(3.8)

where

γ(Σ1, Σ2) =
∂ϕ
∂α

(Σ2)
∂ϕ
∂α

(Σ1)
with

∂ϕ

∂α
(Σ1) 6= 0. (3.9)

Finally, we denote

K(Σ) =
∂ϕ

∂e
(Σ)

∂φ

∂α
(Σ) − ∂ϕ

∂α
(Σ)

∂φ

∂e
(Σ). (3.10)

We now give our central technical statement.
Proposition 3.2. Consider two functions (τ, e, α) 7→ ϕ(τ, e, α) and (τ, e, α) 7→

φ(τ, e, α) in C2(R+ × R+ × R, R) and a function (τ, e) 7→ π(τ, e) in C1(R+ × R+, R)
so that the following conditions are satisfied for all (τ, e) under consideration:

(i) D(τ, e) 6= 0 where the function D is defined by (3.6),
(ii) J(τ, e, π(τ, e)) = 0 where the function J is defined by (3.7).

Moreover, we assume
(iii) for fixed (τ, e), the function α 7→ ϕ(τ, e, α) is strictly monoton and, for all

pairs (Σ1, Σ2) in (R+ × R+ × R)2, we have K(Σ1)H(Σ1, Σ2) < 0 where K
and H are respectively defined by (3.10) and (3.8).

Then there exists a function (τ, e, α) 7→ S(ϕ(τ, e, α), φ(τ, e, α)) so that

max
α∈R

S(ϕ(τ, e, α), φ(τ, e, α)) = S(ϕ(τ, e, α), φ(τ, e, α))|α=π(τ,e) = s(τ, e), (3.11)

where s(τ, e) is nothing but the specific entropy.
Before we give the proof of this result, let us illustrate the interest of this technical

proposition. Indeed, by assuming the pair (ϕ, φ) to be invariant by the approximate
Riemann solver (2.1) on the half domain defined defined by x

t
≤ a⋆ or x

t
≥ a⋆, we are

able to ensure the entropy maximum principle (3.3).
Theorem 3.3. Let UL and UR be two given constant states in Ω. Consider

U∆x
R

(x
t
; UL, UR) ∈ ω. Assume the existence of a⋆ ∈ (a−, a+) to obtain the decomposi-

tion (3.1) of the intermediate state in (2.1) and assume that the consistency condition
(2.4) and the half consistency condition (3.2) are satisfied.

Assume the existence of smooth functions ϕ : R+×R+×R → R, φ : R+×R+×R →
R and π : R+ × R+ → R, and a function (x

t
; UL, UR) 7→ α⋆(x

t
; UL, UR) such that, for
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all x
t
∈ (a−, a⋆), we have

ϕ(τL, eL, π(τL, eL)) = ϕ(τ⋆
L, e⋆

L, α⋆)
(x

t
; UL, UR

)

, (3.12)

φ(τL, eL, π(τL, eL)) = φ(τ⋆
L, e⋆

L, α⋆)
(x

t
; UL, UR

)

, (3.13)

respectively for all x
t
∈ (a⋆, a+):

ϕ(τR, eR, π(τR, eR)) = ϕ(τ⋆
R, e⋆

R, α⋆)
(x

t
; UL, UR

)

, (3.14)

φ(τR, eR, π(τR, eR)) = φ(τ⋆
R, e⋆

R, α⋆)
(x

t
; UL, UR

)

. (3.15)

Then, as soon as the triple (ϕ, φ, π) satisfies the assumptions (i)-(ii)-(iii) Proposition
3.2, the left (respect. right) local maximum principle (3.3a) (respect. (3.3b) is verified.
As a consequence the scheme (2.5)-(2.6) is robust, entropy preserving and entropy
maximum principle preserving.

Proof. Since the establishment of each local maximum principle are similar, we
here focus on (3.3a). First, we note that Proposition 3.2 can be applied and thus
there exists a function (τ, e, α) 7→ S(τ, e, α) such that the relation (3.11) holds. As a
consequence, for all x

t
fixed in (a−, a⋆), we have

s(τ⋆
L, e⋆

L)
(x

t
; UL, UR

)

= max
α∈R

S (ϕ(τ⋆
L, e⋆

L, α), φ(τ⋆
L, e⋆

L, α))
(x

t
; UL, UR

)

,

≥ S (ϕ(τ⋆
L, e⋆

L, β), φ(τ⋆
L, e⋆

L, β))
(x

t
; UL, UR

)

, ∀β ∈ R.

We fix β = α⋆(x
t
; UL, UR) to write

s(τ⋆
L, e⋆

L)
(x

t
; UL, UR

)

≥ S (ϕ(τ⋆
L, e⋆

L, α⋆), φ(τ⋆
L, e⋆

L, α⋆))
(x

t
; UL, UR

)

.

Next, by involving the invariant principle (3.12)-(3.13), we get

s(τ⋆
L, e⋆

L)
(x

t
; UL, UR

)

≥ S (ϕ(τL, eL, π(τL, eL)), φ(τL, eL, π(τL, eL))) .

Since, by definition of S we have

s(τL, eL) = S(ϕ(τL, eL, α), φ(τL, eL, α)|α=π(τL,eL),

the expected left minimum principle (3.3a) is reached and the proof is completed.

To complete the present section, we now establish Proposition 3.2. To access such
an issue, we need the following three lemmas whose helpfulness is just technical. In
the sequel, we systematicaly denote (τ, e, α) 7→ ϕ(τ, e, α) and (τ, e, α) 7→ φ(τ, e, α) two
smooth functions in C2(R+ × R+ × R, R) and (τ, e) 7→ π(τ, e) in C1(R+ × R+, R).

Lemma 3.4. Let D(τ, e) : R+ ×R+ → R be defined by (3.6). Assume D(τ, e) 6= 0
for all (τ, e) under consideration. Then there exists two functions, denoted τ̄(X, Y )
and ē(X, Y ), such that

τ̄(ϕ(Σeq), φ(Σeq)) = τ and ē(ϕ(Σeq), φ(Σeq)) = e, (3.16)
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where Σeq = (τ, e, π(τ, e))T , and the following derivatives are satisfied:

∂τ̄

∂X
(X, Y ) =

1

D(σ̃)

(

∂φ

∂e
(Σ̃eq) +

∂π

∂e
(σ̄)

∂φ

∂α
(Σ̃eq)

)

, (3.17)

∂τ̄

∂Y
(X, Y ) = − 1

D(σ̃)

(

∂ϕ

∂e
(Σ̃eq) +

∂π

∂e
(σ̄)

∂ϕ

∂α
(Σ̃eq)

)

, (3.18)

∂ē

∂X
(X, Y ) = − 1

D(σ̃)

(

∂φ

∂τ
(Σ̃eq) +

∂π

∂τ
(σ̄)

∂φ

∂α
(Σ̃eq)

)

, (3.19)

∂ē

∂Y
(X, Y ) =

1

D(σ̃)

(

∂ϕ

∂τ
(Σ̃eq) +

∂π

∂τ
(σ̄)

∂ϕ

∂α
(Σ̃eq)

)

, (3.20)

where we have set

σ̃ = (τ̄ (X, Y ), ē(X, Y ))T and Σ̃eq = (τ̄ (X, Y ), ē(X, Y ), π(τ̄ (X, Y ), ē(X, Y )))T .
(3.21)

In the second statement, we exhibit a suitable function derived from τ̄ and ē and we
consider its local extremum.

Lemma 3.5. Let D(τ, e) : R+ × R+ → R be defined by (3.6) and J(τ, e, α) :
R+ × R+ × R → R be defined by (3.7). For all (τ, e) under consideration, we assume
D(τ, e) 6= 0 and J(τ, e, π(τ, e)) = 0. We introduce S(τ, e, α) : R+ × R+ × R → R

defined by:

S(τ, e, α) = s (τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ))) , (3.22)

where we have set Σ = (τ, e, α)T and s(τ, e) denotes the specific entropy. Then we
have

∂ϕ

∂e
(Σ̄eq)

∂φ

∂α
(Σ̄eq) − ∂ϕ

∂α
(Σ̄eq)

∂φ

∂e
(Σ̄eq) 6= 0,

and

∂S

∂α
=

1

T (σ̄)

∂ϕ
∂α

(Σ) ∂φ
∂α

(Σ̄eq) − ∂ϕ
∂α

(Σ̄eq) ∂φ
∂α

(Σ)
∂ϕ
∂e

(Σ̄eq) ∂φ
∂α

(Σ̄eq) − ∂ϕ
∂α

(Σ̄eq)∂φ
∂e

(Σ̄eq)
, (3.23)

where

σ̄ = (τ̄(ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ)))
T

,

Σ̄eq = (τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ)), π(τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ))))
T

,
(3.24)

with the functions τ̄ and ē defined in Lemma 3.4. Here, the function T (τ, e) > 0
denotes the temperature according to the law (1.3).

The last result concerns the study of the extrema of the function S, defined by
(3.22), by solving in α the following equation:

∂ϕ

∂α
(Σ)

∂φ

∂α
(Σ̄eq) − ∂ϕ

∂α
(Σ̄eq)

∂φ

∂α
(Σ) = 0. (3.25)

Lemma 3.6. Let D(τ, e) : R+ × R+ → R be defined by (3.6) and H(Σ1, Σ2) :
(R+ × R+ × R)2 → R be defined by (3.8). Assume, for all (τ, e) under consideration,
D(τ, e) 6= 0 and H(Σ1, Σ2) 6= 0 for all (Σ1, Σ2) ∈ (R+ × R+ × R)2. In addition,
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assume that the function α 7→ ϕ(τ, e, α) is strictly monoton. Then the equation (3.25)
admits a unique solution given by α = π(τ, e).

Equipped with these results, we can establish Proposition 3.2.

Proof. [Proof of Proposition 3.2] From assumption (i) and (ii), we can apply
Lemmas 3.4 and 3.5 to define a function S as follows:

S(ϕ(Σ), φ(Σ)) = S(Σ),

= s (τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ))) ,

where the function s is nothing but the specific entropy. Now, by definition of τ̄ and
ē, we have

τ̄(ϕ(Σ), φ(Σ))|α=π(τ,e) = τ and ē(ϕ(Σ), φ(Σ))|α=π(τ,e) = e,

which immediately implies

S(ϕ(Σ), φ(Σ))|α=π(τ,e) = s(τ, e).

Next, we study the extrema of the function α 7→ S(Σ) that are characterized by
∂S
∂α

(Σ) = 0. Once again by Lemma 3.5, these extrema are thus determined as solutions
of (3.25). But, from assumption (iii), Lemma 3.6 ensures the existence and uniqueness
of the equation (3.25) and the solution is given by α = π(τ, e).

As a consequence, we know that the function α 7→ S(Σ) admits a global extremum
located at α = π(τ, e). In addtion, we have S(Σ)|α=π(τ,e) = s(τ, e). The proof will be
completed as soon as the extremum will be proved to be minimum. To address such

an issue, we evaluate ∂2S
∂α2 (Σ)|α=π(τ,e).

To simplify the notations, we set

g(τ, e, α) =
∂φ

∂α
(Σ)

∂ϕ

∂α
(Σ̄eq) − ∂φ

∂α
(Σ̄eq)

∂ϕ

∂α
(Σ),

with Σ̄eq given by (3.24), to write

∂S

∂α
(τ, e, α) =

1

T (σ̄)

g(τ, e, α)

K(Σ̄eq)
,

where K is defined by (3.10) and never vanishes.

Since, for all (τ, e) under consideration, we have T (τ, e) > 0 and g(τ, e, π(τ, e)) =
0, we obtain:

∂2S

∂α2
(τ, e, π(τ, e)) =

1

T (σ)

g′(τ, e, π(τ, e))

K(Σeq)
,

where g′ is the derivative of g with respect to α. We have set Σeq = (τ, e, π(τ, e))T

for clarity in the notations.
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We now compute g′ as follows:

g′(Σeq) =
∂2φ

∂α2
(Σeq)

∂ϕ

∂α
(Σeq) − ∂2ϕ

∂α2
(Σeq)

∂φ

∂α
(Σeq)

+
∂φ

∂α
(Σeq)









∂2ϕ

∂τ∂α
(Σeq)

∂τ̄(ϕ(Σ), φ(Σ))

∂α
(Σeq) +

∂2ϕ

∂e∂α
(Σeq)

∂ē(ϕ(Σ), φ(Σ))

∂α
(Σeq)

+
∂2ϕ

∂α2
(Σeq)

∂π(τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ)))

∂α
(Σeq)









− ∂ϕ

∂α
(Σeq)









∂2φ

∂τ∂α
(Σeq)

∂τ̄ (ϕ(Σ), φ(Σ))

∂α
(Σeq) +

∂2φ

∂e∂α
(Σeq)

∂ē(ϕ(Σ), φ(Σ))

∂α
(Σeq)

+
∂2φ

∂α2
(Σeq)

∂π(τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ)))

∂α
(Σeq)









(3.26)
Arguing the derivative formulas (3.17)-(3.20), a straightforward computation yields

∂τ̄(ϕ(Σ), φ(Σ))

∂α
(Σeq) =

1

D(τ, e)

(

∂φ

∂e
(Σeq)

∂ϕ

∂α
(Σeq) − ∂ϕ

∂e
(Σeq)

∂φ

∂α
(Σeq)

)

,

∂ē(ϕ(Σ), φ(Σ))

∂α
(Σeq) =

1

D(τ, e)

(

∂ϕ

∂τ
(Σeq)

∂φ

∂α
(Σeq) − ∂φ

∂τ
(Σeq)

∂ϕ

∂α
(Σeq)

)

,

∂π(τ̄ (ϕ(Σ), φ(Σ)), ē(ϕ(Σ), φ(Σ)))

∂α
(Σeq) =

1 − 1

D(τ, e)

(

∂ϕ

∂τ
(Σeq)

∂φ

∂e
(Σeq) − ∂φ

∂τ
(Σeq)

∂ϕ

∂e
(Σeq)

)

.

We plug these relations into (3.26) to get

g′(Σeq) = H(Σeq , Σeq),

where the function H is defined by (3.8). Hence, we obtain:

∂2S

∂α2
(τ, e, π(τ, e)) =

1

T (σ)

H(Σeq, Σeq)

K(Σeq)
.

Since H(Σeq, Σeq)/K(Σeq) < 0 for all (τ, e) under consideration, we immediately
deduce that the point α = π(τ, e) defines the maximum of the function α 7→ S(τ, e, α).
The proof is achieved.

We conclude this section by giving successively the proof of the three intermediate
lemmas.

Proof. [proof of Lemma 3.4] Let us consider the function Θ(τ, e) : R+×R → R×R

and defined by

Θ(τ, e) =

(

ϕ(τ, e, π(τ, e))

φ(τ, e, π(τ, e))

)

.

We remark that the function D(τ, e), defined by (3.6), is nothing but the Jacobian
function of Θ. Since, for all (τ, e) under consideration, D(τ, e) does not vanish, we
can apply the Implicit Theorem to deduce the existence of a reciprocal function

Θ−1(X, Y ) =

(

τ̄ (X, Y )

ē(X, Y )

)

,
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defined for (X, Y ) in the range of Θ and such that D(τ, e) 6= 0.
By definition of the functions τ̄ and ē, the relation (3.16) is obviously obtained.
Now, we evaluate the derivative of these two reciprocal functions. Once again by

definition of τ̄ and ē, we have

ϕ (τ̄(X, Y ), ē(X, Y ), π(τ̄ (X, Y ), ē(X, Y ))) = X,

φ (τ̄(X, Y ), ē(X, Y ), π(τ̄ (X, Y ), ē(X, Y ))) = Y.
(3.27)

By differentiating in X these two relations, we obtain:
(

∂ϕ

∂τ
(Σ̃eq) +

∂ϕ

∂α
(Σ̃eq)

∂π

∂τ
(σ̃)

)

∂τ̄

∂X
(X, Y )+

(

∂ϕ

∂e
(Σ̃eq) +

∂ϕ

∂α
(Σ̃eq)

∂π

∂e
(σ̃)

)

∂ē

∂X
(X, Y ) = 1,

(

∂φ

∂τ
(Σ̃eq) +

∂φ

∂α
(Σ̃eq)

∂π

∂τ
(σ̃)

)

∂τ̄

∂X
(X, Y )+

(

∂φ

∂e
(Σ̃eq) +

∂φ

∂α
(Σ̃eq)

∂π

∂e
(σ̃)

)

∂ē

∂X
(X, Y ) = 0,

where σ̃ and Σ̃eq are given by (3.21).
With D(σ̃) 6= 0, this above 2 × 2 system is solvable in the variables ( ∂τ̄

∂X
, ∂ē

∂X
).

Then we get the expected definition of the derivative ∂τ̄
∂X

(X, Y ) and ∂ē
∂X

(X, Y ) given
by (3.17) and (3.19).

Similarly, the formulas (3.18) and (3.20) are obtained by differentiating (3.27)
with respect to Y and next by solving the resulting 2 × 2 system in the variables
( ∂τ̄

∂Y
, ∂ē

∂Y
). The proof is thus completed.

Proof. [Proof of Lemma 3.5] Here, we have to compute the derivative of S with
respect to α where the function S is defined by (3.22). Since s denotes the specific
entropy governed by (1.3), we have:

∂s

∂τ
(σ̄) =

p(σ̄)

T (σ̄)
and

∂s

∂e
(σ̄) =

1

T (σ̄)
,

to write

∂S

∂α
(Σ) =

p(σ̄)

T (σ̄)

(

∂τ̄

∂X
(ϕ(Σ), φ(Σ))

∂ϕ

∂α
(Σ) +

∂τ̄

∂Y
(ϕ(Σ), φ(Σ))

∂φ

∂α
(Σ)

)

+
1

T (σ̄)

(

∂ē

∂X
(ϕ(Σ), φ(Σ))

∂ϕ

∂α
(Σ) +

∂ē

∂Y
(ϕ(Σ), φ(Σ))

∂φ

∂α
(Σ)

)

.

Next, we plug (3.17)-(3.20) into the above relation to obtain:

∂S

∂α
(Σ) =

p(σ̄)

D(σ̄)T (σ̄)

[

∂ϕ

∂α
(Σ)

(

∂φ

∂e
(Σ̄eq) +

∂φ

∂α
(Σ̄eq)

∂π

∂e
(σ̄)

)

−
(

∂φ

∂α
(Σ)

(

∂ϕ

∂e
(Σ̄eq) +

∂ϕ

∂α
(Σ̄eq)

∂π

∂e
(σ̄)

))]

+
1

D(σ̄)T (σ̄)

[

∂φ

∂α
(Σ)

(

∂ϕ

∂τ
(Σ̄eq) +

∂ϕ

∂α
(Σ̄eq)

∂π

∂τ
(σ̄)

)

−
(

∂ϕ

∂α
(Σ)

(

∂φ

∂τ
(Σ̄eq) +

∂φ

∂α
(Σ̄eq)

∂π

∂τ
(σ̄)

))]

.

(3.28)
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Now, we remark that the condition J(Σeq) = 0 with Σeq = (τ, e, π(τ, e))T , implies the
two following conditions:

∂ϕ

∂α
(Σeq)

∂φ

∂τ
(Σeq) − ∂φ

∂α
(Σeq)

∂ϕ

∂τ
(Σeq) 6= 0, (3.29)

∂ϕ

∂α
(Σeq)

∂φ

∂e
(Σeq) − ∂φ

∂α
(Σeq)

∂ϕ

∂e
(Σeq) 6= 0. (3.30)

Indeed, let us assume that one of these two relations vanishes. Then, because of
J(Σeq) = 0, both relations vanish. As a consequence, we obtain

∂φ

∂τ
(Σeq)

∂ϕ

∂α
(Σeq) =

∂ϕ

∂τ
(Σeq)

∂φ

∂α
(Σeq),

∂φ

∂e
(Σeq)

∂ϕ

∂α
(Σeq) =

∂ϕ

∂e
(Σeq)

∂φ

∂α
(Σeq),

∂φ

∂τ
(Σeq)

∂ϕ

∂e
(Σeq) =

∂ϕ

∂τ
(Σeq)

∂φ

∂e
(Σeq),

which immediately imply D(τ, e) = 0 that is in contradiction with D(τ, e) 6= 0 for all
(τ, e) under consideration.

Arguing (3.30) and J(τ, e, π(τ, e)) = 0, we can write

p(τ, e) =
∂ϕ
∂α

(Σeq)∂φ
∂τ

(Σeq) − ∂φ
∂α

(Σeq)∂ϕ
∂τ

(Σeq)
∂ϕ
∂α

(Σeq)∂φ
∂e

(Σeq) − ∂φ
∂α

(Σeq)∂ϕ
∂e

(Σeq)
.

We plug this definition of the pressure p into (3.28) and a straightforward computation
yields to the expected definition (3.23). The proof is thus completed.

Proof. [Proof of Lemma 3.6] Let us introduce the function F(α) : R → R defined
by

F(α) =
∂ϕ

∂α
(Σ)

∂φ

∂α
(Σ̄eq) − ∂ϕ

∂α
(Σ̄eq)

∂φ

∂α
(Σ),

where Σ̄eq is given by (3.24). From now on, by definition of Σ̄eq, let us note that we
have Σ̄eq|α=π(τ,e) = (τ, e, π(τ, e))T . Then α0 = π(τ, e) is a root of F . To establish the
uniqueness of α0, we assume the existence of a second root α̃0. We will show that
F ′(α0) and F ′(α̃0) have the same sign which is impossible for a continuous function
F .

First, let us compute the first derivative of F . We skip the details of a very
laborious calculation to give

F ′(α) =
∂2ϕ

∂α2
(Σ)

∂φ

∂α
(Σ̄eq) − ∂2φ

∂α2
(Σ)

∂ϕ

∂α
(Σ̄eq)

+

(

∂ϕ

∂α
(Σ)∇Σ

(

∂φ

∂α

)

(Σ̄eq) − ∂φ

∂α
(Σ)∇Σ

(

∂ϕ

∂α

)

(Σ̄eq)

)

· V,

where V = (τ̃α, ẽα, π̃α)T with

τ̃α =
1

D(σ̄)

(

∂φ

∂e
(Σ̄eq)

∂ϕ

∂α
(Σ) − ∂ϕ

∂e
(Σ̄eq)

∂φ

∂α
(Σ) +

∂π

∂e
(σ̄)F(α)

)

,

ẽα =
1

D(σ̄)

(

∂ϕ

∂τ
(Σ̄eq)

∂φ

∂α
(Σ) − ∂φ

∂τ
(Σ̄eq)

∂ϕ

∂α
(Σ) − ∂π

∂τ
(σ̄)F(α)

)

,

π̃α = τ̃α

∂π

∂τ
(σ̄) + ẽα

∂π

∂e
(σ̄).
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Now, we evaluate this derivative at point α0, a root of F . To simplify the notation,
we set Σ0 = (τ, e, α0)

T and

Σ̄eq
0 = (τ̄(ϕ(Σ0), φ(Σ0)), ē(ϕ(Σ0), φ(Σ0)), π̄(τ̄ (ϕ(Σ0), φ(Σ0)), ē(ϕ(Σ0), φ(Σ0)))) .

By definition, we have F(α0) = 0. In addition, since α 7→ ϕ(α) is monoton, we
can introduce the function (Σ1, Σ2) 7→ γ(Σ1, Σ2) defined by (3.9) to deduce from
F(α0) = 0 the following relation:

∂φ

∂α
(Σ0) = γ(Σ̄eq

0 , Σ0)
∂φ

∂α
(Σ̄eq

0 ).

By plugging this identity into F ′, we get

F ′(α0) = H(Σ̄eq
0 , Σ0)

where H is defined by (3.8). Since for all (Σ1, Σ2) we have H(Σ1, Σ2) 6= 0 then H
never changes of sign and thus F ′(α0) has the same sign for all roots of F . The proof
is achieved.

4. Applications. The purpose of this section is to apply our main result by
revisiting several well-known schemes: Godunov scheme, Osher scheme, and HLLC
scheme. Next, we derive a new family of entropy preserving schemes.

4.1. The Godunov scheme. In the framework of the Godunov scheme, the
intermediate state U⋆(x

t
; UL, UR) involved in (2.1) is made of the exact Riemann

solution which is given by the following four constant states:
UL and U⋆

L connected by a 1-shock or a 1-rarefaction,
U⋆

L and U⋆
Rconnected by a 2-contact discontinuity,

U⋆
R and UR connected by a 3-shock or a 3-rarefaction.

To apply our main results Theorem 3.1 and Theorem 3.3, we first exhibit the
additional half consistency condition (3.2). To address such an issue, we fix a⋆ = u⋆

the exact contact discontinuity velocity involved by the exact Riemann solution, and
we consider the Riemann solution made of the three constant states: U⋆

L, U⋆
R and UR

so that we have

U⋆
(x

t
; U⋆

L, UR

)

=











U⋆
L if

x

t
< u⋆,

U⋆
(x

t
; UL, UR

)

if
x

t
> u⋆.

By integrating this Riemann solution, we obtain

1

∆x

∫ ∆x
2

−
∆x
2

ρR

( x

∆t
; U⋆

L, UR

)

dx

=
1

∆x

∫ u⋆∆t

−
∆x
2

ρR

( x

∆t
; U⋆

L, UR

)

dx +
1

∆x

∫ ∆x
2

u⋆∆t

ρR

( x

∆t
; UL, UR

)

dx,

=
1

2
ρ⋆

L +
∆t

∆x
ρ⋆

Lu⋆
L +

1

∆x

∫ ∆x
2

u⋆∆t

ρR

( x

∆t
; UL, UR

)

dx. (4.1)

But, we also have

1

∆x

∫ ∆x
2

−
∆x
2

ρR

( x

∆t
; U⋆

L, UR

)

dx =
1

2
(ρ⋆

L + ρR) − ∆t

∆x
(ρRuR − ρ⋆

Lu⋆
L) . (4.2)
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From (4.1) and (4.2) we immediately deduce the expected relation (3.2):

1

∆x

∫ ∆x
2

u⋆∆t

ρR

( x

∆t
; U⋆

L, UR

)

dx =
1

2
ρR − ∆t

∆x
ρRuR.

Now, we independently consider each half Riemann solution respectively given
for x

t
< u⋆ and x

t
> u⋆. We just study for the right half Riemann solution (the same

arguments can be applied to the left). Two cases must be consider according to the
connection between U⋆

R and UR.

If U⋆
R and UR are connected by a 3-rarefaction, by definition of the Euler rarefac-

tion (see [18, 25]) the specific entropy stays invariant and we directly have:

s
(

τ⋆
R

(x

t
; UL, UR

)

, e⋆
R

(x

t
; UL, UR

))

= sR,
x

t
> u⋆.

Next, if U⋆
R and UR are connected by a 3-shock, we suggest to apply Theorem 3.3

to establish (3.3b). Let us recall that a 3-shock with speed δ is characterized by the
following Rankine-Hugoniot relations:











− δ(ρR − ρ⋆
R) + (ρRuR − ρ⋆

Ru⋆
R) = 0,

− δ(ρRuR − ρ⋆
Ru⋆

R) + (ρR(uR)2 + pR − ρ⋆
R(u⋆

R)2 − p⋆
R) = 0,

− δ(ρRER − ρ⋆
RE⋆

R) + ((ρRER + pR)uR − (ρ⋆
RE⋆

R + p⋆
R)u⋆

R) = 0.

It suffices to fix

ϕ(τ, e, α) = α + m2τ and φ(τ, e, α) = e − α2

2m2
,

where m is the invariant momentum in the schock frame m = ρ(u − σ) to obtain

ϕ(τR, eR, p(τR, eR)) = ϕ(τ⋆
R, e⋆

R, p⋆
R) and φ(τR, eR, p(τR, eR)) = φ(τ⋆

R, e⋆
R, p⋆

R).

As a consequence, we can apply Theorem 3.3 as soon as the triple (ϕ, φ, p) satisfies
the assumptions (i)-(ii)-(iii) Proposition 3.2. Here we have:

D(τ, e) = m2 −
(

p(τ, e)
∂p

∂e
(τ, e) − ∂p

∂τ
(τ, e)

)

,

J(τ, e, α) = p(τ, e) − α,

K(τ, e, α) = −1,

H((τ1, e1, α1), (τ2, e2, α2)) =
1

D(τ1, e1)
,

and all the assumptions are obviously satisfied.

From the above Godunov scheme presentation, the main idea to derive approxi-
mate Riemann solver stays in the preservation of the exact rarefaction waves (Osher
scheme) or shock waves (HLLC scheme). Arguing the above comments, we have just
saw that exact rarefaction or shock waves yield to the expected entropy minimum
principle and the resulting scheme will be entropy preserving. In the following section
we give more details about the HLLC scheme.
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4.2. Two constant intermediate state solvers. We adopt an approximate
Riemann solver made of two constant intermediate states. The resulting approximate
Riemann solver reads:

U∆x
R (

x

t
; UL, UR) =







































UL, if
x

t
< a−,

U⋆
L, if a− <

x

t
< a⋆,

U⋆
R, if a⋆ <

x

t
< a+,

UR, if
x

t
> a+.

By arguing the consistency conditions (2.4) and (3.2), from the density we easily
obtain:

ρ⋆
L =

a− − uL

a− − a⋆
ρL and ρ⋆

R =
a+ − uR

a+ − a⋆
ρR.

To simplify the notations, let us set

a− = uL − b/ρL and a+ = uR + b/ρR with b > 0.

Next, by considering the consistency condition (2.4) applied to the momentum and
the total energy, a straightforward computation gives:











u⋆
L + u⋆

R = uL + uR − 1

b
(pR − pL),

1

2

(

(u⋆
L)2 + (u⋆

R)2
)

= (EL − e⋆
L) + (ER − e⋆

R) − 1

b
(pRuR − pLuL),

(4.3)

where e⋆
L,R = E⋆

L,R − (u⋆
L,R)2

2 . To solve this system, we have to determine suitable
values for e⋆

L and e⋆
R. To enforce the required entropy minimum principle, we adopt

the invariance principle (3.12)-(3.15) for some triples (ϕL, φL, πL) and (ϕR, φR, πR),
to get

{

ϕ(τL, eL, πL(τL, eL)) = ϕ(τ⋆
L, e⋆

L, α⋆
L),

φ(τL, eL, πL(τL, eL)) = φ(τ⋆
L, e⋆

L, α⋆
L),

(4.4)

and
{

ϕ(τR, eR, πR(τR, eR)) = ϕ(τ⋆
R, e⋆

R, α⋆
R),

φ(τR, eR, πR(τR, eR)) = φ(τ⋆
R, e⋆

R, α⋆
R).

(4.5)

Both systems (4.4) and (4.5), if solvable, can give (E⋆
L, α⋆

L) and (E⋆
R, α⋆

R).
For instance and according to the triple (ϕ, φ, π) obtained for the Godunov

scheme, we propose to consider the following choice:







ϕL,R(τ, e, α) = α + m2τ,

φL,R(τ, e, α) = e − α2

2m2
,

and πL,R(τ, e) = p(τ, e), (4.6)

which satisfies all the required assumptions as soon as the constant m > 0 is large
enough.
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By solving (4.4) and (4.5) we obtain:

e⋆
L = eL +

a⋆ − uL

b

(

m2

2

a⋆ − uL

b
− pL

)

,

e⋆
R = eR +

a⋆ − uR

b

(

m2

2

a⋆ − uR

b
+ pR

)

.

These relations are plug into (4.3) to determine u⋆
L and u⋆

R. We now have to fix a⋆

and b such that ρ⋆
L,R > 0, e⋆

L,R > 0 and uL − b
ρL

< a⋆ < uR + b
ρR

. For instance, we
suggest to fix a⋆ as follows:

a⋆ =
1

2
(uL + uR) − b

2m2
(pR − pL) ± 1

2m2

√

(b2 − m2)(m2(uL − uR)2 + (pR − pL)2),

(4.7)
with b ≥ m. The solution of system (4.3) is thus given by

u⋆
L = u⋆

R =
1

2
(uL + uR) − 1

2b
(pR − pL).

We note that the HLLC scheme (or equivalently the Suliciu relaxation scheme) co-
incides with the choice b = m, but the general formula (4.7) also gives an entropy
preserving approximate Riemann solver family.

To conclude this section, let us note that we have restricted the present scheme
derivation for a triple (ϕ, φ, π) which coincides with an exact shock invariance, and
the intermediate states have been assumed to be constant. The reader will easily be
convinced for possible extensions involving other triple choice (ϕ, φ, π) but also non
constant intermediate states as shown in the next section.

4.3. Two affine intermediate state solvers. We now consider an approx-
imate Riemann solver made of two affine intermediate states. The corresponding
approximate solver writes:

U∆x
R (

x

t
; UL, UR) =







































UL, if
x

t
< a−,

U⋆,H
L + (

x

t
− ã−)U⋆,C

L , if a− <
x

t
< a⋆,

U⋆,H
R + (

x

t
− ã+)U⋆,C

R , if a⋆ <
x

t
< a+,

UR, if
x

t
> a+ ,

(4.8)

where U⋆,H
L , U⋆,H

R , U⋆,C
L and U⋆,C

R are constant states:

U⋆,H
L =





ρ⋆,H
L

ρ⋆,H
L u⋆,H

L

ρ⋆,H
L E⋆,H

L



 , U⋆,H
R =





ρ⋆,H
R

ρ⋆,H
R u⋆,H

R

ρ⋆,H
R E⋆,H

R



 ,

U⋆,C
L =





β⋆,C
L

γ⋆,C
L

δ⋆,C
L



 , U⋆,C
R =





β⋆,C
R

γ⋆,C
R

δ⋆,C
R



 .

The speeds ã− and ã+ are given by:

ã− =
a− + a⋆

2
, ã+ =

a⋆ + a+

2
.
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Such affine scheme has been introduced in the case of one intermediate state and
known as HLLEM and HLLEMR solvers [11]. The two intermediate version considered
here seems to be new up to our knowledge.

This approximate solver is fully determined as soon as U⋆,H
L , U⋆,H

R , U⋆,C
L and

U⋆,C
R are characterized. The consistency conditions (2.4) and (3.2) lead to:

ρ⋆,H
L =

a− − uL

a− − a⋆
ρL and ρ⋆,H

R =
a+ − uR

a+ − a⋆
ρR . (4.9)

By applying the consistency condition (2.4) to the momentum and the total energy,
one gets:











u⋆,H
L + u⋆,H

R = uL + uR − 1

b
(pR − pL) ,

EL − E⋆,H
L + ER − E⋆,H

R =
pRuR − pLuL

b
,

(4.10)

where

a− = uL − b/ρL and a+ = uR + b/ρR with b > 0.

At this level of the derivation of the solver (4.8), we notice that equations (4.9), (4.10)

are not sufficient to characterize all the components of U⋆,H
L , U⋆,H

R , U⋆,C
L and U⋆,C

R .
We then use the entropy maximum principle with invariance principle (3.12)-(3.15)
as in (4.4)–(4.5) with the following choice







ϕL,R(τ, e, α) = −α + m2τ,

φL,R(τ, e, α) = e − α2

2m2
,

and πL,R(τ, e) = p(τ, e) . (4.11)

The triple (ϕ, φ, p) satisfies the assumptions (i)-(ii)-(iii) Proposition 3.2. Indeed, we
have:

D(τ, e) = m2 −
(

p(τ, e)
∂p

∂e
(τ, e) +

∂p

∂τ
(τ, e)

)

,

J(τ, e, α) = −p(τ, e) − α ,

K(τ, e, α) = 1 ,

H((τ1, e1, α1), (τ2, e2, α2)) = − 1

D(τ1, e1)
.

The equilibrium is reached at α = −p(τ, e) and D(τ, e) > 0 as soon as m is large
enough. We get also















e⋆
L = eL + (pL − m2

2
(τL − τ⋆

L))(τL − τ⋆
L) ,

e⋆
R = eR + (pR − m2

2
(τR − τ⋆

R))(τR − τ⋆
R) .

(4.12)

Here, τ⋆
L,R, e⋆

L,R are respectively specific volumes and internal energies associated to



22 C. Berthon, B. Dubroca, A. Sangam

U⋆,H
L,R + ( x

∆t
− ã−,+)U⋆,C

L,R given by:







































































τ⋆
L =

1

ρ⋆,H
L + ( x

∆t
− ã−)β⋆,C

L

,

τ⋆
R =

1

ρ⋆,H
R + ( x

∆t
− ã+)β⋆,C

R

,

e⋆
L =

ρ⋆,H
L E⋆,H

L + ( x
∆t

− ã−)δ⋆,C
L − 1

2

(ρ⋆,H

L
u

⋆,H

L
+( x

∆t
−ã−)γ⋆,C

L
)
2

ρ
⋆,H

L
+( x

∆t
−ã−)β⋆,C

L

ρ⋆,H
L + ( x

∆t
− ã−)β⋆,C

L

,

e⋆
R =

ρ⋆,H
R E⋆,H

R + ( x
∆t

− ã+)δ⋆,C
R − 1

2

(ρ⋆,H

R
u

⋆,H

R
+( x

∆t
−ã+)γ⋆,C

R
)
2

ρ
⋆,H

R
+( x

∆t
−ã+)β⋆,C

R

ρ⋆,H
R + ( x

∆t
− ã+)β⋆,C

R

.

(4.13)

According to (4.12), internal energies e⋆
L,R are positive as soon as

|m| >
1√
2

max(
pL

eL

,
pR

eR

) .

Moreover, by taking a− < uL and a⋆ > a− we get ρ⋆
L > 0, and by chosing a+ > uR

and a⋆ < a+ we obtain ρ⋆
R > 0. The system still remains undetermined, especially

the constant states U⋆,C
L and U⋆,C

R are not fully characterized. We then suggest to

limit β⋆,C
L,R in order to maintain







ρ⋆,H
L + (

x

∆t
− ã−)β⋆,C

L > 0 for
x

∆t
∈ [a−, a⋆] ,

ρ⋆,H
R + (

x

∆t
− ã+)β⋆,C

R > 0 for
x

∆t
∈ [a⋆, a+] .

(4.14)

By using the monotonicity of the functions x
∆t

7→ ρ⋆,H
L,R + ( x

∆t
− ã−,+)β⋆,C

L,R and then

evaluating them on the endpoints a⋆, a+,−, conditions (4.14) are equivalent to



















|β⋆,C
L | <

2(uL − a−)

(a⋆ − a−)2
ρL ,

|β⋆,C
R | <

2(a+ − uR)

(a+ − a⋆)
2 ρR .

(4.15)

In order to get the missing constants γ⋆,C
L , γ⋆,C

R , δ⋆,C
L and δ⋆,C

R , we proceed as follows.
By chosing















































γ⋆,C
L =

β⋆,C
L (m + ρ⋆,H

L u⋆,H
L )

ρ⋆,H
L

,

δ⋆,C
L =

β⋆,C
L (−ρ⋆,H

L + ρL)m2

ρL(ρ⋆,H
L )

2 +
β⋆,C

L u⋆,H
L m

ρ⋆,H
L

+
1

2

β⋆,C
L (2ρ⋆,H

L e⋆,H
L + ρ⋆,H

L (u⋆,H
L )

2
+ 2pL)

ρ⋆,H
L

,

expressions of e⋆
L withdrawn from equations (4.12) and (4.13) are identical. The
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following choice














































γ⋆,C
R =

β⋆,C
R (m + ρ⋆,H

R u⋆,H
R )

ρ⋆,H
R

,

δ⋆,C
R =

β⋆,C
R (−ρ⋆,H

R + ρR)m2

ρR(ρ⋆,H
R )

2 +
β⋆,C

R u⋆,H
R m

ρ⋆,H
R

+
1

2

β⋆,C
R (2ρ⋆,H

L e⋆,H
R + ρ⋆,H

R (u⋆,H
R )

2
+ 2pR)

ρ⋆,H
R

,

makes equal expressions of e⋆
R taken from equations (4.12) and (4.13).

The identity

u⋆,H
L = u⋆,H

R =
1

2
(uL + uR) − 1

2b
(pR − pL) ,

solves the first equation of system (4.10). The star speed a⋆ given by

a⋆ =
1

2
(uL + uR) − b

2m2
(pR − pL)

± 1

2m2

√

(b2 + m2)[(pR − pL) + m(uL − uR)][(pR − pL) − m(uL − uR)] ,

solves the second equation of system (4.10). Then all the components of U⋆,H
L , U⋆,H

R ,

U⋆,C
L and U⋆,C

R are determined. We have thus derived a new two affine intermediate
states entropic solver.

5. Conclusion. In the present work, we have proposed a generalization of the
entropy preserving property for several schemes. More specifically, this work ex-
tends the proof of discrete entropy inequalities satisfied by the HLLC scheme (see
[7]). Moreover, the suggested extension just considers the associated approximate
Riemann solver and no additional ad-hoc model (kinetic models or relaxation mod-
els) are involved. This approach turns out to be a little more restrictive than the
well-known Harten-Lax-van Leer Theorem, but with the benefit to be easily applied.
In addition, the adopted approach yields to derivations of full families of entropy
preserving approximate Riemann solvers.

The derivation here has been performed in the framework of the general Euler
equations. Of course, this can be extended to several hyperbolic systems of con-
servation laws with the same structure as Saint-Venant model or 10-moment model
(for instance). Since our approach does not impose an approximate Riemann solver
made of constant states, we can also plan to use this work to consider high-order
approximate Riemann solvers.
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hyperboliques avec terme source: application à la dynamique des gaz avec gravité. Prepint
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