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The evolutionary limit for models of
populations interacting competitively via

several resources

Nicolas Champagnat1, Pierre-Emmanuel Jabin1,2

Abstract
We consider a integro-differential nonlinear model that describes

the evolution of a population structured by a quantitative trait. The
interactions between individuals occur by way of competition for re-
sources whose concentrations depend on the current state of the popu-
lation. Following the formalism of [16], we study a concentration phe-
nomenon arising in the limit of strong selection and small mutations.
We prove that the population density converges to a sum of Dirac
masses characterized by the solution ϕ of a Hamilton-Jacobi equation
which depends on resource concentrations that we fully characterize
in terms of the function ϕ.

MSC 2000 subject classifications: 35B25, 35K55, 92D15.

Key words and phrases: adaptive dynamics, Hamilton-Jacobi equation with
constraints, Dirac concentration, metastable equilibrium.

1 Introduction

We are interested in the dynamics of a population subject to mutation and
selection driven by competition for resources. Each individual in the popu-
lation is characterized by a quantitative phenotypic trait x ∈ R (for example
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the size of individuals, their age at maturity, or their rate of intake of nutri-
ents).
We study the following equation

∂tuε(t, x) =
1

ε

(
k∑
i=1

Iεi (t) ηi(x)− 1

)
uε(t, x) +Mε(uε)(t, x), (1.1)

where Mε is the mutation kernel

Mε(f)(x) =
1

ε

∫
R
K(z) (f(x+ εz)− f(x)) dz, (1.2)

for a K ∈ C∞c (R) such that
∫

R zK(z) dz = 0. Among many other ecological
situations [15], this model is relevant for the evolution of bacteria in a chemo-
stat [14, 16]. With this interpretation, uε(t, x) represents the concentration
of bacteria with trait x at time t, the function ηi(x) represents the growth
rate of the population of trait x due to the consumption of a resource whose
concentration is Iεi , and the term −1 corresponds to the decrease of the bac-
teria concentration due to the constant flow out of the chemostat. Note that
the growth and mutation terms in (1.1) are of different nature, as the total
mutation rate

∫
RK(z) of the population of trait x, which could either be

produced by mutations during individuals’ lives or occuring at births, does
not depend on the resources concentrations Iεi . Note also that the resources
consumption rates depend linearly on the resources concentrations. From a
biological point of view, one might prefer a saturating functional response.
Our method actually extends to all the models of [9, Thm. 1], including com-
petitive Lotka-Volterra PDEs, but we chose here to keep the model simple to
ease the presentation of the mathematical arguments. This model extends
the one proposed in [16] to an arbitrary number of resources.
This equation has to be coupled with equations for the resources Ii, namely

Ii(t) =
ci

1 +
∫

R ηi(x)uε(x) dx
, (1.3)

where ci > 0. This corresponds to an assumption of fast resources dynamics
with respect to the evolutionary dynamics. The resources concentrations are
assumed to be at a (quasi-)equilibrium at each time t, which depends on the
current concentrations uε.
The limit ε → 0 corresponds to a simultaneous scaling of fast selection and
small mutations. It was already considered in [16]. The following argument
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explains what limit behaviour for uε can be expected when ε→ 0. Defining
ϕε as

uε = eϕε/ε, or ϕε = ε log uε, (1.4)

one gets the equation

∂tϕε =
k∑
i=1

Iεi (t) ηi(x)− 1 +Hε(ϕε), (1.5)

where

Hε(f) =

∫
R
K(z)

(
e(f(x+ε z)−f(x))/ε − 1

)
dz. (1.6)

At the limit ε→ 0 the Hamiltonian Hε simply becomes

H(p) =

∫
R
K(z) (ep z − 1) dz, (1.7)

where p stands for ∂xf(x). So one expects Eq. (1.5) to lead to

∂tϕ =
k∑
i=1

Ii(t) ηi(x)− 1 +H(∂xϕ), (1.8)

for some Ii which are unfortunately unknown since one cannot pass to the
limit directly in (1.3). Therefore one needs to find a relation between the ϕ
and the Ii at the limit. Under quite general assumptions on the parameters
(see Lemma 3.1 below), the total population mass

∫
R uε is uniformly bounded

over time. This suggests that maxx∈R ϕ(t, x) = 0 should hold true for all
t ≥ 0. Together with (1.8), this gives a candidate for the limit dynamics
as a solution to a Hamilton-Jacobi equation with Hamiltonian H and with
unknown Lagrange multipliers Ii, subject to a maximum constraint. The
limit population is then composed at time t of Dirac masses located at the
maxima of ϕ(t, ·).
This heuristics was justified in [16] in the case of a single resource (and when
the resources evolve on the same time scale as the population), and the case
of two resources was only partly solved. The mathematical study of the
convergence to the Hamilton-Jacobi equation with maximum constraint and
the study of the Hamilton-Jacobi equation itself have only be done in very
specific cases [16, 2, 5, 26]. In fact the main problem in this proposed model
is that the number of unknowns (the resources) may easily be larger than the
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dimension of the constraint (formally equal to the number of points where
ϕ = 0).
Our goal in this paper is to prove the convergence of ϕε to a solution of (1.8),
where we give a full characterization of the functions Ii. Those are no more
considered as Lagrange multipliers for a set of constraints but are given by
the solution ϕ itself. The new resulting model describes the evolution of a
population as Dirac masses and is formally well posed.
The general problem of characterizing evolutionary dynamics as sums of
Dirac masses under biologically relevant parameter scalings is a key tool
in adaptive dynamics—a branch of biology studying the interplay between
ecology and evolution [20, 22, 23, 13, 7]. The phenomenon of evolutionary
branching, where evolution drives an (essentially) monotype population to
subdivide into two (or more) distinct coexisting subpopulations, is particu-
larly relevant in this framework [23, 18, 19]. When the population state can
be approximated by Dirac masses, this simply corresponds to the transition
from a population composed of a single Dirac mass to a population composed
of two Dirac masses.
Several mathematical approaches have been explored to study this phe-
nomenon. One approach consists in studying the stationary behaviour of an
evolutionary model involving a scaling parameter for mutations, and then let-
ting this parameter converge to 0. The stationary state has been proved to be
composed of one or several Dirac masses for various models (for deterministic
PDE models, see [4, 5, 12, 21, 17], for Fokker-Planck PDEs corresponding to
stochastic population genetics models, see [3], for stochastic models, see [27],
for game-theoretic models, see [11]). Closely related to these works are the
notions of ESS (evolutionarily stable strategies) and CSS (convergence sta-
ble strategies) [23, 14], which allow one in some cases to characterize stable
stationary states [4, 12, 21, 11].
The other main approach consists in studying a simultaneous scaling of mu-
tation and selection, in order to obtain a limit dynamics where transitions
from a single Dirac mass to two Dirac masses could occur. Here again, de-
terministic and stochastic approaches have been explored. The deterministic
approach consists in applying the scaling of (1.1). The first formal results
have been obtained in [16]. This was followed by several works on other mod-
els and on the corresponding Hamilton-Jacobi PDE [5, 26]. For models of
the type we consider here, rigorous results (especially for the well posedness
of the Hamilton-Jacobi eq. at the limit) mainly only exist in the case with
just one resource, see [2] and [1] (one resource but multidimensional traits).
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The stochastic approach is based on individual-based models, which are re-
lated to evolutionary PDE models as those in [12, 21] through a scaling of
large population [8]. Using a simultaneous scaling of large population and
rare mutations, a stochastic limit process was obtained in [6] in the case of a
monotype population (i.e. when the limit process can only be composed of a
single Dirac mass), and in [10] when the limit population can be composed
of finitely many Dirac masses.
Finally note that the total population of individuals is typically very high,
for bacteria for example. This is why even stochastic models will usually
take some limit with infinite populations. Of course, this has some draw-
backs. In particular the population of individuals around a precise trait may
turn out to be low (even though the total population is large). As in the
scaling under consideration, one has growth or decay of order exp(C/ε), it
is in fact quite common that the population density of large sets of traits
becomes much smaller than the density corresponding to a single individual,
making the notion of density meaningless. One of the most important open
problem would be to derive models that are both able of dealing with very
large populations and still treat correctly the small subpopulations (keeping
the stochastic effects or at least truncating the population with less than 1
individual).
There are already some attempts in this direction, mainly proposing models
with truncation, see [25] and very recently [24]. In these works however the
truncation is only made at some level exp(−C/ε).

In order to state our main result, we need some regularity and decay assump-
tions on the ηi, namely

ηi > 0, ∃η̄ ∈ C0(R), ∀x,
k∑
i=1

(
|ηi(x)|+ |η′i(x)|+ |η′′i (x)|

)
≤ η̄(x), (1.9)

where C0(R) is the set of continuous function, tending to 0 as x→ ±∞.
Our method of characterization of the environmental variables Ii in (1.8)
is based on the general principle that there exists a unique environment
I1, . . . , Ik corresponding to any given population state. Here, the population
state at time t is given by the set {x ∈ R : ϕ(t, x) = 0}. This principle
was the basis of the work of Barles and Perthame [2] in the case of a single
resource, where the previous correspondance is automatically satisfied under
very general assumptions. In our case, we characterize Ii from ω := {ϕ(t, ·) =

5



0} by first constructing a population measure corresponding to the set ω,
which has support in this set and which is a sort of metastable population
equilibrium when there is no mutations (more specifically, we require it to
be an ESS in the set of population measures with support in ω, see Prop. 1.1
below and [21]). Next, we construct the Ii from this population measure.
The following assumptions characterize the situations where our approach
can be applied, that is where uniqueness holds in the two steps previously
described. The first assumption deals with the number of possible roots of
the reproduction rate:

∃1 ≤ k̄ ≤ k, ∀ I1 ∈ [0, c1], . . . , Ik ∈ [0, ck],

the function x 7→
k∑
i=1

Ii ηi(x)− 1 has at most k̄ roots. (1.10)

We also require an invertibility condition on the matrix ηi(xj)

∀x1 . . . xk̄ distinct, the k̄ vectors of Rk

(ηi(x1))i=1...k, . . . , (ηi(xk̄))i=1...k are linearly independent (1.11)

Assumption (1.11) holds for generical choices of the functions ηi. Assump-
tion (1.10) is more restrictive, specifically if k = 1, since it basically means
that η1 is monotone.
Note however that sometimes, one may have uniqueness of the environmen-
tal variables whereas the population measure is not unique (and (1.11) is
violated). Most of our method would remain valid in such a case. This is the
situation of a single resource, where almost nothing is required [2]. Neverthe-
less in more general situations, the conditions for which this kind of property
holds are not currently identified. Even though (1.10) and (1.11) are likely
more restrictive than would be strictly necessary, they have the advantage
of being explicit and of enabling us to reconstruct the limit of the original
uε. Moreover from the point of view of the biological interpretation, it is
interesting to have a population equilibrium.
It may be hard to check (1.10) in specific models, but it is at least satisfied

in large classes of parameters, for example if the derivatives η
(k)
i are positive

(or negative) for all i = 1, . . . , k, in which case k̄ = k. For instance in the
case k = 2, (1.10) and (1.11) are ensured by the convexity (or concavity) of
η1 and η2.
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This issue of uniqueness of the environmental variables is of course easier if
the environment is larger. In particular, it would be considerably simplified
by considering a model with (implicitly) infinitely many resources, like the
Lotka-Volterra model

∂tuε(t, x) =
1

ε

(
r(x)−

∫
R
b(x− y)uε(t, y)dy

)
uε(t, x) +Mε(uε)(t, x),

with an even function b. In this case, assumptions (1.10) and (1.11) should
be replaced by the much simpler assumption that b as an operator is positive,
i.e. that the Fourier transform of b is positive (see [9]). However, we chose to
study here a model with explicit resources, as these are easier to interpret in
terms of biological modeling.
Now, we may uniquely define the metastable measure associated with a set
ω by

Proposition 1.1 For any closed ω ⊂ R, there exists a unique finite nonneg-
ative measure µ(ω) satisfying
i) suppµ ⊂ ω
ii) denoting Īi(µ) = ci/(1 +

∫
ηi(x) dµ(x)),

k∑
i=1

Īi(µ) ηi(x)− 1 ≤ 0 in ω,
k∑
i=1

Īi(µ) ηi(x)− 1 = 0 on suppµ.

Now the limiting Ii in (1.8) are directly obtained by

Ii(t) = Īi(µ({x ∈ R : ϕ(t, x) = 0})), (1.12)

i.e. ϕ is solution to the (closed) Hamilton-Jacobi equation

∂tϕ =
k∑
i=1

Īi(µ({ϕ(t, ·) = 0})) ηi(x)− 1 +H(∂xϕ). (1.13)

We prove

Theorem 1.1 Assume K ∈ C∞c (R),
∫

R zK(z) dz = 0, (1.9), (1.10), (1.11),
that the initial data uε(t = 0) > 0 or ϕε(t = 0) are C2, satisfy

sup
ε

∫
R
uε(t = 0, x) dx <∞, sup

ε
‖∂xϕε(t = 0, ·)‖L∞(R) <∞, (1.14)

inf
ε

inf
x∈R

∂xxϕ(t = 0, x) > −∞, (1.15)
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and that ϕε(t = 0, ·) converges to a function ϕ0 for the norm ‖ · ‖W 1,∞(R).
Then up to the extraction of a subsequence in ε, ϕε converges to some ϕ
uniformly on any compact subset of [0, T ] × R and in W 1,p([0, T ] × K) for
any T > 0, p < ∞ and any compact K. In particular, ϕ is continuous.
The function Iεi converges to Ii in Lp([0, T ]) for any T > 0, p < ∞, where
Ii is defined from ϕ as in (1.12), and Ii is approximately right-continuous
for all t ≥ 0. The function ϕ is a solution to (1.8) almost everywhere in
t, x with initial condition ϕ(t = 0, ·) = ϕ0. Moreover if one defines ψ =
ϕ−

∑k
i=1

∫ t
0
Ii(s) ds ηi(x), then ψ is a viscosity solution to

∂tψ(t, x) = H

(
∂xψ +

k∑
i=1

∫ t

0

Ii(s) ds ηi(x)

)
. (1.16)

We recall that a function f on [0,+∞) is approximately right-continuous at
t ≥ 0 if t is a point of Lebesgue right-continuity of f , i.e.

lim
s→0

1

s

∫ t+s

t

|f(θ)− f(t)|dθ = 0.

Notice that, under the assumptions of Theorem 1.1, ϕε(t = 0, x) → −∞
when x → ±∞ since

∫
R uε < ∞ and ϕε is uniformly Lipschitz. Be also

careful that we assume ‖ϕε(t = 0, ·)−ϕ0‖W 1,∞(R) → 0 even though ϕε(t = 0)
(and thus ϕ0) is not bounded.
From a practical point of view, computing the solution uε of Eq. (1.1) is often
too costly for small ε. This result allows to approximate the population
density uε for small ε by the simpler µ({ϕ(t, ·) = 0}), where ϕ may be
obtained by a discretization of (1.13), in the fashion of those done in [16].
Rigorous numerical analysis of this kind of Hamilton-Jacobi equations is
however still very preliminary.
On a more theoretical level, this theorem justifies in simple cases the classical
view of evolution (population at local equilibrium at every time). It also
indicates that for small ε, the behaviour of the population is determined
by a closed equation which means that evolution remains deterministic and
stable in the parameter ε.

In the proofs below, C denotes a numerical constant which may change from
line to line.

8



2 Proof of Prop. 1.1

2.1 Uniqueness

Assume that two measures µ1 and µ2 satisfy both points of Prop. 1.1. We
first prove that they induce the same resources Īi and then conclude that
they are equal.

1st step: Uniqueness of the Īi. The argument here is essentially an adaptation
of [21]. First note that∫

R

(
k∑
i=1

Īi(µ1) ηi(x)− 1

)
dµ2 +

∫
R

(
k∑
i=1

Īi(µ2) ηi(x)− 1

)
dµ1 ≤ 0, (2.1)

since µ1 and µ2 are non negative and by the point ii,
∑k

i=1 Īi(µj) ηi(x)− 1 is
non positive on ω for j = 1, 2.
On the other hand since

∑k
i=1 Īi(µj) ηi−1 vanishes on the support of µj, one

has for instance∫
R

(
k∑
i=1

Īi(µ1) ηi − 1

)
dµ2 =

∫
R

(
k∑
i=1

(Īi(µ1)− Īi(µ2)) ηi

)
dµ2

=
k∑
i=1

(Īi(µ1)− Īi(µ2))

∫
R
ηi dµ2

=
k∑
i=1

(Īi(µ1)− Īi(µ2)) (ci/Īi(µ2)− 1),

by the definition of Īi(µ2).
Since one has

k∑
i=1

ci (Īi(µ1)− Īi(µ2)) (1/Īi(µ2)− 1/Īi(µ1)) =
k∑
i=1

ci
(Īi(µ1)− Īi(µ2))2

Īi(µ1) Īi(µ2)
≥ 0.

one deduces from (2.1) that

Īi(µ1) = Īi(µ2), i = 1 . . . k. (2.2)

2nd step: Uniqueness of µ. It is not possible to deduce that µ1 = µ2 directly
from (2.2). This degeneracy (the possibility of having several equilibrium
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measures, all corresponding to the same environment) is the reason why we
require additional assumptions on the ηi.

First of all by Assumption (1.10), point i and thanks to (2.2), we know
that µ1 and µ2 are both supported on a set consisting of at most k̄ points
{x1, . . . , xk̄}, which are the roots of

∑
i Īi(µ1)ηi(x) − 1 =

∑
i Īi(µ2)ηi(x) − 1

(possibly completed by arbitrary distinct points if this function has less than
k̄ roots). Therefore one may write

µj =
k̄∑
l=1

αjl δxl .

Now (2.2) tells that
∫
ηidµ1 =

∫
ηidµ2 which means that

k̄∑
l=1

α1
l ηi(xl) =

k̄∑
l=1

α2
l ηi(xl), ∀i = 1 . . . k.

To conclude it remains to use condition (1.11) and get that α1
l = α2

l .

2.1.1 Existence

The basic idea to get existence is quite simple: Solve the equation1

∂tν =

(
k∑
i=1

Īi(ν) ηi(·)− 1

)
ν, (2.3)

and obtain the equilibrium measure µ as the limit of ν(t) as t→ +∞.

This is done by considering the entropy

L(ν) =
k∑
i=1

ci log Īi(ν) +

∫
dν

=
k∑
i=1

ci log ci −
k∑
i=1

ci log
(

1 +

∫
ηi dν

)
+

∫
dν. (2.4)

1Existence and uniqueness are trivial for (2.3), for example by Cauchy-Lipschitz theo-
rem in the set of finite positive measures equipped with the total variation norm.
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As − log is convex and ηi ≥ 0, then L itself is a convex function of ν.
Moreover if ν(t) solves (2.3), one has

d

dt
L(ν(t)) = −

∫ ( k∑
i=1

Īi(ν) ηi(x)− 1

)2

dν. (2.5)

Therefore one expects the limit of ν and the equilibrium measure we are
looking for to be the minimum of L.

Since the ηi are bounded, one finds

L(ν) ≥ −C + c

∫
dν,

for two numerical constants C and c. Consequently L is bounded from below
on M1

+(ω) the set of nonnegative Radon measures on ω. In addition, one
may restrict to a bounded subset of M1

+(ω) to compute the infimum of L. As
any ball of M1

+(ω) is compact for the weak-* topology (dual of continuous
functions with compact support), L attains its infimum, or

M0 = {ν ∈M1
+(ω), L(ν) ≤ L(ν ′) ∀ν ′ ∈M1

+(ω)} 6= ∅.

Now take any µ ∈ M0 then take ν the solution to (2.3) with ν(t = 0) = µ.
L(ν) is non increasing and since it is already at a minimum initially, it is
necessarily constant. By (2.5), this means that

k∑
i=1

Īi(µ) ηi − 1 = 0 on suppµ.

Hence µ is in fact a stationary solution to (2.3) and it satisfies point i and
the second part of point ii of Prop. 1.1. Note by the way that the uniqueness
argument in fact tells that there is a unique element in M0.

It only remains to check the first part of point ii. By contradiction assume
that there exists a point x0 ∈ ω s.t.

k∑
i=1

Īi(µ) ηi(x0)− 1 > 0.
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Let α > 0 and define να = µ+ αδx0 ∈M1
+(ω). Now compute

L(να) =

∫
dµ+ α−

k∑
i=1

ci log

(
1 +

∫
ηidµ+ αηi(x0)

)
+

k∑
i=1

ci log ci

=

∫
dµ+ α−

k∑
i=1

ci

(
log

(
1 +

∫
ηidµ

)
+

α ηi(x0)

1 +
∫
ηidµ

+O(α2)

)

+
k∑
i=1

ci log ci

= L(µ)− α

(
k∑
i=1

Īi(µ) ηi(x0)− 1

)
+O(α2).

Thus L(να) < L(µ) for α small enough which is impossible as µ is an absolute
minimum of L.
Consequently the first part of ii is satisfied and the proof of Prop. 1.1 com-
plete.

3 Proof of Theorem 1.1

3.1 A priori estimates for Eq. (1.5)

We denote by BVloc(R) the set of functions on R with bounded variation on
any compact subset of R, by M1(ω) the set of signed Radon measures on the
subset ω of R equipped with the total variation norm.
We show the following estimates on the solution to (1.5)

Lemma 3.1 Let ϕε be a solution to (1.5) with initial data ϕ0
ε such that∫

R e
ϕ0
ε(x)/ε dx <∞, ∂xϕ

0
ε ∈ L∞(R) and ∂xxϕ

0
ε uniformly bounded from below.

Then for any T > 0

‖∂tϕε‖L∞([0,T ]×R) + ‖∂xϕε‖L∞([0,T ],BVloc(R)∩L∞(R)) + ‖∂txϕε‖L∞([0,T ],M1) ≤ CT ,

∀ t ≤ T, x ∈ R, ∂xxϕε(t, x) ≥ −CT , Hε(ϕε) ≥ −CT ε,

∀ t ≤ T,

∫
R
uε(t, x) dx ≤ CT , ϕε(t, x) ≤ CT ε log 1/ε.

where CT only depends on the time T ,
∫

R e
ϕ0
ε(x)/ε dx, ‖∂xϕ0

ε‖L∞(R) and the
infimum of ∂xxϕ

0
ε(x).
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Proof. We start with the easy bound on the total mass.

Step 0: Bound on the total mass. First notice that because of (1.9), there
exists R > 0 s.t.

∀|x| > R,

k∑
i=1

ηi(x) ≤ 1/2.

Let ψ be a regular test function with support in |x| > R, taking values in
[0, 1] and equal to 1 on |x| > R+1. Using the fact that Iεi (t) ≤ 1, we compute

d

dt

∫
R
ψ(x)uε(t, x) dx ≤− 1

2ε

∫
R
ψ(x)uε(t, x) dx

+
1

ε

∫
R2

K(z)(ψ(x− εz)− ψ(x))uε(t, x) dz dx

≤ − 1

2ε

∫
R
ψ(x)uε(t, x) dx+ C

∫
R
uε(t, x) dx.

On the other hand as each ηi > 0, one has for some constant C

Iεi (t) =
ci

1 +
∫
ηi uε dx

≤ C

1 +
∫

(1− ψ)uε dx
.

Therefore with the same kind of estimate

d

dt

∫
R
(1− ψ(x))uε(t, x) dx ≤C

∫
R
uε(t, x) dx

+
1

ε

(
C

1 +
∫

(1− ψ)uε dx
− 1

) ∫
R
(1− ψ(x))uε(t, x) dx.

Summing the two

d

dt

∫
R
uε(t, x) dx ≤1

ε

(
C

1 +
∫

(1− ψ)uε dx
− 1

) ∫
R
(1− ψ(x))uε(t, x) dx

− 1

2ε

∫
R
ψ(x)uε(t, x) dx+ C

∫
R
uε(t, x) dx.

Since the sum of the first two terms of the r.h.s. is negative if
∫
uε is larger

than a constant independent of ε, this shows that
∫
uε(t, x) dx remains uni-

formly bounded on any finite time interval.
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Step 1: Bound on ∂xϕε. This is a classical bound for solutions to Hamilton-
Jacobi equations. Here we still have to check that it remains true uniformly
at the ε level. Compute

∂t∂xϕε =
k∑
i=1

Iεi (t) η
′
i(x)

+

∫
K(z) e

ϕε(t,x+εz)−ϕε(t,x)
ε

∂xϕε(t, x+ εz)− ∂xϕε(t, x)

ε
dz.

(3.1)

We first observe that, as Iεi ∈ [0, maxi ci] and
∑

i |η′i(x)| ≤ η̄(x)

|∂t∂xϕε| ≤ max
i
ci η̄(x) +

2

ε

∫
R
K(z)e|z| ‖∂xϕε(t,·)‖L∞(R)‖∂xϕε(t, ·)‖L∞(R) dz

≤ C

ε
eC‖∂xϕε(t,·)‖L∞(ρ) ,

since K has compact support. This entails

‖∂xϕε(t, ·)‖L∞(R) ≤ ‖∂xϕ0
ε‖L∞(R) +

C

ε

∫ t

0

eC‖∂xϕε(s,·)‖L∞(R) ds,

from which easily follows that ∂xϕε ∈ L∞([0, tε],R) for some tε > 0, which
may (for the moment) depend on ε.
Now we use the classical maximum principle. Fix t ∈ [0, T ] such that Cε,t :=
‖∂xϕε(t, ·)‖L∞(R) <∞. For any x ∈ R such that ∂xϕε(t, x) > supy ∂xϕε(t, y)−
α, where the constant α > 0 will be specified later, we have

∂t∂xϕε(t, x) ≤ max
i
ci η̄(x) +

∫
R
K(z)e|z|Ct,ε

α

ε
dz ≤ C

(
1 +

α

ε
eC Ct,ε

)
.

Therefore, choosing α = εe−C Ct,ε , we obtain

d

dt
sup
x
∂xϕε(t, x) ≤ C,

for a constant C independent of t < tε and of ε. Using a similar argument for
the minimum, we deduce that tε > T and that ∂xϕε is bounded on [0, T ]×R
by a constant depending only on T and ‖∂xϕ0

ε‖L∞(R).

Step 2: First bound on Hε(ϕε) and bounds on ∂tϕε and ϕε. Simply note that

−
∫

R
K(z) dz ≤ Hε(ϕε(t))(x) =

∫
R
K(z) e

ϕε(t,x+εz)−ϕε(t,x)
ε dz −

∫
R
K(z) dz

≤
∫
K(z) e|z| ‖∂xϕε‖L∞([0,T ],R) dz ≤ C.
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Consequently, directly from Eq. (1.5),

|∂tϕε| ≤ max
i
ci η̄(x) + C,

hence ending the proof of the full Lipschitz bound on ϕε.
To get the upper bound on ϕε, simply note that because of the uniform
Lipschitz bound on ϕε

ϕε(t, y) ≥ ϕε(t, x)− CT |y − x|,

so ∫
R
uε(t, y) dy ≥

∫
R
eϕε(t,x)/ε e−CT |y−x|/ε dy ≥ 2C−1

T ε eϕε(t,x)/ε.

Hence the bound on the total mass yields that ϕε ≤ CT ε log 1/ε.

Step 3: BV bound on ∂xϕε. As for ∂xϕε, we begin with a maximum (actually,
minimum) principle. First from (1.5)

∂t∂xxϕε ≥ −η̄(x) +

∫
R
K(z) e

ϕε(t,x+εz)−ϕε(t,x)
ε

∂xxϕε(t, x+ εz)− ∂xxϕε(t, x)

ε
dz

+

∫
R
K(z) e

ϕε(t,x+εz)−ϕε(t,x)
ε

(∂xϕε(t, x+ εz)− ∂xϕε(t, x))2

ε
dz.

The last term is of course non negative and so with the same argument as
before, we get

d

dt
inf
x
∂xxϕε(t, x) ≥ −C,

where C does not depend on ε. This proves the uniform lower bound on
∂xxϕε. On the other hand, for any measurable subset A of [x1, x2],∫ x2

x1

(Ix∈A − Ix 6∈A)∂xxϕε(t, x) dx =

∫ x2

x1

∂xxϕε(t, x) dx

− 2

∫ x2

x1

∂xxϕε(t, x) Ix 6∈Adx

≤ ∂xϕε(t, x2)− ∂xϕε(t, x1) +C |x2− x1| ≤ 2‖∂xϕε‖L∞([0,T ],R) +C |x2− x1|.

This indeed shows that ∂xxϕε(t, ·) belongs to M1([x1, x2]) with total variation
norm less than 2‖∂xϕε‖L∞([0,T ],R) + C |x2 − x1|. Thus, ∂xxϕε belongs to the
space L∞([0, T ],M1(R)), which entails ∂xϕε ∈ L∞([0, T ], BVloc(R)).
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Finally, it follows from (3.1) that

|∂txϕε(t, x)| ≤ η̄(x) max
i
ci +

∫
K(z)e|z| ‖∂xϕε‖L∞

|∂xϕε(t, x+εz)−∂xϕε(t, x)|
ε

dz

≤ c

(
η̄(x) +

∫
K(z)

∫ z

0

|∂xxϕε(t, x+εθ)| dθdz
)
.

Integrating, by Fubini∫ x2

x1

|∂txϕε| dx ≤ C

∫ x2

x1

η̄(x) dx+ C

∫ x2+ερ

x1−ερ
|∂xxϕε| dx,

where ρ is such that the support of K is included in the ball centered at 0 of
radius ρ. This ends the proof of all the bounds on the derivatives of ϕε.

Conclusion. It only remains to show the sharp lower bound on Hε(ϕε). Let
us write

Hε(ϕε) ≥
∫

R
K(z) exp

(∫ 1

0

z ∂xϕε(t, x+ θz ε) dθ

)
dz −

∫
R
K(z) dz.

The BV bound on ∂xϕε shows that this function admits right and left limits
at all x ∈ R. Let us denote ∂xϕε(t, x

+) the limit on the right and ∂xϕε(t, x
−)

the limit on the left. As ∂xxϕε is bounded from below, we know in addition
that

∀x, ∂xϕε(t, x
+) ≥ ∂xϕε(t, x

−).

By differentiating once more∫ 1

0

z ∂xϕε(t, x+ θz ε) dθ ≥ z ∂xϕε(t, x
+)

+

∫ 1

0

z

∫ 1

0

θ z ε ∂xxϕε(t, x+ θ′θzε) dθ′dθ

≥ z ∂xϕε(t, x
+)− C ε z2,

again as ∂xxϕε is bounded from below. Finally

Hε(ϕε) ≥
∫

R
K(z) exp(z ∂xϕε(t, x

+)− C ε z2) dz −
∫

R
K(z) dz

≥ H(∂xϕε(t, x
+))− C ε,

where H is defined as in (1.7) and since K is compactly supported. Because
we assumed that

∫
R zK(z) dz = 0, we have H(p) ≥ 0 for any p, which ends

the proof of Lemma 3.1.
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3.2 Passing to the limit in ϕε

From the assumptions in Theorem 1.1, Lemma 3.1 gives uniform bounds on
ϕε.

Therefore up to an extraction in ε (still denoted with ε), there exists a func-
tion ϕ on [0, T ]×R such that ∂tϕ ∈ L∞([0, T ]×R), ∂xϕ ∈ L∞([0, T ], BVloc∩
L∞(R)), ∂txϕ ∈ L∞([0, T ],M1

loc(R)) and ∂xxϕ uniformly lower bounded on
[0, T ]× R, satisfying

ϕε −→ ϕ uniformly in C(K) for any compact K of [0, T ]× R,
∂xϕε −→ ∂xϕ in any Lploc([0, T ],R), p <∞.

(3.2)

The first convergence follows from Arzéla-Ascoli theorem. For the second
convergence, observe that ‖∂xϕε‖L∞([0,T ],BVloc(R)) +‖∂txϕε‖L∞([0,T ],M1(R)) ≤ CT
implies that ∂xϕε is uniformly bounded in L∞([0, T ]×R)∩BVloc([0, T ]×R).
The convergence in Lploc follows by compact embedding. We also have ϕ ≤ 0
since otherwise the uniform bound on

∫
R uε(t, x) dx would be contradicted.

As the Iεi are bounded, it is possible to extract weak-* converging subse-
quences (still denoted with ε) to some Ii(t).

Now, we write again

Hε(ϕε) =

∫
R
K(z)

(
exp

(∫ 1

0

z ∂xϕε(t, x+ ε z θ) dθ

)
− 1

)
dz.

From the L∞ bound on ∂xϕε and its strong convergence, one deduces that

Hε(ϕε) −→ H(∂xϕ) in L1
loc. (3.3)

Therefore one may pass to the limit in (1.5) and obtain (1.8) (for the moment
in the sense of distribution; the equality a.e. will follow from the convergence
of Iεi in Lp([0, T ]), proved below).

In addition by following [16] or [2], one may easily show that ψ(t, x) =
ϕ(t, x)−

∑k
i=1

∫ t
0
Ii(s) ds ηi(x) is a viscosity solution to (1.16). We refer the

reader to these references for this technical part.

It remains to obtain (1.12), the approximate right-continuity of Ii for all time
t and the convergence of Iεi to Ii in Lp([0, T ]) for p <∞. This requires some
sort of uniform continuity on the Iεi which is the object of the rest of the
proof.
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3.3 Continuity in time for the Iε
i

First of all note that, as suggested by the simulations of [16], there are
examples where the Ii have jumps in time at the limit. So we will only
be able to prove their right-continuity.
This regularity in time comes from the stability of the equilibrium defined
through (1.12) and Prop. 1.1. Therefore let us define

Īi(t) = Īi(µ({ϕ(t, .) = 0})),

where Īi and µ are given by Prop. 1.1 and ϕ is the uniform limit of ϕε as
taken in the previous subsection.
Our first goal is the following result.

Lemma 3.2 For any fixed s, there exist functions σs, σ̃ ∈ C(R+) with
σs(0) = σ̃(0) = 0 s.t.∫ t

s

|Iεi (r)− Īi(s)|2 dr ≤ (t− s)σs(t− s) + σ̃(ε).

Remark. Of course the whole point is that σs is uniform in ε. It is also
crucial for the following that σ̃ does not depend on s.

3.3.1 Proof of Lemma 3.2

Step 0: ϕ has compact level sets.
Observe that ϕε(t = 0, x) → −∞ when x → ±∞ since

∫
R uε(t = 0, x) dx <

∞ and ∂xϕ(t = 0) is bounded. Because of the uniform convergence of ϕε(t =
0) to ϕ0 on R, one deduces that ϕ0(x)→ −∞ when x→ ±∞.
Since ∂xϕ ∈ L∞([0, T ],R) and Ii(t) ∈ [0, maxi ci], it follows from (1.8) that
∂tϕ ∈ L∞([0, T ],R) and thus ϕ(t, x)→ −∞ when x→ ±∞ for all t ≥ 0.
Therefore, the set

Ω := {(t, x) ∈ [0, T ]× R : ϕ(t, x) ≥ −1}

is compact.

Step 1: One basic property of {ϕ = 0}.
Let us start with the following crucial observation

∀s, ∃τs ∈ C(R+) with τs(0) = 0, s.t. ∀t ≥ s,

∀x ∈ {ϕ(t, .) = 0}, ∃y ∈ {ϕ(s, .) = 0} with |y − x| ≤ τs(t− s). (3.4)

18



This is a sort of semi-continuity for {ϕ = 0}. It is proved very simply by
contradiction. If it were not true, then

∃s, ∃τ0 > 0, ∃tn → s, tn ≥ s, ∃yn ∈ {ϕ(tn, .) = 0},
d(yn, {ϕ(s, .) = 0}) ≥ τ0,

where d(y, ω) = infx∈ω |x− y| is the usual distance.
Since all the yn belong to the compact set Ω of Step 0, we can extract
a converging subsequence yn → y. As ϕ is continuous, ϕ(s, y) = 0 or y ∈
{ϕ(s, .) = 0}. On the other hand one would also have d(y, {ϕ(s, .) = 0}) ≥ τ0

which is contradictory.

Step 2: The functional.
Denote

µs = µ({ϕ(s, .) = 0}),
as given by Prop. 1.1. We look at the evolution of

Fε(t) =

∫
R

log uε(t, x) dµs(x) =
1

ε

∫
R
ϕε(t, x) dµs(x),

for t ≥ s. Compute

d

dt
Fε(t) =

1

ε

∫
R

(
k∑
i=1

Iεi (t) ηi(x)− 1

)
dµs(x) +

1

ε

∫
R
Hε(ϕε(t)) dµs.

Now write

1

ε

∫
R

(
k∑
i=1

Iεi (t) ηi(x)− 1

)
dµs(x) =

d

dt

∫
R
uε(t, x) dx

−1

ε

∫
R

(
k∑
i=1

Iεi (t) ηi(x)− 1

)
(uε(t, x) dx− dµs(x)).

As
∑k

i=1 Īi(s) ηi(x)− 1 vanishes on the support of µs,

1

ε

∫
R

(
k∑
i=1

Iεi (t) ηi(x)− 1

)
dµs(x) =

d

dt

∫
R
uε(t, x)− A(t)

ε

− 1

ε

∫
R

(
k∑
i=1

(Iεi (t)− Īi(s)) ηi(x)

)
(uε(t, x) dx− dµs(x)),

19



with

A(t) =

∫
R

(
k∑
i=1

Īi(s) ηi(x)− 1

)
uε(t, x) dx.

Notice that∫
R

(
k∑
i=1

(Iεi (t)− Īi(s)) ηi(x)

)
(uε(t, x) dx−dµs(x)) = −

k∑
i=1

ci
(Iεi (t)− Īi(s))2

Iεi (t) Īi(s)
.

So we deduce

1

ε

∫ t

s

k∑
i=1

ci
(Iεi (r)− Īi(s))2

Iεi (r) Īi(s)
dr =

∫
R

log
uε(t, x)

uε(s, x)
dµs −

∫
R
(uε(t, x)−uε(s, x)) dx

+

∫ t

s

A(r)

ε
dr − 1

ε

∫ t

s

∫
R
Hε(ϕε(r)) dµs.

(3.5)

Step 3: Easy bounds.
Lemma 3.1 tells that

−Hε(ϕε) ≤ CT ε.

The total mass stays bounded in time so

−
∫

R
(uε(t, x)−uε(s, x)) dx ≤

∫
R
(uε(t, x)+uε(s, x)) dx ≤ C.

And furthermore∫
R

log
uε(t, x)

uε(s, x)
dµs =

1

ε

∫
R
(ϕε(t, x)− ϕε(s, x)) dµs

≤ 1

ε

∫
R
(ϕ(t, x)− ϕ(s, x)) dµs +

2

ε
‖ϕε − ϕ‖L∞(Ω),

where the last bound comes from the fact that, by Prop. 1.1, µs is supported
on {ϕ(s, .) = 0} ⊂ Ω, where Ω is defined in Step 0. Since in addition we
know that ϕ ≤ 0, ∫

R
log

uε(t, x)

uε(s, x)
dµs ≤

2

ε
‖ϕε − ϕ‖L∞(Ω).
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Consequently we deduce from (3.5) the bound

1

ε

∫ t

s

k∑
i=1

ci
(Iεi (r)− Īi(s))2

Iεi (r) Īi(s)
dr ≤ C +

2

ε
‖ϕε − ϕ‖L∞(Ω) +

∫ t

s

A(r)

ε
dr. (3.6)

Step 4: Control on A and the measure of {x, ϕε ∼ 0}.
For some αε to be chosen later, decompose∫ t

s

A(r) dr =

∫ t

s

∫
R

(
k∑
i=1

Īi(s) ηi(x)− 1

)
uε(r, x)Iϕε(r,x)≤−αε dx dr

+

∫ t

s

∫
R

(
k∑
i=1

Īi(s) ηi(x)− 1

)
uε(r, x)Iϕε(r,x)≥−αε dx dr.

For the first part, note again that by (1.9), there exists R s.t.

∀|x| > R,
k∑
i=1

Īi(s) ηi(x) ≤ 1/2.

Therefore we may simply dominate∫ t

s

∫
R

(
k∑
i=1

Īi(s) ηi(x)− 1

)
uε(r, x)Iϕε(r,x)≤−αε dx dr ≤ C (t− s) e−αε/ε.

Concerning the second part, we constrain 1/2 ≥ αε ≥ ‖ϕ − ϕε‖L∞(Ω) and
may therefore bound∫ t

s

(
k∑
i=1

Īi(s) ηi(x)− 1

)
uε(r, x)Iϕε(r,x)≥−αε dr

≤
∫ t

s

(
k∑
i=1

Īi(s) ηi(x)− 1

)+

uε(r, x)Iϕ(r,x)≥−2αε dr,

where (a)+ denotes the positive part of a ∈ R. Now
∑k

i=1 Īi(s) ηi(x) − 1 is
nonpositive on {ϕ(s, .) = 0} and so(

k∑
i=1

Īi(s) ηi − 1

)+

Iϕ(r,.)=0 ≤ C sup
x∈{ϕ(r,.)=0}

inf
y∈{ϕ(s,.)=0}

|y − x| ≤ C τs(t− s),
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by Step 1 as the ηi are uniformly Lipschitz. For two sets O1 and O2, define
in general

δ(O1, O2) = sup
x∈O1

inf
y∈O2

|x− y|.

By the same argument, one gets(
k∑
i=1

Īi(s) ηi − 1

)+

Iϕ(r,.)≥−2αε ≤C τs(t− s)

+ C δ({ϕ(r, .) ≥ −2αε}, {ϕ(r, .) = 0}).

Inequality (3.5) now becomes∫ t

s

k∑
i=1

ci
(Iεi (r)− Īi(s))2

Iεi (r) Īi(s)
dr ≤ C ε+ 2 ‖ϕε − ϕ‖L∞(Ω) + C (t− s) e−αε/ε

+ C

∫ t

s

τs(r − s) dr + C

∫ t

s

δ({ϕ(r, .) ≥ −2αε}, {ϕ(r, .) = 0}).

(3.7)

Conclusion. Eq. (3.5) indeed gives Lemma 3.2 if one defines

σs(t− s) =
1

t− s

∫ t

s

τs(r − s) dr,

σ̃(ε) = Cε+ 2‖ϕε − ϕ‖L∞(Ω) + C T e−αε/ε

+ C

∫ T

0

δ({ϕ(r, .) ≥ −2αε}, {ϕ(r, .) = 0}) dr.

Of course σs is continuous and, as τs is continuous and τs(0) = 0, then
trivially σs(0) = 0. Since {ϕ(r, .) ≥ −2αε} and {ϕ(r, .) = 0} are subsets of
Ω, σ̃(ε) is bounded for ε ≤ 1, and thus, in order to complete the proof of
Lemma 3.2, we only have to check that σ̃(ε)→ 0 when ε→ 0 for a convenient
choice of αε. If we take αε ≥ ‖ϕε − ϕ‖L∞(Ω) converging to 0 slowly enough
to have αε/ε→ +∞, we only have to prove that

C

∫ T

0

δ({ϕ(r, .) ≥ −2αε}, {ϕ(r, .) = 0}) dr −→ 0 as ε→ 0.

By dominated convergence it is enough that for any r

δ({ϕ(r, .) ≥ −2αε}, {ϕ(r, .) = 0}) −→ 0.

Just as in Step 1 this is a direct consequence of the continuity of ϕ.
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3.4 Compactness of the Iε
i and the proof of (1.12)

First notice that, simply passing to the limit in Lemma 3.2,

Lemma 3.3 There exists σs ∈ C(R+) with σs(0) = 0 s.t. ∀i

∫ t

s

|Ii(r)− Īi(s)|2 dr ≤ (t− s)σs(t− s).

This means that at any point of Lebesgue continuity of Ii, one has Ii = Īi.
We recall that a.e. point is a Lebesgue point for Ii. As the Ii were defined
only almost everywhere anyhow (they are weak-* limits), we may identify Ii
and Īi. This proves (1.12) and that Īi is approximately continuous on the
right for any time t (and not only a.e. t).

Now let us prove the compactness in L1
loc of each Iεi . We apply the usual

criterion and hence wish to control∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Iεi (s)| dt ds.

Decompose

∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Iεi (s)| dt ds ≤
∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Ii(s)| dt ds

+

∫ T

0

1

h

∫ s+h

s

|Ii(t)− Iεi (s)| dt ds+

∫ T

0

1

h

∫ s+h

s

|Ii(t)− Ii(s)| dt ds.

The first and third terms are bounded directly from Lemmas 3.2 and 3.3: for
example,

∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Ii(s)| dt ds ≤
∫ T

0

(
1

h

∫ s+h

s

|Iεi (t)− Ii(s)|2 dt
)1/2

ds

≤
∫ T

0

(σs(h) + σ̃(ε)/h)1/2 ds.
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The second term can be handled the same way after swapping the order of
integration∫ T

0

1

h

∫ s+h

s

|Iεi (s)− Ii(t)| dt ds =

∫ T+h

0

1

h

∫ t

max(0,t−h)

|Iεi (s)− Ii(t)| ds dt

≤
∫ T+h

0

(
1

h

∫ t

max(0,t−h)

|Iεi (s)− Ii(t)|2 ds
)1/2

dt

≤
∫ T+h

0

(σt(h) + σ̃(ε)/h)1/2 dt.

So finally we bound∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Iεi (s)| dt ds ≤ 3

∫ T+h

0

(σs(h) + σ̃(ε)/h)1/2 ds

≤ 3

∫ T+h

0

√
σs(h) ds+ 3(T + h)

√
σ̃(ε)/h.

Since of course the functions σs(·) can be chosen uniformly bounded in
Lemma 3.2, again by dominated convergence, this shows that ∀τ > 0, ∃h,
∃ε0(h) s.t. ∀ε < ε0(h)∫ T

0

1

h

∫ s+h

s

|Iεi (t)− Iεi (s)| dt ds ≤ τ.

This is enough to get compactness of the Iεi in L1
loc and then in any Lploc with

p <∞, which concludes the proof of Theorem 1.1.
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