archives-ouvertes

On Stochastic Bounds for Monotonic Processor Sharing
Networks

Thomas Bonald, Alexandre Proutiere

» To cite this version:

Thomas Bonald, Alexandre Proutiere. On Stochastic Bounds for Monotonic Processor Sharing Net-

works. Queueing Systems, Springer Verlag, 2004, 10.1023/B:QUES.0000032802.41986.c6 .

01285972

HAL Id: hal-01285972
https://hal.archives-ouvertes.fr /hal-01285972
Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr/hal-01285972
https://hal.archives-ouvertes.fr

On stochastic bounds for monotonic processor sharing networks

T. Bonald and A. Proutiére
France Telecom R&D

{Thomas .Bonald,Alexandre.Prout iere}@francetelecom .com

June 3, 2003

Abstract

We consider a network of processor sharing nodes with independent Poisson arrival processes.
Nodes are coupled through their service capacity in that the speed of each node depends on the
number of customers present at this and any other node. We assume the network is monotonic in
the sense that removing a customer from any node increases the service rate of any customer. Under
this assumption, we give stochastic bounds on the number of customers present at any node. We
also identify limiting regimes that allow to test the tightness of these bounds. The bounds and the
limiting regimes are insensitive to the service time distribution. We apply these results to a number of
practically interesting systems, including the discriminatory processor sharing queue, the generalized
processor sharing queue, and data networks whose resources are shared according to max-min fairness.
Keywords: Processor sharing networks, stochastic bounds, balance, monotonicity, insensitivity.

1 Introduction

The processor sharing (PS) service discipline has traditionally been used to represent the way jobs share
the processing unit of a computer system [17]. More recently, it has been used to represent the bandwidth
sharing of a bottleneck link in the Internet [21]. It is well known that, assuming Poisson arrivals, the
stationary distribution of the number of customers in a PS node depends on the distribution of service
requirements through the mean only. This insensitivity property is practically interesting as robust
engineering rules can be developed for the corresponding systems independently of precise statistics on
the requests (job sizes or data transfer volumes). The property extends to networks of PS nodes where
the service capacity of each node depends on the number of customers present at this node [1, 14]. The
steady-state distribution then has a well-known product-form expression. More generally, the steady
state distribution of a network of PS nodes whose service capacity depends on the whole network state
has a closed-form expression and is insensitive to the distribution of service requirements provided the
following balance property is satisfied in any state [23]:

“For all pairs of nodes 7, j, the relative change in the service capacity of node i when a customer
present at node j is removed is the same as the relative change in the service capacity of node
7 when a customer present at node ¢ is removed.”

Applying these results to the context of data networks, we have identified the way flows should ideally
share link capacities so that flow level performance depends on traffic statistics through the traffic intensity
on each network route only [7]. The corresponding allocation, referred to as “balanced fairness”, differs
from well-known “max-min fairness” where flow rates are made as equal as possible [2, 20].



Such queueing models are strictly applicable only if resources are shared in a perfectly fair way. This
is naturally not the case of real systems. Each job in a computer system is typically split into a sequence
of elementary tasks that are scheduled in a more or less fair way by the processing unit. Similarly, each
flow in a data network consists of a sequence of packets whose sending rate is adapted in response to
congestion indications such as packet losses, typically under the control of TCP. Realized bandwidth
sharing then depends on many factors including the packet scheduling and buffer management schemes
implemented in the routers and is typically unfair to those TCP flows having long round-trip times. Thus
the performance of real systems is never exactly that of the above ideal queueing networks. In particular,
it is somehow sensitive to precise statistics on service requests. The objective of the present paper is
to provide mathematical tools for evaluating the sensitivity of real systems and studying the extent to
which the results derived from ideal queueing networks provide a sufficiently accurate approximation of
their performance to be used as practical engineering guidelines.

Specifically, we consider networks of PS nodes whose service capacity depends on the whole network
state but that do not necessarily satisfy the above balance property. The only required property is the
following;:

“Removing a customer from any node increases the service rate of all customers.”

Note that this monotonicity property is satisfied by many real systems. In particular, the model is
sufficiently general to account for unfair service disciplines such as discriminatory processor sharing
(DPS) or generalized processor sharing (GPS) where the service capacity is shared according to some
predetermined weights. It can also be used to represent max-min fair bandwidth sharing of a data network
having a tree topology for instance, as shown below. We derive stochastic bounds on the performance of
monotonic PS networks by means of sample-path comparisons with balanced networks. We also identify
the limiting regimes obtained when nodes operate at very different time-scales in order to quantify the
sensitivity of the network and to assess the tightness of these bounds. The bounds and the limiting
regimes are shown to be insensitive to the distribution of service requirements.

Little is known about the performance of non-balanced PS networks. This may simply be explained
by the fact that the balance property is actually a necessary and sufficient condition for insensitivity
[6]. Thus the performance of non-balanced networks cannot be evaluated without specific assumptions
on service requirements. Usual Markovian techniques apply of course, assuming i.i.d.exponential or
Cox service requirements, but generally only yield numerical results and then only for systems with a
relatively small state space. Large deviations techniques, which have notably been applied to the study
of the GPS queue [3, 8, 19], are appropriate to quantify the occurence of rare events [11] but useless for
evaluating simple performance metrics such as mean response times. Analysis in heavy traffic provides
interesting asymptotic results [18, 25] but has proved successful for specific networks only, despite some
recent advances in the area [16]. A more promising approach, which has notably been applied to the
analysis of 2-class PS queues with priority [9, 22], consists in identifying the above mentioned limiting
regimes obtained when nodes/classes operate at very different time-scales, e.g., by means of singular
perturbation techniques [24]. The question of whether these limiting regimes constitute bounds or not
remains largely open, however.

In the next section, we describe the considered PS networks and introduce the notions of balance
and monotonicity. The main results are given in the following two sections, where we derive stochastic
bounds for monotonic PS networks and identify the limiting regimes. These results are illustrated in
Section 5 on a number of examples, including the DPS and GPS queues. Section 6 concludes the paper.



2 Processor sharing networks

We consider an open network of N processor sharing (PS) nodes. Customers arrive at each node i as a
Poisson process of intensity A;, require i.i.d. services of mean o;, and leave the network once served. We
denote by p; = A;o; the traffic intensity at node ¢ and z; the number of customers present at node .
Nodes are coupled through their service capacity in that the speed of each node i is a function ¢;(x) of
the state z = (z1,...,zy). We assume that ¢;(z) > 0 if and only if z; > 0.

Notation. We denote by e; the unit vector with 1 in component ¢ and 0 elsewhere, fori = 1,..., N. For
z,y € RV, we use the notation z <y if z; < y; fori =1,...,N and |z| = Zf\il z;. We denote by <y the
strong stochastic ordering on RY -valued random variables, i.e., X <, Y if and only if E[f(X)] < E[f(Y)]
for all increasing functions f.

2.1 Balance property
We first recall the main properties of so-called “balanced” processor sharing networks. For a full account

readers are referred to [23].

Balance property. We say that the network is balanced if for all pairs of nodes 1, j:

bilz =) _dil@=e) ooy z; > 0.

¢i() ¢;j(z)
Consider the function ® recursively defined by ®(0) = 1 and:
®(z — ei)
() = ————, z;>0. 1
(=) ¢i(x) ' @

The balance property implies that this defines a unique function ®, referred to as the balance function.
Note that ®(z) may be viewed as the weight of any direct path from state 0 to state z, where a direct
path is a set of consecutive states z(0) = 0,z(1),z(2),...,z(n) = z such that z(k) — z(k — 1) = e;y)
for some i(k), k = 1,...,n, with n = |z|, and the weight of such a path is the inverse of the product of
bir) (z(k)) for k= 1,...,n (refer to Figure 1).

X3

Sh

0 X

Figure 1: The balance function ®(z) is equal to the weight of any direct path from state 0 to state z.
The steady state distribution is then given by:
N
m(z) = m(0) x ®(x) [ [ o, (2)
i=1
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where 7(0) is given by the usual normalizing condition, provided:

N
> o@) [ < oo (3)
T =1

Note that m depends on the distribution of service requirements at any node ¢ through the mean o; only.
The steady state distribution is also insensitive to the time-scale of each node in that it depends on the
arrival rate \; and the mean service requirement o; through their product p; only. It turns out that a
PS network for which one of these insensitivity properties holds is necessarily balanced [6].

2.2 Monotonicity

We are interested in evaluating the performance of non-balanced networks, for which the stationary
distribution is sensitive to service requirements and typically unknown. The method consists in deriving
stochastic bounds for “monotonic” networks by means of sample-path comparisons.

Monotonicity. We say that the network is monotonic if for all nodes i:

MZM, Ve <wy: x; >0.
Ty Yi
Denote by X (t) the vector of the number of customers at each node at time ¢ > 0 given the network
is empty at time 0. Note that the stochastic process {X(t),X(t)}+>0 where 3(t) = (£1(¢),...,2n (1))
and X,(t) is a X;(¢)-dimensional vector representing the remaining service requirement of customers at
node 7 at time ¢, is an irreducible Markov process.

Lemma 1 Assume that the network with service capacities ¢;, 1 = 1,...,N, is monotonic. Denote by
X( t) the vector of the number of customers at each node at time t > O starting empty at time 0 for
service capacities ¢;, i = 1,..., N, satisfying ¢;(z) < ¢i(z) for any i in any state x such that z; > 0.
Then X (t) < X (t) for all t Z O.

Proof. The proof follows from the fact that for any states x < Z and any node ¢ such that z; > 0:
¢i(z) o ¢i(7) ¢ (z)

Z; Z Iy

3 Insensitive stochastic bounds

In this section, we consider a monotonic PS network and derive insensitive lower and upper bounds by
means of sample-path comparisons with balanced networks. The bounds coincide if the network is itself
balanced.

3.1 Lower bound

Denote by X (t) the vector of the number of customers at each node at time ¢ > 0 starting empty at time
0, for those service capacities ¢1,...,dn corresponding to the balance function & recursively defined by
®(0) =1 and:
. Oz —¢;
®(z) = max Sl —e) (4)
i x; >0 ¢z (.T)
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Note that ®(z) is the weight of the direct path of maximum weight from state 0 to state x (cf.§2.1).
This provides a lower bound on performance (expressed in terms of response time for instance) in view
of the following result.

Theorem 1 If the network is monotonic, then X (t) < X(t) for all t > 0.

Proof. The proof follows from Lemma 1 and the fact that for any node ¢ in any state x such that z; > 0:

< bz — ;)
i(r) = ——— < ¢i(2).
bie) = T g <)
O
By definition, the network with service capacities ¢i,...,¢n is balanced. In particular, its steady

state distribution is insensitive and given by:

#(z) = 7(0 H P’ (5)

provided:
N
> (@) [] ot < oo (6)
T =1

In view of Theorem 1, the ergodicity of the Markov process {X (t), £(¢) };>0 implies that of {X (), (¢) }t>0-
Denoting by X and X the corresponding stationary vectors of the number of customers at each node, we
get X <o X.

3.2 Upper bound

Denote by X (¢ (t) the vector of the number of customers at each node at time ¢ > 0 starting empty at time
0, for the service capacities ¢1, .,qSN corresponding to the balance functions ) recursively defined by
&(0) =1 and

. d(r — e
®(z) = min )
i ;>0 ¢z (:L')
Note that ®(z) is the weight of the direct path of minimum weight from state 0 to state z (cf. §2.1). This
provides an upper bound on performance in view of the following result.

Theorem 2 If the network is monotonic, then X (t) > X(t) for all t > 0.

Proof. As for Theorem 1, the proof follows from Lemma, 1 and the fact that for any node 7 in any state
x such that z; > 0:

A

A O(z — €;)
i(z) = —& @ i(z)
O
Again, the network with service capacities ¢A51, e ,dAJN is balanced. In particular, its steady state
distribution is insensitive and given by:
N N
#(z) = 7(0) x ®(x) pr", provided Z d(x) prl < 00. (7)
i=1 T =1



In view of Theorem 2, the ergodicity of the Markov process { X (t), X(t) };>0 implies that of {X(t),5(¢ ) }e>o0-
Denoting by X and X the corresponding stationary vectors of the number of customers at each node, we
get X > st X

3.3 Bias property

The lower and upper bounds derived above are entirely determined by the balance functions & and d.
It remains difficult in general to find an explicit expression for these functions. A notable exception is
the case of “biased” networks.

Bias property. We say that the network is biased if nodes can be numbered in such a way that for all
pairs of nodes 4, 7, 1 < j:

di(z —e;) _ ¢j(r —e)
HE O @)

For biased networks, we simply have:

Vz: x; >0, zj >0.

IN-1 1 -1
<H¢N (nen) x H odn—_1(nen_1 + znen) X ...XH¢1(TL€1+.’E2€2+...+$N€N)> ,

n=1

and

1
= (H $1(ney) x H ¢2(z1€1 + neg) . X H on(r1€e1+ ... +Ty_1en_1 + neN)) .

n=1

Note that (z) and &(z) correspond to the weight of straight paths (for N = 2, from state 0 to state z
through state (0,z2) and state (z1,0), respectively, cf. Figure 1).

3.4 Local behavior

We now identify the local behavior of the bounds when the traffic intensity at all nodes except one tends
to zero. These results will prove useful in assessing the tightness of the bounds (see Theorem 4 below).
Assume that the stability condition (6) holds. Let Y; be the random variable describing the steady-state
number of customers in node % in isolation, i.e., when the traffic intensity at any other node is equal to
zero. Denote by (; the distribution of Y;, given by:

y .
G) =GO) [] —rev, yeN

Proposition 1 For any positive function f such that E[f(X)] < oo, we have:

lim Ef(X)]= lim B[f(X)] = E[f(Vie))].

pj—0,j#i pj—0,j#i

Proof. In view of (5) and (7), we have:

S @I o S f@d) I
=, () [1 o7 POl = S ) TTY,

E[f(X)] =

(=)



The proof then follows from the fact that in each of these two expressions, each term of the numerator
and the denominator is an increasing function of pi, ..., pxy and

1
y > 0.

d(ye;) = P(ye;) = =———» 2>
(ye:) (yei) TG (ker)

O

We now derive first-order terms of E[f(X)] and E[f(X)] in pj, j # 4, when the traffic intensity at
any node except node ¢ tends to zero, provided the following “local bias” property holds.

Local bias property. We say that there is a local bias of node 7 against node j if:
¢i(z —ej) _ bj(z —ei)

gi(z) — (@)

Similarly, we say that there is a local bias of node ¢ in favor of node j if:
¢i(z —ej) _ iz —ei)

gi(z) T (@)

Note that for biased networks, there is a local bias of any node ¢ against any node j < ¢ and in favor of
any node j > 1.

Vz:z =16 +ej,1; > 0.

Vz:z = z56; +ej,x; > 0.

Proposition 2 Consider a positive function f such that E[f(X)] < oo and f(z) = 0 for all states x
such that z; = 0. If there is a local bias of some node i against node j, then:

im EUO) - flyeite) o
”f’—l’o’j’# Pi y;) ¢j(yei + e5) Gle)

If there is a local bias of some node i in favor of node j, then:

pj1—0,5'#i Pj
Proof. In view of (5) and (7), we have:

E[f(X)]  Lawsof @2@0) ™ sy 0

~ T/
pi >, (@) 1 o1t

and
Z;!

E[f(X)] o Zx:xj>0 f(g;)ci)(g;)p;?j_l Hjl?gj Pj/]

- 2 Z.r
Pi >0 @) [T pj

The proof then follows from the fact that in each of these two expressions, each term of the numerator
and the denominator is an increasing function of pi,..., pny, while

1

é(yei) = ‘i(yei) = m,

y >0,



and .
D(ye; +¢5) = , =0,
Wei tei) = G e e T, dilher)’

if there is a local bias of node ¢ against node j,

N 1
D(yei +¢;) = , y=0,
T dilyei +ei) Tz, dilkes)
if there is a local bias of node ¢ in favor of node j. O

3.5 Equivalent capacity

The notion of “equivalent capacity” is convenient for evaluating network performance in terms of mean
response times. We define the equivalent capacity «y; of node ¢ as the ratio of the mean service requirement
o; to the mean response time F[T;]. Applying Little formula, we get:

L _Pi

Denote by ¥; and %; the equivalent capacity of node ¢ for the lower and upper bounds derived in §3.1 and
§3.2, respectively. For any monotonic system such that the stability condition (6) holds, it follows from
Theorems 1 and 2 that:

¥i <% < i
Denoting by 7;(s) the ratio of s to the mean response time E[T;(s)] of a customer requiring a service
s > 0 at node %, we have in fact the stronger result:

¥ <7i(s) <4, Vs >0.

This is due to the property that the mean response time of a customer is proportional to its service
requirement in any balanced network [6].

4 Insensitive limiting regimes

In this section, we consider any PS network such that the Markov process {X(t),3(t)}>0 is ergodic
for some fixed traffic intensities p1, ..., pn, independently of o1,...,0n5. Note that if the network is
monotonic, it is sufficient that the stability condition (6) holds in view of Theorem 1. If the network is
not balanced, the stationary distribution 7 of X (¢) depends on 071, ...,on [7, Corollary 1]. We shall denote
explicitly m = 74, ... o5 We consider the limiting regimes obtained when the mean service requirements at
all nodes except one, say node %, successively tend to zero. Node ¢ is then referred to as “quasi-stationary”
due to the slow variations of the number of customers present at this node compared to any other node.
These limiting regimes prove useful in quantifying the sensitivity of the system and the tightness of the
bounds derived in previous section. A brief reminder on the convergence of probability measures is given
Appendix A. We refer the reader to [4] for more detail.

4.1 Limiting distribution

Without loss of generality, we let o1,09,...,0n_1 successively tend to 0 with fixed traffic intensities
P1,P2,---,pN—1- The following result is proved in Appendix B



Theorem 3 Assume that the family of probability measures Ty, . 5y s tight. Then my, . sn = T when
01,09,...,0N—1 successively tend to 0 with fized traffic intensities p1, p2,...,pN—-1, where T is the prob-

ability measure given by:
N

7(z) = [[ 7@, - .-, 2n). (8)

i=1
Foralli=1,...,N, 7;(-,Zit1,...,ZN) is the probability measure defined by:

T

7_1'1'(.’121',371'4_1,...,.’13]\7) = 7_1'2'(0,.’L'Z'+1,...,.77N) X H = pi ,
y=1 ¢i(yaxi+17"'a$N)

with ¢1 = ¢ and fori=2,...,N,

i1
¢i(®iy- .. TN) = Z ¢i(x)H'7rj(.'L'j,...,.’L'N).
j=1

L1y Ti—1

It is worth noting that the limiting regime is insensitive in the sense that 7 is independent of the
distribution of service requirements. The following result is a direct consequence of Theorem 3.

Corollary 1 Assume that the family of probability measures To,,....oy 15 tight. Denote by Xo,, oy a
random wvariable with distrib_utz'on To1,..ons X @ random variable with distribution 7. Let f be any
increasing function. If E[f(X)] = oo, then

lim ... lim lim B[f(Xo,, ox)] = o0.

on—1—0 go—001—0
If X5, .....on 18 f-uniformly integrable, then

m ... lIm lim E[f(Xo,..on)] = E[f(X)].

on—_1—0 o2—001—0

Proposition 3 If the network is monotonic and inequality (6) holds, the family of probability measures
Tor,...on 5 tight. In addition, for any increasing function f such that E[f(X)] < oo, X4y, ..on 5 f-
uniformly integrable.

Proof. For any € > 0, there exists n such that:

Pr(|X|>n)<e and E[f(X)[[55,] <e

The proof then follows from the fact that X,, . o, <s X. O

4.2 Local behavior

Let @ be the limiting distribution obtained when some node i is quasi-stationary. We identify the local
behavior obtained when the traffic intensity at any other node tends to zero. The following result,
proved in Appendix B, is independent of the way 7 is obtained, i.e., of the order in which the mean
service requirements at nodes j # i successively tend to zero. We denote by X a random variable with
distribution 7.



Theorem 4 Consider a monotonic network. For any increasing function f such that E[f(X)] < oo,

i Bf(X)] = BIf (Vies)-

If E[f(X)] < 0o and for some j # 14, f(z) =0 for all states z such that z; =0,

T ticy) Z o yeﬁei Gi(y)-
J

pj/—)O,j’;éZ P

4.3 Equivalent capacity

Let 'Vyji- be the equivalent capacity of node 7 when node i is quasi-stationary. It follows from Theorem 4
and Proposition 1 that:

li ¥ —5) =0 d li 3 —4:) =0.
; m 7éZ.(% ¥s) an , m 7M(% i)

If there is a local bias of node ¢ against node j, then in view of Proposition 2,

1' _Z.. A O’
805

while if there is a local bias of node ¢ in favor of node 7,
lim (3 -4;)=0
Pj/—ﬂ),j'#i(,y %)
Thus the lower bound becomes tight when most load is generated by “favored” nodes while the upper
bound becomes tight when most load is generated by “penalized” nodes. In particular, we obtain for any
biased network:

li ¥V —%:)=0 and li ' —4)=0, Vj=1,...,N. 9
pj'*%)ra?’#N(% %) . pj’—:gf‘;l#l(’yj ¥) =0, Vi=1..., (9)

5 Examples

We now apply the results to a number of multiclass systems. Each class will be represented as a node
of a PS network. We assume customers of each class arrive as a Poisson process and have i.i.d.service
requirements. We denote by p; the traffic intensity of class 7, and by p = Zf\i 1 pi the overall system load.
Performance is evaluated in terms of the equivalent capacity of each class. Though the results hold for
an arbitrary number of classes, the graphs illustrate simple cases with N = 2 classes only (except in §5.4
where a case with N = 3 classes is also shown). We then have two limiting regimes, one referred to as
“Class 1 QS” where class 1 is quasi-stationary, the other one referred to as “Class 2 QS” where class 2
is quasi-stationary. On each graph, simulation results are also plotted for illustration purposes. These
results are obtained for i.i.d. exponential services of unit mean for each class.

5.1 Discriminatory processor sharing queue

The discriminatory processor sharing (DPS) service discipline consists in sharing the service capacity in

proportion to some predetermined weights. Let w; be the weight of class-i customers, ¢ = 1,..., N, with
the convention wy < we < ... < wpy. A DPS queue corresponds to a PS network with:
W; T4
¢i (.'L') — 1~

wiTy + ... +wWNTN

10



One easily verifies that this network is monotonic and biased. For N = 2 classes, we obtain:

Z2 z1

B() = [ U5 g () = [ T2

won win

n=1 n=1

It turns out that the stability condition (6) does not necessarily hold whenever p < 1, the stability
condition of the DPS queue.

For this particular system, explicit expressions have been derived for the mean response time of each
class under the assumption of i.i.d. exponential services [12]. As the limiting regimes are insensitive, we
deduce from these expressions that the equivalent capacities when class 1 and class 2 are quasi-stationary
are respectively given by:

~1 . B 1—

711_1 [-{—/)2 7%:1+ i

Y= wipr - and wi(1 - p)
wa(1 — p) Y =1-p.

Figure 2 shows the results obtained when w; /we = 2 for different load distributions between class 1 and
class 2. As expected in view of (9), the lower bound is tighter as more load is generated by class 2, while
the upper bound is tighter as more load is generated by class 1.

Most load generated by class 1 (p1/p = 0.9, p2/p =0.1)
1

prer bound prer bound
Class 1 QS - Class 1 QS -~
2 o8l Class2QS | 2 g Class 2QS - |
S : Lower bound S : Lower bound
3 Simulation 3 Simulation
o o
€ 06 € 06
< <
© ©
2 =
3 3
g 04 g 04
~— o
[} [}
8 o2 8 02
(&} ’ (&} ’
O L L L = O L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Load Load
Most load generated by class 2 (p1/p = 0.1, p2/p = 0.9)
1 T T 1 T T
Upper bound N Upper bound
Class 1 QS - e Class 1 QS -
£ os : Class 2QS Z o8 Class2QS
S ST N Lower bound ) S ST N Lower bound )
g N Simulation g o Simulation
o o '»}\
€ 06 06 NG
k) i} &
© h ©
2 N 2
3 3
g 04 S 04r
~— o
[} [}
8 o2 8 02
o o - T
0 L L L L N 0 L L L L s
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Load Load

Figure 2: Performance of a 2-class DPS queue.
(w1 /wq = 2, different load distributions between class 1 and class 2)
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5.2 Generalized processor sharing queue

The generalized processor sharing (GPS) service discipline consists in sharing the service capacity between

classes in proportion to some predetermined weights. Let w; be the weight of class i, i = 1,..., N, with
the convention w; < wy < ... < wy and wy + we + ... + wy = 1. The system corresponds to a PS
network with: W
$i(r) = =———.
Zj:zj >0 Wj

This network is monotonic but not biased. There is a local bias of any node % against any node j < .
We get in any state z such that z; > 0 for all i:

wl(w1+w2)...(w1 —i—...—|—'wN,1)
wit . wRy

d(z) = .
In particular, the stability condition (6) holds if and only if p; < w; for i = 1,..., N. Note that this
condition is more restrictive than p < 1, the stability condition of the GPS queue. For N = 2 classes, we

obtain the following normalizing constant, from which the equivalent capacity of each class can easily be
deduced:

&z, 19)p" g8 = 1 + p1 n P2 Tw P1P2 .
Z (w1, 22)p7" P5 l—p1  1—po 1(wl—,ol)(wz—Pz)

T1,T2

Same weights (v, = wg = 0.5)
1
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Figure 3: Performance of a 2-class GPS queue.
(traffic intensity proportional to the weight: p1 /w1 = pa/w2)
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Concerning the limiting regimes, we get:

~1 N _ 1—

n=1-p W = wglpz

~1 1—po and 1+

=T WP _2 (1 —p1)(w1 —p1)
(1 = p2)(wa — p2) Y3 =1—p.

Figure 3 shows the results obtained when the load distribution is proportional to the weights. As expected
in view of §4.3, the lower bound is tight for class 1 when most load is generated by class 2. We observe
that the system is approximately insensitive for equal weights and highly sensitive when the weights differ
significantly.

5.3 Multirate system

We now consider a multirate system representing a unit capacity link shared by data flows with rate
constraints, i.e., the rate of each flow cannot exceed a fixed value referred to as its access rate. The
performance of such a system is evaluated in [6, 7] for the balanced fair allocation. Here we consider the
max-min fair allocation [2, 20]. Max-min fairness can be obtained using the following “filling” procedure:

Starting from zero, increase linearly the rate of each flow. When the capacity constraint of
one or several flows is reached, freeze the rate of these flows and proceed with this linear filling
for those flows not yet constained. Continue the procedure until all flows are constrained.

Let a; be the access rate of class-i flows, with the convention a1 > as > ... > any and a1 < 1. Such a
multirate system corresponds to a PS network with:

Z;

. Vi<bk,

¢i(x) = a;z;, Vi>k and ¢i(z) = 1—Zajmj W
i>k 1=

where £ is the minimum non-negative integer such that:
akZa:j +Zajxj <1
i<k i>k

One easily verifies that this PS network is monotonic and biased. The stability condition (6) holds
whenever p < 1 in view of Proposition 4 below and the fact that the service capacity of each class
corresponds to that of a PS queue except for a finite number of states:
Z;
¢i(z) = Vz:an|z| > 1.

Zj Ty

Proposition 4 Consider two PS networks such that the service capacities coincide except for a finite
number of states. If the stability condition (6) holds for one of these two networks, it holds for the other.

Proof. Let ¢1,...,¢n and ¢}, ..., ¢’y be service capacities such that ¢;(z) = ¢;(z) for all nodes ¢ in any
state z such that |z| > n, for some integer n. Denote by ® and @’ the respective balance functions given
by (4). Assume that the stability condition (6) holds for ®'. Define ® as:

~ . - Dz — e
O(z) =axd'(x) forallz:|z|<n, &(z)= max % otherwise.
it X i
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where

o MaX |7 <p ®(z)
minw:\w\gn (ﬁ’(g;)

The proof then follows from the fact that ®(z) < ®(z) = a x &' (z) for any state z. O

For N = 2 classes with a; = 1, we obtain:

z2 1 1 1 T2 1

d(z) = H min(L,nay) H and &(z) = H

n : n
n=1 n=1 Max (m, 1-— .’EQG,Q) n=1 MINn (m, ’I’LCLQ)

Figure 4 shows the results obtained with a; = 1 and a3 = 0.1. Again, the accuracy of the bounds depends
on the load distribution between class 1 and class 2 according to (9). We observe that, as for the DPS
queue for which the bias property also holds, the performance of all classes is better when class 1 is
quasi-stationary than when class 2 is quasi-stationary.

Most load generated by class 1 (p1/p = 0.9, p2/p =0.1)

0.1 - — 1
z z )
g 08 1 8§ oost 1
Q. Q.
[ [
o o
£ 067 1 5 o006} ]
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2 2
= 04 r 1 = 0.04 - |
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O . Lower bound O 0.02 r Lower bound |
Simulation EON Simulation -+
0 L L L L ) O L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Load Load
Most load generated by class 2 (p1/p = 0.1, p2/p = 0.9)
1
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Figure 4: Performance of a 2-class multirate system.
(a1 =1, ag = 0.1, different load distribution between class 1 and class 2)
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Note that, in view of the limiting regimes, the system looks approximately insensitive except for class
1 when most load is generated by class 2. If as = % for some integer n > 1, the equivalent capacities of
class 1 in the limiting case p; ~ 0 when class 1 and class 2 are quasi-stationary are respectively given by:

Z (np)* + 1 (np)"
k! 1—p n!
~1 =2 _ k=0
i =1-p and M= .
1 _(np)*  n(l—p)+1(np)"
k — )2
ol —n k! (1-p) n!

It may be verified that the ratio 41 /47 takes arbitrarily large values when n increases with p ~ 1 — L

Jn
For n = 100 for instance, we obtain 41 = 0.1 and 42 = ... for p = 0.9.

5.4 Concentration tree network with max-min fair sharing

Finally, we consider a data network that consists of a set of links and a set of IV subsets of links referred
to as the routes, as considered in [5, 7]. Let r; be the route of class-i flows. Capacity sharing is max-min
fair [2, 20]. Such a data network can be represented as a PS network where each node corresponds to
a particular route. In the simple case of two links 1,2 of respective capacities C; > C9 and two routes
r1 = {1} and ro = {1, 2} for instance, we obtain:

$1(2) =1 — do(x) with go(z) = min (02, z2 )

T+ T2

We say that the data network is a concentration tree if the graph formed by the routes has a tree topology
and each route consists of a direct path in this graph starting from the root of the tree, as illustrated in

Figure 5.

Figure 5: A 3-branch tree

Proposition 5 The PS network is monotonic if and only if the data network is a concentration tree.
Proof. A data network that is not a concentration tree contains either a 2-link line, i.e., a network of

two links 1,2 of respective capacities C; < Cy and three routes r1 = {1}, 7o = {2} and r3 = {1,2}, or
a triangle, i.e., a network of three links 1,2,3 of respective capacities C; < Cy < C3 and three routes

15



r1 = {1,3}, r2 = {2,3} and r3 = {1,2}. We deduce that the monotonicity property does not hold as in
state z(2,1,2), we obtain in both cases,

¢2(1L') = CQ — C1/2 and ¢2(.’E — 61) < CQ — 2C1/3.

The sufficient condition simply follows from the “filling” procedure of max-min fairness described in §5.3.
O

It is worth noting that max-min fairness coincides with proportional fairness [15] and more generally
with any utility maximizing allocation in a concentration tree [7]. Note also that the PS network remains
monotonic in the presence of additional access rate constraints as considered in §5.3. Though we expect
the stability condition (6) to hold whenever p < 1 for a unit capacity root, we have not been able to
prove this result.

The bias property does not hold in general. In fact, it holds only for the particular class of con-
centration trees known as parking lots. Parking lots are networks with N links of respective capacities
Cy>Cy>...>Cpy and N routes 1y = {1}, ro = {1,2}, ..., rn ={1,2,...,N}.

Proposition 6 The PS network associated with a parking lot is biased.

Proof. Let = be a state such that z; > 0,z; > 0 for some 4, j with 7 < j. If some link k, ¢ < k < 7, is
saturated in state x, this link is also saturated in state x — e; so that:

$ilr—ej) | _ 4i(z—ei)
$i(z) ¢i(z)

Now if no link k, 1 < k < j, is saturated in state x, we necessarily have

pi(z) _ ¢j(z)

T z;
and the proof follows from the fact that:
¢i(z —¢j) § iz —ei)

Z; Z;
O
For a 2-link parking lot, we get:
. 1 A 1 . 1 4 1
d(x) = o - and ®(z) = o : - .
2 p=—1Max (Clm, Cl — CQ) 1 p=1min (CIMa 02)

Figures 6 and 7 show the results obtained for a 2-link parking lot and a 3-branch homogeneous tree, i.e.,
a tree with one root and three branches of same capacity. Note that, by symmetry, the three limiting
regimes coincide in Figure 7. We observe that the lower and upper bounds are very close, indicating
that the system is approximately insensitive. This is not always the case, however. As a concentration
tree with one single-link route 1 = {1} and N — 1 routes r; = {1,i}, 1 = 2,..., N, all routes having the
same traffic intensity £ and all branches the same capacity, tends to a multirate system when N tends
to infinity, it follows from §5.3 that the ratio of the class-1 equivalent capacities of two limiting regimes
may take arbitrarily large values at high loads.
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Figure 6: Performance of a 2-link parking lot with max-min fair sharing.
(C1=1,C2=0.1, p1/p=0.9, p2/p=0.1)
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Figure 7: Performance of a 3-branch homogeneous tree with max-min fair sharing.
(root capacity C' = 1, branch capacities C; = Cy = C3 = 0.4, p; = p2 = p3)

6 Conclusion

We have derived stochastic bounds for monotonic PS networks by means of sample-path comparisons
with balanced networks. We have also identified the limiting regimes obtained when nodes operate at
very different time-scales so as to quantify the sensitivity of the network and to assess the tightness
of these bounds. The bounds and the limiting regimes are insensitive to the distribution of service
requirements. The lower bound proves tight in cases where most load is generated by “favored” nodes (in
the sense of the bias property) while the upper bound proves tight in cases where most load is generated
by “penalized” nodes. We have illustrated these results on a number of practically interesting sensitive
systems, including the DPS and GPS queues and multirate systems.

A natural question of interest is whether these insensitive bounds can be improved. Numerical results
of Section 5 notably suggest that the limiting regimes constitute bounds when the bias property holds.
This is only a conjecture, however, which may hold for a weaker order than the considered order <.
We are currently working on this subject.
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Appendix

A Convergence of probability measures

We say that a family of probability measures {ry, s > 0} on NV converges weakly to a probability measure
7w and write 7y, = 7 if:
Ve e NV, 7(z) = lim my(z).

§—00

Denote by X a random variable with distribution 75, X a random variable with distribution 7. For any
increasing function f, if E[f(X)] = oo, then

lim E[f(X;)] = oc.

§—00

If {X;,s > 0} is f-uniformly integrable in the sense that for any ¢ > 0, there exists n > 0 such that:
Vs >0, E[f(Xo)Ijx,>n)] <€

then
lim E[f(X;)] = E[f(X)].

§—00

B Insensitive limiting regimes

Proof of Theorem 3. We prove that the only possible weak limit 7 of 74, 4, . on Whenoi,09,...,0n_1
successively tend to 0 is the probability measure defined by (8). The proof then follows from the tightness
of the family of probability measures 7,, . 5. We first assume that services are i.i.d. exponential. The
stationary distribution m = 7,5, 4,,... o, then satisfies the balance equations:

1
Z G— (pi + ¢i(x))m(z) — pim(z — €;) — di(z + ei)m(z + €:)) =0, (10)
=1
where we use the convention w(z) = 0 if z; < 0 for some i. Letting o1,09,...,0n_1 successively tend to
0, we obtain:
(b1 + ¢1(2))7(z) — p17T(z — e1) — d1(z + €1)T(z + 1) = 0. (11)
Thus for any fixed zo, ..., znN, if 7(21,22,...,2zn) > 0 for some 21 > 0 then 7(-,z9,...,2Zx) is an invariant
measure of finite sum for the birth and death process with birth rate p; and state dependent death rate
¢1(-,z2,...,zN). The probability measure 71 (-, z2,...,zy) is then well defined and:
— 7_T('a‘fE?a"'axN)
Ty T2y..., TN ) = — .
(22,0, 2N) Zwl T(%1,T2,...,TN)
In particular, if 7(x1,x2,...,2x5) > 0 for some z1 > 0 then 7(x1,z2,...,2x) > 0 for all z; > 0.
Now for any fixed zo, ..., 2y, summing (10) over z; yields:

ZZ ((pi + ¢i(x))m(x) — pim(z — €;) — i + e;)m(x + e5)) = 0,

T1 z#l

where we used the fact that:

D o1+ dr(@)w(z) =D (w(z — e)pr + pilz + e (@ + €)) -

1 1
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Letting 01, 09,...,0N_1 successively tend to 0, we obtain:

D (b2 + d2(@)(z) — paTi(z — €2) — da(x + e2)T(x + €2)) = 0.

1

Thus for any fixed z3,...,zn, if )0, 7(z1,72,...,2n) > 0 for some z9 > 0 then } 7(z1,",73,...,7N)
is an invariant measure for the birth and death process with birth rate p» and state dependent death rate
¢2(-,z3,...,2N). We then deduce that the probability measure 7(+, z3,...,zy) is well defined and:

_ Zwl ﬁ(xla'ax?n"'aw]v)
7T2(',$31"',$N): — :
Z$1,$2 T(Z1,Z2,. ., TN)
In particular, if 7(z1,z2,...,2zx5) > 0 for some 21,29 > 0 then 7(z1,z2,...,2x5) > 0 for all 1,29 > 0.
Applying successively the same reasoning for i = 3,..., N—1, we deduce that for any fixed z;1,...,zn,
£z, (@1, Tiso o, @) > 0 for some z; > 0, then >0, 7(z1,...,Tiz1,", Tit1,-- -, TN) 18
an invariant measure for the birth and death process with birth rate p; and state dependent death rate
¢i(, Tit1,...,zn). We then deduce that the probability measure 7;(-, i11,...,2n) is well defined and:
_ ( ) th_",wi_l 771'(331,...,.Tifl,',.’L‘i+1,...,J,‘N)
T\ Ti41y---3TN) = —
tho ’ ’ th___,ziﬂ'(.’rl,...,$i_1,$i,$i+1,...,:I?N).
In particular, if 7(z1,...,zi,...,zn) > 0 for some z1,...,z; > 0 then 7(z1,...,2;,...,2zx) > 0 for all
Llye--yLy 2 0.
Now for each fixed zx, summing (10) over z1,...,xy_1 yields:
> ((ov + dn(@)7(x) — pym(z — en) — ¢n(z + en)m(z + en)) = 0.
15N -1
Letting 01,09, ...,0n—1 successively tend to 0, we deduce that these balance equations are also satisfied
by 7. Thus if Zwl’___7$N_1 m(x1,...,oN_1,2N) > 0 for some zy > 0, le’___mv_l 7(21,..., TN _1,-) is an

invariant measure for the birth and death process with birth rate py and state dependent death rate ¢y
and:

Zzh...,zN_l ﬁ(xla"-afola') Z

’T_I'N(') = — = 77'(56‘1 e, IN-1 )
th___,w (X1, .., ZN) T BN 1 T ,
In particular, if 7(x1,29,...,2x5) > 0 for some z1,...,zxy > 0 then 7(z1,z2,...,zx5) > 0 for all
Zi,...,2n > 0. As 7 is a probability measure, w(z) > 0 for some z > 0 so that w(z) > 0 for all
x > 0. Expression (8) follows from the above relations between 7 and 7;, for i = 1,..., N.

Now assume that the service requirements at each node are i.i.d. with a Cox distribution. We shall
demonstrate that the limiting distribution of the number of customers at each node is still given by (8).
The proof then follows from the fact that Cox distributions form a dense subset within the set of all
distributions of nonnegative random variables. Services at node ¢ consist of M; exponential phases of
respective means o;/pi;, 7 = 1,..., M;. At the end of the j-th phase, a service at node i enters the
(4 + 1)-th phase with probability p;; and ends with probability 1 — p;; (with p;a;, = 0). We denote by
v;; the number of customers at node ¢ whose service is in phase j. The stochastic process {Y (t)}+>0
describing the evolution of the network state y = (y;;,i = 1,...,N;j = 1,...,M;) is an irreducible
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Markov process for which the balance equations write:

N M;
) Y|Pt Y i@ | ©(y) — pimly — fi)
i=1 " j=1
M; M,
o Z ¢ij(y — fij+1 + fij)uijpz'jﬂ(y = fij+1 + fij) - Z %‘j(y + fij),uij(l — pij)ﬂ'(y + fij) =0,
Jj=1 j=1

where f;; is the unit vector corresponding to a single customer at node ¢ with a service in phase j, and
1;; is the service rate of the y;; customers at node ¢ with a service in phase j:

M;
Yij(y) = fﬁf’i(w), with @ =Y yij.
K3 le

Applying the same reasoning as above, it follows from the insensitivity of the successively considered birth
and death processes that any weak limit 7 of the probability measure 7, obtained by letting o1,...,0n8_1
successively tend to 0, satisfies:

N
yNi,Zj-VI:il Yij=%; =1

O

Proof of Theorem 4. We assume without loss of generality that 7 is the limiting distribution obtained
when 1,09, ...,0N_1 successively tend to 0, with fixed traffic intensities p1, p2, ..., pn—1. Let 7; and &;
be defined as in Theorem 3, for 1 = 1,...,N. Note that 7; depends on the traffic intensities p1,...,p;
only. We prove that the probability measure 7;(,Z;t1,...,Zn) increases with respect to p1,...,p; and
Zi+l,---,ZN, in the sense of the stochastic order <. The proof is by induction on ¢. The property
holds for ¢ = 1 in view of the monotonicity property. Let 7 > 2 and assume the property holds for
j=1,...,5— 1. Writing

¢i($i,...,$N) = Z’l_'{'i_l(ib‘i_l,...,.’EN) Z '/_ri_Q(.’L'Z'_Q,... ,:L‘N) ...Zﬁl(wl,...,xN)qSi(x),

ZTi—1 Ti—2

and applying successively the property for j = 1,...,7 — 1, we deduce from the monotonicity property
that the function ¢;(-, z;11,...,zy) decreases with respect to p1,...,p;—1 and z;1,...,zx. The property
then holds for i since (-, jt+1,...,2n) is the stationary distribution of a birth and death process with
birth rate p; and death rate ¢;(-, z;11,...,2x). Now for any increasing function f, writing

Elf(X)] =) #wn(zy) > *n-i(zn-1,28)--- Y &1(21,- .., 28) f (),

IN-1

and applying successively the above property for i = 1,..., N, we deduce that E[f (X)] is an increasing
function of p1,...,pn. In particular, E[f(X)] decreases to E[f(Ynen)] when p1,...,pn_1 tend to 0.
If E[f(X)] < oo, we have

Y aifoion £ (@) 8(@) T, o7
Yo @@ I, P

20

E[f(X)Lx5n)) =




Thus for any € > 0, there exists n > 0 such that for any traffic intensities smaller than p1,..., pn,

Bl (X)L xsm) <&

In view of Theorem 1, Corollary 1 and Proposition 3, we obtain

E[f(X){ z15n}) < Elf (X)) x15m)) <

Now if for some j # N, f(z) = 0 for all states z such that z; = 0, we have

E[f (X)1{x/<n)] Py
Bl = S an(ew) (0,250, ) m(z1,- .., zN)f(2).
Pj @:|z| <n,z;>0 Hy:l (:b] (y7 Tjt1ye-- 7xN)
We know that for any ¢ < N, the probability measure 7i(+, Zit1,- - -, ¢n) decreases to the Dirac measure in
0 when pi, ..., p; decrease to 0 while the function ¢;(, z;11,...,2n) tends to ¢;(0,...,0,,Zit1,...,TN)
when pi,...,pj—1 tend to zero. As the probability measure 7y (-) decreases to {(xy when pi,...,pn_1
decrease to 0, we obtain for sufficiently small traffic intensities p1,...,pn-1,
E[f(X ]I{|X\<n} flyen +¢5)
Z CN(y) <e.
¢J yen + €;)
We conclude that
X et flyen + ej
lim ~N(y).
0N p g dj(yen +¢€;) v ly)
O
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