
HAL Id: inria-00588713
https://hal.inria.fr/inria-00588713v3

Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Improvements on the Discrete Logarithm Problem in
GF(p)

Razvan Barbulescu

To cite this version:
Razvan Barbulescu. Improvements on the Discrete Logarithm Problem in GF(p). Cryptography and
Security [cs.CR]. 2011. �inria-00588713v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49408337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00588713v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

École Normale Supérieure de Lyon

Mémoire de stage de recherche en deuxième année de master

Improvements to the
Discrete Logarithm Problem

in F∗p
Auteur:
Răzvan Bărbulescu

Directeur:
Pierrick Gaudry

4 mars 2011

Laboratoire Lorrain de Recherche en Informatique et ses Applications

Contents

1 Introduction 1

2 State of Art 3
2.1 Index Calculus . 3
2.2 Smoothness . 4
2.3 Sparse Systems . 5
2.4 Complexity Analysis . 5
2.5 Sieving . 6
2.6 Double smoothness . 7
2.7 Number Fields . 9
2.8 Virtual Logarithms . 11

2.8.1 Preparation . 11
2.8.2 Schirokauer’s maps . 13
2.8.3 Definition of the virtual logs 15

2.9 Factorization Factory . 17
2.10 Descent by Special Q . 19

3 New Algorithm:
Discrete Logarithm Factory 20
3.1 The algorithm . 20
3.2 Admissibility . 21

3.2.1 The early abort selection method 21
3.2.2 Early abort strategy . 25

3.3 Complexity Analysis of the Discrete Logarithm Factory 31
3.3.1 Smoothing . 31
3.3.2 Descent . 32

4 Conclusion and Perspectives 37

2

Chapter 1

Introduction

For long, number theorists have been puzzled by the equation T x ≡ S mod p. One
calls x the index or the discrete logarithm of S in base T , and computing the index
is called discrete logarithm problem, or DLP in short. Bouniakowsky [Bou70] gave
the first algorithmic solution in 1870 and half a century later Kraitchik [Kra22]
created the first sub-exponential method. Nevertheless, Kraitchik’s work was for-
gotten and in 1971 Shanks gave a new solution called Baby-Step-Giant-Step with
poorer performance: O(p

1
2). In the 70s everything made computer scientists be-

lieve that the DLP was a difficult problem1. Thus in 1976 Diffie and Hellman
used exponentiation in (Z/pZ)∗ as a potential one-way function and thanks to this
example showed that the public key cryptography is feasible. Later came DSS
and ECC which rely on the difficulty of DLP in F∗pn and on the elliptic curves,
respectively.

In what follows we consider exclusively the case of F∗p since a couple of issues
make it the most important case for DLP. First, Bach [Bac84] proved that the DLP
in (Z/NZ)∗ is equivalent, by polynomial-time reductions, to the pair of problems
(factorize N and solve discrete logarithm for all prime factors p of N); moreover
the Silver-Pohlig-Hellman algorithm [PH78] makes reduction from (Z/NZ)∗ to F∗p
effective. Next, every time a fast algorithm was designed for F∗p, it was adapted
to the case (Fpn)∗ with no loss of speed. Even though the converse is not true
since Coppersmith designed an algorithm for (F2n)∗ faster than those for F∗p, one
continues to use the case of prime fields as a starting point for the case of the most
difficult finite fields, i.e. when log(p) is large compared to n. Finally, in the case
of the elliptic curves no sub-exponential general purpose attack was published in
the 25 years since ECC was created, but all the attempts try to replicate Index
Calculus.

1Diffie and Hellman write in [DH76] “However we assume that the best known algorithm for
computing logs mod q [i.e. Giant-Step-Baby-Step] is in fact close to optimal and hence q

1
2 is a

good measure of the problem’s complexity, for properly chosen q”.

1

Contrary to the case of factorization in which the input is a composite number
N , in the case of DLP we are given a prime number p, a generator T of F∗p and
an element S of F∗p. Therefore the DLP based cryptosystems fix p and T and
leave to S the role of secret piece of information. But in 2003 Joux and Lercier
[JL03] implemented an algorithm which significantly speeds up the computations
if p is known in advance. The algorithms which followed have two parts: one
which depends only on p called precomputations and one which depends on T
and S called individual logarithm. Notice that this structure of algorithms is
also useful in a number theoretical context where one might want to compute the
discrete logarithm for a unique p and a set of values of S. In 2006 Commeine
and Semaev [CS06] published an algorithm with complexity Lp(1

3
, 1.902) for the

precomputations and Lp(
1
3
, 1.442) for the individual logarithm. Remember the

traditional notation:

Lx(s, c) = exp(c(log x)s(log log x)1−s)

where log denotes the natural logarithm. Sometimes we drop x and/or the second
constant and write L(s) or Lx(s). When speaking about algorithmic complexity
we write Lx(s, c) instead of Lx(s, c)1+o(1).

In this paper we improve Commeine and Semaev’s algorithm in two ways. First
we show a method to speed up the precomputations to Lp(1

3
, 1.639) using an idea

of Coppersmith [Cop93] called Factorization Factory. For now, this algorithm is
of theoretical interest only because, for computing DLP for values of p in the
range p0 < p < p0 · Lp0(2

3
, 0.905), it requires a permanent storage space of size

Lp0(1
3
, 1.639) computed in time Lp0(1

3
, 2.007). Later we present a way to speed up

the individual logarithm to Lp(1
3
, 1.232). This idea works as well in theory as in

practice and is inspired from a paper of Pomerance [Pom82].
The second chapter is a short overview of many algorithms related to factor-

ization and DLP. This can be used both as a general introduction to the field or to
the state-of-art algorithms for DLP in particular. See the graph at the end of the
report for the relations between different algorithms. In the third chapter we give
full details for the individual logarithm. In particular we explain the early abort
strategy and prove two theorems of analytic number theory.

2

Chapter 2

State of Art

2.1 Index Calculus
The main idea of all the sub-exponential algorithms for discrete logarithm is as
follows: start by collecting linear relations between discrete logarithms of several
elements, next solve the linear system obtained and finally express the discrete
logarithm of S in terms of the computed discrete logs. Discovered for the first
time in 1922 by Kraitchik [Kra22], the idea was rediscovered in connection with
the Diffie-Hellman cryptosystem in 1977 [Poh77],[Adl08]. A key notion for the
algorithm is smoothness.

Definition 1 Let P be a set of prime numbers that we call factor base. An integer
n is P-smooth if all the prime factors of n are in P. If P is the set of prime
numbers less than a bound B then we say n is B-smooth.

The shape of the algorithm below deserves particular attention because many
recent algorithms speeded up each step of Index Calculus rather than changing
the big lines. We call pi the ith prime number.

Algorithm 1 Index Calculus

INPUT : T, S ∈ F∗p such that T spans F∗p; a prime factor q of p− 1.

OUTPUT : logTS modulo q.

0. Set B ← [Lp(
1
2
, 1√

2
)], R← π(B);

1. Choose and check random h until R values of h are found such that Remainder(T h,p)
is B-smooth; write each equation of type T h mod p = pe11 . . . peRR in additive
form:

h = e1 logT (p1) + . . .+ eR logT (pR) mod q; (2.1)

3

2. Solve the sparse linear system of size R×R with solution {logT l mod q| where l ≤
B is prime };

3. Choose and check random h until one value is found such that Remainder(T hS,p)
is B-smooth; this gives a relation of the form:

T hS mod p = pf1

1 . . . pfRR ; (2.2)

4. Output x = (f1 logT p1 + . . .+ fR logT pR − h) mod q.

Notice that the input and the output are not the most general possible. Indeed,
one can ask for logT S mod (p − 1) with S ∈ 〈T 〉 6= F∗p. It is solved by doing as
follows: factor p− 1; find a generator ρ of F∗p; compute logρ T and logρ S for each
prime factor q of p − 1; compute by the Chinese Remainder Theorem an l such
that l ≡ logρ S

logρ T
mod q for all q; output l. One finds ρ by random picks since the are

ϕ(p−1) generators in F∗p and a raw inequality is ϕ(p−1)
p−1

> 1
log(p−1)+5

. In practice we
test the values 2, 3, . . . in a row, which is justified by Shoup [Sho90] if the Extended
Riemann Hypothesis is true. It also allows us to consider T smooth in the sequel.

2.2 Smoothness
One can expect the smooth numbers to be rare. Still, they are many enough to be
used in DLP algorithms and we can estimate their number. Let’s denote ψ(x,B)
the number of integers smaller than x which are B-smooth. The following theorem
of Candfield, Erdös and Pomerance published in 1983 estimates ψ(x,B).

Theorem 1 Let ε be a positive constant. Then it holds:

ψ(x,B)/x = u−u(1+o(1))

uniformly in the region x ≥ 10 and B ≥ (log x)1+ε, where u = log x
logB

and the limit
implicit in the o(1) is for u→∞.

proof as theorem 3.1 in [CEP83].

Corollary 1 Let x = Lp(a, b)
1+o(1) and B = Lp(c, d)1+o(1) with (c, d) < (a, b) in

lexico-graphical order. Then ψ(x,B)
x

= Lp(a− c, (a− c) bd)−1+o(1).

Smoothness would not be such an interesting property without an efficient way
to test it. The best algorithm for this purpose is the Elliptic Curves Method,
abbreviated ECM . Indeed, let’s call x the number to test and B the smoothness
bound. Let’s call an ECM run to launch ECM on as many curves as we can in

4

time LB(1
2
,
√

2) · (log x)O(1). As explained by Lenstra in [Len87], the result can
be either a proper factor of the number or "not smooth" which is correct with
probability 1/2. If we find a factor we make a next run and continue until we find
the answer "not smooth" or we find all the factors of x. Since the total number of
factors of x is less than log2 x, it doesn’t count in L-notation. Therefore the total
time of a smoothness test is LB(1

2
,
√

2) · (log x)O(1). In the case of NFS we have
B = Lp(c, d)1+o(1) and the smoothness test takes time Lp(c2 ,

√
2cd)1+o(1).

2.3 Sparse Systems
Since one deals with large linear systems, even a minor speedup of the algorithms
for solving linear systems has a significant asymptotic effect. The naive method,
i.e. Gaussian elimination, has complexity O(n3) while the best algorithm for solv-
ing linear systems has a complexity of O(nw) with w ≈ 2.49 (see [CW08]). Still,
the system in Index Calculus is sparse, i.e. it cannot have more than O(log(p))
nonzero entries per line. Indeed, the lines of the matrix in the linear system are
the valuation vectors of numbers of size p in a factor base. Since each prime is
larger than 2, a number of size p has at most log2(p) prime divisors by counting
multiplicities. Therefore, each line of the linear system has at most O(log(p))
nonzero entries. Several algorithms like [Wie86] were designed to solve sparse sys-
tems in O(n2w) where w is the the weight, i.e. the number of nonzero entries
per line. In the first approximation, for the algorithms evolved from Index Calcu-
lus, if the system solved has size Lp(s, c) × Lp(s, c) then the linear algebra costs
Lp(s, c)

(1+o(1))·2 · log p = Lp(s, 2c)
1+o(1).

2.4 Complexity Analysis
Pomerance writes in [Pom08] that he created the Quadratic Sieve while looking at
the complexity analysis of former algorithms and thinking about which step can
go faster. In order to compute the complexity of Index Calculus we consider the
following problem:

Problem 1 Let N ∈ N be given. Assume one can use a generator of random
numbers of size LN(σ, γ) with σ ∈ (0, 1) and γ > 0 fixed. Assume also that
one can inspect for smoothness in negligible time. Choose convenient parameters
s ∈ (0, 1) and c > 0 and design an algorithm which in optimal time finds [LN(s, c)]
numbers LN(s, c)-smooth and then solves a sparse linear system of size LN(s, c).

Index Calculus spends part of its time on solving problem 1 for N = p, σ = 1
and γ = 1 by a choose&check strategy. Indeed, step 1 solves the first part of

5

the problem because we find π(Lp(s, c)) relations with π(x) = #{p prime ≤ x}
and because according to the Prime Number Theorem π(x) ∼ x

log x
which is x

in L notation. Next, step 2 solves a sparse linear system of size π(Lp(s, c)) =
Lp(s, c)

1+o(1).
The time needed for step 1 is Psmooth(Lp(σ, γ), Lp(c, s))

−1 · Lp(s, c) · ttest with
ttest the time of a smoothness test. At the time Index Calculus was published ttest
used to be important because the test was trial division. But thanks to ECM
testing smoothness became sub-exponential, so we can neglect it in L notation.
According to the section Sparse Systems step 2 takes time Lp(s, c)2 = Lp(s, 2c).
Therefore steps 1 and step 2 in Index Calculus have complexity:

Lp(σ − s, (σ − s)
γ

c
)Lp(s, c) + Lp(s, 2c). (2.3)

We minimize this expression for fixed σ and γ by taking s = σ
2
and c =

√
σγ
2
.

Since σ = 1 and γ = 1, time(step 1 + step 2)=Lp(1
2
,
√

2). One checks that step 3
is negligible, so

time(Index Calculus) = Lp(
1

2
,
√

2)1+o(1).

Remark 1 Every time an algorithm was designed for factorization using smooth-
ness and linear algebra, there was an algorithm for DLP with the same complexity.
Nevertheless it does not imply the two problems are connected. It is rather a con-
sequence of reducing both problems to instances of same size of problem 1.

2.5 Sieving
We decide to replace choosing random numbers and testing their smoothness by
a routine which finds smooth numbers all at once. In this way we save the time
for smoothness testing even though it does not count in the L notation of the
complexity (and unfortunately uses more space)1. The procedure goes as it fol-
lows. First make an array in which the nth position records [log2(n)]. Then for
each prime number p (first untouched entry of the array, not p in DLP) sub-
tract [log2 p] from p, 2p . . ., then subtract log2 p form p2, 2p2, . . . and so on. At the
end, the entries of the array which are almost zero correspond2 to smooth num-
bers. Let’s call A the cardinal of the sieving array and we impose the condition
A ≥ B. Then the time needed for a sieve is A · (

∑
p prime
p<B

1
p
) which leads3 to a

1Pomerance used this idea from Schroeppel to create the Quadratic Sieve. It was a significant
advance because at that time smoothness used to be tested by trial division.

2See [Sil87] for a precise practical analysis.
3Use the formula

∑
p prime
p<x

1
p ∼ log log x, an easy corollary of the Prime Number Theorem.

6

complexity A · log log(B) which is A1+o(1). If we want to find [Lp(s, c)] numbers
of size Lp(σ, γ) which are Lp(s, c)-smooth then we need to satisfy the condition
Psmooth(Lp(σ, γ), Lp(s, c))A ≥ Lp(s, c). Thus the complexity for solving problem 1
with the sieve is A1+o(1) = Lp(s, c) · Psmooth(Lp(σ, γ), Lp(s, c))

−1 which is exactly
the complexity of the choose&check strategy.

Next, if we want smooth values for a polynomial f ∈ Z[X] we can sieve on pairs
(x, y) such that |x|, |y| ≤

√
A. For each x0 such that |x0| ≤

√
A and each prime p

we find in polynomial time of deg(f) and p an y0 ≤ p such that p | f(x0, y0). Then
we sieve on (x0, y0), (x0, y0 + p), (x0, y0 + 2p) One can read a detailed proof in
[Sch93].

2.6 Double smoothness
An important idea is to replace a relation of type th mod p = pe11 . . . perr by two
half-equations as below4:

{
γ = pe00 p

e1
1 . . . perr

γ = qf0

0 q
f1

1 . . . qfss
(2.4)

The advantage is when γ, the number we inspect for smoothness, is significantly
smaller so we need to repeat the choose&check step less times. In order to obtain
two equations like (2.4) one can use for instance imaginary quadratic fields5, i.e
Q[
√
−s] with s ∈ N. Suppose one wants to compute the discrete logarithm in Fp.

One picks r in {−1,−2,−3,−7,−11,−19,−43,−67,−163}6 such that X2 − r ≡
0 mod p has roots in Fp. For example there is 50% chance for one to have r = −1
in which case one deals with Z[i], the Gaussian integers. If no value of r works we
use a different algorithm.

The factor base of prime numbers we had in Index Calculus is replaced here
by two factor bases: one of prime numbers less than B and one of prime elements
in Z[

√
r] with norm less than B with B = [Lp(

1
2
, 1

2
)]. Together, the two factor

bases have less than B elements since for each rational prime l there are at most
4The Gaussian Integers Algorithm is described briefly in [COS86]. It is noticeable that in

the same article the authors describe in detail another algorithm of same complexity in the first
approximation, but a worse one in a closer look. The better complexity for the Gaussian Integers
Algorithm was confirmed in practice since it was the fastest DLP algorithm between 1986 and
1998.

5The quadratic fields have been used for the first time to compute discrete logarithm in
GF (p2). See [ElG02]

6The list is such that Z[
√
r] is a unique factorization domain according to Class Number

Problem of Gauss which was solved by Stark [Sta07].

7

two primes of Z[
√
r] with norm divisible by l and because π(B) < B

3
for B > 10.

The pleasant property of Z[
√
r] is that the norm is multiplicative, i.e. by putting

N(a+b
√
r) = a2−rb2 we haveN(xy) = N(x)N(y) for all x, y ∈ Z[

√
r]. This means

we test for smoothness by simply testing the norm for smoothness. Moreover, if we
want to factorize an element x we start by factorizing N(x) and then we compute
for each prime l | N(x) the irreducible elements li ∈ Z[

√
r] such that li | a. Indeed,

the condition li | a is equivalent to a system of two linear equations.
The algorithm starts by computing a generator b = e+ f

√
r of the unit group

of Z[
√
r] which is added to the factor base. Next it finds a root X0 of X2 − r ≡

0 mod p, computes a pair (T, V) ∈ Z2 such that T ≡ X0V mod p and 0 ≤ T, V <√
p7 and adds V to the factor base. Let us call E = Lp(

1
2
, ε) for some parameter ε.

The algorithm continues by sieving for values of (c, d) ∈ [−E,E] such that both
cT0 +dV0 and N(c+

√
rd) are B-smooth. Since Z[

√
r] is here a unique factorization

domain and b is a generator of the unit group one can write

c+ d
√
r = bf0lf1

1 . . . lfss (2.5)

for li irreducible(prime) elements in Z[
√
r]. Since N(c+

√
rd) = N(l1)f1 . . .N(ls)

fs

and N(c+
√
rd) is B-smooth, the li are in the factor base. Similarly, since cT0 +dV0

is B-smooth, one can write:

cV + dT = (−1)e0pe11 . . . pekk (2.6)

with the pi in the rational factor base. Since T = X0V , we have cV + dT =
V (c+X0d). Put φ : Z[

√
r]→ Z/pZ, a+b

√
r 7→ a+bX0. It is a ring homomorphism

because both X0 ∈ Fp and
√
r ∈ C are roots of X2 − r. The next system is (2.6)

and V · φ((2.5)) and concerns elements of Z/pZ:{
V (c+ dX0) ≡ (−1)e0pe11 . . . perr
V (c+ dX0) ≡ V φ(b)f0φ(l1)f1 . . . φ(ls)

fs

The linear algebra step finds the discrete logarithms of the pi, the φ(li), φ(b) and
V . This is possible because we don’t start the linear algebra step until the number
of equations exceeds that of unknown.

Where does the advantage come from? Since cT0+dV0 ≤ 2
√
p·E = Lp(1,

1
2
)1+o(1)

and N(c+ d
√
r) = O(1)(c2 + d2)= Lp(1,

1
2
)1+o(1), the pair (c, d) is twice B-smooth

with the probability that a number of size √p is B-smooth. Thus the complexity
of the Gaussian Integers algorithm is given by the equation 2.3 with σ = 1 and
γ = 1

2
. Thus we have:

complexity(Gaussian Integers) = L(
1

2
, 1)1+o(1).

7Finding such T and V is called rational reconstruction of X0 and takes polynomial time. For
a proof use theorem 4.3 at page 58 in [Sho09].

8

2.7 Number Fields
In section Double smoothness we used fields K such that [K : Q] = 2. Why not
to use fields of higher degree? That’s exactly what Pollard did in 1988 to factor
2128 + 1, Fermat’s 7th number. It is a particular8 case of NFS which we explain
in the next lines.

Let f1, f2 ∈ Z[X] be two monic irreducible polynomials which share a root
m in Fp. In what follows i = 1, 2. Let’s denote Ki the rupture field of fi and
let’s call αi a root of fi in Ki. Let’s call Oi the ring of integers in Ki. Put
pi = (αi − m)Oi + pOi which is obviously an ideal above p, i.e. which contains
pOi. Theorem 2 below shows that pi is prime9 and Oi/pi ' Z/pZ. Therefore one
can define φi : Oi → Z/pZ, x 7→ x mod pi. In particular for all b0, . . . , bd−1 in Z
we have φi(b0 + b1αi + . . .+ bd−1α

d−1
i) = b0 + b1m+ . . .+ bd−1m

d−1 mod p.
Let a + bX be in Z[X]. Then a + bX modulo fi is in Z[X]/〈fi〉 =Z[αi] ⊂ Oi.

Since φ1(a+ α1b) = a+mb = φ2(a+ α2b), the diagram below is commutative.

Z[X]
mod f1

||

mod f2

""

a+ bX
X 7→α1

yy

X 7→α2

%%
O1

φ1 ""

O2

φ2||

a+ bα1

α1 7→m %%

a+ bα2

α2 7→myy
Fp a+ bm

How do we collect pairs of half-equations as in Double smoothness?
Since in general Z[αi] is not an UFD, there is no canonical factorization into
irreducible elements. Therefore we replace Z[αi] by Oi and prime elements by
the prime ideals. In this way we keep the unique factorization property because
OKi is a Dedekind domain. A sieve will find many couples (a, b) such that both
NK1(a+α1b) and NK2(a+α2b) are smooth. This is possible because NKi(a+αib) =
bdeg(fi)fi(−a

b
) is a polynomial in a and b.

But the unique factorization is not useful without a way to factorize a principal
ideal δO into prime ideals. The good news is that there is an algorithm of Buch-
mann and Lenstra (6.2.2 in [Coh93]) which does so with the same10 complexity we
need to factor NK(δ) into prime numbers.

8Pollard used Z[3
√

2] while in NFS we use arbitrary number fields.
9We need p - disc(f) which is easy to obtain.

10If factorization takes time T which is sub-exponential, Buchmann-Lenstra takes time T ×
(polynomial) = T 1+o(1) which is the same in L notation.

9

We can even forget about the Buchmann-Lenstra algorithm without changing
the complexity in L notation. Indeed, as it is shown on the diagram 2.7 we only
factor into ideals elements of the form (a + bα). We call badly ramified(or bad)
for f a prime number l such that l | [OK : Z[α]]. The theorem below shows that
if N(a + bα) does not have badly ramified factors then the time to factor a + bα
is the time to factor N(a+ bα) times an inversion modulo p.

Theorem 2 Let a, b be coprime integers such that N(a + αb) has no bad factor.
Suppose N(a+ αb) = Πil

ei
i with li prime. Then:

(i) For all prime l not badly ramified and r ∈ Z/lZ root of f , the ideal u0 :=
(α− r)O + lO is prime and N(u0) = l;

(ii) For all i, b is invertible modulo li. We can put ri = −b−1a mod li and
ui := (α− ri)O+ liO. Then ui is the unique ideal of O above both (a−αb)O
and li;

(iii) (a− αb)O = Πiu
ei
i .

proof :

(i) One easily checks that [Z[α] : (u0

⋂
Z[α])] = l. Call c the index [O : Z[α]].

Since l is not badly ramified, we have l - c and therefore for all x ∈ O we
have [x − (c−1 mod l) · c · x] ∈ lO ⊂ u0. Hence we obtain [O : u0] = [Z[α] :
(u0

⋂
Z[α])] = l. Therefore u0 is prime and has norm l.

(ii) Since gcd(a, b) = 1 andN(a+αb) = bdeg(f)f(−a
b
), we have gcd(b,N(a+αb)) =

1 so ri exists. Since α − ri ∈ ui we have a + αb = (−b) · (α − ri) ∈ ui, so ui
is above a+ αb.

Conversely, let u be a prime ideal above (a− αb)O and li. Since li - b, there
exists b′ ∈ Z such that b′b− 1 ∈ liZ ⊂ u. Since (−b)(α− ri) = a+αb ∈ u we
obtain α − ri ∈ u. Therefore we have ui = (α − ri)O + liO ⊂ u. Since ui is
prime (maximal in Dedekind domain), u = ui.

(iii) We have N(a + αb) = ΠiΠu above (a+αb)O and liON(u)eu for some integers eu.
By (i), N(a + αb) = ΠiN(ui)

eui . Since [O : ui] = li we have N(ui) = li and
we conclude ei = eui .�

Nevertheless, in practice we do not avoid bad primes because it would force
us to loose all the twice-smooth numbers with bad factors. Think about the case
when 2 is bad. Hence we use Buchmann-Lenstra exactly for those numbers with
badly ramified primes.

10

Why is the complexity of NFS of type L(1
3
)? Number fields bring several

obstructions which make the algorithm long, and its rigorous analysis complicated.
Still, at this stage of the presentation we can foresee that there is an algorithm
and even roughly estimate it’s complexity. Indeed, the numbers we inspect for
smoothness are of size p in Index Calculus and of size √p in the Gaussian Integers.
We will see that for the Number Fields we can expect Lp(2

3
).

In the complexity analysis we need to know the cardinal of the factor bases.
Call B the smoothness bound and suppose deg(K1), deg(K2) = O(log(B)s) for
some s < 1. Then the union of factor bases has less than B elements11. Indeed,
there are π(B) ∼ B/ log(B) prime numbers less than B. Each prime number
splits into at most di := deg(Ki) prime ideals in Ki for i = 1, 2. In total (d1+d2)B

log(B)

elements. Since d1, d2 = O(log(B)s) we have (d1+d2)B
log(B)

< B.
The time spent by the algorithm is of type Proba(smoothness) · B + B2 by

analogy with the Gaussian Integers. Let’s compute parameters s, e and θ such that
B = L(s), E = L(e) (the sieve bound) and m = L(θ) optimize the time. For all
pair (a, b) ∈ Z2 and for i = 1, 2 we have N(a + bαi) = bdfi(−a

b
) = O(dL(s)d|fi|∞)

where |fi|∞ stands for the largest coefficient of fi. We can guarantee |fi|∞ ≤ m by
taking f1(X) = X−m and f2(X) the base-m-expansion of p, i.e. d2 = d = [logmp]
and f2(X) = adx

d + ad−1X
d−1 + . . .+ a0 with p = adm

d + . . .+ a0. We can impose
ad = 1 by taking m close to N

1
d but we do not need this in a first approximation.

This choice of polynomials forces us to take d = log(p)/log(m) = log(p)1−θ

(log log p)1−θ . Thus
we have N(a + bαi) ≤ L(max〈e + 1 − θ, θ〉). We minimize the norm for θ = 1+e

2
.

We optimize the sieve if E = Psmooth(L(e+1
2

), L(s))−1 which imposes e = 1 − 2s.
Hence the sieve takes time E2 = L(e)2 = L(e) = L(1 − 2s). Since the linear
algebra step takes time B2 = L(s)2 = L(s) a trade-off sieve-linear algebra is s = 1

3
.

This means that the number we inspect for smoothness, the product norm times
absolute value, has size Lp(2

3
) which is tiny compared to √p for Gaussian Integers.

Using equation 2.3 we obtain:

complexity(NFS) = L(
1

3
).

2.8 Virtual Logarithms

2.8.1 Preparation

The obstructions of the NFS come from the difference between the output of the
sieve and the input of the linear algebra step. Indeed, on the one hand the sieve

11In practice all our prime ideals are of degree one except those above bad primes. In average
a polynomial of given degree has at most one root modulo each prime number, so a thumb rule
for the number of prime ideals is 2 · π(B).

11

finds systems of type: {
δO1 = pe11 . . . pekk
δO2 = qf1

1 . . . qfll .

On the other hand the linear algebra step needs linear equation of type

e1“log(p1)′′ + . . .+ ek“ log(pk)
′′ = f1“ log(q1)′′ + . . .+ fl“ log(ql)

′′ mod q

where q|p− 1 and “log(pi)
′′ is something that we do not know how to define.

There were two solutions found: one is to change what the linear algebra
computes, the other is to give a deeper explanation for Index Calculus. In the
first, one puts K1 = Q and during the linear algebra step computes a vector
〈x(a,b)| (a, b) is double smooth〉 and an integer x such that T xSΠ(a,b)(a+bα1)x(a,b) =
1 mod p and Πa,b(a+ α2b)

x(a,b) is a qth power. As a consequence T−x ≡ S mod p.
The disadvantage is that the linear algebra step depends on S, so the individ-
ual logarithm is as expensive as the precomputations. This is the case for both
Gordon’s [Gor93] and Schirokauer’s [Sch93] algorithms.

The other solution is to see that the discrete logarithms of the factor base in
Index Calculus are nothing but the coordinates of a vector (l1, . . . , lR) with R =
π(B1) and such that if S is B1-smooth and if we know a factorization S = pe11 . . . peRR
of S then logT (S) = e1l1 + . . .+ eRlR.

Let’s be more precise. As usual p denotes the prime in input for DLP and q a
prime divisor of p−1. Call S = {p1, . . . , pR} the factor base used in Index Calculus.
In the diagram below KS = {pe11 . . . peRR |e1 . . . eR ∈ Z}. Call φ the projection of
Z on Z/pZ which induces a map φ|KS : KS → F∗p. Put φ : KS/K

q
S → F∗p/(F∗p)q

the obviously induced map. Put ψ(x) = (valp1(|x|), . . . , valp|S|(|x|)) which gives
an isomorphism ψ : KS → (Z/qZ)|S| and call E = (Z/qZ)|S| which is a Fq-vector
space. Finally put ψ : KS/K

q
S → (Z/qZ)|S| the obviously induced map.

F∗p/(F∗p)q

logT $$

KS/Kq
S

φoo ψ //

lT
��

(Z/qZ)|S| = E

ϕ
xx

Z/qZ

Let’s put ϕ = lt ◦ ψ
−1 and notice that we have ϕ ∈ E∗. Now we understand

Index Calculus in a different way: during the chose&check step we collect |S|+ k,
k = O(1), pairs (vi, ϕ(vi))1≤i≤|S|+k and for heuristic reasons we expect the family
(vi)1≤i≤|S|+k to have rank |S|. The linear algebra step is finding the matrix of ϕ
from the values ϕ takes on a base. Finally the step 3 in Index Calculus is finding
a relation between S and an element S ′ in KS, computing the exponent vector

12

e = ψ(S ′) and obtaining logT (S ′) = ϕ(e). In short, steps 1 and step 2 find the
horizontal vector in the next equation while step 3 finds the vertical one.

logT (|S|) =
(
logT (2) . . . logT (pR)

)
·

e1
...
eR

 . (2.7)

Notice that we compute the discrete log of |S| instead of S since one can check
that logT (−1) = p−1

2
. The case of −1 is explained below together with the other

roots of unity.

2.8.2 Schirokauer’s maps

Let q denote as usual a prime divisor of p − 1 and K a number field (one of the
two or more used in NFS). In the sequence we suppose q2 - p − 1 and q - hK ,
the class number of K. Indeed, if q ≤ Lp(

1
3
, 2) then we use the Pollard’s Rho

method12 instead of NFS, so we don’t need Schirokauer’s maps. If q is larger we
have a probability13 of at least (1 − 1

q
) that q does not divide the class group

order of K. It is then reasonable in practice to forget about the case q | hK . In
theoretical study if this case occurs we run again the whole algorithm for a different
polynomial f . It does not change the asymptotic complexity. A second difficulty
comes if qe||p − 1 with e ≥ 2. In this case the algorithms must be adjusted, but
the modifications are short and they are described in detail in [Sch93].

Remember Dirichlet’s Theorem which says that O∗K is isomorphic to µ ×
ZrR+rC−1 where (rR, rC) is the signature14 of K and µ is the group of roots of
unity. If gcd(#µ, q) = 1, then15 O∗/(O∗)q ' (Z/qZ)rR+rC−1. As it comes to roots
of order q, we avoid them by imposing q - disc(f) when we select f (in practice
we ignore them). The lemma below makes it clear:

Lemma 1 Let f be an irreducible polynomial in Q[X] and K its rupture field. If
q is an odd prime number such that q - disc(f), then K has no roots of unity of
order q.

proof Suppose ξq ∈ K is a qth root of unity. Then Q(ξq) ⊂ K. As a consequence
all the prime numbers ramified over Q(ξq) are ramified over K. It is known that
|disc(Q(ξq))| is a power of q, so q is ramified over Q(ξq), thus over K. Therefore

12Despite the bad complexity of Pollard’s Rho, it is still fast enough. Indeed √q ≤ L(1
3 , 2)

1
2 =

L(1
3 , 1)..
13See [CL84] for heuristics on the class group number.
14K has rR embeddings in R and 2rC more in C. Remember that r1 + 2r2 = d.
15One can check that the roots of unity are all qth powers. It makes the condition Schirokauer

[Sch05] puts when defining virtual logs superfluous.

13

q divides disc(K) and since disc(K)2[OK : Z[α]] = ±disc(f), we deduce that q
divides disc(f).�

Now that we know there is an isomorphism O∗/(O∗)q ' (Z/qZ)r with r :=
rR + rC ≤ d we want to compute it. The naive idea is to map O∗ in Rr by x 7→
(log |ψ1(x)|, . . . , log |ψr(x)|) where ψi are embeddings of K into C. Unfortunately
we do not know how to use this idea without executing the linear algebra step over
Z. If we do so even a sparse system like ours costs O(B3) with B the size of the
system and we obtain a poorer complexity. For example Gordon [Gor93] obtained
Lp(

1
3
, 2.080) for his discrete log by NFS. Instead we define r maps (λ1, . . . , λr) :

O∗ → (Z/qZ)r such that the only x which verify (λ1(x), . . . , λr(x)) = (0, . . . , 0)
are the qth powers.

Definition 2 Let q be a prime factor of p − 1 which is unramified16 over K and
pick a base b of the free Z-module OK. Let f = Πi≤kfi be the decomposition
of f in Fq and ε = lcm{degfi, 1 ≤ i ≤ k}. In the lemma below we show that λ :
O∗K/(O∗K)q → qOK/q2OK, u 7→ uε−1 mod q2OK is a well defined homomorphism.
We call maps of Schirokauer the coordinates λ1, . . . , λd of λ in the base b.

Notice that one computes the maps of Schirokauer in polynomial time. Also
notice that we defined d maps of Schirokauer while we announced that r of
them are enough. This is because the theorem below shows that the applica-
tion (λ1, . . . , λd) : O∗K/(O∗K)q → (Z/qZ)d has rank r and therefore one can select
in polynomial time r indices i1, . . . , ir such that ker(λ1, . . . , λd) = ker(λi1 , . . . , λir).
So, the application (λi1 , . . . , λir) : O∗K/(O∗K)q → (Z/qZ)r is what we need.

Lemma 2 The map λ : O∗K/(O∗K)q ' qOK/q2OK, u 7→ uε − 1 mod q2OK is a
group homomorphism.

proof : Let γ, γ′ ∈ O∗K . For all 1 ≤ i ≤ k, qi = qOK + (fi)OK is prime and
OK/qi ' Fqdeg(fi) . Thus, for all 1 ≤ i ≤ k γε ≡ 1 mod qi. Then, by Chinese
Remainder Theorem, δε ≡ 1 mod Πiqi, i.e. modulo qOK because q is unramified.
Therefore there exist δ ∈ OK such that γε = 1 + qδ. Similarly there exist δ′ ∈ OK
such that γ′ε = 1 + qδ′. Then we have: (γγ′)ε = 1 + q(δ + δ′) + q2(. . .). Therefore
λ is a homomorphism.�

The main theorem about Schirokauer’s maps is as follows.

Theorem 3 Let q be a prime factor of p−1 which is unramified over K. Suppose
q||p− 1, q - hK and [(OK)∗

⋂
(1 + q2OK)] ⊂ (O∗K)q. Let γ ∈ OK be such that:

(i) ordp(γ) ≡ 0 (mod qZ) for all prime ideal p;
16The case q ramified makes no difference for the implementation, accepts a proof as long as

in the unramified case, but it makes exposition less clear. For details see [Sch93]. If one wanted
to avoid q to be ramified, one would only need to impose q - disc(f) when selecting f .

14

(ii) λ(γ) = 0.

Then γ is a qth power.

proof It is proposition 3.8 in [Sch93].
It means that, subject to the conditions of the theorem, Schirokauer’s maps

provide us with an isomorphism O∗/(O∗)q → (Z/qZ)r. The only condition which
wasn’t analyzed is the last one: (OK)∗

⋂
(1 + q2OK) ⊂ (O∗K)q. Unfortunately

we do not have an equivalent condition easy to test. It makes algorithms using
Schirokauer’s maps heuristic. Nevertheless algorithms work in practice and Schi-
rokauer [Sch93] proved that it comes to a matrix over Fq with seemingly random
entries to be invertible.

2.8.3 Definition of the virtual logs

We draw once again the diagram in the preparation but we generalize the notations.
Let K be Ki with i = 1, 2, r = ri the free rank of O∗Ki and φ = φi where φi is the
function defined in section 2.7. Call S the set of prime ideals of K which we use
as factor base. Put KS = {γ ∈ OK | all the ideal factors of γOK are in S}. Let φ :
KS → Fp be the restriction of φ to KS . Put φ : KS/K

q
S → F∗p/(F∗p)q the obviously

induced map. We put ψ(x) = (valp1(x), . . . , valp|S|(x), λ1(x), . . . , λr(x)) where the
λj are Schirokauer’s maps. We obtain an isomorphism ψ : KS → (Z/qZ)|S|+r. Call
E = (Z/qZ)|S|+r which is a Fq-vector space. Put ψ : KS/K

q
S → (Z/qZ)|S|+r the

induced map. Let logT be the discrete logarithm and logT be logT mod q. Finally
put lT = logT ◦ φ which can be called the discrete logarithm modulo q of numbers
in OK .

F∗p/(F∗p)q

logT $$

KS/Kq
S

φoo ψ //

lT
��

(Z/qZ)|S|+r = E

ϕ
ww

Z/qZ

For i = 1, 2 we define ϕi as in the diagram. We can now define the following
linear map: ϕ : Fq×F|S1|+r1

q ×F|S2|+r2
q → Fq, ϕ(k, x, y) = k+ϕ1(x1, . . . , x|S1|+r1))−

ϕ2(y1, . . . , y|S2|+r2)). We know the value of ϕ(1, 0, 0)) which is 1. We also know
|S1| + |S2| + r1 + r2 vectors in ker(ϕ). One of them is (1, ψ(x), 0) obtained from
τOK1 = Πp

ei(t)
i where τ ∈ OK1 is such that φ1(τ) = T . The others are of type

(0, ψ1(a+ α1b), ψ2(a+ α2b)).

Definition 3 The coordinates (χp1 , . . . , χp|S|1
, χ1, . . . , χr1 , χq1 , . . .) of ϕ are called

virtual logarithms. In particular χp is the virtual log of p and χj is the virtual log
of the jth map of Schirokauer.

15

We call virtual logarithms like this because we compute them in the same way we
used to compute the discrete logs of small primes in Index Calculus. Nevertheless
we do not know any interpretation of them as logarithms. Notice that we have:

∀s, logt(s) = (χp1 · · ·χp|S1|
χ1 · · ·χr1χ′q1

· · ·χ′q|S2|
χ′1 · · ·χ′r2) ·

e1(s)
...

e|S1|(s)
λ1(s)
...

λr1(s)
f1(s)
...

f|S2|(s)
λ′1(s)
...

λ′r2(s)

. (2.8)

In the past lines we stated without proof results which together make a demon-
stration of the following theorem.

Theorem 4 Let K1 and K2 be two number fields without qth roots of the unity.
Define ψ1 respectively ψ2 like on the diagram above. Then we have:

(i) For each i = 1, 2 and for each set of prime ideals Si there is a unique vector
ϕi which makes the diagram above commutative. It defines for each pair
(S1,S2) a linear form ϕ as above.

(ii) If S ′1 ⊂ S1 is a different prime ideals set then ϕ′1 is the restriction of ϕ1 to a
subspace. In particular if p ∈ S ′1 ⊂ S1, then the coefficient χp of ϕ is equal
to the coefficient χ′p of ϕ′.

(iii) Suppose in addition we have a family {(a, b)|a, b ∈ Z} such that {(0, ψ1(a +
α1b), ψ2(a + α2b))} has rank |S1| + |S2| + r1 + r2 − 1, i.e. the sieve step
managed to find a full rank family. Then the linear system {ϕ(1, ψ(x), 0) = 1,
∀(a, b), ϕ(0, ψ1(a + α1b), ψ2(a + α2b)) = 0} has exactly one solution: the
coefficients of ϕ.

It can be surprising that the definition of the virtual logarithms used the sets
Si since we proved later that the virtual logs are independent. The reason is that
we could have given an equivalent definition like the one in proposition 3.4 in
[Sch05]: χq ≡ [lT (θ) − Σr

j=1χjλj(θ)] · h−1
K mod q for any θ such that θOK = qhK .

Nevertheless our definition is more algorithmic-oriented.

16

Notice that (i) is a rephrasing of theorem 3.2 in [Sch05]. In the same paper
Schirokauer pointed out that a failure of ψ1 or ψ2 to be isomorphisms, i.e. a
failure for the heuristics we made on Schirokauer’s maps, cannot be detected until
the whole algorithm has been run.17 It should be also noted that the virtual
logarithms depend on Schirokauer’s maps which in turn depend on the bases of
OKi we use. Therefore if one records the virtual logs for later individual log
computations, one needs to record also the Schirokauer’s maps used.

An important property of the virtual logarithms is (ii), especially the unique-
ness of the coefficients χj corresponding to Schirokauer’s maps. Indeed, in some
algorithms like the descent by special Q we compute the coefficients χj using a
small set S1 but we use equation 2.8 for numbers with prime ideal factors of large
norm.

2.9 Factorization Factory18

Thanks to the Virtual logarithms the linear algebra step depends only on p which
means we can re-use it for many individual logarithms. Unfortunately we cannot
share the linear algebra step for several values of p since its result, the virtual
logarithms, are strongly related to p. Nevertheless Coppersmith [Cop93] showed
that we can share part of the sieving step. Indeed the algorithm works as soon
as we have m = Lp(

2
3
, 1
δ
)1+o(1) which allows us to use the same m for all the

primes p in [p0, p0 ·Lp0(2
3
, 1
δ
)] with p0 fixed. Since the sieve is easier, we can ask for

smooth numbers of better quality, i.e. we can lower B. Therefore the matrix in the
linear algebra step is smaller and we will obtain a complexity of Lp(1

3
, 1.639) for

the precomputations. For now 18 years this algorithm has had only a theoretical
purpose since it requires space Lp0(1

3
, 1.639).

Let’s make the computations. We use two number fields K1 = Q and K2 and a
unique smoothness bound B. Let β and δ be parameters such that B = [Lp(

1
3
, β)]

and d = [δ(log p)
1
3 (log log p)−

1
3]. Let ε be such that the permanent file records

all pairs (a, b) with |a|, |b| ≤ Lp0(1
3
, ε), gcd(a, b) = 1 and such that a + bm0 is B-

smooth. Notice that m0 is the value of m computed for p0 and is shared for all p
such that log2(p0) ≤ log2(p) ≤ log2(p0)+ 1

δ
log(p0)2/3 log log(p0)1/3. One checks that

the probability P2 for (a + bα) to be B-smooth is Lp(1
3
,

1
δ

+δε

3β
)−1+o(1). In the same

way one computes P1 the probability of a+ bm0 to be B-smooth Lp(1
3
, 1

3δβ
)−1+o(1).

The condition for the algorithm to succeed is that it finds enough relations, i.e.
17Conversely a success of the algorithm does not guaranty that the functions ψi are isomor-

phisms.
18The term "factorization factory" was coined by Coppersmith in [Cop93].

17

E2P2P1 ≥ B. This is:

2ε− 2

3δβ
− εδ

3β
≥ β. (2.9)

The time of step 1 is BP−1
2 since the time to test smoothness is negligible. The

time for step 2 is Lp(1
3
, 2β)1+o(1) as in the other versions of NFS. Therefore we

want to minimize:
max(2β, β +

1

3βδ
+
εδ

3β
). (2.10)

We impose equality in 2.9 because a smaller sieving domain means a faster sieve
and because equality means the smallest value for ε except if δ > 6γ. The case
δ > 6γ transforms our condition into a tautology which cannot be the case, so this
case does not translate any practical situation. We also impose:

2β = β +
1

3βδ
+
εδ

3β
. (2.11)

Indeed, when one minimizes max(x, f(x)) for some decreasing function f , on an
open domain, one takes x = f(x). Otherwise a small change of x would diminish
the maximum in both cases x > f(x) and x < f(x). We did not prove that
the time of the sieve is decreasing with the smoothness bound B, but we do not
want to prove that we make the best choices of parameters. If one computes
2 · (2.9) + (2.11), one obtains:

ε =
9β2

6β + δ
. (2.12)

Put s = ε
β
and t = δ

β
. Then (2.12) becomes s = 9

6+t
and the equality version of

(2.9) becomes β3 = [s(2 − t
3
) − 1]3

2
t. What we try to minimize is 2β = 2 3

√
h(t)

with h(t) = 6t(3−t)
6+t

. By derivation one finds that the optimal choice is t = 3
√

6−6.
Therefore β = (5+2

√
6

18
)

1
3 ≈ 0.8193, δ = β(3

√
6 − 6) ≈ 1.1048 and ε = β ·

√
6

2
≈

1.0034. This gives time Lp(1
3
, 2β)1+o(1) = Lp(

1
3
, 1.639)1+o(1) for steps 1 and 2 and

Lp0(1
3
, 2ε)1+o(1) = Lp0(1

3
, 2.007) for the pre-sieving procedure.

Remark 2 We did not use the idea of multiple number fields here. Indeed using V
fields multiplies the size of the linear system by V . Therefore we need to divide the
smoothness bound by V . By computations one sees that the probability of a number
to be B/V -smooth for one of V fields is smaller that the it’s probability to be B-
smooth for the first field. Indeed the probability is of type u−u rather than u−const..
This is not the first time we see the bad effect of multiple fields. In Coppersmith’s
modification to NFS we have a good idea-sharing the rational sieve- which should
win us much of the time used for sieving. Nevertheless, the bad effect of multiple
fields annihilated part of our gain so that we only have a speed-up from Lp(

1
3
, 1.923)

to Lp(1
3
, 1.902).

18

2.10 Descent by Special Q
All the improvements previously presented speed up the precomputation stage.
Therefore we need a new idea to speed up the individual logarithm from L(1

2
) to

L(1
3
). We proceed as it follows. First pick h in the factor base and choose&check

random z until hzS is Lp(2
3
)-smooth. Then write hzS = q1 . . . q2 and compute the

virtual logarithms of the qi by a descent19 as it follows. Let Q be the number of
size Lp(2

3
) we want to write in Fp as a product of numbers of size Lp(1

3
). Choose

a parameter ν ∈ (0, 1) and sieve on the numbers of form a + bm, with |a|, |b| ≤
Lp(

1
3
)Q

1
2 and which are divisible by Q for those for which both a+bm

Q
and a + bα

are Qν-smooth. We obtain a system:{ a+ bm = QΠleQ,l l ≤ Qν , prime
(a+ bα)OK2 = ΠumQ,u N(u) ≤ Qν , u ideal in K2.

This gives us an equation:

logT Q ≡ ΣuχumQ,u + Σr
k=1χkλk(a+ bα)− Σl logT l mod q (2.13)

with χu, χk and logT l defined in 2.8.3. Then start again with each divisor l of
a+bm respectively each prime ideal divisor of a+bα. Notice that we make descents
for both numbers and ideal even if we started with a number.

The probability of a number a+bm to beQν-smooth is at least Psmooth(L(2
3
), L(1

3
))

which is L(1
3
)−1. Next the probability that a+bα isQν-smooth is Psmooth(L(1

3
)Q

1
2 , Qν).

This is the lowest when Q has size L(1
3
) and it is L(1

3
)−1. As a consequence we

descend from the size of Q to the size of Qν after testing for smoothness L(1
3
)

pairs. One checks easily that the number of steps in the descent is O(e(log log p)2
),

which gives the descent step a complexity of type L(1
3
). See subsection 3.3.2 for

full details.

19The idea of descent is present in [Cop02]. Joux and Lercier used in practice a particular
case of descent without supplying theoretical analysis. They also suggested to perform it using
Pollard’s Lattice Sieve introduced in [Pol93]. Commeine and Semaev adapted the idea to NFS
and proved that it has a complexity of L(1

3 , 1.442).

19

Chapter 3

New Algorithm:
Discrete Logarithm Factory

3.1 The algorithm
The algorithm we are going to present combines all the ideas above and has com-
plexity Lp(

1
3
, 1.639) for the precomputations and Lp(

1
3
, 1.232) for the individual

logarithm. The algorithm uses a file of size Lp0(1
3
, 1.639) computed after a pre-

sieving procedure which has complexity Lp0(1
3
, 2.007).

Algorithm 2 Discrete Logarithm Factory

REQUIREMENTS: a prime p0 and the values for δ = 1.1048, β = 0.8193,
ε = 1.0034, B = Lp0(1

3
, β), E = Lp0(1

3
, ε), d = [δ(log p0)

1
3 (log log p0)−

1
3],

c = 0.811, C = Lp0(2
3
, c), c̄M = cM

1 = 1; m0 = [Lp0(2
3
, 1
δ
)]; a permanent file

with the couples (a, b) such that a+m0b is B-smooth.

INPUT: p of size p0 and T, S ∈ F∗p such that T spans F∗p and T is B-smooth
over Z; a prime factor q of p− 1.

OUTPUT:logTS modulo q.

0. Select f ∈ Z irreducible such that p | f(m0) and |f |∞ ≤ m0; set K1 = Q,
K2 = Q[X]/〈f〉.

(?) PRECOMPUTATIONS
1cM does not count in first approximation complexity. One has to find the best value in

practice.

20

1.1 SIEVE: Sieve on the polynomials {a + bX | a, b in the permanent file}
until B pairs (a, b) are B-smooth OK2;

1.2 LINEAR ALGEBRA: Compute the virtual logarithms by solving the
linear system.

(??) INDIVIDUAL LOG

2.1 SMOOTHING: Take h a prime from the factor base over Q; choose and
check random z until hzS is C-smooth; factorize hzS = q1q2 . . . qk;

2.2 DESCENT: For each j ≤ k do descent steps in order to express logT qj
with respect to the virtual logarithms computed in step 1.2.

3.2 Admissibility

3.2.1 The early abort selection method

We are given a generator of random integers in [1, n] and we need to find one
element which is Ln(2

3
, a)-smooth, for a value a > 0 we prefer. If a is too small,

the probability of success is too small. If a is too large, then the smoothness test is
slow because its time depends mostly on the smoothness bound. We will give the
best value for a at the end of the analysis, but for the moment it is a parameter.
Contrary to the naive technique, according to which one inspects every number for
Ln(2

3
, a)-smoothness, we proceed in two steps. First we submit each number to a

quick test called admissibility, which discards most of the bad candidates and some
of the good ones. The candidates who succeed the first test are called admissible
and are submitted to the actual test of Ln(2

3
, a)-smoothness. The numbers who

succeed both tests are called admitted and are obviously good candidates. We
show next that a good choice of the admissibility test allows us to asymptotically
speed up the selection.

Let 0 < θ, c < 1 be parameters which will be chosen later. For all numbers
m ≤ n we put m1 the largest divisor of m which is Ln(2

3
, θa)-smooth. Let us call

Mble the set of admissible candidates:

Mble = {m ≤ n| m1 ≥ nc}. (3.1)

Next, we define the set of admitted candidates:

Med = {m ∈Mble|m is L(
2

3
, a)-smooth}. (3.2)

In order to evaluate the cardinals of Mble and Med we need the next theorem.

21

Notation 1 For all x, y, z we put

T (x, y, z) = {m ≤ x| for all prime divisors p of m, z ≤ p ≤ y}.

We put ψ(x, y, z) = #T (x, y, z) and Psmooth(x, y, z) = ψ(x,y,z)
x

. Finally, for all n,
Ln or simply L stays for Ln(2

3
, 1).

Theorem 5 Let α > 0 be a constant. For all x, y ≥ 10 we put u(x, y) = log x
log y

. For
all x, put Y (x) = [(log x)1+α, exp(log x)1−α] and for all pair (x, y) put Z(x, y) =

[1, y1− 1
log u(x,y)]. Then there exists a function (x, y, z) 7→ ε(x, y, z) such that we have:

(i) (supy∈Y (x),z∈Z(x,y) |ε(x, y, z)|)→ 0 as x goes to the infinity.

(ii) for all x ≥ 10,y ∈ Y (x) and z ∈ Z(x, y), ψ(x, y, z) = x·u(x, y)−u(x,y)(1+ε(x,y,z)).

proof : It is theorem 2.2. in [Pom82]. The proof uses theorem [CEP83].
A convenient corollary translates the theorem in the L notation:

Corollary 2 Let n ∈ N. Let x = Ln(sx, cx), y = Ln(sy, cy) and z = Ln(sz, cz)
such that 0 < sy < sx and (sz, cz) < (sy, cy) in lexico-graphical order. Then
ψ(x, y, z) = x · Ln(sx − sy,−(sx − sy) cxcy)1+o(1) with o(1) depending on n.

The following lemma says that the probability to be smooth decreases as the
numbers get larger.

Lemma 3 Let (x, y, z) 7→ ε(x, y, z) be a fonction like in theorem 5. Let a, θ, c ∈
(0, 1) be constants. For all n ≥ 10, put ε(n) = supx∈[nc,n] |ε(x, Lθa, 1)| and u(n) =
c logn
θa logL

. Then we have:

(i) ε(n)→ 0 when n goes to infinity.

(ii) For all n ≥ 10 and all x integer in [nc, n], Psmooth(x, Lθa, 1) ≤ u(n)−u(n)(1−ε(n)).

proof : (i) Let n ∈ N. For all x ∈ [nc, n], we easily check y := Lθan ∈ Y (x) and
obviously 1 ∈ Z(x, y). Hence it holds:

{(x, Lθa, 1) | x ∈ [nc, n]} ⊂ {(x, y, z) | x ∈ [nc, n], y ∈ Y (x), z ∈ Z(x, y)}.

Moreover, we have: [nc, n] ⊂ [nc,∞). Thus, we obtain:

sup
x∈[nc,n],y=Lθa,z=1

|ε(x, y, z)| ≤ sup
x≥nc,y∈Y (x),z∈Z(x,y)

|ε(x, y, z)|. (3.3)

From point (i) of theorem 5 we deduce that the right side expression above tends
to 0 as n goes to infinity. Thus, we obtain the result.

22

(ii) Let x ≥ nc. From theorem 5 we have:

Psmooth(x, Lθa, 1) = (
log x

θa logL
)−

log x
θa logL

(1+ε(x,Lθa,1)).

Then, by using the definition of ε(n), we obtain:

Psmooth(x, Lθa, 1) ≤ (
log x

θa logL
)−

log x
θa logL

(1−ε(n)). (3.4)

We remark that the function t 7→ t−t is decreasing on [1,∞). Since x ≥ nc, we
have log x

θa logL
≥ c logn

θa logL
= u(n) > 1. Hence, we have:

(
log x

θa logL
)−

log x
θa logL ≤ u(n)−u(n). (3.5)

From (3.4) and (3.5) we obtain (ii).�
Now we have the main result:

Theorem 6 Let 0 < c, θ < 1 and n ∈ N and define Mble and Med as above. Then:

(i) #Mble ≤ n · Ln(1
3
,− c

3θa
)1+o(1);

(ii) #Med ≥ n · Ln(1
3
,− c

3θa
− 1−c

3a
)1+o(1).

proof : (i) Since each element ofMble is uniquely written as a product of an element
t in T (n1−c, n1−c, Lθa) and one in T (n

t
, Lθa, 1), we have:

#Mble = Σt∈T (n1−c,n1−c,Lθa)ψ(
n

t
, Lθa, 1), (3.6)

or, equivalently:

#Mble = Σt∈T (n1−c,n1−c,Lθa)

n

t
Psmooth(

n

t
, Lθa, 1) (3.7)

For all t ∈ T (n1−c, n1−c, Lθa), we have n
t
∈ [nc, n]. From lemma 3 we know:

Psmmoth(
n

t
, Lθa, 1) ≤ u(n)−u(n)(1−ε(n)).

When inserting in (3.7), we obtain:

#Mble ≤ n · u(n)−u(n)(1+ε(n)) · ΣT (n1−c,n1−c,Lθa)

1

t
. (3.8)

23

On one hand corollary 2 gives u(n)u(n) = Ln(1
3
, c

3θa
). On the other hand

ΣT (n1−c,n1−c,Lθa)
1
t
is dominated by Σn

t=1
1
t
≤ log n + 1. When injecting in (3.8), we

find:

#Mble ≤ n · Ln(
1

3
,− c

3θa
)1+o(1) · (log n+ 1) = n · Ln(

1

3
,− c

3θa
)1+o(1). (3.9)

(ii) By spliting Med on the non smooth factor of each element, in the same way
we obtained (3.6), we get:

#Med = Σt∈T (n1−c,La,Lθa)ψ(
n

t
, Lθa, 1). (3.10)

For t ≤ n1−c we have n
t
≥ nc and therefore ψ(n

t
, Lθa, 1) = #T (n

t
, Lθa, 1) ≥

#T (nc, Lθa, 1) = ψ(nc, Lθa, 1). When inserting in (3.10), we have:

#Med ≥ Σt∈T (n1−c,La,Lθa)ψ(nc, Lθa, 1).

The right side equals ψ(n1−c, La, Lθa) · ψ(nc, Lθa, 1). Finally, by corollary 2 we
ontain:

#Med ≥ ncLn(
1

3
,− c

3θa
)1+o(1)n(1−c)Ln(

1

3
,−1− c

3a
)1+o(1) =

= n · Ln(
1

3
,− c

3θa
− 1− c

3 a
)1+o(1).

�

Time analysis Since the candidates are generated by a perfect random gener-
ator, the average number of candidates we test befor finding one in Med is n

#Med
.

Each candidate has the admissibility test, which takes time tECM(Ln(2
3
, θa)) =

Ln(1
3
,
√

4
3
θa)1+o(1)(log n)2 with o(1) depending on n, not on the candidate. The

average number of admissibles which will take the final test is #Mble

#Med
because the ad-

missibles are random. For each admissible, the final test takes time tECM(L(2
3
, a)) =

Ln(1
3
,
√

4
3
a)1+o(1) with o(1) independent on the admissible. Thus, the average time

for the selection of one element in Med is:

tselection =
n

#Med

· tECM(Ln(
2

3
, aθ)) +

#Mble

#Med

· tECM(Ln(
2

3
, a)),

which according to theorem 6 is less than

Ln(
1

3
,
1− c

3a
+

c

3θa
+

√
4

3
θa) + Ln(

1

3
,
1− c

3a
+

√
4

3
a). (3.11)

24

For fixed a and c we minimize the time for θ = (c2

3a3)
1
3 . We obtain the time:

Ln(
1

3
,
1− c

3a
+ 3(

c

9
)

1
3) + Ln(

1

3
,
1− c

3a
+

√
4

3
a). (3.12)

We minimize for c =
(4

3
a)

3
2

3
. We obtain a function in a which reaches its minimum

for a = 0.7715. It gives c = 0.348 and θ = 0.445, which verify condition the
0 < θ, c < 1. We insert the numerical values in (3.11) and obtain:

timeselection = Ln(
1

3
, 1.296)1+o(1).

3.2.2 Early abort strategy

Encouraged by our success with one admissibility test, we can imagine a strategy
with k ≥ 2 admissibility tests in a row. Let θ1, . . . , θk, c1, . . . , ck ∈ (0, 1) be pa-
rameters such that θ1 < . . . < θk and c1 + . . . + ck ≤ 1. For convenience we put
θ0 = 0 For h = 1, k, we say that a number m succeded the hth admissibility test if
a Lθha smoothness test on m finds a divisor mh of m such that mh ≥ mch . Each
candidate takes the first admissibility test. If it succeeds it goes on to the next
admissibility test. If it fails we discard it and consider the next candidate.

Let now be more formal. For all integers m ≤ n and all indices i = 1, k, we
call mi the largest factor of m which belongs to T (n, Lθia, Lθi−1a).

Notation 2 Put M0
ble = [1, n]

⋂
N. For all i = 1, k we put:

M i
ble = {m ∈M i−1

ble | mi ≥ nci}.

Also put:

Med = {m ∈Mk
ble | m is Ln(

2

3
, a)-smooth}.

A similar theorem to 6 holds.

Theorem 7 With the notations above, we have:

(i) for all h = 1, k, #Mh
ble ≤ n · Ln(1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1);

(ii) #Med ≥ n · Ln(1
3
,− c1

3θ1a
− . . .− ck

3θka
− 1−c1−...−ck

3a
)1+o(1).

Befor giving the proof, we need to show two lemmas.

25

Lemma 4 Let N = N(n) be an integer which depends on n. Let h ≤ k. For
j = 1, h, put εj =

1−cj
N

and η = 1−(c1+...+ch)
N

. Then we have

#Mh
ble ≤ NΣi,i1,...,ih−1

ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha) · n1−c1−...−ch−iη· (3.13)

·ψ(nc1+(i1+1)ε1 , Lθ1a) . . . ψ(nch−1+(ih−1+1)εh−1 , Lθh−1a).�

where the indices i, i1, . . . , ih−1 run in {0, . . . , N − 1}h.

proof : We keep the notation L = Ln(2
3
, 1). We also make some new notations:

1. For all j = 1, h, T j = {t ∈ T (n, Lθja, Lθj−1a) | ncj ≤ t};

2. For all i = 0, N − 1 and j = 1, h, T ji = T (n, Lθja, Lθj−1a) | ncj+iεj ≤ t ≤
ncj+(i+1)εj};

3. Ch = {t ∈ T (n, n, Lθha) | t ≤ n1−c1−...−ch};

4. For all i = 0, N − 1, Ch
i = {t ∈ T (n, n, Lθha) | n1−(c1+...+ch)−(i+1)η ≤ t ≤

n1−(c1+...+ch)−iη}.

Each number m in Mh
ble is written in a unique way as m = t1 . . . th · t with tj ∈

T j for j = 1, h and t ∈ Ch such that t1 . . . th · t ≤ n. In order to choose an
element m ∈ Mh

ble we pick t1 ∈ T 1, . . . , th−1 ∈ T h−1 and t ∈ Ch and then th in
T (n

t1...th−1t
, Lθha, Lθh−1a). Therefore, we have:

#Mh
ble = Σt∈ChΣt1∈T 1 . . .Σth−1∈Th−1ψ(

n

t1 . . . th−1t
, Lθha, Lθh−1a).

One easily checks that we have the following disjoint unions: Ch = tN−1
i=0 C

h
i and,

for all j = 1, h, T j = tN−1
i=0 T

j
i . Therefore, we have:

#Mh
ble = Σi,i1,...,ih−1

Σt∈Chi ,t1∈T 1
i1
,...,th−1∈Th−1

ih−1

ψ(
n

t1 . . . th−1t
, Lθha, Lθh−1a) (3.14)

where the indices i, i1, . . . , ih−1 run in {0, . . . , N − 1}h. By the definition of T ji , for
all j = 1, h− 1, all ij = 0, N − 1 and all tj ∈ T jij , we have tj ≥ ncj+ijεj . Also, for
all i = 0, N − 1 and all t ∈ Ch

i , we have t ≥ n1−(c1+...+ch)−(i+1)η. Therefore we have
n

t1...th−1t
≤ nch+(i+1)η−i1ε1−...−ih−1εh−1 . Hence, (3.14) implies:

#Mh
ble ≤ Σi,i1,...,ih−1

Σt∈Chi ,t1∈T 1
i1
,...,tl−1∈Th−1

ih−1

ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha, Lθh−1a).

The right side of the equation above equals

Σi,i1,...,ih−1
#Ch

i #T 1
i1
. . .#T h−1

ih−1
ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha, Lθh−1).

26

For all i = 0, N − 1, we have Ch
i ⊂ T (n1−c1−...−ch−iη, n1−c1−...−ch−iη, Lθha). For

all j = 1, h− 1, for all ij = 0, N − 1, we have T jij ⊂ T (ncj+(ij+1)εj , Lθja, Lθj−1a).
Therefore we obtain:

#Mh
ble ≤ Σi,i1,...,il−1

(3.15)

ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha, Lθh−1a) · ψ(n1−c1−...−ch−iη, n1−c1−...−ch−iη, Lθha)·

·ψ(nc1+(i1+1)ε1 , Lθ1a, Lθ0a) . . . ψ(nch−1+(ih−1+1)εh−1 , Lθh−1a, Lθh−2a).

Further we use the inequality ψ(x, y, z) ≤ ψ(x, y) which holds for all x, y, z and
obtain:

#Mh
ble ≤ Σi,i1,...,il−1

(3.16)

ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha) · ψ(n1−c1−...−ch−iη, n1−c1−...−ch−iη)·

·ψ(nc1+(i1+1)ε1 , Lθ1a) . . . ψ(nch−1+(ih−1+1)εh−1 , Lθh−1a).

�

Notation 3 For all i, i1, . . . , ih−1 in [0, N − 1] we put:

f(i, i1, . . . , ih−1) = ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha) · n1−c1−...−ch−iη·

·ψ(nc1+(i1+1)ε1 , Lθ1a) . . . ψ(nch−1+(ih−1+1)εh−1 , Lθh−1a).

Lemma 5 For all i, i1, . . . , ih−1:

f(i, i1, . . . , ih−1) ≤ nε1+...+εh−1+η · (n · Ln(
1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1))

with o(1) a function of n, independent on N, i, i1, . . . , ih−1, which tends to 0.

proof : Put τ = θh−1

θh
=

max{θj |j≤h−1}
θh

. Since 0 < θ1 < . . . < θk we have 0 < τ < 1.
We distinguish two cases depending on the condition ε1i1+. . .+εh−1ih−1−iη ≤ τch.

Let 0 ≤ i, i1, . . . , ih−1 ≤ N − 1 be such that ε1i1 + . . . + εh−1ih−1 − iη ≤ τch.
Since τ < 1 we have ch − i1ε1 − . . . − ih−1εh−1 + iη ≥ (1 − τ)ch > 0 and we can
apply corollary 2 for all ψ expressions in f(i, i1, . . . , ih−1). We obtain:

f(i, i1, . . . , ih−1) ≤ nε1+...+εh−1+η·

·n ·L(
1

3
,−c1 + i1ε1

3θ1a
− . . .− ch−1 + ih−1εh−1

3θh−1a
− ch − i1ε1 − . . .− ih−1εh−1 + iη

3θha
)1+o(1).

where o(1) is a function depending exclusively on n and which tends to 0.

27

Let now 0 ≤ i, i1, . . . , ih−1 ≤ N−1 be such that ε1i1 + . . .+ εh−1ih−1− iη > τch.
In particular we have ε1(i1 + 1) + . . .+ εh−1(ih−1 + 1) > τch. By dividing through
max{θj |j≤h−1}

θh
, we obtain:

1

max{θj|j < h}
[(i1 + 1)ε1 + . . .+ (ih−1 + 1)εh−1] >

ch
θh
.

For all j ≤ h− 1, we have max{θl|l ≤ h− 1} ≥ θj, and therefore:

(i1 + 1)ε1
θ1

+ . . .+
(ih−1 + 1)εh−1

θh−1

>
ch
θh
,

which we divide through 3a to find:

c1 + (i1 + 1)ε1
3θ1a

+ . . .+
ch−1 + (ih−1 + 1)εh−1

3θh−1a
>

c1

3θ1a
+ . . .+

ch−1

3θh−1a
+

ch
3θha

.

By elevating Ln(1
3
, 1)−1 to each side of the above inequality, we obtain:

Ln(
1

3
,−c1 + (i1 + 1)ε1

θ1a
) · . . . · Ln(

1

3
,−cl−1 + (il−1 + 1)ε1

θl−1a
) ≤ (3.17)

≤ Ln(
1

3
,− c1

3θ1a
− . . .− cl

3θla
).

For each j = 1, h− 1 and each ij = 0, N − 1, according to corollary 2, we have:

ψ(ncj+(ij+1)εj , Ln(
2

3
, θja)) = ncj+(ij+1)εj · Ln(

1

3
,−cj + (ij + 1)εj

3θja
)1+δi,ij ,n

where δi,ij ,n is a function which depends on N , j, ij and n and which tends to 0
when n goes to the infinity, uniformely on N and ij. For j we have only k possible
values, with k absolute constant, so we have:

ψ(ncj+(ij+1)εj , Ln(
2

3
, θja)) ≤ ncj+(ij+1)εj · Ln(

1

3
,−cj + (ij + 1)εj

3θja
)1+o(1) (3.18)

with o(1) depending only on n. From (3.17) and (3.18), we have:

ψ(nc1+(i1+1)ε1 , Lθ1a) . . . ψ(nch−1+(ih−1+1)εh−1 , Lθl−1a) ≤ nσL(
1

3
,− c1

3θ1a
−. . .− ch

3θha
)1+o(1)

(3.19)
with σ = c1 + . . .+ ch−1 + (i1 + 1)ε1 + . . .+ (ih−1 + 1)εh−1.

We obviously have:

ψ(nch−i1ε1−...−ih−1εh−1+(i+1)η, Lθha) ≤ nch−i1ε1−...−ih−1εh−1+(i+1)η. (3.20)

28

By combining (3.19) and (3.20), we obtain:

f(i, i1, . . . , ih−1) ≤ nε1+...+εh−1+η · (n · Ln(
1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1))

�
proof of theorem 7: (i) Put N = [(log n)2]. Fix h ≤ k. From lemma 4, we have:

#Mh
ble ≤ Σi,i1,...,ih−1

f(i, i1, . . . , ih−1).

From lemma 5, we have:

f(i, i1, . . . , ih−1) ≤ nε1+...+εh−1+η · (n · Ln(
1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1))

with o(1) a function of n, independent on N, i, i1, . . . , ih−1, which tends to 0. When
combining these two equations, we obtain:

#Mh
ble ≤ (Nhnε1+...+εh−1+η) · n · L(

1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1).

Since N = [(log n)2], we have Nh = Lo(1) and

nε1+...+εh−1+η = exp(
[h− 2(c1 + . . .+ ch−1)− ch] log n

N
) = exp(o(1)) = O(1).

We conclude:
#Mh

ble ≤ n · Ln(
1

3
,− c1

3θ1a
− . . .− ch

3θha
)1+o(1).

(ii)For 1 ≤ i ≤ k, put Si = [nci , nciLθia]
⋂
T (nciLθia, Lθia, Lθi−1a). The map

(m1, . . . ,mk, t) 7→ t1 . . . tkt is an injection from

S1 × . . .× Sk × T (n1−c1−...−ckL−(θ1+...+θk)a, La, Lθka)) to Med.

Therefore, we have:

#Med ≥ #S1 . . .#Skψ(n1−c1−...−ck · L−(θ1+...+θk)a, La, Lθka). (3.21)

Consider the map

λ : T (nci , Lθia, Lθi−1a)× (Π(Lθia)−Π(Lθi−1a)) → T (nciLθia, Lθia, Lθi−1a)
(m,π) 7→ m · π

29

Each element w ∈ T (nciLθia, Lθia, Lθi−1a) equals λ(m,π) only for pairs (m,π) such
that π | w. Since w has less than log2w prime divisors, w is taken at most log2 n
times by λ. Therefore, we obtain:

ψ(nciLθia, Lθia, Lθi−1a) ≥ 1

log n
ψ(nci , Lθia, Lθi−1a) · (π(Lθia)− Π(Lθi−1a)).

Therefore, by the Prime number theorem, ψ(nci ·Lθia,Lθia,Lθi−1a)

ψ(nci ,Lθia,Lθi−1a)
goes to infinity with

n. In particular, for sufficiently large n, we have ψ(nci ·Lθia,Lθia,Lθi−1a)

ψ(nci ,Lθia,Lθi−1a)
≥ 2. There-

fore, we have:

#Si = ψ(nci · Lθia, Lθia, Lθi−1a)− ψ(nci , Lθia, Lθi−1a) ≥ (2− 1)ψ(nci , Lθia, Lθi−1a).
(3.22)

From (3.21) and (3.22), we get:

#Med ≥ (Πk
i=1ψ(nci , Lθia, Lθi−1a))ψ(n1−c1−...−ck · L−(θ1+...+θk)a, La, Lθka). (3.23)

A direct use of corollary 2 gives
#Med ≥ nLn(1

3
,− c1

3θ1a
− . . .− ck

3θka
− 1−c1−...−ck

3a
)1+o(1). �

Time Analysis In order to find one element in Med, we need to inspect in
average #Mk

ble

#Med
elements in #Mk

ble. For h = k, 1, in order to find #Mh
ble

#Med
elements in

#Mh
ble, we need to inspect #Mh

ble

#Med
· #Mh−1

ble

#Mh
ble

elements in Mh−1
ble . Therefore, the average

time is:

timeselection = [Σk
h=1

#Mh−1
ble

#Med

tECM(Ln(
2

3
, θha))] +

#Mk
ble

#Med

tECM(Ln(
2

3
, a)). (3.24)

Therefore we have timeselection = Ln(1
3
,max{f1, . . . , fk+1})1+o(1), where

fi =
ci

3θia
+ . . .+

ck
3θka

+
1− c1 − . . .− ck

3a
+

√
4

3
θia

for i = 1, k and fk+1 = 1−c1−...−ck
3a

+
√

4
3
a. We put θk+1 = 1 since it unifies the

definitions for fi with i = 1, k and for fk+1. For θi+1, . . . , θk+1, ci+1, . . . , ck and ci
fixed, we minimize fi by imposing a relation between ci and θi:

θi = (
c2
i

3a3
)

1
3 .

30

For each i ≤ k, as soon as θi+1, . . . , θk+1, ci+1, . . . , ck are fixed and (θi, ci) satisfy
the preceding relation, we impose fi = fi+1 by

ci = 9(
ω

3
)3 with ω = (

4

3
aθi+1)

1
2 .

This allows us to compute in a row ck, θk, . . ., c1, θ1. Hence we obtain the time for
each value of a. Starting from the value of a in the case k = 1 we slowly change a
in order to minimize the time.

Here is a table with the results we found. The first row presents the values for
the version with no admissibility test from [CS06].

k a time (θ1, c1) (θ2, c2) (θ3, c2) (θ4, c4) (θ5, c5) (θ6, c6) (θ7, c7)
0 0.693 1.442
1 0.771 1.296 (0.444, 0.367)
2 0.799 1.251 (0.198, 0.109) (0.444, 0.367)
3 0.808 1.238 (0.088, 0.032) (0.198, 0.109) (0.444, 0.367)
4 0.811 1.234 (0.039, 0.010) (0.088, 0.032) (0.198, 0.109) (0.444, 0.367)
5 0.811 1.233 (0.017, 0.003) (0.039, 0.010) (0.088, 0.032) (0.198, 0.109) (0.444, 0.367)
6 0.811 1.232 (0.008, 0.001) (0.017, 0.003) (0.039, 0.010) (0.088, 0.032) (0.198, 0.109) (0.444, 0.367)
7 0.811 1.232 (0.003, 0.0002) (0.008, 0.001) (0.017, 0.003) (0.039, 0.010) (0.088, 0.032) (0.198, 0.109) (0.444, 0.367)

We conclude that a good choice is a = 0.811 and k = 6. In this case we have

time(strategy) = Ln(
1

3
, 2.232)1+o(1).

3.3 Complexity Analysis of the Discrete Logarithm
Factory

In section "Factorization Factory" we computed the complexity for steps SIEVE
and LINEAR ALGEBRA. Let’s see in detail smoothing and DESCENT.

3.3.1 Smoothing

Let C denote the smoothness bound in SMOOTHING. In order to prove that the
choice in Discrete Logarithm Factory is optimal we consider the parameter θ > 0
such that C = Lp(θ). An ECM test costs Lp(θ2) as pointed out in the smoothness
section. Therefore the total time of the smoothness step is:

Psmooth(Lp(1), Lp(θ))
−1 · Lp(

θ

2
). (3.25)

This is minimal for θ = 2
3
. Therefore we have to take as smoothness bound

C = Lp(
2
3
, a) with a parameter. According to subsection ?? a good choice is

a = 0.811. We obtain:

time(smoothing) = Lp(
1

3
, 1.232)1+o(1).

31

Remark 3 The smoothing step does not depend on the other steps and we will
check that it is the dominant step in the individual logarithm part.

3.3.2 Descent

As announced in 2.10 we provide the full details for the descent by special Q. We
reduce a number Q of size Lp(2

3
, c) with c a parameter chose at the smoothing

step, for example c = 0.811 for the early abort strategy. Hence the complexity
of the descent depends on c. Other global parameters which affect the time of
the descent are β, such that the rational smoothness bound is B1 = Lp(

1
3
, β), γ,

such that B2 the algebraic bound is B2 = Lp(
1
3
, γ) and the number V of number

fields we use on the algebraic side. This is 1 in the case of the Discrete Logarithm
Factory, but V with V = [Lp(

1
3
, β−γ)] for the algorithm of Commeine and Semaev

that we are going to speed up. Also remember that m is a root if f in Fp and that
αj is s complex root of f + j(X −m) in Commeine and Semaev’s algorithm.

The algorithm uses different procedures depending on the nature of the input: a
number or an ideal. Each procedure chooses its parameters depending on the size of
the input: the absolute value, respectively norm, larger or smaller than Lp(1

2
, cM),

respectively Lp(1
2
, cM). Finally the descent brings some more parameters: ei, ēi, νi

and ν̄i for i = 1, 2. The parameters ei and ei decide the size of the sieving domain
in special Q while νi and νi describe how much we want to descend in one step.
For intuition, notice that i = 1 suggests a parameter for the rational side while
i = 2 for the algebraic one. Also an over-lined parameter has the same task as a
simple parameter, but it refers to the descent of an ideal rather than a number.

INPUT : a number Q or an ideal u of size(norm) less than Lp(2
3
, c) , q prime

factor of p− 1;

OUTPUT : logT Q mod q.

Algorithm 3 Descent by special Q

1. if the input is a number then run procedure NUMBER else run procedure
IDEAL endif.

2. procedure NUMBER(l):

(a) if |l| < Lp(
1
2
, cM) then ν = ν1 else ν = ν2;endif.

(b) search a pair (a, b) such that:

(i) |a|, |b| ≤ Lp(
1
3
, e) · |l| 12 and gcd(a, b) = 1;

(ii) l | a− bm and a−bm
l

is lν-smooth;

32

(iii) for some 1 ≤ j ≤ V (a− bαj) is |l|ν-smooth;

(c) apply procedure NUMBER to all prime factors of a− bm and procedure
IDEAL to all prime ideal factors of (a− bαj);

(d) regroup the relations of the factors to obtain a relation for l.

3. procedure IDEAL(u):

(a) n = N(u); if n < Lp(
1
2
, ¯cM) then ν̄ = ν̄1 else ν̄ = ν̄2;endif

(b) search a pair (a, b) such that

(i) |a|, |b| ≤ Lp(
1
3
, ē) · n 1

2 and gcd(a, b) = 1;
(ii) (a− bαj) · u−1 is nν̄-smooth, where j is such that u ⊂ Kj;
(iii) a− bαj ∈ u and (a− bαj) is nν̄-smooth;

(c) apply algorithm 3 to all prime factors of a− bm and a− bαj.
(d) regroup the relations of the factors to obtain a relation for u.

Complexity Analysis Since the descent algorithm is a divide and conquer one,
the total time is:

(number of calls of Algorithm 3) · time(Algorithm 3).

We will show that the number of calls of Algorithm 3 is eO((log log p)2)

and time(Algorithm 3) is Lp(1
3
, 1.188)1+o(1) for Discrete logarithm Factory and

Lp(
1
3
, 1.134)1+o(1) for the algorithm of Commeine and Semaev. Therefore

time(Descent Step) = Lp(
1

3
, 1.188)1+o(1).

Number of Applications of Algorithm 3 We reduce a number of size L(2
3
)

into numbers and ideals of size L(1
3
). We are computing the number of knots of a

tree of height w and where each knot has at most Z sons. Since Z is the number of
(rational and algebraic) divisors of a number or ideal of norm less than p and since
all numbers and ideals have the norm at least 2, we have Z ≤ 2·log2 p = O(elog log p).
For w one picks the smallest value such that: Lp(1

3
)ν
w
i ≥ Lp(

2
3
) and Lp(

1
3
)ν̄i

w ≥
Lp(

2
3
) for i = 1, 2. Hence we have: w =

log(logLp(2
3

)/ logLp(1
3

))

min(ν1,ν2,ν̄1,ν̄2)
= O(log(log

1
3 p)) =

O(log log p). Therefore, the number of calls is: Zw−1
Z−1

< Zw = O(elog log p)O(log log p)

= eO((log log p)2).�

33

Time(Algorithm 3)

case ν1 |l| < L(1
2
, cM)

Let’s call P1Q = Prob((a − bm) is |l|ν2 − smooth). By the computations
below P1Q = L(1

3
,− 1

3δβν1
). Let’s put P1A = Prob((a − bα) is |l|ν2). We

show below that P1A = L(1
3
,−(δ

6ν1
+ 1

3δν1β
+ e1δ

3ν1β
)). The total sieve space

has approximately (L(1
3
,e1)|l|

1
2)2

|l| elements because we are only using the pairs
(a, b) in a square of Z × Z which belong to a lattice of volume |l|. Thus
the sieve space is L(1

3
, 2e1). The search of (a, b) succeeds if L(1

3
, 2e1) · P1Q ·

(V P1A) ≥ 1 where V is the number of fields we use. This comes to 2e1 ≥
(1

3δβν1
) + [(δ

6ν1
+ 1

3δν1β
+ e1δ

3ν1β
)− (β − γ)]. We fulfill this condition by taking

e1 = (3ν1β
6ν1β−δ)(

2
3ν1δβ

+ δ
6ν1
− β + γ). We do the search by testing with ECM

the smoothness of a number, then for every good pair (a, b) we search by
ECM a j such that (a − bαj) is smooth. There are L(1

3
, 2e1) tests over Q

and 1
V P1A

tests over the fields. The time of a ECM test is the same for both
rational and algebraic side: L(|l|ν1)(

1
2
,
√

2) = L(1
4
). Therefore, the time-cost

of this case is: t1 = L(1
4
)·(L(1

3
, 2e1)+V −1P−1

1A)= L(1
3
,max(2e1, ((

δ
6ν1

+ 1
3δν1β

+
e1δ

3ν1β
)− (β − γ))). This is L(1

3
, 2e1)) by the choice of e1. Now ν1 7→ e1(ν1) is

a function onto R+ using the formula ν1 = 4+βδ2+(2e1)δ2

6δβ(β−γ+(2e1))
. The only problem

is that ν1 might be outside (0, 1). We try to put e1 = cr
2
where the time for

case ν2 is t2 = L(1
3
, cr). If ν1 ≥ 1 we increase e1 gradually.

case ν2 |l| ≥ L(1
2
, cM)

Let’s call P2Q = Prob((a−bm) is |l|ν2−smooth). By the computations below
P2Q = L(1

6
). Let’s put P2A = Prob((a − bα) is |l|ν2). We show below that

P2A = L(1
3
,− δ

6ν2
). The search of (a, b) succeeds if L(1

3
, 2e2) ·P2Q · (V P2A) ≥ 1

where V is the number of fields we use. It comes to e2 ≥ 1
2
(γ− β + δ

6ν2
). We

fulfill this condition by taking e2 = 1
2
(γ − β + δ

6ν2
). Similarly to the case ν1

the time-cost is: t2 = time(a test ECM) · (L(1
3
, 2e2) + 1

V P2A
). A test ECM

takes more time here because the smoothness bound is larger: L|l|ν2 (1
2
,
√

2) =

L(1
3
, 2·3− 2

3
√
ν2). Therefore t2 = L(1

3
, 2
√

ν2c
3

)·[L(1
3
, 2e2)+L(1

3
, δ

6ν2
−(β−γ))]=

L(1
3
, 2
√

ν2c
3

) · 2L(1
3
, 2e2) = = L(1

3
, 2 · 3− 2

3
√
ν2 + δ

6ν2
− (β − γ)). We minimize

t2 by taking ν2 = (δ
2

12c
)1/3.

case ν̄1 N(u) < L(1
2
, c̄M)

Put as above n = N(u). Like while reducing a number put P̄1Q = Prob((a−
bm) is nν̄1 − smooth) and P̄1A = Prob((a − bα) is nν̄1). According to 1 we
have P̄1Q = L(1

3
,− 1

3δβν1
) and P̄1A = L(1

3
, δ

6ν̄1
+ 1

3δν̄1β
+ e1δ

3ν̄1β
). We do the

search in the same way. What changes is that we need that (a − bαj) is

34

smooth exactly in the field Kj which contains u. This changes the condition
into L(1

3
, 2ē1) · P̄1Q · (P̄1A) ≥ 1. Hence 2ē1 ≥ (1

3δβν̄1
) + [(δ

6ν̄1
+ 1

3δν̄1β
+ ē1δ

3ν̄1β
)].

As usual we take ē1 = (3ν̄1β
6ν̄1β−δ)(

2
3ν̄1δβ

+ δ
6ν̄1

). The time-cost of a ECM test
here doesn’t change with respect to case ν1 because the smoothness bound
is the same. Now we can compute the time-cost: t̄1 = L(1

3
, 2ē1) + P̄−1

1A =

L(1
3
,max(2ē1,

1
3δν̄1β

+ δē1
ν̄1β

))= L(1
3
, 2ē1). Just like in the case ν1 we have

ν̄1 = 4+δ2γ+ē1δ2

6δγē1
with ē1 = cr

2
(with cr as above) or the smallest value which

gives a ν̄1 in (0, 1).

case ν̄2 N(u) ≥ L(1
2
, c̄M)

Put as above n = N(u). We use P̄2Q = L(1
6
) and P̄2A = L(1

3
,− δ

6ν̄2
).

The condition, same as in case ν̄1, is fulfilled with ē2 = δ
6ν̄2

. An ECM

test takes time L(nν̄2)(
1
2
,
√

2). Since all the ideals to be reduced come from
the descent of some large l we have n ≤ L(2

3
, c)ν2 . Therefore ECM takes

time L(1
3
, 2
√

ν̄2ν2c
3

). Hence we have: t̄2 = L(1
3
, 2
√

ν2ν̄2c
3

)(L(1
6
) + L(1

3
, δ

6ν̄2
))

= L(1
3
, δ

6ν̄2
+ 2
√

ν2ν̄2c
3

). We minimize t̄2 for ν̄2 = (δ2

12ν2c
)

1
3 .

Numerical Application Using the information above we can compute the best
values for the parameters as well as the complexity of the descents. We obtain time
L(1

3
, 1.145) if one made steps 1 and 2 with parameters as in NFS, L(1

3
, 1.134) for

the algorithm of Commeine and Semaev and L(1
3
, 1.188) the Discrete Logarithm

Factory. Notice that for the Discrete Logarithm Factory the descent is longer
than in the normal case because we descent lower, i.e. β is smaller. Despite a
low smoothness bound, the descent is fast for Commeine and Semaev’s algorithm
because the multiple fields help us to find relations during descent. The same
computations allow us to find the complexity of the descent step for arbitrary
values of β.

Computing the probabilities

P1Q We have: |a+bm|
l

=
L(1

3
,e1)|l|

1
2L(2

3
, 1
δ

)

|l| = L(2
3
, 1
δ
)|l|− 1

2 . Further we have:

P1Q = Psmooth(L(2
3
, 1
δ
)|l|− 1

2 , |l|ν1) = u−u where u =
log(L(2

3
, 1
δ

)|l|−
1
2)

ν1 log |l| = − 1
2ν1

+
logL(2

3
, 1
δ

)

ν1 log l
. Since the map u 7→ u−u is decreasing, the smallest, i. e. worst,

probability occurs when u = umax. At its turn l 7→ u(l) is decreasing, so
umax = u(lmin) = u(L(1

3
, β)). Thus umax = (1+o(1)) 1

δν1β
(log p)

1
3 (log log p)−

1
3 .

Therefore P1Q ≥ (− 1
2ν1

+
logL(2

3
, 1
δ

)

ν1 logL(1
3
,β)

)−
1
3

log log p = L(1
3
,− 1

3δβν1
).

35

P1A We have for all j: N(a − bαj) ≤ dL(2
3
, 1
δ
)(L(1

3
, e1)|l| 12)d = L(2

3
, 1
δ

+ e1δ)|l|
d
2 .

Hence logN(a−bαj) = log |l| δ
2
(log p)

1
3 (log log p)−

1
3 +(1

δ
+e1δ)(log p)

2
3 (log log p)

1
3 .

We also have log(|l|ν1) = ν1 log |l|. Therefore u = 1
ν1

(δ
2
(log p)

1
3 (log log p)−

1
3 +

1
log |l|(

1
δ

+ e1δ)(log p)
2
3 (log log p)

1
3). As before we use the maximum value of u

which is umax = 1
ν1

(δ
2
(log p)

1
3 (log log p)−

1
3 + 1

logL(1
3
,β)

(1
δ
+e1δ)(log p)

2
3 (log log p)

1
3)

= L(1
3
, δ

2ν1
+ 1

δν1β
+ e1δ

ν1β
). Hence log umax = (1 + o(1))1

3
log p. Which leads to

P1A ≥ L(1
3
,−(δ

6ν1
+ 1

3δν1β
+ e1δ

3ν1β
)).

P2Q It is the probability that a number of size L(2
3
) is L(1

2
) − smooth because

n ≥ L(1
2
). It is L(1

6
)−1.

P2A The computations are the same as in case P1A until we compute u.Then
umax = 1

ν2
(δ

2
(log p)

1
3 (log log p)−

1
3 + 1

logL(1
2
,cM)

(1
δ

+ e1δ) log
2
3 p(log log p)

1
3) be-

cause l is larger. Thus umax = (1 + o(1)) δ
2ν2

(log p)
1
3 log log−

1
3 p. Hence

log umax = (1 + o(1))1
3

log p and P2A ≥ L(1
3
,− δ

6ν2
).

P̄1Q The difference with P1Q is that we have to replace ν by ν̄ and e1 by ē1, then
to add 1

ν̄1
to u. Indeed we used to test for smoothness the number a−bm

l
while

here we test a − bαj. Since u → ∞, adding a constant doesn’t change the
result in a first approximation. Therefore P̄1Q = L(1

3
,− 1

3δβν̄1
).

P̄1A Instead of testing for smoothness (a− bαj) as in P1A, we test (a− bαj) · u−1.
This changes the expected value of u by subtracting 1

ν̄1
. It doesn’t change

the result, so P̄1A = L(1
3
, δ

6ν̄1
+ 1

3δν̄1β
+ e1δ

3ν̄1β
).

P̄2Q Just like in P2Q, we have P̄2Q = L(1
6
)−1.

P̄2A The difference with the expected value of u by analogy with P2A is that we
have to subtract O((log p)

1
6). It doesn’t count because u has size (log p)

1
3 .

Thus P̄2A = L(1
3
,− δ

6ν̄2
).

36

Chapter 4

Conclusion and Perspectives

The present report pushes further a series of algorithms evolved from Index Cal-
culus. On the one hand, we showed that the idea of Factorization Factory is not
incompatible with the discrete logarithm problem. Thus we described a DLP al-
gorithm called Discrete Logarithm Factory with complexity Lp(1

3
, 1.639). On the

other hand we speeded up the fastest algorithm in practice by adapting the idea
of early abort to the NFS family. It brings the complexity of individual logarithm
to Lp(1

3
, 1.232) which can have consequences for DLP-based cryptosystems.

There are questions which remain open and further improvements which might
happen in the field. Let us make a non exhaustive list:

1. Pushing the early abort strategy to its limits. Indeed, in our analysis we
showed that 8 admissibility tests bring the complexity to Lp(1

3
, 1.232)1+o(1).

Can one adapt the number of tests to the size of p in order to speed up the
theoretical complexity?

2. Adapting the techniques of descent and early abort to other algorithms.
Indeed the similarities between Fp and Fpn might lead to similar algorithms.

3. Improving the polynomial selection. Indeed, the difference of complexity
between NFS and the Special Number Field Sieve (SNFS) is a consequence
of the fact that in the SNFS the coefficients of the polynomial are in O(1).
Despite a negative result in [BLP93] which showed that there are values of
p where no improvements can be made, we ignore the existence of a better
choice of the polynomials which could speed up NFS on average or for a non
negligible fraction of inputs.

37

Bibliography

[Adl08] L. Adleman. A subexponential algorithm for the discrete logarithm prob-
lem with applications to cryptography. In Foundations of Computer Sci-
ence, 1979., 20th Annual Symposium on, pages 55–60. IEEE, 2008.

[Bac84] E. Bach. Discrete logarithms and factoring. Technical Report CSD–84–
186, University of California at Berkley, 1984.

[BLP93] J.P Buhler, H.W. Lenstra, and C. Pomerance. Factoring integers with
the number field sieve. In A.K Lenstra and H.W. lenstra (eds), editors,
The development of the Number Fiel Sieve, volume 1554 of Lecture Notes
in Mathematics, pages 50–94. Springer–Verlang, 1993.

[Bou70] V. Bouniakowsky. –. Bulletin of the Academy of Science in Sankt Pe-
tersburg, 1870.

[CEP83] E. Canfield, P. Erdös, and C. Pomerance. On a problem of oppenheim
concerning "factoraisatio numerorum". Journal of Number Theory, 17:1–
28, 1983.

[CL84] H. Cohen and H. Lenstra. Heuristics on class groups of number fields.
Number Theory Noordwijkerhout 1983, pages 33–62, 1984.

[Coh93] H. Cohen. A Course in Computational Algebraic Number Theory.
Springer–Verlang, 1993.

[Cop93] D. Coppersmith. Modifications to the number field sieve. J. of Cryptol-
ogy, 6:169–180, 1993.

[Cop02] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic
two. Information Theory, IEEE Transactions on, 30(4):587–594, 2002.

[COS86] D. Coppersmith, AM Odlyzko, and R. Schroeppel. Discrete logarithms
in GF (p), Algorithmica. Vol, 1:1–15, 1986.

38

[CS06] An Commeine and Igor Semaev. An algorithm to solve the discrete loga-
rithm problem with the number field sieve. In Public Key Cryptography,
pages 174–190, 2006.

[CW08] D. Coppersmith and S. Winograd. On the asymptotic complexity of ma-
trix multiplication. In Foundations of Computer Science, 1981. SFCS’81.
22nd Annual Symposium on, pages 82–90. IEEE, 2008.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on information Theory, 22(6):644–654, 1976.

[ElG02] T. ElGamal. A subexponential-time algorithm for computing discrete
logarithms over GF (p2). Information Theory, IEEE Transactions on,
31(4):473–481, 2002.

[Gor93] D. Gordon. Discrete logarithms in gf(p) using the number field sieve.
SIAM Journal of Discrete Mathematics, 6:124–138, 1993.

[JL03] A. Joux and R. Lercier. Improvements to the general number field for
discrete logarithms in prime fields. Mathematics of Computation, 72:953–
967, 2003.

[Kra22] M. Kraïtchik. Théorie des nombres. Gauthier–Villars, 1922.

[Len87] H.W. Lenstra. Factoring integers with elliptic curves. Annals of mathe-
matics, 126(3):649–673, 1987.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance. IEEE Trans. In-
form. Theory, IT–24:106–110, 1978.

[Poh77] S. C. Pohling. Algebraic and combinatoric aspects of cryptography. Tech-
nical report, Stanford University, October 1977.

[Pol93] J. Pollard. The lattice sieve. The development of the number field sieve,
pages 43–49, 1993.

[Pom82] C. Pomerance. Analysis and comparison of some integer factoring al-
gorithms. Mathematisch Centrum Computational Methods in Number
Theory, Pt. 1 p 89-139(SEE N 84-17990 08-67), 1982.

[Pom08] C. Pomerance. A tale of two sieves. Biscuits of Number Theory, page 85,
2008.

[Sch93] O. Schirokauer. Discrete logarithms and local units. Philosophical Trans-
actions of the Royal Society London, series A, 345:409–424, 1993.

[Sch05] O. Schirokauer. Virtual logarithms. Journal of Algorithms, 57:140–147,
2005.

[Sho90] V. Shoup. Searching for primitive roots in finite fields. In Proceedings
of the twenty-second annual ACM symposium on Theory of computing,
pages 546–554. ACM, 1990.

[Sho09] V. Shoup. A computational introduction to number theory and algebra.
Cambridge University Press, 2009.

[Sil87] R.D. Silverman. The multiple polynomial quadratic sieve. Mathematics
of Computation, 48(177):329–339, 1987.

[Sta07] HM Stark. The Gauss Class-Number Problems. Analytic number theory:
a tribute to Gauss and Dirichlet, page 247, 2007.

[Wie86] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Trans. Inform. Theory, IT–32(1):54–62, 1986.

Appendix

Here is a diagram representing algorithms of the Number Field Sieve family. Each
box contains the name of an algorithm followed by its complexity, its author and
year of publication. The color code is red for factorization and blue for discrete log-
arithm. For DLP algorithms, when we write “x, then y”, x denotes the time of the
precomputations while y is the time of the individual logarithm. If the algorithm
was presented earlier in a conference or announced by personal communication we
include the year in parenthesis.

41

