
HAL Id: hal-01240856
https://hal.inria.fr/hal-01240856

Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of the McEliece Public Key Cryptosystem
based on Polar Codes

Magali Bardet, Julia Chaulet, Vlad Dragoi, Ayoub Otmani, Jean-Pierre Tillich

To cite this version:
Magali Bardet, Julia Chaulet, Vlad Dragoi, Ayoub Otmani, Jean-Pierre Tillich. Cryptanalysis of the
McEliece Public Key Cryptosystem based on Polar Codes. Post-Quantum Cryptography - PQCrypto
2016, Feb 2016, Fukuoka, Japan. �10.1007/978-3-319-29360-8_9�. �hal-01240856�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49407381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01240856
https://hal.archives-ouvertes.fr


Cryptanalysis of the McEliece Public Key
Cryptosystem Based on Polar Codes

Magali Bardet1, Julia Chaulet2, Vlad Dragoi1, Ayoub Otmani1, and
Jean-Pierre Tillich2

1 Normandie Univ, France; UR, LITIS, F-76821 Mont-Saint-Aignan, France.
{magali.bardet,vlad.dragoi1,ayoub.otmani}@univ-rouen.fr

2 Inria, SECRET Project, 78153 Le Chesnay Cedex, France.
{julia.chaulet,jean-pierre.tillich}@inria.fr

Abstract. Polar codes discovered by Arikan form a very powerful fam-
ily of codes attaining many information theoretic limits in the fields of
error correction and source coding. They have in particular much better
decoding capabilities than Goppa codes which places them as a serious
alternative in the design of both a public-key encryption scheme à la
McEliece and a very efficient signature scheme. Shrestha and Kim pro-
posed in 2014 to use them in order to come up with a new code-based
public key cryptosystem. We present a key-recovery attack that makes
it possible to recover a description of the permuted polar code providing
all the information required for decrypting any message.

1 Introduction

The concept of post-quantum cryptography appeared after Peter Shor showed
in [Sho97]that all cryptosystems which base their security on the hardness of
the factoring problem or the discrete logarithm problem can be attacked in
polynomial time with a quantum computer (see [BBD09] for an extensive report).
This threatens most if not all public-key cryptosystems deployed in practice,
such as RSA [RSA78] or DSA [Kra91]. Cryptography based on the difficulty of
decoding a linear code, on the other hand, is believed to resist quantum attacks
and is therefore considered as a viable replacement for those schemes in future
applications. Yet, independently of their so-called “post-quantum” nature, code-
based cryptosystems offer other benefits even for present-day applications due
to their excellent algorithmic efficiency.

The first code-based cryptosystem is the McEliece cryptosystem [McE78],
originally proposed using binary Goppa codes. Afterwards, several code fam-
ilies have been suggested to replace them: generalized Reed–Solomon codes
(GRS) [Nie86] or subcodes of them [BL05], Reed–Muller codes [Sid94], alge-
braic geometry codes [JM96], LDPC codes [BC07,BBC08], a certain kind of
non binary Goppa codes (called wild Goppa codes or wild Goppa codes incog-
nito) [BLP10,BLP11], MDPC codes [MTSB12], convolutional codes [LJ12], and
more recently polar codes [SK14] or subcodes of them [HSEA14]. Some of these
schemes allow to reduce the public key size compared to the original McEliece



cryptosystem while presumably keeping the same level of security against generic
decoding algorithms.

However, for many of the aforementioned schemes it has been shown that a
description of the underlying code suitable for decoding can be obtained which
breaks the corresponding scheme. This has been achieved for GRS codes in
[SS92], subcodes of GRS codes in [Wie10], Reed-Muller codes in [MS07]. Alge-
braic geometry codes based on (very) low genus hyperelliptic curves were broken
in [FM08], whereas the general case was broken in [CMCP14]. A first version
of the scheme based on LDPC codes proposed in [BC07] has been successfully
attacked in [OTD08] (but the new scheme proposed in [BBC08] seems to be
immune to this kind of attack). Some of the parameters that can be found in
[BLP10,BLP11] have been successfully cryptanalyzed with a polynomial time
attack in [COT14] or with an exponential time attack in [FPdP14], and finally
the convolutional scheme of [LJ12] was successfully cryptanalyzed in [LT13].

All of these attacks (with the exception of [LT13]) pinpoint algebraic proper-
ties of the codes which raises the issue of looking for alternative code families with
little or no algebraic structure. In this respect the proposals of [SK14,HSEA14]
might be very attractive. Moreover, polar codes enjoy another feature that
only few other codes have: they enjoy a decoding algorithm that can also be
used to produce for any binary word a codeword that is essentially as close
as possible as announced by the information theoretic upper bounds [CT91,
Th.13.2.1,Th.13.3.1] (see [KU10] for a proof of this result). This would make such
codes perfect candidates in a signature scheme [OT12] based on the Niederreiter
scheme [Nie86]. In particular, this would give a much more efficient signature
than the CFS scheme [CFS01].

A McEliece scheme based on (binary) polar codes also raises some other
interesting issues. There is basically no large choice for such codes and there is
essentially only one polar code (up to permutation of the coordinates) of a given
rate. Generally it is advocated that one should take a large code family in the
McEliece cryptosystem, because if there is only one code up to permutation of
the coordinates, then attacking the scheme amounts to solve the code equivalence
problem [PR97]. For most codes, this is generally easy to do by using the support
splitting algorithm [Sen00]. However, this algorithm requires in a crucial way
that the code has a small hull (which is the intersection of the code with its
dual) and a small permutation group, both of them being precisely the opposite
for polar codes. Interestingly enough, polar codes are known to be related to
the Reed-Muller code family [Arı09]. These two code families behave exactly in
the same way with respect to these properties: they have very large hull and
permutation group and there is also only one (or zero) Reed-Muller code for a
given rate. Note that when a McEliece scheme based on Reed-Muller codes was
proposed in [Sid94], its security relied precisely on the assumption that it could
be possible in theory to use a single code (up to permutation of the coordinates)
by using codes with a large hull and a large permutation group that would defeat
attacks based on the support splitting algorithm. It took thirteen years [MS07]



to break this McEliece scheme and the attack used many algebraic properties of
the Reed-Muller codes, that are presumably absent for polar codes.

However, we will show that despite the fact that polar codes seem to be
immune against a plain use of the support splitting algorithm, it can nevertheless
be cryptanalyzed successfully. We will show here how to recover from the public
generator matrix a description of the code that is suitable for decoding. Our
attack uses several ingredients:

(i) polar codes have rather low weight codewords which can be found by stan-
dard low weight codeword searching algorithms [Ste88,Dum91];

(ii) shortening the code with respect to these low weight codewords and taking
the dual also gives a code with low weight codewords which can be recovered
with the aforementioned algorithms;

(iii) by characterizing the permutation group of polar codes together with the
low-weight codewords found in Step (ii), it is possible to find among the
codewords found in Step (i) a subset of codewords which up to equivalence
by the permutation group can be considered as codewords whose support
are very specific affine spaces;

(iv) Puncturing the code with respect to the support of an element of mini-
mum weight in this last subset of codewords gives a code of small length
(typically 16 or 32) whose structure is known up to code equivalence. The
code equivalence problem is then solved in this case and is used to recover
step by step the underlying polar codes.

Steps (i) and (ii) are directly inspired from the Minder-Shokrollahi attack
[MS07] on the McEliece cryptosystem based on Reed-Muller codes, however
Steps (iii) and (iv) are new and very specific to polar codes. Basically, the fact
that the whole affine group is the permutation group of Reed-Muller code sim-
plifies a great deal the attack of [MS07]. This is not the case anymore for polar
codes and the crux for being able to mount this attack is to understand which
subgroup of the affine group is part of the permutation group of a polar code and
then to use this structure in a relevant way. Amazingly enough, it turns out that
a rather large subgroup is the answer to this problem and that polar codes are
much more symmetric than could be guessed from their definition. This result is
of independent interest and might be used to improve the decoding algorithms
of polar codes.

In a general way, in order to understand the structure of polar codes for
breaking this cryptosystem we have introduced here new concepts. In particular
we suggest here a new code construction, that we call decreasing monomial codes
which contains both the Reed-Muller code family and the polar code family
and which has a large subgroup of the affine group as permutation group. This
construction explains why polar codes have such a large permutation group,
but again this new code construction could be of independent interest in coding
theory. We also introduce in Step (iv) a novel iterative way of solving the code
equivalence problem that could be interesting for solving the code equivalence
problem for codes obtained from the (u|u+ v) construction.



2 Basic Facts

In this section we recall a few facts about the McEliece cryptosystem, polar
codes, the code equivalence problem, and code operations like shortening or
puncturing.

Polar Codes. Polar codes were discovered by Arikan [Arı09] and form a very
powerful family of codes that gave a nice constructive way of attaining many
information theoretic limits in error correction and source coding. In particular,
they allow to attain the capacity of any symmetric memoryless channel with a
low complexity decoding algorithm (namely the successive cancellation decoder
of Arikan). Since they have much better decoding capabilities than Goppa codes,
it is reasonable to study whether they can be used in a McEliece scheme. Due to
their better correction capacity, this allows for instance to decrease the key sizes
of the scheme. Decoding such codes is also faster than decoding Goppa codes
and this can also be used to speed up the decryption process.

They can be described as codes of length n = 2m, where m is an arbitrary
integer. They may take any dimension between 0 and 2m. The polar code of
length n = 2m and dimension k is obtained through a generator matrix which
picks a specific subset of k rows of the 2m × 2m matrix:

Gm
def
=

(
1 1
0 1

)
⊗ · · · ⊗

(
1 1
0 1

)
︸ ︷︷ ︸

m times

.

Note that we depart here slightly from the usual convention for polar codes

which is to use in the Kronecker product the matrix

(
1 0
1 1

)
. The two definitions

(ours and the standard one) are easily seen to be equivalent, they just amount
to order the code positions differently. Our convention presents the advantage of
simplifying the polynomial formalism that follows.

The specific choice of rows that are picked depends (a little bit) on the noisy
channel for which the code is devised. For a given noise model, there is a way
to compute the k rows which are used to define the generator matrix of the
code. Roughly speaking these rows are chosen in such a way that it gives good
performances for the successive cancellation decoder.

McEliece cryptosystem. The (binary) McEliece public-key scheme [McE78]
can be described as follows. The key generation algorithm picks a random k×n
generator matrix G of a binary linear code C which is itself randomly picked in
a family of codes for which t errors can be efficiently corrected. The secret key is
the decoding algorithm D associated to C and the public key is G. To encrypt
u ∈ Fk2 , the sender chooses a random vector e in Fn2 of Hamming weight less
than or equal to t and computes the ciphertext c = uG + e. The receiver then
recovers the plaintext by applying D on c.

Code equivalence problem. In the McEliece scheme based on polar codes
[SK14], since there is in essence a single (binary) polar code of a given dimension
and length, breaking the scheme amounts to find for a permuted version of the



polar code a permutation that gives the original polar code. In other words,
we face here as for the McEliece scheme based on Reed-Muller codes the code
equivalence problem. To give a formal definition of this problem we will use the
following notation and definition.

Notation 1 (Permutation of a word and a code). The symmetric group
of degree n is denoted by Sn. Let x = (xi)06i<n ∈ Fn2 and π be a permutation
of {0, 1, . . . , n − 1}. We denote by xπ = (xπ(i))06i<n the vector x permuted by
π and for a binary code C of length n, its permutation by π is defined by

C π def
=
{
cπ | c ∈ C

}
.

Definition 1 (Permutation group of a code). The permutation group of a
code C is the set of permutations π such that C π = C .

The code equivalence problem can be stated as follows:

Problem 1 (Code equivalence search problem). Given C and C π where C is a
code of length n and π belongs to Sn, find π̂ in Sn such that C π̂ = C π.

Note that we do not necessarily have π̂ = π when the permutation group of
the code is non trivial. It is namely immediate to prove that:

Proposition 1. For any x = (xi)06i<n in Fn2 and all permutations π and π′ in
Sn we have

(xπ)π
′

= xππ
′
.

Let C be a code of length n with permutation group G and π be a permutation
of the same length as C (i.e. a permutation in Sn). We have{

π̂ ∈ Sn | C π̂ = C π
}

= Gπ

If C has permutation group G, then C π has permutation group π−1Gπ.

Proof. The first part of the proposition can be proved by bringing in x′
def
= xπ

and observing that:

(i) for any i in {0, . . . , n − 1} we have xi = x′π−1(i) since x′j = xπ(j) for

j = π−1(i).
(ii) (xπ)π

′
= x′π

′
= (x′π′(i))06i<n = (x′π−1(π(π′(i))))06i<n = (xπ(π′(i)))06i<n =

xππ
′
.

From this we deduce that for any σ in G, we have C σπ = (C σ)π = C π. Conversely

if C π̂ = C π, then (C π̂)π
−1

= C and therefore π̂π−1 is in G, meaning that π̂ is
in Gπ.

To prove the last part we observe that if γ is a permutation that leaves C in-
variant, then π−1γπ is a permutation that leaves C π invariant, since (C π)π

−1γπ =
C γπ = (C γ)π = C π. Conversely if γ′ is a permutation of C π, then the same kind

of computation shows that γ
def
= πγ′π−1 is a permutation of C .



What makes the equivalence problem difficult for polar codes is that the standard
algorithm for solving it, namely the support splitting algorithm of [Sen00] is too
complex to be used in this context due to the very large size of the hull of the
polar code. What makes the problem even more intricate is the fact that a polar
code turns out to have a very large permutation group which complicates the
task significantly.

Operations on codes. One of the basic operations used in the support
splitting algorithm for solving the code equivalence problem is to consider short-
ened and punctured codes. For a given code C and a subset J ⊆ {0, . . . , n− 1}
the punctured code PJ (C ) and shortened code SJ (C ) are defined as:

PJ (C )
def
=
{

(ci)i/∈J | c ∈ C
}

;

SJ (C )
def
=
{

(ci)i/∈J | ∃c = (ci)i ∈ C such that ∀i ∈ J , ci = 0
}
.

Instead of writing P{j} (C ) and S{j} (C ) when J = {j} we rather use the nota-
tion Pj (C ) and Sj (C ). These codes are used in the following way to solve the
code equivalence problem: C is punctured in a position i whereas C π is punc-
tured in some position j. If we have a quick way to check that two codes are
not equivalent, then we can use this tool to check whether the two punctured
codes may be equivalent or not (in the support splitting algorithm this is done
by computing the weight enumerator of the hull which is obviously invariant
by permutation). If the two punctured codes are not equivalent, then we know
for sure that i and j can not correspond to each other via the permutation of
position π. The same idea works also for the shortened code.

3 Decreasing Monomial Codes

The purpose of this section is to introduce a novel algebraic framework that
sheds some light about the structure of polar codes. We will in particular give
a new class of codes, that we call decreasing monomial codes that contains as
a particular case, polar codes and Reed-Muller codes. The dual of a decreasing
monomial code is a decreasing monomial code and under a very mild condition,
such codes turn out to be weakly self-dual (i.e. the hull of the code is the code
itself). We will then prove that this general construction has a very large per-
mutation group and both facts put together will explain why polar codes have
such a large permutation group and hull. We will use here the polynomial for-
malism that is generally used to describe Reed-Muller codes. It turns out that
this polynomial formalism is also very handy for describing polar codes.

Reed-Muller codes. It is well known that Reed-Muller codes of length 2m

can be obtained as evaluation codes of polynomials in F2[x0, . . . , xm−1]. Polar
codes can also be described through this formalism. Since we are interested in
evaluations of such polynomials over entries in Fm2 we will identify xi with x2

i

and work in the ring R2[x0, . . . , xm−1] = F2[x0, . . . , xm−1]/(x2
0− x0, . . . , x

2
m−1−

xm−1). It will be convenient with this formalism to associate to a polynomial g ∈



R2[x0, . . . , xm−1] the binary vector denoted by ev(g) in Fn2 with n = 2m which is
the evaluation of the polynomial in all the binary entries (u0, . . . , um−1) ∈ Fm2 .
In other words

ev(g) =
(
g(u0, . . . , um−1)

)
(u0,...,um−1)∈Fm2

With this notation, we will view the indices of a vector as elements of Fm2 . This
notation does not specify the order we use for the elements of Fm2 . We actually

use the natural order by viewing (u0, . . . , um) as the integer
∑m−1
i=0 ui2

i. With
this notation at hand, the Reed-Muller code R(r,m) is defined as

R(r,m)
def
=
{
ev(P ) | degP 6 r

}
Obviously this code is generated by the codewords ev(g) where g is a monomial
of degree less than or equal to r. Recall that a monomial is any product of
variables of the form xg00 · · ·x

gm−1

m−1 where g0, . . . , gm−1 are binary. The set of all
monomials is denoted by:

M def
= {1, x0, . . . , xm−1, x0x1, . . . , x0 · · ·xm−1}.

Reed-Muller codes have a very large permutation group which is isomorphic
to the affine group over Fm2 . Indeed, it can be checked immediately that:

(i) any bijective affine transformation A over Fm2 can be viewed as a permu-
tation of the code positions by mapping (u0, . . . , um−1) to A(u0, . . . , um−1);

(ii) this permutation leaves the code invariant since P (A(x0, . . . , xm−1)) is a
polynomial of degree at most the degree of P and therefore if ev(P ) ∈
R(r,m) then ev(P ◦A) ∈ R(r,m).

Monomial codes. It is straightforward to check that the rows of G are all
possible evaluations of monomials. This fact is easily proved by induction on m
by observing that (1, 1) is the evaluation of the constant monomial 1 and that
(0, 1) is the evaluation of the monomial x0. From this, we easily see that a polar
code is a monomial code, meaning codes generated by evaluations of monomials
(see the formal definition below).

It will also be very convenient to introduce the following partial order � on
monomials

Definition 2 (Monomial order). The monomials of the same degree are or-
dered as

xi1 . . . xis � xj1 . . . xjs if and only if for any ` ∈ {1, . . . , s}, i` 6 j`

where we assume that i1 < · · · < is and j1 < · · · < js.

This order is extended to other monomials through divisibility, namely: f � g
if and only if there is a divisor g∗ of g such that f � g∗.



Obviously for any monomial f of M the constant polynomial 1 satisfies the
inequality 1 � f . The interval [f ;h] where f and h are in M with f � h is the
set of monomials g ∈ M such that f � g � h. We will also need the following
definition

Definition 3 (Decreasing set). A set I ⊆ M is decreasing if and only if
(f ∈ I and g � f) implies g ∈ I.

With these definitions, we define monomial and decreasing monomial codes
as follows.

Definition 4 (Monomial and decreasing monomial codes). Let I be a

finite set of multivariate polynomials in m variables and set n
def
= 2m. The linear

code defined by I is the vector subspace C (I) ⊆ Fn2 generated by {ev(f) | f ∈ I}.
It is called the polynomial code associated to I.

1. When I ⊆M, C (I) is called a monomial code.
2. When I ⊆M is a decreasing set, C (I) is called a decreasing monomial code.

The dimension of monomial codes is easily derived.

Lemma 1. For all I ⊆ M the dimension of the monomial code C (I) is equal
to |I|.

Proof. This comes from the linear independence of the monomials in R2[x0, . . . , xm−1].

Example 1. The r-th order Reed-Muller code is the decreasing monomial code
defined by the interval [1;xm−r . . . xm−1]since:

R(r,m) = C ([1;xm−r . . . xm−1]) .

The dimension 1 +m+ · · ·+
(
m
r

)
comes directly from Lemma 1.

It turns out that it can be proved, but this is beyond the scope of this article,
that polar codes devised for the erasure channel are also decreasing monomial
codes. The point is that if we take a row of Gm to be a row of the generator
matrix (and view this row as a monomial - since as we have explained before -
all these rows correspond to an evaluation of a particular monomial) all the rows
that are “smaller” (in the sense of the monomial order defined before) will also
be chosen to be part of the generator matrix of the polar code. This fact can
be proved by studying the polarization process ([Arı09]) which is at the heart of
choosing the relevant rows of Gm. Simple heuristics can be invoked that this also
holds for other channel models and we have experimental evidence showing that
this seems to hold in particular for polar codes devised for the binary symmetric
channel (which are the polar codes used here). This fact can be simply checked
for the polar codes that we have attacked here.

Duality and permutation group of decreasing monomial codes. Du-
als of decreasing monomial codes have a very simple description and it will turn
out that under certain very weak conditions, they are weakly self-dual. It is



readily seen that the dual of a monomial code is a polynomial code, but it is not
necessarily a monomial code. However the dual of a decreasing monomial code
turns out to be a decreasing monomial code. To describe this dual we will use
the following notion of (multiplicative) complement of a monomial g and denote
it by ǧ.

Definition 5 (Complement). For any g ∈M we define the complement of g
as

ǧ =
x0 . . . xm−1

g
.

With this notion, we have the following proposition whose proof is in Section A
of the appendix.

Proposition 2. Let C (I) be a decreasing monomial code, then its dual is a
decreasing monomial code given by

C (I)⊥ = C (M\ Ǐ).

Notice that this proposition yields the well known result about the dual of a
Reed-Muller code RM(r,m) = C ([1;xm−r . . . xm−1]) where we have

RM(r,m)⊥ = C (M\ [x0 . . . xm−r−1;x0 . . . xm−1])

= C ([1;xr+1 . . . xm−1])

= R(m− r − 1,m).

A straightforward consequence of this is that under some conditions, any de-
creasing monomial code is weakly self-dual.

Corollary 1. Let C (I) be a decreasing monomial code with |I| 6 1
22m. Then

C (I) ⊆ C (I)⊥ if and only if for any f ∈ I, f̌ 6∈ I.

Polar codes of rate (sufficiently) smaller than 1/2 generally satisfy this as-
sumption and in the case of rate greater than 1

2 it is the dual of the polar code
that satisfies this assumption. This can be explained by looking at the polar-
ization process that is used to choose the monomials defining the polar code,
but explaining this point is beyond the scope of this article. We just wish to
add that this assumption is satisfied for the polar codes used in the McEliece
cryptosystem that we have attacked in this article. This corollary explains why
such codes are weakly self-dual and why the support splitting is of unreasonable
complexity in such a case for recovering the unknown permutation between a
known permuted polar code and a polar code.

Polynomial codes and monomial codes may have a trivial permutation group.
Applying an affine permutation to a monomial code yields a polynomial code,
but it is not necessarily a monomial code. To understand the action of a permu-
tation π which is also an affine transformation on Fm2 we can notice that for any
monomial f in R2[x0, . . . , xm−1] we have

ev(f)π = ev(f ◦ π) (1)



where on the lefthand side we view π as a permutation on the coordinates (viewed
as elements of Fm2 ) whereas on the righthand side we view π as an affine permuta-
tion. This equation explains why a monomial code may not be a monomial code
after applying an affine permutation and it is rather straightforward to come up
with examples of monomial codes that have a trivial permutation group. How-
ever by considering the subclass of decreasing monomial codes we obtain codes
with a very large permutation group which is the lower triangular affine group,
that is:

Definition 6 (Lower triangular affine group). The lower triangular affine
group LTAm on Fm2 is defined as the set of affine transformations over Fm2 of
the form x 7→ Ax + b where A is a lower triangular binary matrix with “1”’s
on the diagonal and b is arbitrary in Fm2 .

Theorem 1. The permutation group of a decreasing monomial code in m vari-
ables contains LTAm.

This theorem is proved in Section A of the appendix. This theorem explains
why polar codes have a large subgroup of the permutation group of Reed-Muller
codes as permutation group. This fact is one of the keys for the cryptanalysis
which follows.

Minimum distance of decreasing codes. We first recall some well known
facts about the minimum distance of Reed-Muller codes (see for instance [MS86,
Ch. 13, §4]):

Theorem 2. The minimum distance of the Reed-Muller code R(r,m) is 2m−r.
There is a one to one correspondance between the affine subspaces of Fm2 of
dimension m−r and the minimum codeword of R(r,m): all minimum codewords
are obtained as ev(x′0 . . . x

′
r−1) where x′0, . . . , x

′
r−1 are obtained from x0, . . . , xr−1

by a bijective affine change of coordinates.

In other words, “up to action of the permutation group there is only one code-
word of minimum weight”. All these facts have simplified significantly the attack
of the McEliece cryptosystem based on Reed-Muller codes in [MS07]. We will
see in what follows that polar codes behave differently with this respect.

To understand the minimum distance of a decreasing monomial code, and of
a polar code in particular, the following notion is very useful.

Definition 7. Let C (I) be a decreasing monomial code over m variables. We
let

r−(C (I))
def
= max

{
r | R(r,m) ⊆ C (I)

}
r+(C (I))

def
= min

{
r | C (I) ⊆ R(r,m)

}
It is readily checked that another way of defining these quantities is that

r− is the largest r for which the monomial xm−r . . . xm−1 is in I. On the other
hand r+ is the largest integer r for which x0 . . . xr−1 is in I. These quantities
are related to the minimum distance of a decreasing monomial code and its dual
through the following result



Proposition 3. Let C (I) be a decreasing monomial code over m variables. We
have the following properties:

(i) The minimum distance of C (I) is equal to 2m−r+(C (I)).
(ii) r−(C (I)⊥) and r+(C (I)⊥) satisfy the equalities:

r−(C (I)⊥) = m− 1− r+(C (I))

r+(C (I)⊥) = m− 1− r−(C (I))

(iii) The minimum distance of C (I)⊥ is equal to 2r−(C (I))+1

This proposition is proved in appendix Section A. A straightforward corollary
of these propositions is that the minimum distance of a polar code is always
smaller than or equal to the minimum distance of the Reed-Muller code of the
same dimension (if it exists) and this is already a strong indication that this
minimum distance is rather small (at most the square root of the length for
codes of rate greater than 1

2 for instance). For the polar codes we are interested
in in this study, we will be able to find minimum weight codewords in the polar
code and its dual with standard algorithms for finding low weight codewords
[Ste88,Dum91], since both minimum distances turn out to be rather small.

For Reed-Muller codes there is only one orbit of the permutation group in-
side the set of minimum codewords. The case of decreasing monomial codes is
more complicated. However, and this will be very helpful for classifying these
codewords, we have:

Theorem 3. Each orbit under the action of LTAm contained in the set of min-
imum codewords of the decreasing monomial code C (I) contains a monomial of
I.

This theorem is proved in Section A of the appendix.

4 Cryptanalysis

We will explain here how we solve the code equivalence problem for a decreasing
monomial code C (I). This can be applied to any polar code and yields an attack
that breaks the McEliece scheme based on polar codes proposed in [SK14]. In
this section, we use the simplified notation r− for r−(C (I)) and r+ for r+(C (I)).
We also use the notion of signature formalized as follows.

Definition 8 (Signature). Let C be a code of length n. Let G be a subgroup of
permutations of C and W be a subset of C globally invariant under G. We say
that a function Σ(c,C ) where c belongs to C is a signature for the action of G
on W if and only if:

(i) Σ(c,C ) = Σ(cπ,C π) for π from Sn (i.e. Σ is invariant by permutation),
(ii) Σ(c,C ) 6= Σ(c′,C ) if c and c′ both belong to W but are not in the same

orbit under G (i.e. Σ takes distinct values for each orbit).



Notice here that a signature always takes the same value on an orbit under
G since if we take c in W and γ is an element of G, then Σ(c,C ) = Σ(cγ ,C γ) =
Σ(cγ ,C ) since γ belongs to the permutation group of the code.

The algorithm for performing the attack can now be summarized as follows:

Step 1. (Minimum weight codewords searching) Search the non-zero minimum weight
vectors of C (I) and C (I)π. We denote these two sets by Wmin and Wπ

min re-
spectively. Note that Wmin = {c ∈ C (I) : |c| = 2m−r+}, Wπ

min = {c ∈
C (I)π : |c| = 2m−r+} and the codeword cmin

def
= ev(x0 · · ·xr+−1) belongs to

Wmin.
Step 2. (Signature of orbits in Wmin) Compute the orbits of Wmin under the lower

triangular subgroup LTAm of the affine group and find a signature for these
orbits. This signature is based on shortening the dual C (I)⊥ on the support
of c (where c belongs to Wmin) and computing the dimension of this code
and the number of codewords of minimum weight in it.

Step 3. (Computation of orbits in Wπ
min) Use this signature to decompose Wπ

min into
distinct orbits under the group π−1LTAmπ and use it to find the orbit of
cπmin.

Step 4. (Identification of affine spaces) Without loss of generality, we may take any
codeword in the orbit of cπmin and declare that it is equal to cπmin. Let I
be the support of cmin, and J be the complementary set (that is the set
of position for which cmin takes the value 0). Note that with the way we
identify positions as elements of Fm2 , I can be viewed as the affine space
x0 = x1 = · · · = xr+−1 = 1. The structure of the orbit of cmin is such that
the supports of all the codewords in this orbit are affine spaces of the form
x0 = ε0, x1 = ε1, . . . , xr+−1 = εr+−1, where the εi’s are arbitrary elements in
F2. Denote this affine space by A(ε0, . . . , εr+−1) and let cmin(ε0, . . . , εr+−1)
be the corresponding codeword. Up to a permutation of C π, we identify all
the elements cmin(ε0, . . . , εr+−1)π. This gives all the affine spaces permuted

by π, that is A(ε0, . . . , εr+−1)π
def
= {π−1(i) | i ∈ A(ε0, . . . , εr+−1)}.

Step 5. (Equivalence problem for a short code) Let J be the set of positions where
cmin takes zero values. Notice that the set of positions for which cπmin takes

zero values is J π. Then we compute the codes D
def
= PJ (C ) and Dπ def

=
PJ π (C π). We solve the code equivalence problem for D and Dπ′ where π′

is the restriction of the permutation π to the affine space I. Notice that this
problem is solved for much shorter codes than the original system.

Step 6. (Induction step) Let ci = ev(x0 . . . , xi−1) with c0 being ev(1), that is the
all-one codeword. Notice that cmin = cr+ , and let J i be the set of positions
for which ci takes the value 0. Denote by D i = PJ i (C ). Solve for i =

r+−1, . . . , 0 the code equivalence problem for the pair (D i, (D i)π
i

) by using

the solution to the code equivalence problem (D i+1, (D i+1)π
i+1

) where πi is
the restriction of π to the set of positions of D i.

The last code equivalence problem we solve here (namely for i = 0) is just a
solution to the original code equivalence problem.



4.1 Step 1 – Minimum weight codewords searching.

Finding the codewords of C (I)π can be performed by applying Dumer’s algo-
rithm [Dum91]. The complexity of this algorithm for finding a codeword of weight
w in a code of rate R can be estimated as O

(
e−w ln(1−R)(1+o(1))

)
when w is a

sublinear function of the length (see [CTS15] for more details) and the length
n of the code goes to infinity. For monomial codes it can be readily checked
that codes with rate greater than some constant ε > 0 have minimum distance
at most O(

√
n) (this comes from straightforward and well known results about

the minimum distance of Reed-Muller codes and Proposition 3). This is clearly
achievable for the polar codes we have considered in this article.

On the other hand, all the minimum codewords of C (I) are easily obtained
by using Theorem 3: Wmin decomposes into orbits under the action of LTAm
where each orbit contains one of the monomials of I of degree r+.

4.2 Step 2 – Signature of orbits in Wmin

To distinguish between the codewords of Wmin we have first chosen a monomial
in each of the orbits under LTAm that decompose Wmin. For each of such mono-

mials g we have computed the dual of the shortened code D
def
=
(
SJ (C (I))

)⊥
with respect to the support J of ev(g). It has turned out that, for the polar
codes we have considered, the pair (number of codewords of weight 2r− in D ,
dimension of D) was discriminant enough to yield a signature of the orbit. This
critical quantity 2r− occurs because we have

Theorem 4. Let g = xi1 . . . xir+ be a monomial of degree r+ in I. Denote by

supp(g) the support of ev(g), then the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is

equal to 2r− if and only if there exists a monomial h in M\ Ǐ such that:

(i) the number of variables of h that are also variables of g is r+ − 1,

(ii) the number of variables of h that are also variables of ǧ is m− r− − r+.

This theorem is proved in Section B of the appendix.

4.3 Step 3 – Computation of orbits in Wπ
min

The signature Σ that has been found in the previous step is now applied to
Wπ

min. It gives the orbits of Wπ
min with respect to the conjugate group π−1Gπ.

Indeed, it can be verified that

Proposition 4. Wπ
min is invariant by the action of π−1LTAmπ and if Σ is a

signature for Wmin under the action of LTAm, then it is also a signature for the
action of π−1LTAmπ on Wπ

min.

We use this signature for finding the orbit of cmin. This orbit has a particu-
larly nice structure:



Proposition 5. The orbit of cmin under LTAm consists of 2r+ codewords that
are of the form cmin(ε0, . . . , εr+−1) where the εi’s are arbitrary elements of F2.
The orbit of cπmin under π−1LTAmπ is given by 2r+ codewords of weight 2m−r+

that have disjoint supports which are the permuted versions A(ε0, . . . , εr+−1)π of
the affine spaces A(ε0, . . . , εr+−1).

In other words, finding this orbit in Wπ
min and looking at the support of the

codewords that we have found in this way allows us to find the support of the
permuted versions A(ε0, . . . , εr+−1)π of the affine spaces A(ε0, . . . , εr+−1).

4.4 Step 4 – Identification of affine spaces

There are several ways to identify the permuted versions of the affine spaces we
are interested in. One of the simplest way, which worked for the [2048, 614] po-
lar code that we studied, is by computing the dimensions of certain spaces.
First we take any codeword in the orbit of cmin. Such codeword is of the
form cγπmin where γ is a permutation leaving C (I) invariant. In other words,
up to applying the permutation group, we can safely declare that this code-
word is cπmin. Let I0 be the support of cmin = c(1, . . . , 1). We choose I ′0 be

the support of the codeword c( 1, . . . , 1︸ ︷︷ ︸
(r+−1) times

, 0). Notice that I def
= I0 ∪ I ′0 is the

support of the codeword ev(x0 . . . xr+−2). We compute the dimension of the
code PI (C (I)). Now, we let J0, . . . ,J2r+−1 be the supports of the codewords
that are in the orbit of cπmin, with J0 being the support of the codeword cγπmin

that has been chosen. We compute the dimensions of the codes PJ0∪Ji (C (I)π)
for i = 1, . . . , 2r+ − 1. It turns out that there is generally a single space Ji
such that dim (PJ0∪Ji (C (I)π)) = dim (PI (C (I))). We pair these two spaces
J0 and Ji together. This process can be used to pair together all the spaces
A(ε0, . . . , εr+−2, 0)γπ and A(ε0, . . . , εr+−2, 1)γπ by pairing together Ji and Jj
when Jj is the only space for a given i such that

dim
(
PJi∪Jj (C (I)π)

)
= dim (PI (C (I))) .

In such a case, Ji and Jj necessarily correspond to A(ε0, . . . , εr+−2, 0)γπ and

A(ε0, . . . , εr+−2, 1)γπ for a certain (ε0, . . . , εr+−2) ∈ Fr+−1
2 . In other words, we

know after this process all the spacesA(ε0, . . . , εr+−2)γπ = A(ε0, . . . , εr+−2, 0)γπ∪
A(ε0, . . . , εr+−2, 1)γπ. We can carry on this process with the codeword c =
ev(x0 . . . xr+−1) instead of cmin and recover all the permuted affines spaces
A(1)γπ, A(1, 1)γπ, . . . , A(1, 1, . . . , 1︸ ︷︷ ︸

r+ times

)γπ for some permutation γ leaving C (I) in-

variant.

4.5 Step 5 – Equivalence problem for a short decreasing monomial
code

We now have to solve the code equivalence problem for D which is a code of
length 2m−r+ which is much shorter than the original code. It is also straightfor-



ward to check that it is a decreasing monomial code. We can for instance carry
out the process again that we saw before. For the [2048, 614] polar code that we
studied, we can even compute the whole permutation group of the code which is
much closer to the whole affine group. It is here a code of length 32 that contains
R(2, 5) and is contained in R(3, 5). We do not detail this point here, since there
are many ways to actually solve the problem.

4.6 Step 6 – Induction step

The idea here is to reconstruct the permutation π̂ given that we already know
its action on the support of cmin. More precisely, the code equivalence problem
that we solve here is:

Problem 2 (Code equivalence search problem with side information). Given (C ,
C π) and t pairs of code positions (i0, j0), (i1, j1), . . . , (it−1, jt−1), find π̂ such
that C π̂ = C π and π̂(is) = js for all s ∈ {0, 1, . . . , t− 1}

We use the following algorithm for solving this problem (we let here I def
=

{i0, . . . , it−1} and J def
= {j0, . . . , jt−1})

1. we pick a certain number ` of codewords c(0), . . . , c(`− 1) of C .
2. Let C (j) the set of codewords of C which coincide with c(j) on the positions

belonging to J . We also define C (i)π as the set of codewords of C π that
coincide with c(i)π on I.

3. We compute for all i in 0, 1, . . . , `− 1 and all positions j which are not in J ,
the number Σ(i, j) which is the number of codewords of minimum weight in
Pj (C (i)), and similarly for all all positions j that are not in I, the number
Σπ(i, j) which is the number of codewords of minimum weight in Pj (C (i)π).

4. We declare for u which is not in I that π̂(u) = v if there exists a unique
v which does not belong to J such that Σ(i, v) = Σπ(i, u) for all i in
{0, 1, . . . , `− 1}.

It is straightforward to verify that this algorithm outputs the unique π̂ solving
the problem in this case. We have also encountered cases, where even with the
knowledge we have on π̂, we have different solutions. In such a case, we were
able to compute how many solutions we had and add to the set of pairs (is, js)
an additional pair (or additional pairs) which gives a unique solution.

5 Implementation of the Attack on a [2048, 614]-Polar
Code

We implemented the [2048, 614]-polar code as follows. The Shannon limit for the
noise on a binary symmetric channel of crossover probability p that a code of
rate 614

2048 is able to sustain is about p = 0.19. We devised the polar code for a
slightly smaller error rate of p = 0.17 and chose the 614 best rows of G11 which
give the best performances for the successive cancellation decoder. Such a code



is able to correct more than 200 errors with a small error probability- this should
be compared to the 130 errors that a Goppa code of the same rate is able to
tolerate. In the case of a Goppa code we have about 70 bits of security against
message attacks based on generic linear codes decoding algorithms, whereas we
have more than 105 bits of security for the polar code.

We first checked that this code C and its dual C⊥ are both decreasing mono-
mial codes and computed all the minimum weight codewords by using Theorem
3. The conditions of Corollary 1 were met and the code was weakly self-dual
C ⊂ C⊥. The minimum distance of C turned out to be equal to 32 and there
were 42176 codewords of this weight, whereas the minimum distance of C⊥ was
8 and there were 6912 codewords of this weight in the dual. The same number
of codewords were found by Dumer’s algorithm in C π and in (C π)⊥. It tooks 27
seconds to find these codewords in C π and 3 seconds to find these codewords in
(C π)⊥ on a 8-core XEON E3-1240 running at 3.40 GHz.

But the most time consuming part was Step 6 of the attack when we have
to compute the various Σ(i, j)’s that are needed. This is done again by using
Dumer’s algorithm. The difference with obtaining codewords of minimum weight
of the polar code is that in the polar case we know beforehand the number of
minimum weight codewords by using a counting procedure based on Theorem 3
and we can stop the search procedure once we have the right amount of different
codewords. However when we compute Σ(i, j) we do not know beforehand the
number of minimum weight codewords in Pj (C (i)) and we use a probabilistic
procedure based on the coupon collector problem : once we have found n different
minimal codewords, where on average we have found each codeword α lnn times
we stop the procedure for a certain value of α greater than 1. Here we have taken
α to be equal to 3. In this case, to speed up the computation we chose the c(i)’s
to be minimum weight codewords of C . More than 80% of the total computation
is actually taken for the last step of induction where we recover a permutation
for the whole [2048, 614] code from the partial permutation acting on half its
positions. This takes about 227 hours and the total computation time is about
280 hours. This part of the attack is very likely to be improved significantly if
need be.

6 Conclusion

Despite the fact that the code equivalence problem for binary polar codes is
a hard instance for the Support Splitting Algorithm, we have shown in this
paper that it can nevertheless be solved rather efficiently by a more sophisticated
algorithm consisting in (i) looking for minimum weight codewords, (ii) classifying
them by using our knowledge of the automorphism group of the polar code to
find a particular minimum weight codeword, (iii) use this particular codeword to
partition the code positions into affine spaces, (iv) puncture the set of positions
with respect to all these affine spaces but one, and solve the code equivalence
problem on this reduced problem. We use this to solve the code equivalence
problem by induction on increasing affine spaces.



This allows to break the McEliece cryptosystem for the parameters proposed
in [SK14]. It is likely that the only way to avoid this kind of attack (or possible
improvements on it) is to look for polar code parameters for which we are unable
to find minimum weight codewords either in the code or in its dual. This would
require to change significantly the parameters proposed in [SK14] that would
make such polar codes much less attractive for a use in a McEliece cryptosystem.

To obtain this attack we have proposed a new code family, that we call de-
creasing monomial codes containing as a particular subcase Reed-Muller codes
and binary polar codes. These decreasing monomial codes have a very large per-
mutation group that gives some insight about the permutation group of polar
codes. This knowledge on the permutation group of polar codes we obtained
could also be used in other settings, for instance to improve the decoding per-
formances of polar codes.

This attack can be considered as a first step towards studying the polar
code based McEliece scheme proposed in [HSEA14]. Our attack does not apply
directly to this scheme since it is based on taking a particular kind of random
subcode of the polar code. In such a case, the system does not consist in solving
the code equivalence problem (or we have to solve as many instances as the
number of possible subcodes of this kind which becomes unfeasible in this case).
However it seems that some of the tools provided here, and a particular property
of polar codes, might also be used to attack such a scheme. Indeed, taking the
square of the polar code or the square of its dual (with the definition of a square
code given in [CGG+14]) gives a code which is not the full space in many cases. If
the subcode of a polar code was chosen uniformly at random among the spaces of
some prescribed codimension inside the code, then the square of such codes would
be almost always equal to the square of the polar code when the codimension is
large enough. This would give an attack since the square of a polar code which
is a decreasing monomial code is readily seen to be a decreasing monomial code
itself. From there we can solve the code equivalence problem on the square of this
code by using the tools given in this paper. This reveals the secret permutation
and breaks the system. With the way the subcodes are chosen in [HSEA14] this
does not happen, but still the square of the subcode is a very large subcode of
the square of the polar code itself and this looks highly suspicious.
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A Proofs of the results of Section 3

A.1 Proof of Proposition 2

In order to prove this result, we first prove a few lemmas about the partial order
we introduced.

Lemma 2. For all f and g in M, f � g if and only if f̌ � ǧ.

Proof. Let f = xi1 . . . xis and g = xj1 . . . xjt with s 6 t and i1 < · · · < is,
j1 < · · · < jt. Then we have two cases:

– if deg f = deg g then by definition of the order we have i` 6 j` for all
j = 1, . . . , s. Consider the `-th variable xi′` in the monomial f̌ and the `-th
variable xj′` in the monomial ǧ. Let us define

ϕ(u)
def
= `− 1 + #{ia : ia 6 u}

γ(u)
def
= `− 1 + #{ja : ja 6 u}

Observe now that
(i) since ϕ(u+ 1) is either equal to ϕ(u) or to ϕ(u) + 1 and since ϕ(0) > 0,
ϕ(m− 1) 6 m− 1, there exists at least one u such that ϕ(u) = u,
(ii) when ϕ(u) = u this means that there exist exactly ` variables xb for b in
{0, 1, . . . , u} that belong to the monomial f̌ .
All this implies that i′` is the smallest index u such that ϕ(u) = u (or what
amounts to the same it is the smallest index u such that ϕ(u) 6 u). A similar
property holds for j′`. In other words

i′` = min{u : ϕ(u) 6 u} (2)

j′` = min{u : γ(u) 6 u} (3)

From the fact that ja > ia for all a in {1, . . . , s} we have that for all indices
u

ϕ(u) > γ(u) (4)

On the other hand, we know that i′` = ϕ(i′`), where the righthand term is
larger than or equal to γ(i′`) by using (4). Therefore γ(i′`) 6 i′`, and by using
(3) we deduce that j′` 6 i′`.



– if deg f < deg g then by definition of the order: f � g ⇔ ∃ g1 ∈ M s.t.
g = g1g2 with deg g1 = deg f and f � g1. From the first case we deduce that
f̌ � ǧ1. On the other hand one checks immediately that ǧ1 � ǧ. From these
two inequalities we deduce f̌ � ǧ.

Corollary 2. Let I ⊆M be a decreasing set then M\ Ǐ is a decreasing set.

Proof. Let h be a monomial that belongs toM\ Ǐ, and let g be a monomial such
that g � h. If g /∈ M \ Ǐ then it would mean that there exists f ∈ I such that

g = f̌ . This means that f̌ � h and by using Lemma 2 we would get ȟ � ˇ̌f = f .

Since I is a decreasing set, ȟ ∈ I, that is to say, ˇ̌h = h ∈ Ǐ which contradicts the
assumption. Therefore M\ Ǐ is a decreasing set.

These lemmas can now be used to prove Proposition 2 that we recall below.

Proposition. Let C (I) be a decreasing monomial code, then its dual is a de-
creasing monomial code given by

C (I)⊥ = C (M\ Ǐ).

Proof. As
∣∣Ǐ∣∣ = |I|, we have dim C (M \ Ǐ) = |M| − |Ǐ| = |M| − |I| = 2m −

dim C (I) = dim C (I)⊥, so we need to prove only one inclusion.
Let f ∈M \ Ǐ and consider g ∈ I. Notice that

< ev(f), ev(g) >=< ev(fg), ev(1) >

where < ., . > stands for the standard inner product in {0, 1}2m : < x,y >=∑
i xiyi. Observe now that fg is a monomial and that the only monomial whose

evaluation is not orthogonal (with respect to <,>) to the all 1 vector is the ”full”
monomial x1 . . . xm. Assume now that we are in such a case: fg = x1 · · ·xm. This
means that ǧ is a divisor of f . A divisor of a monomial is always smaller than
or equal to this monomial with our definition of order. Therefore ǧ � f . From
Corollary 2 we know that M\ Ǐ is a decreasing set and that this would imply

ǧ ∈ M \ Ǐ. This would imply that ˇ̌g = g would belong to M̌ \ ˇ̌I =M\ I. This
would contradict the assumption that g belongs to I. Therefore we proved by
contradiction that C (M\ Ǐ) ⊆ C (I)⊥.

A.2 Proof of Theorem 1

Let us recall this theorem:

Theorem. The permutation group of a decreasing monomial code in m variables
contains LTAm.

Proof. Let C (I) be a decreasing monomial code and let π be in LTAm. Consider

x in Fm2 . Let x′
def
= π(x). There exist binary numbers aij and εi such that for

any i in {0, . . . ,m− 1} we have

x′i = xi +
∑
j<i

aijxj + εi.



An affine permutation π acts also in a natural way on monomials, with its action
being defined by

π(xi1 . . . xis)
def
= x′i1 . . . x

′
is .

In other words the action of an affine permutation π on a monomial f is given
by f ◦ π. Observe that this action is such that

ev(f)π = ev(f ◦ π).

Choose now a monomial f in I and use the observation above. We can expand
f ◦π and verify that it is a sum of monomials that are smaller than f with respect
to the order � that we introduced. Since I is a decreasing set, then all these
monomials belong to I as well and therefore we obviously have that ev(f ◦ π) is
also in C (I). C (I) is therefore invariant by π.

A.3 Proof of Proposition 3

Let C (I) be a decreasing monomial code. Let us start by proving Point (i),
namely that the minimum distance of C (I) is equal to 2m−r+(C (I)). This follows
on the spot by noticing that r+ is also the largest degree of a monomial in I.
If we consider the evaluation of this monomial we obtain a codeword of weight
2m−r+(C (I)). This implies that the minimum distance of C (I) is smaller than
or equal to this quantity. On the other hand, the minimum distance of C (I)
is larger than or equal to the minimum distance of R(r+,m) which is equal to
2m−r+(C (I)) by using Theorem 2. This implies our claim.

Consider now the second point that we recall below

r−(C (I)⊥) = m− 1− r+(C (I)) (5)

r+(C (I)⊥) = m− 1− r−(C (I)) (6)

This follows immediately from Proposition 2: C (I)⊥ = C (M \ Ǐ) and the al-
ternative definitions of r−(C (I)⊥) and of r+(C (I)⊥) which are respectively the
largest degree r such that all monomials of degree r are monomials inM\ Ǐ and
the largest degree of a monomial that belongs to M\ Ǐ.

The third point, namely that the minimum distance of C (I)⊥ is equal to
2r−(C (I))+1 is a straightforward of Point(i) applied to the monomial code C (I)⊥

and by using (6).

A.4 Proof of Proposition 3

Here we want to prove that any minimum weight codeword c in a decreasing
monomial code C (I) can be written as c = ev(f)π where f is a monomial in I
and π an element of LTAm.

Note that from Proposition 3 we know that a minimum weight codeword
of C (I) is also a minimum codeword of R(r+(C (I)),m). For simplicity we will
simply write r+ for r+(C (I)) from now on. By using Theorem 2, we know that



c can be written as the evaluation of the product of r+ independent affine forms

x′0
def
= ε0 +

∑
j a0jxj ,· · · , x′r+−1

def
= εr+−1 +

∑
j ar+−1,jxj where the εi’s are

elements of the binary field F2. We claim now that there are r+ independent
affine forms x”0, . . . , x”r+−1 such that:

(i) ev(x′0 . . . x
′
r+−1) = ev(x”0 . . . x”r+−1),

(ii) for all i ∈ {0, . . . , r+ − 1} we have that the x”i’s can be written as ε′i +∑
j<ϕ(i) a

′
ϕ(i),jxj , where ϕ is some permutation of {0, 1, . . . ,m−1} and the

ε′i’s and a′ϕ(i),j are binary.

This is easy to check by considering the affine form x′i that involves the ”largest”
variable xj (the one consisting of the largest index j). Let xj0 be this variable.
We may assume without loss of generality that this is x′0. We can check now
that

ev(x′0x
′
1 . . . x

′
r+−1) = ev(x′0x

′′′
1 . . . x′′′r+−1),

where x′′′i = x′i − x′0 − 1 if x′i involves the variable xj0 and x′′′i = x′i other-
wise. Observe now that the r+ − 1 affine forms x′′′1 , . . . , x

′′′
r+−1 involve only vari-

ables xj which are such that j < j0. We can carry on this process with these
r+ − 1 (independent) affine forms x””1, . . . , x

′′′
r+−1 by considering the variable

xj which is the largest among the variables that are involved in these affine
forms and so on and so forth. We end up with r+ affine forms x”0, . . . , x”r+−1

which have exactly the aforementioned properties (i) and (ii). Consider the
monomial xj0 . . . xjr+−1

which is the product of the ”largest” variable xj in
each of these x”i’s. This monomial has to belong to I and we obviously have
ev(x”0 . . . x”r+−1) = ev(π(xj0 . . . xjr+−1)) for some π in LTAm. This proves our
theorem.

B Proof of the results of Section 4

B.1 Proof of Theorem 4

We will first begin this proof by proving a general result about the dual of
shortened monomial codes.

Lemma 3. Let C (I) be a decreasing monomial code and g ∈ I. Let supp(g) be

the support of ev(g). We denote by E
(
Ssupp(g) (C (I))

)⊥
the dual of the shortened

code in supp(g) that we have extended by zeros in the positions in which we have
shortened the code. Then

E
(
Ssupp(g) (C (I))

)⊥
= {ev((1 + g)f) : f ∈M \ Ǐ}

Proof. Recall that we have(
Ssupp(g) (C (I))

)⊥
= Psupp(g)

(
C (I)⊥

)
We know that C (I)⊥ = C (M\ Ǐ). The lemma follows from this and the fact the
ev(1 + g) takes value 1 on the complementary of supp(g) and 0 on supp(g).



The following notation turns out to be convenient.

Notation 2. For a monomial g = xi1 . . . xis , its set of indices Ind(g) is given
by {i1, . . . , is} and its intersection g ∧ h with a monomial h is given by

g ∧ h def
= Πi∈Ind(g)∩Ind(h)xi.

We will also need the following result that is only a slight generalization of [Mn07,
Prop. 6, p.69] (and our proof will follow closely the proof of this proposition).

Lemma 4. Let g be some monomial of degree s > 1. Denote by supp(g) the

support of ev(g), then the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is greater

than or equal to 2r− . If the minimum distance is equal to 2r− then there exists
a monomial h in M\ Ǐ such that

(i) the number of variables of h ∧ g is s− 1,
(ii) the number of variables of h ∧ ǧ is m− r− − s.

Proof. Let us take a nonzero codeword of C (I)⊥, say that is the evaluation
of some polynomial f , which is in this case of degree at most m − 1 − r−.

Write f =
∑
jmj as a sum of monomials. Then f̃

def
=
∑
j:g-mj mj is defined as

the polynomial where we have removed from the monomial expression of f all
monomials that are divisible by g. Since (Ssupp(g) (C (I)))⊥ = Psupp(g)

(
C (I)⊥

)
,

we want to prove that the evaluation of f on {0, 1}m \ supp(g) is either zero or
of weight > 2r− . Notice that the evaluation on {0, 1}m \ supp(g) coincides with
the evaluation of f̃ .

Let us assume that g = x0 . . . xs−1. With this choice, let us pick a mono-
mial of f̃ that has maximum degree in xs, . . . , xm−1. Let d be this degree (in
xs, . . . , xm−1). f̃ can be written as

f̃ = mu(x0, . . . , xs−1) + v(x0, . . . , xm−1),

where m is a monomial of degree d in xs, . . . , xm−1. We take here in the mono-
mials whose sum is equal to f̃ all monomials that are divisible by m and u is
just the sum of these monomials divided by m. Let d′ be the degree of u which
is necessarily smaller than s since f̃ does not contain any monomial divisible by
g.

Notice that u(x0 . . . xs−1) is non zero in at least 2s−d
′ − 1 entries if we do

not count the (1, . . . , 1) entry, since its evaluation is a codeword of R(d′, s).
Call a “block” the set of points (x0, . . . , xm−1) which take a prescribed

value on x0, . . . , xs−1. The support supp(g) of g corresponds to the block x0 =
1, . . . , xs−1 = 1. Notice that the weight of ev(f̃) restricted to a block (with the
exception of the block x0 = 1, . . . , xs−1 = 1) is at least 2m−s−d, since this re-
striction is a codeword of R(d,m− s). In other words the weight of ev(f̃(1 + g))
is lower-bounded by

|ev(f̃)(1 + g)| > 2m−s−d(2s−d
′
− 1) > 2m−s−d2s−d

′ 1

2
= 2m−d−d

′−1.



Notice that we have d+ d′ 6 m− r− − 1 and therefore we finally obtain

|ev(f̃)| > 2m−(m−r−−1)−1 = 2r− .

This proves the statement about the minimum distance in this case. A quick
inspection of this proof shows that the only fact we used on g was that is is
different from 1 (the particular form of g was only here to simplify notation),
and therefore it also holds for all monomials g different from 1.

Assume now that the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to

2r− . By a quick inspection of this proof this means that deg u = s − 1 and
degm = m − r− − 1 − (s − 1) = m − r− − s. Write u as a set of monomials
u =

∑
jm
′
j and choose m′ as any monomial in this sum that is of degree s− 1.

Obviously h
def
= mm′ is a monomial of degree s− 1 +m− r− − s = m− r− − 1

that appears as a monomial in the sum f =
∑
jmj . Therefore h is in M \ Ǐ.

Such an h has the aforementioned form.

We will now use this to prove Theorem 4. We recall its statement below.

Theorem. Let g = xi1 . . . xir+ be a monomial of degree r+ in I. Denote by

supp(g) the support of ev(g), then the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is

equal to 2r− if and only if there exists a monomial h in M\ Ǐ such that:

(i) the number of variables of h that are also variables of g is r+ − 1,
(ii) the number of variables of h that are also variables of ǧ is m− r− − r+.

Proof. First of all let us notice that the minimum distance of E
(
Ssupp(g) (C (I))

)⊥
is the same as the minimum distance of

(
Ssupp(g) (C (I))

)⊥
. From Lemma 3 we

know that any codeword in the first code can be written as ev((1 + g)f)) where
f is polynomial which is a linear combination of monomials in M\ Ǐ. Consider
now that there is a monomial h satisfying the conditions above. Let us prove
that the weight of ev((1 + g)h) is equal to 2r− . Let i0 be the only index that is
in Ind(g) but not in Ind(g ∧ h). Observe now that

(1 + g)h = (1 + xi1 . . . xir+ )
∏

i∈Indg∧h

xi
∏

i∈Ind(ǧ∧h)

xi

= (1 + xi0)
∏

i∈Indg∧h

xi
∏

i∈Ind(ǧ∧h)

xi

= (1 + xi0)h.

Thus
|ev((1 + g)h))| = |(ev((1 + xj0)h)| = 2m−(m−r−−1+1) = 2r− .

By using the lower-bound on the minimum distance coming from Lemma 4 we

obtain that the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to 2r− .

Assume now that the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to 2r− ,

then we can use Lemma 4 and obtain the aforementioned claim.



B.2 Proof of Proposition 4

Proposition. Wπ
min is invariant by the action of π−1LTAmπ and if Σ is a

signature for Wmin under the action of LTAm, then it is also a signature for the
action of π−1LTAmπ on Wπ

min.

Proof. The invariance of Wπ
min follows from the fact that (i) LTAm is a sub-

group of the permutation group of C (I) by Theorem 1 and (ii) this implies that
π−1LTAmπ is a subgroup of the permutation group of C (I)π by Proposition 1.
For the second part, it suffices to prove that Σ takes different values on the orbits
of Wπ

min under the action of π−1LTAmπ. Consider two elements xπ and yπ that
belong to two different orbits. They are the permuted versions of x and y which
belong to different orbits of Wmin. If this were not the case we would have x = yγ

for γ in LTAm. However this would imply that xπ = yγπ = yππ
−1γπ = (yπ)π

−1γπ

and this would imply that xπ and yπ would be in the same orbit under the action
of π−1LTAmπ. We finish the proof by observing that

Σ(xπ,C (I)π) = Σ(x,C (I))

Σ(yπ,C (I)π) = Σ(y,C (I))

Therefore Σ(xπ,C (I)π) and Σ(yπ,C (I)π) are different since Σ(x,C (I)) and
Σ(y,C (I)) are different.

B.3 Proof of Proposition 5

Proposition. The orbit of cmin under LTAm consists of 2r+ codewords that are
of the form cmin(ε0, . . . , εr+−1) where the εi’s are arbitrary element of F2. The
orbit of cπmin under π−1LTAmπ is given by 2r+ codewords of weight 2m−r+ that
have disjoint supports which are the permuted versions A(ε0, . . . , εr+−1)π of the
affine spaces A(ε0, . . . , εr+−1).

Proof. Let f be the monomial x0 . . . xr+−1 (i.e. cmin = ev(f)). Under the action
of π in LTAm this monomial is transformed into x′0 . . . x

′
r+−1 where x′i = εi +

xi +
∑
j<i aijxj where the εi’s and the aij ’s are binary. The support of such a

monomial is given by the affine space x′0 = 1, . . . , x′r+−1 = 1, but this is readily
seen to be an affine space of the form x0 = ε′0, . . . , xr+−1 = ε′r+−1 where the ε′i’s
are binary. This implies the first claim. The claim on the orbit of cπmin follows
from the fact that for any γ ∈ LTAm we have

(cπmin)π
−1γπ = (cγmin)π.


