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WASSERSTEIN LOSS
FOR IMAGE SYNTHESIS AND RESTORATION

GUILLAUME TARTAVEL∗,

GABRIEL PEYRÉ† , AND YANN GOUSSEAU∗

Abstract. This paper presents a novel variational approach to impose statistical constraints to
the output of both image generation (to perform typically texture synthesis) and image restoration
(for instance to achieve denoising and super-resolution) methods. The empirical distributions of
linear or non-linear descriptors are imposed to be close to some input distributions by minimizing
a Wasserstein loss, i.e. the optimal transport distance between the distributions. We advocate the
use of a Wasserstein distance because it is robust when using discrete distributions without the need
to resort to kernel estimators. We showcase different estimators to tackle various image processing
applications. These estimators include linear wavelet-based filtering to account for simple textures,
non-linear sparse coding coefficients for more complicated patterns, and the image gradient to restore
sharper contents. For applications to texture synthesis, the input distributions are the empirical
distributions computed from an exemplar image. For image denoising and super-resolution, the
estimation process is more difficult; we propose to make use of parametric models and we show
results using Generalized Gaussian Distributions.

Key words. Optimal transport, Wasserstein loss, total variation, Generalized Gaussian Distri-
butions, denoising, super-resolution.

AMS subject classifications. 90C25, 68U10

1. Introduction. The statistical modeling of natural images is a long standing
problem which is useful to tackle a wide range of image processing applications. In this
article, we focus our attention to problems in both image synthesis and image restora-
tion; we show how to address them with variational approaches using the statistical
model as a data fidelity rather than a regularization. This allows us to obtain results
that are more faithful to the targeted model (as opposed to traditional variational
regularization methods) and to better restore and generate fine scale details.

1.1. Previous Works.

Texture synthesis: sampling vs. optimization. The texture synthesis prob-
lem is usually framed as a statistical estimation and re-sampling problem. Probably
the most complete framework to achieve this goal is the work of Zhu et al. [74] that
proposes a maximum-entropy method to estimate a generic class of Gibbs distribu-
tions from a given exemplar, leveraging only the stationarity of the thought after
solution. The major drawback of this approach is that the resampling stage is slow
since it necessitates the use of a Gibbs sampler. At the opposite part of the spec-
trum, the method of Galerne et al. [27] uses a simple statistical model (a stationary
Gaussian distribution). It can only capture “micro-textures” without any geometri-
cal pattern but can be learned and can re-synthesized very efficiently, hence enabling
its use in real-time computer graphics pipelines [28]. Let us note however that the
state of the art in computer graphics rather relies on heuristic methods to learn and
re-sample: it typically considers re-copy of groups of pixels or patches from the input
exemplar [19, 69, 38]. While these non-parametric approaches lead to high fidelity in
the re-sampling, they suffer from a poor understanding of the underlying generated
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distribution and lead to synthesis results that copy verbatim large chunks of the input
image without much randomization or “innovation”—see [1, 62] for an experimental
exploration of this aspect.

To speed-up (and sometime even improve) the sampling quality, a increasingly
large body of literature has considered replacing random sampling from a given dis-
tribution by an optimization of a non-convex energy, usually starting from a random
initialization. While there is no strong mathematical analysis of the generated distri-
bution, the rationale is that the random exploration of local minima associated to an
energy which measures deviations from statistical constraints gives in practice results
that are at least as good as sampling from the maximum entropy distribution inside
these constraints, as originally advocated in [74]. The pioneer work [34] of Heeger and
Bergen, that imposes the first order statistics of wavelet coefficients through iterative
projections, may be seen as a precursor of such variational approaches. This idea
was pushed much further by Portilla and Simoncelli [50] by imposing higher order
statistics. Then, patch-based recopy methods have been explicitely reformulated as
non-convex random optimization [35]. Tartavel et al [64] also integrates patch-based
ideas into a variational texture synthesis algorithm by using sparse coding in a learned
dictionary. Another recent line of research, also based on the statistical modeling of
non-linear image features, makes use of deep neural networks, which are thus also
trained on the input exemplar [29, 42].

Variational Restoration. While it is natural to think of texture synthesis as
a statistical re-sampling problem rather than an optimization one, a large body of
literature on image restoration (e.g. denoising or super-resolution) thinks the other
way around. The idea of variational regularization, very often derived as a MAP
(Maximum A Posteriori estimator), is to recover a clean and high resolution image
by minimizing a functional accounting for both a fidelity term (which depends on
the noise’s properties) and a prior (which takes into account some knowledge about
the structures of the image to recover). Two popular classes of priors are the Total
Variation (TV) model of Rudin, Osher and Fatemi [57] and the sparse wavelet ap-
proximations of Donoho and Jonhstone [18]. The TV model favors cartoon images
having a sparse gradient distribution, and shares similarity with wavelet models that
capture discontinuous images using multiscale decompositions. Total variation has
been used in almost all imaging applications, including for instance denoising [57],
deblurring [6], interpolation [33], or image decomposition [3]. Wavelet approaches
can give rise to different kinds of prior, using thresholding in orthogonal [18] or trans-
lation invariant [13] dictionaries, and used either as analysis or synthesis regularizers
for inverse problems [22]. It is also possible to go beyond simple first-order sparse sta-
tistical models by accounting for spatial and multiscale dependency between wavelet
coefficients [59, 55, 51].

Beside these historically popular methods, the state of the art in denoising and
(to a lesser extend) more general restoration problems is non-local processing, that
operates by comparing patches in the image. This is somehow similar to the recopy
methods presented above for texture synthesis applications. The non-local mean
method [9] introduces this idea for denoising as a non-linear filtering operator—see
also [4]. It was then recast as a variational regularization [30, 23] that can be used
for restoration purpose [2, 49]. The BM3D approach [16] extends one step further
these non-local ideas by merging them with sparse approximation, giving rise to state
of the art results. More recently, several works have achieved even better results by
modeling patches through Gaussian distributions [72, 37].
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Dictionary learning somehow bridges the gap between these patch-based com-
parison methods and sparse wavelet (or gradient) regularization. This approach was
introduced by Olshausen and Fields [47] and then refined for denoising applications
(see for instance [24, 21]) and more general imaging problems (see for instance [43]).

Statistical constraints for restoration. A well known issue with variational
MAP estimators is that the output of the method is in general not distributed accord-
ing to the though-after distribution, as explained and analyzed in details in the works
of Nikolova [45]. A striking class of examples is given in [32] where it is argued that
most thresholding operators are adapted to data which are significantly sparser that
the initial prior. However, it makes sense for many applications to impose the distri-
bution of the estimator, typically to reach a high fidelity in restoring fine scale details
or geometric patterns such as edges. Variational methods usually do not come with
such a guaranty on the output, which is problematic in some cases. A well known ex-
ample is the output of TV regularization: it suffers from the “stair-casing” effect [45],
resulting in many pixels having zero gradient values. This is usually not a desirable
statistical feature and is in contradiction with a Laplacian prior on the gradient. More
generally, the MAP tends to under-estimate the heavy tails of the distributions [71],
hence removing some information and often resulting in the degradation of textured
parts of the image.

The standard way to solve this issue is to use a conditional expectation (minimum
mean square estimator) rather than a MAP. This has been proposed for instance in
the case of sparse wavelet priors in [58] and for the total variation prior in [40].
The literature on inverse problems using bayesian sampling is huge, and we refer
for instance to [60] for an overview. By construction, these approaches are perfectly
faithful to the prior distribution, which alleviates some of the drawback of MAP
estimators (e.g. the staircasing effect for TV). As already noted above for synthesis
application, the main issue is the high computational complexity of the corresponding
probabilistic sampling methods (Markov Chain Monte Carlo methods such as Gibbs
samplers).

Statistical fidelity and optimal transport. Following several recent works,
we propose to explore an alternative way to impose statistical prior constraints on the
output of both synthesis and restoration algorithms. This approach is more heuristic
but computationally less expensive than sampling-based methods; it integrates the
statistical constraints directly into a variational MAP-like approach.

Our approach takes its roots in a series of conference papers where one of us
introduced statistical losses over pixels values and wavelet coefficients to perform
texture synthesis and restoration [53, 54]. The authors of [61] use a convexification
of the same energy in order to be able to compute global optima at the expense of
slower algorithms. An initial version of our framework was presented in the thesis
manuscript [62]. A related work [20] has been done in parallel with an application
to super-resolution. These previous works advocate the use of optimal transport
distances (also known as Wasserstein distances) to account in a robust and simple way
for discrepancies between discrete empirical distributions. We refer to the monograph
of Villani for a detailed description of Wasserstein distance [67]. These distances have
recently gained some interest in image processing, in particular to perform color and
texture manipulation—see for instance [26] and the references therein.

Let us also note that optimal transport methods differ from more standard losses
to measure statistical discrepancy. The most routinely used is the Kullback-Leibler
(KL) divergence which is reminiscent of estimation using maximum likelihood meth-
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ods. Of particular interest for our work are the recent works [11, 12] that use a KL loss
to account for gradient statistics in the context of restoration problems and therefore
pursue the same goal as we do in Sect. 4: preserving gradient statistics while restoring
images. A similar approach is used by [73] to extend the Field of Experts approach
of [56] with a Kullback-Leibler divergence to control the gradients’ distribution. The
idea of imposing the gradients’ distribution is also at the core of [31] to tackle inverse
problems in biomedical imaging. A chief advantage of the Wasserstein loss is that it
can compare pairs of discrete empirical distributions without the need to use kernel
density estimators, which is further complicated in practice by the difficult problem
of selecting the bandwidth of the kernel.

1.2. Contributions. Sect. 2 introduces a novel framework to impose statistical
constraints in imaging using a Wasserstein loss. The key idea is to use an optimal
transport between discrete distributions of a set of features, that can easily be opti-
mized using gradient descent methods. Sect. 3 presents a first application of this idea
to perform texture synthesis, which is achieved by simply applying a memory-limited
quasi-Newton (L-BFGS) optimization scheme to this statistical loss. Several examples
on both linear (wavelet-based) and non-linear (sparse coding) features illustrate the
ability of the method to generate random samples with prescribed features’ distribu-
tions. Sect. 4 presents a second application to image restoration and in particular to
denoising and super-resolution (inpainting of scattered missing pixels). This approach
imposes the gradient distributions of the resulting image on top of a traditional vari-
ational estimator (we illustrate here the method with a TV regularizer). The target
distributions are estimated from the single noisy observation by restricting the search
to a parametric family of Generalized Gaussian Distributions. Numerical results show
how this additional statistical fidelity is able to improve the restoration of fine scale
details, edges, and textural features.

A Matlab implementation of the proposed framework is available online∗.

2. Wasserstein Loss. This section formalizes the statistical fidelity term that is
used in the remaining part of this paper both to perform variational texture synthesis
(Sect. 3) and image restoration with statistical constraints (Sect. 4). The main novelty
with respect to previous works is the use of an optimal transport distance between
empirical measures (i.e. sum of Dirac’s). While being non-convex, a chief advantage
of this approach is that it is robust (because optimal transport is a well defined
geometric distance between Dirac masses) and it is simple to compute (at least for
1-D distributions).

2.1. Wasserstein Distance. We consider discrete probability measures which
are normalized sums of N Dirac’s

νz
def.
=

1

N

N∑
i=1

δzi (2.1)

where δt is the Dirac measure at a point t ∈ RJ . In practice, such a measure is an
empirical distribution of a set of N features extracted from an image, as detailed in
Sect. 2.2 below.

Optimal transport provides a blueprint to define classes of distances between mea-
sures defined on quite general spaces. We refer to the monograph of Villani [67] for

∗https://bitbucket.org/gtartavel/autodiff_matlab/
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an extended description of these distances and their properties. For the sake of sim-
plicity and for its practical relevance to the targeted applications in imaging, we only
consider optimal transport with a squared Euclidean cost and between two discrete
measures (νz, νz′) having the same number N of Dirac masses. In this very specific
setting, optimal transport is equivalent to optimal assignment and the corresponding
distance, the so-called 2-Wasserstein distance, is defined as

W(νz, νz′)
2 def.

= min
σ

1

N
‖z − z′ ◦ σ‖2 =

1

N

N∑
i=1

∥∥∥zi − z′σ(i)∥∥∥2 (2.2)

where σ runs among the set ΣN of permutations of {1 . . . N}.
In the following, we denote σz,z′ an optimal σ in (2.2) and we assume an arbitrary

choice if σz,z′ is not the unique solution. It corresponds to an optimal assignment
between each point zi and the point z′σz,z′ (i)

.

The following proposition recalls several simple but important properties of opti-
mal assignments. We refer to [7] for more details and proofs. It states that the optimal
assignment to z′ can be interpreted as an orthogonal projection on the highly non-
convex and high dimensional set of all possible permutations of z′. Another crucial
property is that the Wasserstein loss as a function of the Dirac’s position (e.g. z or z′)
is smooth almost everywhere, namely as soon as the optimal permutation is unique
(which is almost surely the case for points in arbitrary positions). Furthermore, the
formula (2.4) for the gradient is straightforward since the Wasserstein loss is locally
a simple `2 loss as long as the optimal permutation does not change.

Proposition 2.1. Let use denote

Cz′
def.
= {s ; νs = νz′} = z′ ◦ ΣN = {z′ ◦ σ ; σ ∈ ΣN} .

One has

W(νz, νz′)
2

= N−1 dist (z, Cz′)2 where dist (z, C)2 def.
= min

s∈C
‖z − s‖2 (2.3)

and

projCz′ (z) = z ◦ σz,z′ =
(
zσz,z′ (i)

)N
i=1

.

If σz,z′ is the unique minimizer of (2.2), then the function fz′ : z 7→ W(νz, νz′)
2
is

C1 at z and one has

∇fz′(z) = 2N−1
(
z − projCz′ (z)

)
. (2.4)

Computing σz,z′ and hence evaluating W(νz, νz′)
2

and the gradient (2.4) can
be achieved using standard optimal assignment algorithms, which are combinatorial
optimization methods with roughly cubic complexity. These methods do not scale to
large N , and are thus not usable for imaging applications. The only exception is the
case of 1-D distributions (i.e. each zi is in R) as detailed in the following proposition
(see [7]).

Proposition 2.2 (1D Wasserstein Distance). For J = 1, one has

W(νz, νz′)
2

= N−1‖z ◦ σz − z′ ◦ σz′‖
2

and σz,z′ = σz′ ◦ σ−1z (2.5)
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where σz sorts the values of z, that is, . . . ≤ zσz(i−1) ≤ zσz(i) ≤ . . ..
This shows that the Wasserstein loss and its corresponding gradient can be com-

puted in O(N log(N)) operations by simply sorting the values. This is the main
reason why we consider 1-D distributions in the following. In the presence of higher
dimensional distributions, we replace them by a set of 1-D distributions obtained by
projections. This corresponds to the “sliced” Wasserstein approximation introduced
in [7]. A typical illustration of this idea can be found in Sect. 4 where the 2-D distri-
bution of the gradients of an image is replaced by K 1-D distributions of directional
derivatives (4.3).

2.2. Feature-Space Statistical Loss. A feature extractor is a map H from an

image u ∈ RP having P pixels to a set of N real-value features
(
H(u)i

)N
i=1
∈ RN .

Very often one has P = N but this needs not to be the case. The most simple feature
extractors are linear maps such as:

• Pixel values using the identity map H(u) = u.
• Directional derivatives as later defined in (4.3).
• Filtering H(u) = ψ ? u against a “wavelet”-like filter ψ (where ? is the con-

volution).

It is of course possible to consider more complicated non-linear features such as SIFT
vectors [41] or structure tensors [70] to account for more complicated features in an
image such as edge curvature or corners. Sect. 3.3 studies a different way to extract
and use non-linear features through sparse coding.

To perform texture synthesis (Sect. 3) or to improve the quality of restoration
methods (Sect. 4), we make use of a set {Hk}0≤k≤K of feature extractors. A typical
example (see Sect. 3.2 which uses it for texture synthesis) is to set H0 = Id to be the
pixel value extractor and to let the others extractors to account for a wavelet transform
Hk(u) = ψk ? u where ψk is a wavelet kernel at a given scale and orientation.

Given a set of input distributions (νzk)0≤k≤K , we now define our Wasserstein
statistical loss as

E(u|(νzk)k)
def.
=

K∑
k=0

W(νHk(u), νzk)2. (2.6)

The input distributions (νzk)k can be learned directly from an exemplar image v by
setting zk = Hk(v) (as it is the case for texture synthesis in Sect. 3). In cases where
no input image is available or if v is degraded (as it is the case for image restoration
in Sect. 4), one needs to consider more advanced estimation procedures.

Note that we do not put any weights in front of each Wasserstein term in the
sum (2.6) since they can be absorbed in the definition of the Hk(u) as λ2W(νz, νz′)

2 =
W(νλz, νλz′)

2.

2.3. Gradient Computation. The non-convex Wasserstein loss E(·|(νzk)k) is
to be used in variational methods for synthesis and restoration. We use gradient-
type optimization schemes in the following sections to compute local minimizers of
synthesis or restoration energies.

A nice feature of this approach is that the gradient of E (with respect to the
image u) is simple to compute using the chain rule:

∇E(u|(νzk)k) =
∑
k≤K

[
∂Hk(u)

]∗(∇fzk(Hk(u))
)

(2.7)
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where the gradient of the map fz is computed as detailed in (2.4). One thus needs
to compute the adjoint [∂Hk(u)]∗ of the differential ∂Hk(u) of the feature extractor
Hk. Each time we introduce and use a new feature extractor, we thus explain how to
compute this adjoint map.

3. Texture Synthesis using Linear and Sparse Features. This section ap-
plies the Wasserstein loss to the problem of texture synthesis, and explores the use of
different classes of features extractors.

3.1. Variational Texture Synthesis Methods. Following several recent works
(see Section 1.1) we formulate the problem of texture synthesis from an exemplar v
as the one of computing a random stationary point u of a texture fidelity energy

min
u∈RP

E(u|(νzk)k) where ∀ k = 0, . . . ,K, νzk
def.
= νHk(v). (3.1)

In order to compute a randomized stationary point of this energy, we use a gradient
descent method. Starting from a realization u(0) ∈ RP of a white noise, we define the
iterates as

u(`+1) def.
= u(`) − L(`)∇E(u(`)|(νzk)k) (3.2)

where ∇E is computed using formula (2.7).
Here L(`) is a linear operator, which is intended to approximate the inverse of the

Hessian of E(·|(νzk)k) at u(`). For the numerical applications, we use the L-BFGS
algorithm [46], which is a limited-memory version of the BFGS algorithm [52]. This al-
gorithm iteratively builds a low-rank approximation L(`) of the inverse of the Hessian.
When dealing with high dimensional problems, this is a good compromise between
the tractability of the gradient descent and the efficiency of Newton’s algorithm. We
use the Matlab implementation [48]; a convergence analysis of this algorithm in the
case of a class of non-smooth functions is proposed in [39].

3.2. Linear Wavelet Features for Synthesis. To illustrate the usefulness of
the proposed synthesis scheme, we first instantiate it in a simple setting, corresponding
to a wavelet transform feature extractor. This allows us to revisit and improve the
celebrated texture synthesis algorithm of Heeger and Bergen [34].

Heeger and Bergen’s (HB) original algorithm. For the sake of simplicity,
we consider a gray-level version of the algorithm. To impose the gray levels of the
input image, the first feature is the image pixel values, i.e. we set H0(u) = u. A
steerable wavelet transform [34] computes wavelet coefficients with a linear transform

H1,...,K(u) = (Hk(u))Kk=1

where Hk(u) is a sub-sampled convolution against a rotated and scaled wavelet
atom. This feature extractor can be understood as multi-scale directional derivatives
(i.e. derivatives of increasingly blurred version of the image u). The computation of
the linear map H1,...,K is obtained in linear time with a fast filter bank algorithm [34].

Heeger and Bergen initial algorithm alternates between matching the spatial
statistics and matching the wavelet statistics. From a Gaussian white noise real-
ization u(0), it first modifies the gray-values statistics of the current image u(`) so
that they match those of the exemplar v by projecting onto Cν0 , i.e.

ũ(`)
def.
= projCH0(v)

(u(`)). (3.3)
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Fig. 3.1: Display of log(E(u(`)|(νzk)k)) as a function of ` for the three tested algo-
rithms: (i) HB algorithm [34] (in blue, with a display of the half-iterations ũ(`) in
black); (ii) gradient descent algorithm (in green); L-BFGS algorithm (in red). Each
algorithm is represented with two curves, showing the minimum and maximum energy
values obtained among 100 realization of the initialization u(0).

It then computes the wavelet coefficients of ũ(`) and matches them with those of v

∀ k = 1, . . . ,K, z
(`)
k

def.
= projCHk(v)

(Hk(ũ(`))). (3.4)

The new iterates is then reconstructed from these coefficients (z
(`)
k )Kk=1

u(`+1) def.
= H+

1,...,K

(
z
(`)
k

)K
k=1

(3.5)

where H+
1,...,K is the pseudo-inverse of the wavelet transform H1,...,K (i.e. the recon-

struction which yields the image with the closest wavelet coefficients). Note that this
pseudo inverse is also computed in linear time with a fast filter bank pyramid [34].

Variational re-formulation and improvement. The iterations of the three
steps (3.3), (3.4), and (3.5) should not be mistaken for an alternated projections
algorithm. Indeed, since the steerable pyramid is not orthogonal (it is a redundant
transform), the two last steps do not correspond to an orthogonal projection. Using
the fact that the transform H1,...,K is a tight frame (i.e. it satisfies a conservation
of energy), it can however be interpreted as computing alternated projections on the

coefficients (z
(`)
k )k, see [62]. Another interpretation of this method is that it is in fact

an alternated (i.e. alternatively on the pixel fidelity and then the wavelet fidelity)
gradient descent of the energy (3.1) using a fixed step size, see [62].

To obtain better results and a faster numerical scheme, it thus makes sense to
replace this alternated gradient descent by the L-BGFS iterations (3.2) which inte-
grates second order information about the statistical fidelity into the optimization
scheme. The only missing ingredient to implement this descent is the computation
of the adjoint ∂H∗k of the derivative of the feature extractors. Since these are linear
maps, one has ∂H∗k = H∗k , and these adjoints for k = 1, . . . ,K are computed for all
k with a fast filter bank, which, up to a diagonal re-scaling, is the same as the one
computing H+

1,...,K .

Numerical illustrations. Figure 3.1 compares the decay of the energy (3.1)
for HB algorithm [34] (iterates (3.3), (3.4), and (3.5)), a gradient descent with an
manually tuned constant step size (corresponding to setting L(`) to be proportional
to the identity matrix in (3.2)), and the L-BFGS algorithm. Since these algorithms are

8



Exemplar v HB algorithm L-BFGS E(u(`)|(νzk)k)

Fig. 3.2: Synthesis results u(`) obtained after ` = 25 iterations of HB algorithm and
L-BFGS.

Exemplar v Synthesized Exemplar v Synthesized

Fig. 3.3: Two examples of synthesis output of the L-BFGS algorithm.

randomized by the choice of the initialization, we show the minimum and maximum
energy values reached among 100 random white noise realizations for u(0), which
allows one to get a clearer picture of the energy landscape explored by the methods.
In these tests, the L-BFGS always yields lower values than the other algorithms; it
has also a faster convergence speed. Note that HB algorithm (corresponding to an
alternated gradient descent) converges faster than gradient descent, but the final state
reached by H-B is only marginally better in term of energy than the one reached by
gradient descent.

Figure 3.2 shows the resulting image u(`) computed by the HB [34] and the L-
BFGS algorithms after ` = 25 iterations. The vertical stripes in the exemplar image
v give rise to long-range dependencies between the wavelet coefficients, which require
many iterations to be set up properly. L-BFGS is able to generate them within 25
iterations, while the original algorithm of [34] requires more iterations to create them.

Let us finally note that while the L-BGFS approach brings some improvements
with respect to the original HB algorithm, it suffers from the same drawback in term
of texture modeling. Figure 3.3 shows two examples of syntheses obtained by the L-
BFGS optimization method. This highlight the (well known) fact that methods based
on first order statistics of multiscale decompositions are quite good at reproducing
highly stochastic micro-textures (in the sense [27]) such as the exemplar on the left of
the figure, but fail at generating geometric patterns, such as in the exemplar on the
right. Synthesizing geometric features requires either to use higher order statistical
constraints on the wavelet coefficients (see for instance [50]) or more complicated
non-linear feature extractors, as exemplified in the next section.
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3.3. Non-linear Sparse Features. To improve synthesis quality, we follow the
path explored in [63] and propose to use non-linear feature extractors obtained through
sparse decompositions. Sparse decompositions are able to better reproduce sparse
features (such as edges) and also permit the use of dictionary learning methods to
capture these features in an exemplar-driven manner, thus bridging the gap between
the HB algorithm and copy-based methods (see Sect. 1.1 for an overview of these
approaches).

Sparse coding feature extractor. Given a dictionary D = (di)
N
i=1 of N atoms

di, a sparse approximation ZD(h) of a signal h (which may be an image u or small
patches extracted from it for instance) is commonly defined using a penalized `1

regularization

ZD(h) ∈ arg min
z

1

2
‖Dz − h‖2 + α‖z‖1 where ‖z‖1

def.
=

N∑
i=1

|zi|, (3.6)

where the parameter α controls the sparsity of the coefficients. This corresponds to
the celebrated Lasso problem [65], also known as basis pursuit [10]. Note that the
solution of the optimization problem (3.6) is in general not unique, so we define ZD(h)
as being one of the minimizers.

It is important to realize that while the reconstruction operator Dz =
∑
i zidi is

linear, the sparse coding operator ZD is highly non-linear. More precisely, the non-
smoothness of ‖·‖1 creates a large number of zero coefficients in z, and this sparsity
effect increases with α. It is precisely this non-linear effects that is important to drive
the generation of sparse features (such as isolated dots or edges) in a synthesis output.

Computing the minimizer of (3.6) requires to solve a convex optimization problem.
A popular way to approximate the solution of this optimization for large scale imaging
problem is to use a so-called first order proximal scheme. We use in this section the
Fast Iterative Soft Thresholding Algorithm (FISTA, [5]) which defines a sequence of

iterates Z(`)
D (h) converging to ZD(h) as ` grows toward +∞.

Synthesis with sparse features. We define a sparse synthesis algorithm using
the L-BFGS iterations (3.2) to minimize (3.1) with a trivial pixel-domain extractor
H0(u) = u and a (possibly decimated) set of K sparse features extractors. This is
formalized as

∀ k = 1, . . . ,K, Hk(u)
def.
= Sk

(
Z(`)
D (Π(u))

)
.

Here, Π and (Sk)k are fixed linear maps. The role of Sk(z) = (zi)i∈Ik is simply to
select a sub-class of coefficients indexed by Ik, associated to atoms (di)i∈Ik which
are usually translations of the same template (e.g. for wavelet-type or translation
invariant dictionaries). The role of Π is to act as a pre-processor. In the following,
we explore two possibilities: Π being a patch-extractor to perform the sparse coding
on small patches, and Π = Id so that one sparse codes the image u itself.

It is important to note that the feature is defined using the output Z(`)
D of FISTA.

It is an approximation of the original ZD, the latter being well defined mathematically
but numerically unaccessible.

In order to implement iterations (3.2), one needs to compute the gradient ∇E
using (2.7), which in turn necessitates to compute the adjoint of the derivative of the
features extractors as follow

∂H∗k(z) = Π∗[∂Z(`)
D ]∗(S∗k(z)).
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The adjoint of the selector is simply

S∗k(z)i =

{
zi if i ∈ Ik,
0 otherwise,

and Π∗ is detailed in the two specific cases bellow.
It is important to realize that the adjoint of the differential of FISTA’s output

[∂Z(`)
D ]∗ is in general very different from the adjoint of the theoretical sparse coding

operator [∂ZD]∗. This is well documented in [17], where the authors argue that the
derivative of sparse coding operators are unstable and computationally out of reach.

In contrast, ∂Z(`)
D and its adjoint are easy to compute using automatic differentiation

technics, which is equivalent to formally differentiating the iterates of FISTA. We
refer to [62] for more implementation details.

Dictionary learning methods. The resulting synthesis method is quite general
because of the degree of freedom in the choice of the linear maps (D,Π, (Sk)k) and
the regularization parameter α. It is beyond the scope of this paper to explore in full
generality this method; we illustrate it in two specific settings bellow.

In these two examples, one first estimates D using standard dictionary learning
technics (see for instance [21, 25, 43]) from the exemplar image v alone. One minimizes
the sparse coding energy with respect to the dictionary D, i.e.

min
D∈D

min
z

{
1

2
‖Dz −Π(v)‖2 + α‖z‖1 ; ∀ i, ‖di‖ ≤ 1

}
. (3.7)

Here D is a linear set of constraints (specified bellow in each numerical example) that
imposes some structural property on the dictionary (such as translation invariance)
and make the problem well-posed. The standard way [21, 25, 43] to find a stationary
point of the (highly non-convex) energy (3.7) is to iteratively minimize with respect
to D and to z since the energy is convex with respect to each of these parameters
alone, even if it is not jointly convex.

Numerical illustration #1: patch-based dictionaries. A popular class of
image processing methods (see Sect. 1.1 for a review) makes use of the redundancy
between the patches of the image. This corresponds to the best known usage of
dictionary-learning approaches that apply sparse coding to these so-called patches. It
reduces the computational complexity as well as the number of degrees of freedoms
to design the dictionary. This corresponds to defining Π as a patch extractor,

Π(u) = (Πs(u))s∈S where Πs(u) = (us+t)t∈{1,...,τ}2

where s ∈ S runs over a fixed set of extracting position (usually located on an uniform
grid on the image domain) and τ × τ is the size of the patches. Note that the adjoint
operator Π∗ simply corresponds to reconstructing an image by tiling the patches and
adding the overlapping parts:

Π∗((hs)s∈S)i =
∑
s+t=i

(hs)t.

In this setting, we impose the dictionary to handle each patch independently
and in the same way. That is, we consider Dz = (D̄zs)s∈S where D̄ = (d̄k)Kk=1

is a “reduced” dictionary made of K atoms dk ∈ Rτ2

. The coefficients are thus
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z = (zs)s∈S ∈ R|S|×K where zs ∈ RK are the coefficients of the patch Πs(u). The set
of coefficients z = (zs)s∈S is thus subdivided into K groups {1, . . . , N} = I1∪ . . .∪IK ,
each Ik corresponding to the |S| coefficients associated to a given atom dk. This
construction is usually the one considered in the literature [21, 25, 43]. The learning
optimization (3.7) is carried directly over the reduced dictionary D̄, hence making the
overall problem tractable. It makes sense to design our statistical constraint model
to impose the first order statistics of each of these group.

Numerical illustration #2: translation invariant dictionaries. In this
part, we apply the sparse coding operator to the image itself, that is, we set Π = IdP ,
which is the identity map on the image space RP . It is not possible to train a
generic unstructured dictionary D on the whole image u ∈ RP because optimizing
and applying the dictionary would be numerically intractable, and also because the
learning problem from a single exemplar image v would not be well posed because
of the too many degrees of freedom. The most natural constraint is to impose the
dictionary to be translation-invariant, i.e. to constrain it to be obtained by translating
a set of atoms {ϕk}Kk=1. In this case, applying the dictionary to a set of weights
z = (z1, . . . , zK) is

Dz =

K∑
k=1

zk ? ϕk (3.8)

where ? is the discrete 2-D convolution. Formula (3.8) defines a linear constraint D on
the set of allowable dictionary. Note that similar shift-invariant constraints have been
proposed in the dictionary learning literature, see for instance [8]. The energy (3.7) can
be efficiently minimized directly with respect to the filters (ϕk)k using fast convolution
computations as detailed in [8] for instance. This specific structure segments the set
of coefficients in non-overlapping consecutive indexes {1, . . . , N} = I1∪ . . . IK , so that
the total number of coefficients is N = KP where P is the number of pixels.

Numerical results. The synthesis results using the two setups presented above
(Π being a patch extractor and Π = Id) are shown in Fig. 3.4. In order to improve the
synthesis results, following the previous work [64], we have added to the Wasserstein
statistical loss defined in (2.6) a frequency matching term. More precisely, we minimize
the function

F : u 7→ E(u|(νzk)k) +
β

2
‖|û| − |v̂|‖2 (3.9)

where E(u|(νzk)k) is defined in (3.1) and the second term measures the fidelity to the
modulus of the Fourier transform v̂ of the exemplar image v.

Figure 3.4 shows several exemplar images, the syntheses obtained by minimizing
(3.9) with the patch-based dictionary (described in the numerical illustration #1) and
with the translation-invariant dictionary (described in the numerical illustration #2).
In the patch-based case, the parameters are τ = 12, K = 192 (redundancy around
1.5), α = 0.1 and β = 1. In the translation-invariant case, we use τ = 12 (size of each
ϕk), K = 5, α = 2, and β = 1/16. These results show that the switch from a fixed
linear representation (as used in Section 3.2) to adaptive non-linear representations
enables a more faithfully synthesis of geometrical textural patterns.

4. Gradient Statistics for Image Restoration. This section applies the
Wasserstein loss defined in Sect. 2 to the problem of image restoration. As explained
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Fig. 3.4: Synthesized images using the sparse decomposition (3.9) from Sect. 3.3. The
rows show respectively: the input image v, the synthesized image using the patch-
based decomposition (case #1), the synthesized image using the translation-invariant
decomposition (case #2).
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in the introduction, the goal is to control the statistical properties of the restored
image. As a case study, we consider the classical TV regularization. We choose to
impose the statistics of the gradients of the image, since this controls both textured
aspects and contrast [11]. In order to estimate the true distributions of gradients
from the noisy observation alone, we assume that they follow some parametric model.
The Wasserstein loss is then computed between the estimated distributions and the
distributions of the denoised image. We will see that such a framework is efficient
to prevent some defaults of the total variation. As a surprising by-product, we also
observe that the Wasserstein statistical loss can actually replace the total variation
term, therefore acting both as a fidelity and a regularization term.

4.1. Wasserstein Loss for Image Restoration. We consider the problem
of recovering an approximation u of some unknown image u0 from degraded noisy
measurements

y = Φu0 + η

where Φ : RP 7→ RQ is a linear operator modeling the acquisition process and η
is some additive noise. We assume that η is a realization of a white noise of mean
0 and variance σ2 IdQ. In this section, we show applications to image denoising
(corresponding to Φ = Id) and give an example of denoising (that is, Φ is a non-
uniform down-sampling operator).

Variational problem. Following the general setting of variational estimators
for inverse problems, we consider a recovery obtained by a minimization of the form

min
u
{λ′R(u) + λ′′E(u|(νzk)k) ; u ∈ Cα} (4.1)

where E(u|(νzk)k) is a statistical fidelity term (2.7) and R(u) is a regularization
term. The parameters λ′, λ′′ ≥ 0 controls the trade-off between the statistical fidelity
term and the regularization term. For the sake of normalization, we choose some

λ ∈ [0, 1] to define λ′′
def.
= 1−λ

2K and λ′
def.
= λ√

2P
when using TV regularization (4.2).

The constraint set

Cα
def.
=
{
u ; ‖Φu− y‖2 ≤ ασ2Q

}
accounts for the presence of a Gaussian noise of variance σ2, and the parameter α is
typically chosen close to 1. In the following, we use the classical total variation (TV)
regularization [57]

R(u)
def.
= ‖∇u‖1 =

∑
i

√
(∂i,1 u)2 + (∂i,2 u)2 (4.2)

where (∂i,1u, ∂i,2u) is the usual forward finite difference approximation of the gradient
of u at pixel i. While the TV penalty is not the state of the art in image denoising
and restoration (see Sect. 1.1 for a review), it is a good benchmark to exemplify the
main features of our approach.

As detailed in Sect. 1.1, traditional variational approaches and in particular TV
regularization have difficulties to restore fine-scale textural details. To account for
such high frequency content, it thus makes sense to study and to impose the statis-
tical distribution of local derivatives of the image. To define the statistical fidelity
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E(u|(νzk)k), we thus use gradient-domain linear features extractors Hk that corre-
sponds to K directional derivatives

Hk(u)
def.
=
(

cos(kπ/K)∂i,1 u+ sin(kπ/K)∂i,2 u
)P
i=1

∀ k = 1 . . .K. (4.3)

In the numerical simulations, we use K = 4 directional derivatives.
A delicate issue to be able to apply the variational method (4.1) is to define the

distribution (νzk)Kk=1 from the degraded observation y alone. We detail how we achieve
this in the two considered scenarios (denoising and super-resolution) in Sect. 4.2.

Minimization algorithm. The optimization (4.1) is both non-convex (because
of the Wasserstein loss E(·|(νzk)k)) and non-smooth (because of the `1 norm in the
definition of the TV regularization (4.2)). We apply the first order proximal algorithm
of [14]. While this algorithm is originally designed to handle convex functional, it has
been applied with success to non-convex functionals [15] although there is no proof
of convergence in this case. In our setting, we also reached the conclusion that this
algorithm was able to converge even in the presence of a smooth non-convex term in
the energy to be minimized.

The algorithm of [14] minimizes a function of the form F (u) + G(u) + H(L(u))
where F is a smooth function, L is a linear operator, and (G,H) are possibly non-
smooth functions for which one is able to compute the so-called proximal operator.
We refer to [14] for the detailed exposition of the iterations of the algorithm.

In our case, we use the splitting F (u) = E(u|(νzk)k), G(u) is the indicator of
the constraint Cα, L = (∂1, ∂2) is the discretized gradient operator, and H(p1, p2) =∑
i

√
p21,i + p22,i is the `1 norm of 2-D vector fields. The proximal operators of G and

H are respectively the orthogonal projection on Cα and the soft thresholding operator
(see [14] for more details). The gradient of F is computed using (2.7), and making
use of the fact that

∂Hk(u)∗ = H∗k = cos(kπ/K)∂∗1 + sin(kπ/K)∂∗2

where the adjoints (∂∗1 , ∂
∗
2) of the forward derivatives are minus the backward deriva-

tives.

4.2. Estimation of the Prior Distributions. In contrast to the texture syn-
thesis problem studied in Sect. 3, the estimation of the target distributions (νzk)k is
a delicate problem for restoration applications since one does not have direct access
to a clean image. Ideally, each νzk should be a good approximation of the (unknown)
distribution νHk(u0) associated with the image to recover. The estimation of νzk from
the noisy observations y is in itself a difficult statistical problem: we do not aim at
covering it in full generality.

To make this estimation well-posed, a common practice is to assume some para-
metric form for the distributions. To account for the sparsity of the derivatives of nat-
ural images, a popular parametric model [44] is the Generalized Gaussian Distribution
(GGD). This model has been successfully used in particular for image restoration [59]
or texture modeling [66]. We thus impose the discrete distribution νzk to be the best
match of a continuous GGD density gpk,sk of parameter (pk, sk). The GGD density
is

gp,s(z)
def.
=

1

Cp,s
e−
|z|p
sp
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where Cp,s is a normalizing constant, s controls the variance of the distribution, and
p is the shape parameter (controlling the sparsity of the distribution, e.g. p = 2
corresponds to a Gaussian distribution).

For each k, the estimation of νzk is thus achieved in two steps: (i) estimation of
the parameters (pk, sk) from the input y ; (ii) estimation of the quantized positions
zk ∈ RN from the estimated (pk, sk).

Parameters estimation. We first treat the case where Φ = Id so that y =

u0 + η. One thus has Hk(y) = Hk(u0) + ηk where ηk
def.
= Hk(η) is the realization of a

(colored) Gaussian noise for which each entry has a variance 2σ2 (by linearity of the
differentiation operator).

The known distribution of the coefficients of Hk(y) is thus equal to a convolution
between the unknown distributions of Hk(u0) and a Gaussian distribution of variance
2σ2. The estimation problem is thus a well known deconvolution problem, which has
been studied extensively in the case of a 1-D parametric GGD distribution. We use
the method described in [62] which performs a matching between the cumulants of
the GGD + Gaussian noise and the empirical cumulants computed from Hk(y). The
cumulants of order 2 and 4 (the two first non-zero cumulants) yield two equations
whose unknown are (pk, sk), hence providing an estimation of these parameters.

In the case of inpainting, Φ is a diagonal masking operator, that is, some pixels
are unknown. The parameters (pk, sk) of the GGD modeling Hk(y) are obtained in
the same way as before; the only difference is that the empirical cumulants of Hk(y)
are computed using only the subset of known values of the gradient Hk(y).

Thanks to the homogeneity property of the cumulants, the deblurring case could
also be handled in a similar way. However, this approach rapidly becomes unstable
when the convolution kernel is getting bigger. This is because the gradients are highly
damaged as the image is blurred, making their distributions difficult to estimate in
the presence of noise.

Quantized positions estimation. The quantized positions zk should be cho-
sen to minimize the discrepancy between the continuous distributions Gpk,sk and the
discrete distribution νzk . For 1-D distributions, the solution to this optimal quanti-
zation problem is well-known and corresponds to the posterior expectation on each
quantile of the distributions:

∀ i = 1 . . . N, (zk)i
def.
= N−1

∫ ti

t=ti−1

t dgpk,sk(t)

where ti
def.
= G−1pk,sk(i/N) are the quantiles and Gpk,sk the cumulative distribution of

the GGD. Then

∀ z ∈ RN , W(νz, gpk,sk)2 =W(νz, νzk)2 +W(νzk , gpk,sk)2

as proved in [62]. Hence the Wasserstein distance to the GGD is equal to the distance
to the discretization zk, up to an additive constant which has no impact on the
minimization problem.

4.3. Numerical Results. This section presents several restoration results ob-
tained using our approach in the case of denoising. We then compare such results to
other approaches and in particular to NL-Bayes [37] and to the gradient histogram
matching [11]. We also study the ability of our approach to preserve the gradient and
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the color distributions, in contrast with other methods. More results are available
in [62].

To be efficient on complex scenes, our approach would require a former segmen-
tation step such as the one presented in [11]: this way, we would be able to estimate
a different GGD model for each region of the image, and thus have a texture term
which is adaptive with respect to each region of the image.

We first present the result of our algorithm on several uniform textures. In the
following experiments, the fidelity constant of (4.1) is set to α = 0.7: this value yields
a visually good trade-off between denoising and over-smoothing in the standard TV
case. The optimization algorithm is stopped after 200 iterations, which we found
sufficient for the considered problem. When not specified, the size of the images is
P = 128× 128 pixels and their values are in [0, 1].

In the set of experiments given in Fig. 4.1, we present from left to right: the
original noise-free image; the observed image, contaminated by a white Gaussian
noise of standard deviation 15% of the image amplitude, i.e. σ = 0.15 for images
whose dynamic is [0, 1]; the result of the TV denoising algorithm [57], which is a
special case of our algorithm with λ = 1; the result of our algorithm with only the
texture fidelity term (without TV), which corresponds to the case λ = 0; the result
of our algorithm with a trade-off 0 < λ < 1 which we called “hybrid” method, and in
particular with λ = 1‰ = 1/1000 which is experimentally well suited on our set of
images.

The TV approach (3rd column) removes most of the textures, resulting in smooth
images, sometimes with a cartoon aspect. On the contrary, the approach correspond-
ing to λ = 0 (4th column) does not destroy any textural content at the cost of some
residual noise. It is interesting to note that in this experiment the texture term
(Wasserstein statistical loss) is used without additional regularization term. The hy-
brid approach (5th column) make use of a TV regularization term to eliminate more
noise. However, the pure Wasserstein loss (λ = 0) approach and the hybrid one
produce very similar results on several images.

A few examples of inpainting are shown on Fig. 4.2: in addition to a white
Gaussian noise of standard deviation σ = 0.1, 40% of the pixels has been lost (i.e. the
degradation operator Φ is a non-uniform down-sampling). We do not focus more on
this case here, instead we refer to the former results presented in [62].

Influence of the trade-off parameter. Figure 4.3 further illustrates the effect
of the parameter λ on the denoised image. The parameter varies from λ = 1 (TV
algorithm) to λ = 0 (Wasserstein term only, no TV term). The visually optimal
result is usually obtained as a trade-off between these two terms, since the TV term
over-smooths the image and destroys textures, while the GGD term only does not
always provide a strong enough regularization. As stressed in the previous experiment,
the TV is not always necessary and the Wasserstein term alone may perform well,
especially in the case of textures with fine details.

Comparison with state of the art approaches. We now compare our re-
sults to other denoising approaches: first the state-of-the-art denoising algorithm
NL-Bayes [37] and the inverse problem algorithm PLE [72]; then we display some
comparisons with the results from [11] which introduced the idea of preserving the
gradient distribution to restore images.

Patch-based approaches. Figure 4.4 compares our results to both NL-Bayes [37]
and PLE [72]. Online demos [36, 68] are available for these two algorithms. They
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Original Noisy, TV GGD Hybrid,
(noise-free) σ = 0.15 (λ = 1) (λ = 0) λ = 1‰

Fig. 4.1: Denoising of images using the TV + gradient distribution fidelity term.
From left to right: original noise-free image, noisy observation, result of TV denoising
(λ′′ = 0 in (4.1)), result of the Wasserstein term without TV (λ′ = 0 in (4.1)),
combination of TV and Wasserstein term.
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Original Degraded, TV GGD Hybrid,
(noise-free) 40% missing, (λ = 1) (λ = 0) λ = 1‰

σ = 0.1

Fig. 4.2: Inpainting of noist images using the TV + gradient distribution fidelity
term. From left to right: original image, noisy observation with missing pixels, result
of TV inpainting (λ′′ = 0 in (4.1)), result of the Wasserstein term without TV (λ′ = 0
in (4.1)), combination of TV and Wasserstein term.

both produce a final image that is highly denoised. Our approach does not remove as
much noise, but it preserves more details and produces a sharper image.

A reason for this behavior is that NL-Bayes and PLE use the self-similarity of
the image (i.e. its intrinsic redundancy): they assume that the patches of the images
provide a redundant information. They perform denoising by enforcing the intra-
patch similarities while removing the singular elements of the patches. Although
these methods produce state-of-the-art results, some details are lost as a result of
an increase of the self-similarity of the image. Our texture fidelity term enforces the
gradient distribution to follow the estimated law: it prevents the image to be smoother
than expected by preserving the amount of granularity of the image.

Comparison with the approach of [11]. We compare on Fig. 4.5 our results to
the ones from [11]. The authors of the latter paper propose to enforce the gradient
distribution using an approach that is different from ours, based on a Kullback-Leibler
divergence or alternatively on an accumulation of deviation terms (see [11] for more
details). They argue that these terms succeed in imposing the distribution, however
the choice of these terms and their effect are purely empirical. In comparison, the
Wasserstein distance is a robust mathematical tool permitting us to set the gradient
distribution without requiring additional cost functions. Since no code is available for
the approach from [11], the images shown on Fig. 4.5 are directly extracted from the
PDF version of [11], hence they may suffer from JPG compression artifacts. Figure 4.5
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λ = 1 λ = 10−1 λ = 10−2 λ = 10−3 λ = 0

Fig. 4.3: Images denoising using the Wasserstein term in the cost function (4.1) for
several values of the trade-off parameter λ. The model varies from the TV regular-
ization (λ = 1, left) to Wasserstein term alone (λ = 0, right).

shows on the first row the original image and the segmentation from [11]; the following
rows show, from left to right: a crop of the original image, a noisy version, a crop of
the denoising result of [11], the result of our algorithm using only the texture fidelity
term (i.e. λ = 0), and using the parameter λ = 1‰. Note that instead of using the
noisy images of [11], we generate a noise with the same variance because the images
extracted from the PDF have a non-Gaussian noise due to the JPG compression. Note
also that [11] performs a segmentation (upper right image on Fig. 4.5); to compare
our results to their approach, we simply extracted sub-images in each region.

The authors of [11] claim that their approach does not outperform the state-of-
the-art in image denoising but is better at preserving textures. They support this
argument by a massive user-study. Our approach removes less noise but is more
texture-preserving, as may be seen in Fig. 4.5.

We emphasize that our texture-preserving term is generic and can easily be
adapted to other variational approaches. We demonstrate its effect along with the
TV variational approach because it is both simple and used in several contexts (see
Sect. 1.1 or references in [40]).

Histograms of denoised images. We propose in this sub-section a closer look
at the statistics of the denoised images: we analyze the resulting gradients and gray-
level distributions, and then the noise removed by the algorithms.

Figure 4.6 shows the histograms of the gray-level and of the (horizontal and
vertical) gradients of the input image and of the denoised images obtained by several
algorithms.
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Original Noisy, PLE NL-Bayes Our
(noise-free) σ = 0.15

Fig. 4.4: Comparison to state-of-the-art denoising approaches on color images. From
left to right: original image, noisy observation, denoising using the Piecewise Linear
Estimator [72], denoising using the NL-Bayes algorithm [37], denoising using our
approach (with λ = 1/1000). The average PSNR are 23.5 dB for PLE, 23.8 dB for
NL-Bayes, and 22.7 for us. Although the PSNR is lower, our approach is better at
preserving the texture and details.
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Original image Segmentation from [11]

Original Noisy, [11] GGD Hybrid,
(noise-free) σ = 0.15 (crop) (λ = 0) λ = 1‰

Fig. 4.5: Comparison to [11]. Top row: original image (left) and the segmentation
from [11] into homogeneous texture regions (right). Next rows, from left to right:
crop of the original image; noisy image; result of [11] (on the segmented image, then
cropped); result using our texture fidelity term only (i.e. λ = 0, run on the cropped
image); result of our hybrid approach (with λ = 1/1000, run on the cropped image).
Note that the input image and the results of [11] were only available as JPG images.
Note also that we launch our algorithm on the cropped images.

Gray-level histogram.. It shows that our algorithm preserves the gray-level dis-
tribution of the image; as a particular case, it also preserves the dynamic and the
contrast of the image, which is perceptually important. On the opposite, both TV
and NL-Bayes tends to compress the dynamic of the image and to diminish the con-
trast. This is clearly visible on the fur image in the previous figures. Imposing the
gray-level histogram is proposed in [61] through a histogram fidelity term based on
the Wasserstein distance.

Gradient histograms. They show that our texture fidelity term succeed in pre-
serving the gradient distributions of the noise-free image, which is responsible for the
texture preservation. The TV term tends to produce a piecewise-constant image,
whose gradient histograms have a large peak around zero; the NL-Bayes approach
smoothes the image and makes the gradient histogram narrower, resulting in a less
contrasted image and a loss of details; both TV and NL-Bayes produce an image
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Original Noisy Our NL-Bayes

Fig. 4.6: Comparison of the histograms of gradients (bottom) and of pixel values
(middle) for several images (top). The considered images are: original image u (red,
1st top image), observed image v (pink, 2nd top image), denoised by TV (λ = 1,
green), denoised by our texture fidelity term only (λ = 0, blue), denoised by our
hybrid approach (λ = 1/1000, black, 3rd top image), and denoised by NL-Bayes ([37],
blue, 4th top image).

whose gradient histograms have too thin tails. Our hybrid algorithm respects the
heavy tails of the distribution to preserve details and textures as much as possible,
while producing a small peak around zero as the result of the TV regularization.

5. Conclusion. In this paper, we have introduced a generic framework to im-
pose statistical constraints in variational problems routinely encountered in imaging
sciences. We show in particular applications to image synthesis, denoising and super-
resolution. We believe that a key aspect and contribution of our work is the use of
a Wasserstein loss between discrete probability distributions, which is both simple to
use and robust. It is of course possible to consider more advanced image processing
problems, and we refer for instance to [54] where the same framework is used to per-
form texture mixing by minimizing a sum of Wasserstein losses learned from several
input exemplars.
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The proposed approach is generic and could be associated with other regular-
ization terms for image restoration, for instance the non-local variational approaches
from [23, 30]. It can also act as a post-processing step, possibly in combination with
approaches such as NL-Bayes [37]. Last, as mentioned above, the approach can be
generalized to other restoration tasks than denoising. While the extension to inter-
polation or super-resolution problems is relatively easy to develop, other tasks such
as image deblurring may face some difficult estimation problems.
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composition into a bounded variation component and an oscillating component. Journal
of Mathematical Imaging and Vision (JMIV), 22(1):71–88, 2005.

[4] Suyash P. Awate and Ross T. Whitaker. Unsupervised, information-theoretic, adaptive image
filtering for image restoration. Transactions on Pattern Analysis and Machine Intelligence,
28(3):364–376, March 2006.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. Journal on Imaging Sciences, 2(1):183–202, 2009.

[6] Peter Blomgren, Tony F. Chan, Pep Mulet, and Chak-Kuen Wong. Total variation image
restoration: numerical methods and extensions. In International Conference on Image
Processing (ICIP), volume 3, pages 384–384. IEEE, 1997.
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