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Abstract. Android applications that manage sensitive data such as
email and files downloaded from cloud storage services need to protect
their data from malware installed on the phone. While prior security
analyses have focused on protecting system data such as GPS locations
from malware, not much attention has been given to the protection of ap-
plication data. We show that many popular commercial applications in-
correctly use Android authorization mechanisms leading to attacks that
steal sensitive data. We argue that formal verification of application be-
haviors can reveal such errors and we present a formal model in ProVerif
that accounts for a variety of Android authorization mechanisms and
system services. We write models for four popular applications and an-
alyze them with ProVerif to point out attacks. As a countermeasure, we
propose Authzoid, a sample standalone application that lets applications
define authorization policies and enforces them on their behalf.

1 Introduction

The Android operating system seeks to foster a rich ecosystem of third-party ap-
plications. Users may download apps from reputable stores managed by Google
and Amazon or directly from app developers.3 This leaves users vulnerable to
malware masquerading as genuine apps. Consequently, Android provides strong
runtime isolation, running each application process in a separate Dalvik virtual
machine, and giving each a private storage area. Isolated applications may still
share files and data, for example using external storage or using an inter-app mes-
saging mechanism called intents. While some apps freely share and collaborate
with others, those holding sensitive data are tempered by the need for security
and integrity. Android therefore provides authorization mechanisms which let
an app control which other apps, if any, can read or write its data.

System Permissions Android protects its system resources through permissions
which are granted by the user at installation time and accompany the app
throughout its lifetime. The Android SDK defines about 130 built-in permis-
sions of which some forty are signature/system permissions and are reserved for
the operating system or apps installed by the device manufacturer [28]. The
rest can be requested by an app in its application manifest, an XML file which

? Work performed while visiting INRIA.
3 It is estimated that the average Android phone in 2012 has 32 apps installed [24].



is prepared by the developer and stored in its application package (APK) file.
When an app attempts to access a system API function at run time, Android
first checks if the requestor has the required permission. If it doesn’t, a security
exception is thrown.

Some examples of regular permissions are: READ_EXTERNAL_STORAGE and
WRITE_EXTERNAL_STORAGE permissions to read or write to the phone’s shared
disk (referred to informally as the SD card since its default mount point is
/mnt/sdcard/ [21]), INTERNET to open network sockets, and READ_LOGS4 to
access the system log. Some examples of system permissions are: INSTALL_

PACKAGES to install new applications, BRICK to disable the phone completely,
and DELETE_CACHE_FILES to clear the cache directories of other apps.

Application-level Authorization In addition to install-time permissions, Android
provides a variety of other authorization mechanisms. Activities can filter which
intents will be directed to them based on the intent’s content or requested action.
Content providers and services can be made available only to applications which
have certain permissions. Authorization may seem seamless to the user, but due
to the variety of tools available and the details of the OS, it can be technically
messy and sometimes can even be bypassed.

Consider, for example, a user who installs Dropbox (www.dropbox.com), uses
it to download a PDF file from the cloud, and opens it with Adobe Reader
(adobe.com/products/reader.html).5 The user would assume that during the
transaction Adobe Reader got temporary read access to the file and nothing
more. As we discuss later, that is not the case at all: Adobe Reader and (up until
API level 16) all of the applications on the phone can read the file indefinitely
afterwards. Many can modify it too.

Our Contribution There are many ways in which applications get authoriza-
tion wrong or fail to enforce authorization properly. They fail primarily because
they don’t define the policy they are trying to enforce and (likely) didn’t use a
full model of the environment during testing. Proper modeling of the environ-
ment and the application’s behavior would reveal attacks on the authorization
mechanism.

Our contribution in this work is threefold. First, we present a unified pic-
ture of the Android authorization tools, something not previously presented in
a single work. Second, we show how many popular sharing applications on the
market fail to get authorization right and publish a formal model of the An-
droid authorization tools and environment which allows us to reveal attacks.
We publish the model so that others can use and extend it to test their apps.
Third, we present Authzoid, a sample authorization app which properly imple-
ments the authorization tools that the apps got wrong. The code can act as
a source code module to be included as is or as a starting point for develop-
ers who want to get authorization right. Both code and model are found at:
http://prosecco.gforge.inria.fr/Essos/pv/.

4 Changed to signature/system/development permission in API level 16.
5 The most popular PDF reader on Google Play as of Oct 2012.



The rest of this paper is organized as follows. Section 2 explains the Android
authorization tools. Section 3 discusses our attacker model, gives technical de-
scriptions of the sharing applications surveyed, and explains the attacks against
them. Section 4 contains our formal model for Android authorization tools, en-
vironment, and the applications studied. Section 5 discusses the Authzoid app
and its major features. Section 6 contains related work and Section 7 concludes.

2 Authorization for Android Applications

Android applications are composed of four kinds of run time entities:

Activities correspond to windows and allow for user interaction via a GUI.

Content Providers provide SQL-like interfaces to queryable data.

Broadcast Receivers listen for broadcast messages from other application
components, the operating system, or other applications.

Services run in the background and provide long term functionality without
providing a user interface.

Applications exchange messages via intents which contain a URI data field and
strings, URIs, or key-value pairs in extra fields. They are routed by an Android
component called Binder between the run time entities. During routing, the
Activity Manager writes the action, sender, recipient, and data field (but not
the extra fields) to the log.

Each runtime entity may use a variety of authorization mechanisms to control
access to its data and functionality. In the rest of this section we review the
five authorization mechanisms available and explain their usage, strengths, and
weaknesses. For each mechanism, we give an example of how it is used in a
popular application currently available from the Android Market. Some apps
use a combination of the mechanisms below to enable a variety of user policies.

Android Permissions Android’s SDK includes about 130 permissions, but an
app may extend them with its own permissions by adding them to its manifest
file. Apps can use permissions to enforce authorization in one of two ways.

First, content providers, activities, services, and broadcast receivers can spec-
ify that only applications with a certain permission may access them. For ac-
tivities and services, this prevents applications without the permission from
invoking or binding to them. For content providers, separate read and write
permissions may be given. For broadcast receivers, it prevents the delivery of
broadcasts from apps without the permission. The filtering is done automat-
ically by Binder based on the app’s manifest file (android:permission for
activities, services, and broadcast receivers and android:readPermission and
android:writePermission for content providers) or as defined programmati-
cally if they are configured in code.



Example: K-9 Email (code.google.com/p/k9mail/) uses the custom permis-
sions com.fsck.k9.permission.READ_ATTACHMENT to protect its attachments
content provider. Its email messages content provider protects read access with
READ_MESSAGES and write access with DELETE_MESSAGES. GMail (gmail.com)
and Yahoo! Mail (mail.yahoo.com) (discussed below) use a similar strategy.

Second, apps can use the system API to discover whether it, the app which
called it, or another app has a particular permission (using checkPermission()

or checkCallingPermission()), regardless of its type. They can then make
programmatic decisions based on the results.

Example: Some plug-in libraries (ex. ACRA (code.google.com/p/acra/)) pro-
grammatically investigate which permissions are available to their host applica-
tions before attempting actions which require particular permissions (ex. reading
the log and sending internet data).

URI Permissions The content provider read and write manifest permissions give
blanket read and write access. Alternatively, a content provider can give specific
read or write query access to a single content URI under its authority. The URI
permission can be granted programmatically using grantUriPermission() or by
sending an intent to the recipient with the FLAG_GRANT_READ_URI_PERMISSION

or FLAG_GRANT_WRITE_URI_PERMISSION flags set. URI permissions can be dele-
gated by recipients. Intent-granted URI permissions are valid until the recipient
app closes or is killed. Programmatically-granted ones are valid until revoked
using revokeUriPermission().

Binder enforces URI permissions by tracking the grants, revokes, and intents
sent, so the URI does not need to be secret. Also, since intents can be routed by
capability, the sender may not know which app received the permission.

Depending on whether the content URI refers to a database row, a file,
or both, the recipient can use a content resolver request to read or write the
corresponding rows or file. If the URI is opened as a file using openFile(),
the content provider returns an open file descriptor for it and Binder assigns
ownership of it to the recipient.

Example: Users can open an attachment from K-9 Email with an external viewer.
When this happens, K-9 Email sends an intent to the viewer with a content

URI for the attachment and the URI read permission flag set. The recipient can
then use a content resolver to resolve the URI to an open file descriptor. GMail
and Yahoo! Mail employ a similar strategy.

The use of open file descriptors leads to some technical inconveniences. First,
since a file descriptor is a hard link to the file and is owned by the recipient,
the sender can’t close the file descriptor or delete the file until the recipient
closes it. Second, if two application hold open file descriptors for the same file
(i.e. they both requested the same URI), they cause read/read and read/write
conflicts and race conditions. Third, only a few classes in the Java file API
support file descriptors, making it impossible to perform random access reads



or writes to the file and making rewinding difficult. Because of these issues,
some applications immediately make local copies of files passed to them by URI
(ex. Adobe Reader) or don’t enable updates to such files (ex. Jota Text Editor
(sites.google.com/site/aquamarinepandora/home/jota-text-editor)).

Private Storage Every Android application is given its own user name, group
name, and home directory. The home directories are protected by Linux file and
directory permissions and by default no app can read or write the home directory
of another. Apps can override the default settings to make files or directories
world readable, writable, or executable using setReadable(), setWritable(),
and setExecutable(). Then any other app can read, write, or execute the files
or directories. If an app makes a file world readable in order to share it, it may
include a long random string in the path to make it hard for unintended apps to
guess the path name. This technique turns the path name into a secret, so the
app must ensure that only the intended recipient gets the path name.

Example: Unlike most apps which keep all files in private storage private, Google
Drive (drive.google.com) (discussed below) selectively sets path read and ex-
ecute permissions to enable others to read files in its private storage.

External Storage (SD Card) Most Android devices have a shared storage space
for files or data (the SD card). Read and write access to the SD card require the
permissions mentioned above. Many applications (ex. the camera, the default
browser’s downloads folder) use the SD card for storing files that are either too
large to keep in private storage or that are meant to be available for other apps
to use. Aside from the read and write permissions, Android does not enforce
access control on the SD card, so any application can read, write, or delete any
file on it. Authorization can be enforced on the SD card using encryption or
message authentication codes (MAC).

Example: The password storage app 1Password (agilebits.com/onepassword)
stores its encrypted password database on external storage. It doesn’t share
passwords directly with other apps, instead using the clipboard to copy and
paste passwords. Encryption protects the contents of the password database
and MACs protect its integrity.

Web Sharing Some apps place data to be shared on a public web site and send
the URL for the data to another app via an intent. Often the URL contains
a long random string to make it difficult to guess, turning the URL into a
secret. Another option is to protect the URL using web-based application or
user authentication such as OAuth [14].

Example: MyTracks (www.google.com/mobile/mytracks/) uses GPS informa-
tion to track where the device has gone, including distance traveled, speed, and
elevation change. When sharing a “track” from MyTracks with another app, it
first uploads a custom map to Google Maps and then sends a web URL with a
long random part to the recipient via an intent.



Summary The authorization tools listed show the variety of mechanisms avail-
able. It’s not clear if any or all of the tools are sufficient to achieve a satisfactory
authorization policy. The applications that we study in the next section use dif-
ferent combinations of the tools to enforce authorization, but each suffer from
attacks and weaknesses that demonstrate that using them correctly is not sim-
ple. In some, the tools are used incorrectly; in others, features of the Android
environment defeat the app’s authorization policy.

3 Applications and Attacks

To investigate how popular applications use the authorization tools of Section
2 to enforce their security goals, we study four apps: two Email clients and two
Cloud File Storage applications. We explain each application’s authorization
mechanism and explain how an attacker may defeat it.

3.1 Authorization Goals and Attacker Model

Since the apps we examine don’t specify authorization policies in their docu-
mentation, we define a minimal one for the purposes of our study. Our minimal
policy contains just one confidentiality rule and one integrity rule:

Confidentiality An app may read a file only if it owns it or if the owner and
the user have authorized the reading.

Integrity An app may modify a file only if it owns it or if the owner and the
user have authorized the modification.

The policy can be enforced by many authorization mechanisms, including those
listed in Section 2.

Regarding the attacker model, we first assume that the Android protec-
tion mechanisms are enforced according to their specification (i.e. the phone
isn’t “rooted”, giving arbitrary power to an app). Next, we make the same as-
sumption that Android does regarding app isolation: that apps are mutually
suspicious. The attacker is assumed to be (1) installed on the phone, (2) ca-
pable of performing polynomial time programmatic tasks, and (3) in posses-
sion of a set of authorization-related permissions that seem may seem innocu-
ous: READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE (51% of popular ap-
plications request it), READ_LOGS (6% of popular applications request it6), and
INTERNET (77% of popular applications request it) [10]. Any series of actions
which such an attacker can take to contravene the authorization policy defined
above is an attack.

6 As of Oct 2011, READ_LOGS was the ninth most popular dangerous Android permis-
sion requested. In API level 16, it was converted to a system/signature/development
permission, so access to it on the most recent devices is significantly reduced.



3.2 Study of Sharing Applications

We now consider four popular Android applications which enforce authorization
using the mechanisms defined in Section 2. The applications are chosen because
they illustrate the use of a variety of mechanisms and are representative of classes
of apps.

GMail downloads attachments to its private storage area and manages them
via a content provider which is protected by custom permissions READ_GMAIL and
WRITE_GMAIL. The permissions are signature level permissions, so only Google
applications can request them [7]. GMail allows the user to open an attachment
using an outside document viewer by sending an intent containing a URI read
permission. Applications which behave similar to GMail include the built in
Android Email application and K-9 Mail.

Attacks: The use of a protected content provider ensures that only applications
sent the URI permission can read the file. However, some recipient viewers imme-
diately make a copy of any file sent to them by URI. For example, Adobe Reader
copies any file it shows to the SD card in the downloads directory, making it
readable by an attacker (confidentiality).

Yahoo! Mail has a content provider which is protected by a custom signature
permission (com.yahoo.mobile.client.android.permissions.YAHOO_INTER_
APP). Yahoo! lets the user open attachments using URI permissions, just like
GMail. However, downloaded attachments are stored on the SD card, so they
are readable by any application with READ_EXTERNAL_STORAGE. The MailDroid
(groups.google.com/group/maildroid) application behaves similarly.

Attacks: Since Yahoo! stores all downloaded attachments on the SD card, an
attacker can read them (confidentiality). The application does not check for
downloaded file integrity, so once on the SD card they may be modified by an
attacker as well (integrity).

Google Drive offers two mechanisms for sharing files on the phone.
First, the on-phone app lists the files and directories on the cloud and down-

loads one when the user requests to view or share it. Files can’t be updated
on the phone. A downloaded file is placed in a new, randomly named direc-
tory in a document cache directory located in Google Drive’s private stor-
age (/data/data/com.google.android.apps.docs/cache/). The new direc-
tory contains just one file and is world readable and executable. The file is made
world readable and all the directories above the randomly named directory are
world executable, letting any app open the file, but not list the directory names
under cache. The file path is sent to the target as the data field of an intent.

Second, apps can access Google Drive via a web service interface which is
protected by SSL and OAuth 2.0. An app receives an API identifier which it



can use to obtain file read and write tokens. An app can download files via their
names or identifiers and send updates back over the web.

Attacks: With respect to the on-phone app, the directory path is a secret since
any application which knows it can open the file. Activity Manager, however,
prints the data fields of all intents to the log, so the path is printed as well. An
attacker which has READ_LOGS permission can discover the path and read the
file (confidentiality).

Dropbox lists the files and directories in the cloud and downloads them on
demand. The files are stored on the SD card in a directory called scratch.
When sharing a file, it is first stored in the scratch directory and then the path
and filename are sent via an intent.

Downloaded files can be opened for reading and editing, but are not checked
for integrity after downloading. When opening a file, the user chooses which file
viewer to use; if the viewer saves a new version, it is uploaded to the cloud. Saves
are monitored until the authorized viewer closes or loses focus. Dropbox ignores
saves by other applications, even when an authorized viewer is working.

When sharing a file for attachment to an email, the file is uploaded (if nec-
essary) and a web URL is provided in the intent as an extra. The URL provides
read only access to the file and includes a random string to make guessing harder.

Attacks: Since downloaded files are stored on the SD card, they are readable by
an attacker (confidentiality). Unauthorized saves are not automatically uploaded
to the cloud, but since there is no integrity check, an attacker can tamper with a
file and subsequent views of the file on the phone will show the tampered version.
If a viewer unknowingly saves a tampered version, the attacker’s modifications
will reach the cloud (integrity).

3.3 Discussion

Our study of four popular and well-regarded applications illustrates the difficulty
in getting even a simple authorization policy right. Many applications place
sensitive data on public external storage. Some use unguessable directory names
in private storage, but these names may leak into the shared system log. Still
others may themselves correctly implement access control, but may be let down
by the applications with which they share files.

Simple technical tricks aren’t sufficient against a dedicated adversary. Wuala
(wuala.com) tries to place shared files on the SD card for only a few sec-
onds. However, due to Android’s application life cycle, a malicious app can
monitor the SD card and breach confidentiality during that gap. Boxcryptor
(boxcryptor.com) encrypts files on the SD card and decrypts them just in time
for the recipient. Such uses of encryption are limited by key management, that
is, how to securely transfer a secret key to the recipient. Google Drive’s example
shows that transferring secret keys by intent is not always secure. Keys derived



from passphrases are hard to keep secret, as shown by Belenko and Sklyarov [3].
Even if encryption keys are shared securely, file storage applications often misuse
encryption and integrity algorithms and expose their plaintext to attackers [4].

We advocate a unified comprehensive approach to the implementation of
application-level authorization. Rather than suggest point-fixes to prevent spe-
cific attacks, we show how to write formal models that precisely capture autho-
rization policies and relevant parts of the execution environment. By automat-
ically analyzing such models, we can both find attacks and gain confidence in
the mechanisms used to enforce the policy.

4 Formal Model

As shown above, implementing even a minimal authorization policy requires an
analysis of the authorization tools as well as the environment. Modeling can
help such an analysis by including relevant parts of the Android authorization
tools and the operating system. Developers can then create a model of their
application, run it inside the Android model, and use automated tools to dis-
cover attacks. In this section we describe the building of such a model using
ProVerif [5]. We show illustrative snippets of its parts: (a) the authorization pol-
icy, (b) the Android authorization tools, (c) parts of the Android OS, and (d)
the sharing application. We then use the model to discover attacks in the mod-
els of the applications surveyed. ProVerif is well suited for our needs since (1) it
enables the definition of authorization policies using Horn clauses and commu-
nication using the applied pi calculus; (2) it can model enforcement mechanisms
that use secret and fresh file or path names and cryptography; and (3) it lets us
analyze the models against an unbounded adversary.

Policy Language The snippet below implements the minimal authorization pol-
icy from Section 3.1. It allows an app to read or write files only if it is the file’s
owner or if it receives authorization from the owner and the user. Lines 1–2 are
a horn clause saying that if an application (a1) and a user (u) own a resource
(r), then a1 is authorized to read r. Lines 3–4 enable another application (a2) to
receive read authorization from the owners (a1 and u). The parallel write rules
are omitted due to space considerations.

clauses forall u:Principal, a1:appid, a2:appid, r:resource;1

owners(r, u, a1) -> readAuthorized(a1, r).2

clauses forall u:Principal, a1:appid, a2:appid, r:resource;3

owners(r, u, a1) && userAuthorizedRead(u, a2, r) -> readAuthorized(a2, r).4

Android Authorization Tools We implement the following Android authorization
tools:

Permissions are included via a androidPerm type which is populated with
permissions that can be granted by the user during installation.



URI Permissions are included via a uri type which refers to a file resource.
Resolution is modeled using a lookup table of uri and resource pairs.

Private Storage is modeled by using a path type which refers to a location
only accessible by the owner. If the path is declared world readable, writable,
or executable, others can access it too. Fresh path names may be world
readable, but only can be accessed if the requestor knows the path’s name.

SD Card is modeled as a file system process which enables the storage or re-
trieval of objects based on path and filename objects stored in a lookup
table.

Web Sharing is parallel to private storage, but without the need for setting
path permissions.

The following snippet shows how file and log read permissions are handled
(parallel file write clauses are elided). Lines 5–7 define the Android permission
type, the permission to read the SD card (externalRead), and the permission
to read the log (logRead). Lines 8–9 allow an application a to read a file with
name f, path p, and any file and path permissions fp and pp if (1) a has the
external read permission and (2) the file is on the SD card. Lines 10–11 allow an
application a to read all files in its own private space (private(a)). Lines 12–14
allow an application a to read a file in another application o’s private space if
its path permissions (pp) are set to world executable (isWorldExecutable) and its
file permissions (fp) are set to world readable (isWorldReadable). Line 15 allows
an application a to read the log if it has logRead.

type androidPerm.5

fun externalRead() : androidPerm.6

fun logRead() : androidPerm.7

clauses forall a:appid, l:location, p:path, f:filename, pp:filePerms, fp:filePerms;8

hasPermission(a, externalRead()) -> canReadFile(a, sdcard(), p, pp, f, fp).9

clauses forall a:appid, l:location, p:path, f:filename, pp:filePerms, fp:filePerms;10

canReadFile(a, private(a), p, pp, f, fp).11

clauses forall o:appid, a:appid, p:path, f:filename, pp:filePerms, fp:filePerms;12

isWorldExecutable(pp) && isWorldReadable(fp) ->13

canReadFile(a, private(o), p, pp, f, fp).14

clauses forall a:appid; hasPermission(a, logRead()) -> canReadLog(a).15

Android OS Elements We include processes for the following authorization re-
lated Android processes:

File System process which enables applications to read, write, and list files on
the SD card based on path and file name. The file system allows access to
files in private storage by the owner and by others which know the path
name if the permissions are set correctly.

Content Provider process which enables applications to resolve URIs and
thereby read or write files which they refer to.



Binder process which handles the granting of URI permissions, both from the
owner and via delegation. Binder writes entries in the log.

Log process which gives permission-based read and write access to the log.
Permission Granting process which enables the user to grant permissions to

processes.

The following snippet shows three parts of file system’s code in the model.
Lines 16–17 listen for file read requests (readFile) and check the application is
registered. Lines 18–19 retrieve the file based on its location (l), path (p), and
file name (f), check if a is able to read it, and return it to a if it is able. Lines
20–22 listen for requests to list the files in a directory path. Line 23 allows it if
the path is world readable. Lines 24–27 allow an application to list all files on
the SD card if the requestor has externalRead permission.

let FileSystem() = (!in (filesystem,readFile(a, l, p, f));16

get apps(=a) in17

get files(=l, =p, pp, =f, fp, r) in18

if canReadFile(a, l, p, pp, f, fp) then out(return(a), r))19

| (!in (filesystem,listFile(a, l, p));20

get apps(=a) in21

get files(=l, =p, pp, f, fp, r) in22

if isWorldReadable(pp) then out (return(a), f))23

| (!in (filesystem,listSDCard(a));24

get apps(=a) in25

get files(=sdcard(), p, pp, f, fp, r) in26

if hasPermission(a, externalRead()) then out (return(a), (p, f))).27

Testing Application We implement a single process for each sharing application.
The process registers the application, specifies how files are added, and specifies
how files are shared with other applications (“open with”).

The following snippet shows the Dropbox application. Line 28 defines the
Dropbox application id as private (not known to the attacker initially). Line
29 is the header for the process. Lines 30–31 register Dropbox in the applica-
tions table (apps, definition elided) and publish the name of its private storage
(private(dropbox)) and its web storage (web(dropbox)) by sending their values
on the free channel pub (definitions of private, web, and pub are elided). This
simulates an attacker knowing the application’s root directory and web domain,
but not knowing the paths below them where files are found. Lines 32–34 define
a new file’s contents (r), its file name f, and its path p; assigns ownership of the
file to Dropbox (line 33, using the assume function which is elided); and inserts
it in the files table (definition elided) on the web (web(dropbox)) where it stays
until downloaded. The noPerms() terms are used to model file and path read,
write, and execute permissions. Lines 35–40 model a user opening a file. Lines
35–36 receive an openWith command and download a file from Dropbox’s web
space (path p, path permissions pp, file name f, file permissions fp, file contents
r). Line 37–38 select an application a and authorize it to read. Line 39 stores



the file on the SD card in the files table with no explicit file or path permissions
(noPerms). Line 40 returns the path and file name to the requestor by an explicit
intent (explicitintent(a)).

free dropbox : appid [private].28

let Dropbox(u:Principal) =29

(insert apps(dropbox);30

out (pub, (private(dropbox), web(dropbox))))31

| (!new r:resource; new f:filename; new p:path;32

if assume(owners(r, u, dropbox)) then33

insert files(web(dropbox), p, noPerms(), f, noPerms(), r))34

| (!in (openWith, ());35

get files(=web(dropbox), p, pp, f, fp, r) in36

get apps(a) in37

if assume(userAuthorizedRead(user, a, r)) then38

insert files(sdcard(), p, noPerms(), f, noPerms(), r); (*readable by attacker*)39

out (explicitintent(a), (p, f))).40

Discovery of Attacks By combining the testing application’s model with the en-
vironment and authorization code, we can check two types of queries in ProVerif:

1. Checks that proper authorization is reachable. ProVerif should show traces
by which a user can properly authorize an app to read and write a file.

2. Checks that an attacker can’t read or write files without proper authoriza-
tion.

The first queries check that authorization is possible under the model. We expect
to see traces of the sort: “The file is readable by the attacker if the user has sent
a read URI permission to the attacker” or “A file in private storage is readable
by the attacker if the application makes the file world readable, the path world
executable, and sends an intent to the attacker with the path to file.” Those
represent valid authorization paths in the model.

The second queries ensure that there are no other ways to read or write files
aside from the authorization paths defined. If ProVerif finds any such paths,
they are attacks. For example, ProVerif points out that line 39 above leaks the
file to the attacker since it is allowed to read files on the SD card.

5 Authzoid Implementation

As shown above, the proper use of the authorization tools in Android requires
careful design and analysis. In this section we describe our implementation of
Authzoid, an app that lets file owners define authorization policies and then en-
forces them on their behalf. Authzoid uses the authorization tools explained in
Section 2 to enable a wide variety of policies, including ones far richer than the
minimal policy defined in Section 3.1. Authzoid is useful as a sample implemen-
tation of proper authorization, fixing the mistakes of the apps discussed above



and can be useful as a starting point for developers who want to get authoriza-
tion right. Its source code can be found at: http://prosecco.gforge.inria.
fr/Essos/pv/.

Authzoid offers three application-facing interfaces: file submission, policy def-
inition, and file retrieval. It manages file versions and authorization checks in-
ternally.

Submission Interface Applications can submit files to Authzoid for storage using
an intent with a custom action. The intent can contain a file to share or a content
URI to resolve. Files can be submitted as new or as updates to existing files.

If submitted as new, Authzoid retrieves the name of the submitting appli-
cation via the Android API and stores it in its private storage area. A private
database indexes the files by their original file name or URI and submitting ap-
plication. The new file is assigned a new version number which is returned to
the submitter. The submitter may optionally include a permission as a string
extra. If included, any application with the given permission may later read or
modify the file (see below).

If submitted as an update, the file must be accompanied by the name of
the owner, the file’s original path and file name, and a version number which
indicates the last version of the file the submitter saw. Authzoid first checks if the
submitter is authorized to update the file (see below). If not, an authorization
failure message is returned. If the update is authorized, but the version number
submitted is smaller than the current version number in the database, the update
is rejected with an explanatory message. Otherwise, the file is copied in to private
storage and the database is updated. Authzoid generates a new version number
which it stores in the database and sends it back to the submitter.

Policy Definition By default, only the application which submitted a file (its
owner) can read or write it. Authzoid enables owners to share the file via URI
permissions, by adding another app to the file’s read and write access control list,
or by retrieving a read-only randomized path name (similar to Google Drive).
Groups of apps can be added by setting a permission on the file; then any
application with the permission can read or write the file.

Retrieval Interface An app can request a file from Authzoid by sending an intent
with owner’s name, the file’s original path, and name. For each request, Authzoid
queries its access control matrix to see if the requestor is authorized to read the
file. If the read is approved, Authzoid checks if a copy of the latest version of the
file is already in the cache. If not, it generates a new directory under its private
filecache directory with a 128-bit random name and puts a copy of the file in
it. The file and random directory are set to be world readable and the directory
is set to be world executable. Whether new or existing, the full file path of the
file are returned to the requestor using an intent with the full path in an extra.

When an application resolves a URI using Authzoid’s content provider, the
content provider makes a new copy of the file, opens a new file descriptor on it,
deletes the file using the Java file API, and then returns the file descriptor. This



prevents read/read conflicts on the file. Since the file descriptor acts as a hard
link, the Android OS will preserve the contents of the file until the recipient
closes the file descriptor or is killed.

Folder listings can be requested by sending the owner’s name and the path
via an intent. Authzoid checks its access control matrix to see if the requestor is
the owner or authorized to list the directory. If authorized, a listing of all files
and directories in and under the given directory is sent back via an intent as a
string array extra.

Authzoid is the first Android app that provides a unified authorization service
enabling file sharing between Android apps. Using ProVerif, we verified that
Authzoid is secure against the class of attacks captured in our formal model.
This should not be interpreted as a formal theorem however, since our model
of both Android is abstract and incomplete, and may hide other attacks. Still,
our analysis presents a first step towards formal security analysis for Android
applications. Our models are public and may be extended for more sophisticated
analysis.

6 Related Work

Research on Android’s security infrastructure includes studies on how permis-
sions are enforced [17], used [2], and misused or attacked [10, 12, 18, 22]. Some
try to secure Android applications against attackers by performing static or dy-
namic analysis of apps (ex. [16, 8, 20]). Xu, et al. [29] developed Aurasium, a
tool that uses static analysis and code injection to detect or prevent privilege
escalation attacks. Like Authzoid, Aurasium does not require modifications to
the operating system. Conti, et al. [11] developed CRePE, a system capable of
enforcing rule based context aware security policies. Naumann, et al. [23] ex-
tended Android permission with custom user defined constraints. None of the
above work includes formal analysis or verification.

Research on formalization of the Android stack and API includes Chaud-
huri [9] who gave a formal model of a subset of the Android communication
system; Enck, et al. [15] who developed TaintDroid to track the flow of sensitive
information between Android apps (extended by Shreckling, et al. [25] with more
complicated, dynamic run time policies); and Armando, et al. [1] who presented
a more complete model of the Android middleware using types.

With respect to formalizations for secure sharing of resources, Blanchet and
Chaudhuri [6] developed a formally verified protocol for secure file sharing on
untrusted storage (a tool which could be used to secure Android’s SD card) and
Fragkaki, et al. [19] gave formal typing rules to explain Android’s security model.
Similar to our work, Fragkaki et al. described Sorbet, a modification to Android
which enforces secrecy and integrity properties written by app developers. In
contrast, Authzoid is developed to enable the easy specification of authorization
policies and relies upon existing Android mechanisms without requiring changes
to the operating system.



Since many Android apps are distributed free and make money from in-app
ads, work has been done to determine how ad libraries operate and whether they
pose privacy or authorization risks. Dietz, et al. [13] developed Quire which en-
abled advertisers to prevent app based ad fraud. Stevens, et al. [27] investigated
the behavior of thirteen ad libraries and showed how their requirements cause
app developers to request more permissions than necessary (permission bloat).
As a remedy to permission bloat, Shekhar, et al. [26] implemented AdSplit, a
mechanism to separate ad libraries from individual apps.

7 Conclusion

Many Android apps attempt to enforce authorization policies for sharing re-
sources, but fail due to misuse of the Android authorization tools or due to
actions by external entities. We can discover authorization attacks by using
ProVerif to model a relevant subset of the Android authorization tools and en-
vironment and use it to examine the behavior of sharing applications. We also
describe Authzoid, an application which lets app developers specify authoriza-
tion policies for sharing and enforces them using built-in Android tools. Future
extensions to Authzoid include work on making an encrypted cache on the SD
card and enabling it to proxy OAuth based web sharing.
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