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Frequency Domain Analysis of Control System Based on Implicit
Lyapunov Function*

Konstantin Zimenko1, Andrey Polyakov1,2, Denis Efimov1,2, Artem Kremlev1

Abstract— A frequency domain analysis of implicit Lyapunov
function-based control system [14] is developed for the case of
finite-time stabilizing feedback law. The Gang of Four and loop
transfer function are considered for practical implementation
of the control via frequency domain control design. The
effectiveness of this control scheme is demonstrated on an
illustrative example of roll control for a vectored thrust aircraft.

I. INTRODUCTION

Modern control theory based on state space approach to
feedback design usually does not provide frequency domain
analysis, which is applied in control engineering practice.
Frequently, this is the reason why control engineers use
completely different tools than scientists. Due to simplicity
of tuning and frequency analysis, PID controllers are still
the most popular feedbacks in the process control today.
Therefore, there exists a need in the study of existing non-
linear control systems in the sense of simplicity of practical
realization and applicability by engineers.

The quantitative feedback theory is one of the most pop-
ular tools for frequency domain approach to control system
design (see for example, [6]–[12]), when the performance of
a system is given in terms of the frequency response between
an input and output. The set of transfer functions called the
Gang of Six (Gang of Four if the feedback is restricted to
operate on the error signal) [6], [11], [12] is commonly used
to determine performances of feedback systems, such as the
ability to follow reference signals, effects of measurement
noise and load disturbances and effects of process variations.
Thus, analysis, shaping and designing of the Gang of Six
(Gang of Four) are subjects of intensive researches in the last
years; e.g., classical PID-based or lead-lag control techniques
([6]–[8]), closed- and open-loop shaping ([11]–[13]), etc.
Moreover, the analysis of the Gang of Four also gives a good
explanation for the fact that control systems can be designed
based on simplified models [6]. This issue is extremely
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useful as engineers usually do not know the complete object
model. Multiple Input Multiple Output (MIMO) processes
can also be considered by regarding frequency domain design
methods [6], [10].

Modern technological processes need control systems of
very high quality. The modern control theory should provide
effective tools for tuning of different performance indexes of
the control system. For example, a lot of controlled processes
must have a finite or prescribed transient time. That is why,
finite-time stability and stabilization problems have been
intensively studied last years (see, for example, [1]–[5]).

The paper [14] is devoted to development of a finite-
time control for multiple integrators together with implicit
Lyapunov function of closed-loop system. The problem of
control design for chain of integrators is quite significant
due to the fact that nominal models have the form of mul-
tiple integrators in many applications (for instance, different
mechanical and electromechanical systems, see [16], [17]).
An extension of results [14] for MIMO systems is presented
in [15].

In order to make a proper assessment of a feedback law
developed in [14] and to provide tuning rules, the present
paper provides the analysis of all transfer functions in the
Gang of Four. The control in [14] is essentially nonlinear
and even non-Lipschitz, so frequency domain analysis of
the Gang of Four and loop transfer function is complicated.
Fortunately, the control law is designed based on Implicit
Lyapunov Function (ILF) technique [14], which allows us
to interpret the nonlinear feedback as a family of linear
feedbacks properly parameterized by means of the Lyapunov
function, and to develop a frequency domain analysis of
the ILF-based control system. A solution of the roll control
design problem for a vectored thrust aircraft is presented as
an example of the analysis applicability.

For processes with multiple inputs and multiple outputs
[15], the obtained results may be easily extended.

The paper is organized as follows. Notation used in the
paper is presented in Section II. Some preliminaries about
finite-time stability, finite-time stabilization method of the
multiple integrators system and homogeneity are considered
in Section III. Problem statement is introduced in Section IV.
Section V presents some aspects for practical implementation
of the finite-time stabilization method. Frequency domain
analysis of the finite-time control scheme is presented in
Section VI. Section VII presents problem solution of roll
control for a vectored thrust aircraft based on frequency
domain analysis. Finally, conclusions with some remarks and
possible directions for further works are given.



II. NOTATION

Through the paper the following notation will be used:
• R+ = {x ∈ R : x > 0}, where R is the set of real

number;
• the inequality P > 0 (P < 0, P ≥ 0, P ≤ 0) means that
P = PT ∈ Rn×n is symmetric and positive (negative)
definite (semi-definite);

• the brackets b·c mean rounding up to the nearest integer
downwards;

• diag {λi}ni=1 is the diagonal matrix with the elements
λi on the main diagonal;

• a continuous function σ : R+∪{0} → R+∪{0} belongs
to the class K if σ(0) = 0 and the function is strictly
increasing.

III. PRELIMINARIES

A. Finite-time Stability

Denote a nonlinear vector field f(t, x) : R+ × Rn → Rn,
which can be discontinuous with respect to the state variable
x ∈ Rn. Then consider the system of the form

ẋ = f(t, x), x(0) = x0, (1)

the solutions x(t, x0) of which are interpreted in the sense
of Filippov [18] f(t, 0) = 0.

According to Filippov definition [18] an absolutely con-
tinuous function x(t, x0) is the Cauchy problem solution
associated to (1) if x(0, x0) = x0 and it satisfies the
following differential inclusion

ẋ ∈ K[f ](t, x) =
⋂
ε>0

⋂
µ(N)=0

co f(t, B(x, ε)\N),

where co(M) is the convex closure of the set M , B(x, ε) is
the ball of the radius ε with the center at x ∈ Rn and the
equality µ(N) = 0 means that the set N has zero measure.

Assume that the origin is an equilibrium point of the
system (1) and it has uniqueness of solutions in forward
time.

Definition 1 ([19], [20], [21]) The origin of system (1) is
globally finite-time stable if:
• Finite-time attractivity: there exists a function T :

Rn\{0} → R+ called settling time function such that
limt→T (x0) x(t, x0) = 0 for any x0 ∈ Rn\{0}.

• Lyapunov stability: there exists a function δ ∈ K such
that ‖x(t, x0)‖ ≤ δ(‖x0‖) for any x0 ∈ Rn.

Notice that finite-time stability assumes an ”infinite eigen-
value assignation” for the system at the origin.

B. Homogeneity

Homogeneity [22]–[24] is an intrinsic property of an
objects such as functions or vector fields, which remains
consistent with respect to some scaling operation called a
dilation.

For fixed ri ∈ R+, i = 1, n and λ > 0 one can
define the vector of weights r = (r1, ..., rn)

T and the
dilation matrix D(λ) = diag{λri}ni=1. Note that D(λ)x =

(λr1x1, ..., λ
rnxn)

T represents a mapping x 7→ D(λ)x
called a dilation for x ∈ Rn.

Definition 2 [24] A function g : Rn → R (vector field
f : Rn → Rn) is said to be r-homogeneous of degree m iff
g(D(λ)x) = λmg(x) (f(D(λ)x) = λmD(λ)f(x)) for all
λ > 0 and x ∈ Rn.

Theorem 1 [25] Let f be a r-homogeneous continuous
vector field on Rn with a negative degree. Then if the system
ẋ = f(x) is a locally asymptotically stable it is globally
finite-time stable.

In addition the homogeneity theory provides many advan-
tages to analysis and design of nonlinear control system (for
example, see [26], [27]).

C. Finite-time Stabilization for Multiple Integrators

Consider a single input control system of the following
form

ẋ = Ax+ bu+ d(t, x), (2)

where x ∈ Rn is the state vector, u ∈ R is the control input,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 and b =


0
0
...
0
1


and the function d(t, x) : Rn+1 → Rn describes the system
uncertainties and disturbances. Note that for d(t, x) ≡ 0 the
system (2) describes a chain of integrators.

Denote Lyapunov function V implicitly defined by the
following function

Q(V, x) := xTD(V −1)PQD(V −1)x− 1, (3)

where PQ = PTQ ∈ Rn×n is a symmetric positive definite
matrix and D(λ) is the dilation matrix of the form

D(λ) = diag{λ1+(n−i)µ}, 0 < µ ≤ 1.

Denote the matrix Hµ = diag {1 + (n− i)µ}ni=1.
Theorem 2 [14], [15]. If
1) the system of matrix inequalities:{
AX +XAT + by + yT bT +HµX +XHµ + βIn ≤ 0,
XHµ +HµX > 0, X > 0,

(4)
is feasible for some µ ∈ (0, 1], β ∈ (0, 1), X ∈ Rn×n and
y ∈ R1×n;

2) the control u(V, x) has the form

u(V, x) = V 1−µkD(V −1)x, (5)

where k = (k1, ..., kn) = yX−1,

V ∈ R+ : Q(V, x) = 0

and Q(V, x) is presented by (3) with PQ = X−1;
3) the disturbance function d(t, x) satisfies the following

inequality

dT (t, x)(D(V −1))2d(t, x) ≤
β2V −2µxTD(V −1)(HµPQ + PQHµ)D(V −1)x;

(6)



Then the system (2) is globally finite-time stable and the
settling time function estimate has the form

Tst(x0) ≤
V µ0

µ(1− β)
, (7)

where V0 ∈ R+ : Q(V0, x0) = 0.
In disturbance-free case β tends to zero, the inequality (6)

gives d(t, x) ≡ 0, and the conditions of Theorem 2 coincide
with Theorem 3 in [14].

IV. PROBLEM STATEMENT

A block diagram of a basic feedback scheme for systems
where feedback is restricted to operate on the error signal is
shown in Fig. 1, where P is the process to be controlled, C
is the control block, u is the control signal, η is the process
output, y is the plant output, and the external signals are
denoted by the reference signal r, the measurement noise n
and the load disturbance d.

Fig. 1. Block diagram of a linear feedback loop

In this case the system in Fig. 1 is completely character-
ized by four transfer functions called the Gang of Four: the
sensitivity function S, the complementary sensitivity func-
tion T , the load disturbance sensitivity function PS and the
noise sensitivity function CS. The closed-loop specifications
are typically defined in terms of inequalities on amplitude
frequency responses of the Gang of Four transfer functions
(moreover, the main specifications in practice are either based
on the Gang of Four, or can be translated to it [9]):
• Noise attenuation at the plant output

|S(jω)| =
∣∣∣∣ 1

1 + P (jω)C(jω)

∣∣∣∣ ≤ βS(ω), ∀ω > 0.

(8)
The sensitivity function S gives the response of the
plant output to the noise measurement and describes
how noises are attenuated by closing the feedback loop
(noises are attenuated if |S(jω)| < 1 and amplified
if |S(jω)| > 1 and the maximum sensitivity Ms =
maxω |S(jω)| on some frequency ωms corresponds to
the largest amplification of the noises; the frequency
where |S(jω)| = 1 is called the sensitivity crossover
frequency ωsc).

• Stability

|T (jω)| =
∣∣∣∣ P (jω)C(jω)

1 + P (jω)C(jω)

∣∣∣∣ < λT , ∀ω > 0. (9)

The complementary sensitivity function T gives the
response of the control variable to the load disturbance.
Inequality (9) implies that the closed-loop system is
stable for substantial variations in the process dynamics,
namely, variations can be large for those frequencies
ω where |T (jω)| is small and smaller variations are
permitted for frequencies ω where the value |T (jω)| is
large.

• Disturbance rejection

|PS(jω)| =
∣∣∣∣ P (jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ βPS(ω), ∀ω > 0.

(10)
The load disturbance sensitivity function PS gives the
response of the process output to the load disturbance.
Since load disturbances typically have low frequencies,
|PS(jω)| typically has smaller value at low frequencies.

• Noise rejection

|CS(jω)| =
∣∣∣∣ C(jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ βCS(ω), ∀ω > 0.

(11)
The noise sensitivity function CS gives the response
of the control variable to the noise. Since noise signals
typically have high frequencies, |CS(jω)| typically has
smaller value at high frequencies and the smaller the
value |CS(jω)| the less the effect of noise on the
process.

The main aim of this paper is to adapt the analysis of the
Gang of Four to the nonlinear feedback system (2), (5) and to
provide tuning rules in order to meet the desired closed-loop
specifications.

V. PRACTICAL IMPLEMENTATION OF THE ILF
CONTROL

The implementation of the control scheme presented in
Theorem 2 requires to solve the equation Q(V, x) = 0 in
order to find the ILF value V . In some cases the function
V (x) can be calculated analytically (for instance, the paper
[14] contains an example of analytical calculation of V for
n = 2). However, generally, these calculations are very
cumbersome.

In this case the discrete-time version of the control scheme
can be implemented with using a simple numerical procedure
in order to find a corresponding value of Vi at the time instant
ti [14], [15].

Denote an arbitrary sequence of time instances {ti}+∞i=0 ,
where 0 = t0 < t1 < t2 < ....

Corollary 1 [15] Let the conditions of Theorem 2 hold
then the origin of the system (2) is asymptotically stable
with the switching control

u(x) = u(Vi, x) for t ∈ [ti, ti+1), (12)

where Vi > 0: Q(Vi, x(ti)) = 0.
The Corollary 1 shows that the sampled-time control

in the form (5) keeps the robust stability property of the
closed-loop system (2) independently on the sampling in-
terval. For any fixed V between two switching instants



the system (2) becomes a linear, where V ∈ [Vmin, V0],
V0 ∈ R+ : Q(V0, x0) = 0. The parameter Vmin defines lower
possible value of V and cannot be selected arbitrary small
due to finite numerical precision of digital devices.

The parameter Vmin can be selected by control engineers
using the frequency domain analysis to be developed below
with considering V as a scalar parameter of the linear control.

Thus, despite the fact that the system (2), (5) is nonlinear,
for frequency domain analysis (next section) the original
nonlinear plant can be replaced by a set of linear time-
invariant (LTI) plants with different values of V ∈ [Vmin, V0].
Note, that transformation of the nonlinear control problem in
a LTI equivalent control problem is often used in nonlinear
quantitative feedback theory (see, for example [28], [29]).

VI. FREQUENCY DOMAIN ANALYSIS

A. The Gang of Four Derivation

From (2), (5) the transfer functions in the blocks according
to the Fig. 1 at each time instance take the following form

P =
1

sn

and

C = −sn−1V −µkn − sn−2V −2µkn−1 − · · · − V −nµk1.

Amplitude frequency responses for the Gang of Four transfer
functions (8)–(11) take the forms:

|S(jω)| = 1√
(1− a)2 + b2

, (13)

|T (jω)| =
√
c2 + d2

ωn
√
(1− a)2 + b2

, (14)

|PS(jω)| = 1

ωn
√
(1− a)2 + b2

, (15)

|CS(jω)| =
√
c2 + d2√

(1− a)2 + b2
, (16)

where

a =

bn2 c∑
i=1

(−1)ikn+1−2i

ω2iV 2iµ
,

b =

bn+1
2 c−1∑
i=0

(−1)i+1kn−2i
ω2i+1V (2i+1)µ

,

c =

bn+1
2 c−1∑
i=0

(−1)iω2ik2i+1

V (n−2i)µ ,

d =

bn2 c∑
i=1

(−1)i−1ω2i−1k2i
V (n−2i+1)µ

.

B. The Gang of Four Analysis

Since V parameterizes the control, let us consider the
limits of the Gang of Four (13)–(16) for ω → +∞ and
ω → 0 when V = const:

lim
ω→+∞

|S(jω)| = 1, lim
ω→+∞

|T (jω)| = 0,

lim
ω→+∞

|PS(jω)| = 0, lim
ω→+∞

|CS(jω)| =∞,

lim
ω→0
|S(jω)| = 0, lim

ω→0
|T (jω)| = 1,

lim
ω→0
|PS(jω)| = V −nµ

|k1|
, lim

ω→0
|CS(jω)| = 0,

and limits for V → 0 when ω = const:

lim
V→0

|S(jω)| = 0, lim
V→0

|T (jω)| = 1,

lim
V→0

|PS(jω)| = 0, lim
V→0

|CS(jω)| = ωn.

Looking at limits for CS, one can conclude that the system
reduces the influence of noise only at significantly low
frequencies, then there is a little consolation as noise usually
tends to be present at high frequencies. However, it is well
known that good reference signal tracking and disturbance
rejection has to be traded off against suppression of process
noise (thus, the control scheme allows good performance and
quality parameters to be obtained in the case of the noise free
system). If there is noise in the system, to reduce the value
|CS(jω)| at some frequencies the case of increasing the
parameter Vmin can be considered. Consequently, hereinafter
we consider only S, T and PS transfer functions.

Let us consider the load disturbance sensitivity function
PS. Since load disturbances typically have low frequencies,
it is natural to focus on the behavior of the transfer function
at low frequencies. As limω→0 |T (jω)| = 1 we have the
following approximation for small ω:

PS =
T

C
≈ 1

C
. (17)

Thus the greater |ki|, i = 1, n or/and smaller V , the
smaller the value of PS. Finaly as limV→0 |PS(jω)| = 0
the influence of the load disturbance disappears completely.
Based on continuity of the Gang of Four functions in Rn\{0}
the next claim can be achieved.

Claim 1 For any βPS and ωc > 0 there is Vc such that
|PS(ω)| ≤ βPS for all ω ≤ ωc and V ≤ Vc.

The gain curve of the load disturbance
sensitivity function for n = 4, k =(
−100.4298 −95.5530 −36.5809 −5.8000

)
, µ = 0.9

and different values of V is shown in Fig. 2.
Now consider the sensitivity function S.
Proposition 1 Amplitude frequency response of the sen-

sitivity function |S(ω, V −1)| is homogeneous of zero degree
with the vector of weights r = (1, µ−1)T .

Proof. Let us look at a and b as functions of two variables
ω and τ = V −1. Then

a(λω, λ
1
µ τ) =

bn2 c∑
i=1

(−1)ikn+1−2i(λ
1
µ τ)2iµ

(λω)2i
= a(ω, τ),



Fig. 2. Gain curve of the load disturbance sensitivity function PS

b(λω, λ
1
µ τ) =

⌊
n+1
2

⌋
−1∑

i=0

(−1)i+1kn−2i(λ
1
µ τ)(2i+1)µ

(λω)2i+1
= b(ω, τ)

and thus,
|S(ω, τ)| = |S(λω, λ

1
µ τ)|,

i.e. the function |S(ω, V −1)| is homogeneous of zero
degree with the vector of weights r = (1, µ−1)T . �

Based on this proposition, one can conclude that at each
time instance ti the sensitivity function S(ω, Vi) can be
obtained through the previous one:

|S(ω, Vi)| =
∣∣∣∣S (( Vi

Vi−1

)µ
ω, Vi−1

)∣∣∣∣ .
Note, that results similar to Proposition 1 can be obtained

for other Gang of Four functions:
Proposition 2 Amplitude frequency response of the com-

plementary sensitivity function |T (ω, V −1)| is homogeneous
of zero degree with the vector of weights r = (1, µ−1)T .

Proposition 3 Amplitude frequency response of the load
disturbance sensitivity function |PS(ω, V −1)| is homoge-
neous of degree−n with the vector of weights r = (1, µ−1)T .

Proposition 4 Amplitude frequency response of the noise
sensitivity function |CS(ω, V −1)| is homogeneous of degree
n with the vector of weights r = (1, µ−1)T .

Proofs of Propositions 2 – 4 are based on the proof of
Proposition 1 and the following expressions

c(λω, λ
1
µ τ) = λnc(ω, τ)

and
d(λω, λ

1
µ τ) = λnd(ω, τ).

Based on the Proposition 1, one can conclude, that the
sensitivity crossover frequency ωsc and the maximum value
frequency ωms can be obtained through previous values and
the maximum sensitivity Ms is constant independently on
the ILF value V . Due to continuity of the function |S(jω)|
the next claim can be achieved.

Claim 2 For any ωc > 0 there is Vc > 0 such that
|S(jω)| < βS for all ω ≤ ωc and V ≤ Vc.

The gain curve of the sensitivity function for the same
parameters is shown in Fig. 3.

The similar conclusions can be made about the comple-
mentary sensitivity function T (Fig. 4).

Since there are many processes that can be described
by the second order plants (for instance, mechanical planar

Fig. 3. Gain curve of the sensitivity function S (the sensitivity crossover
frequency ωsc and the maximum sensitivity Ms are designated by � and
O correspondingly)

Fig. 4. Gain curve of the complementary sensitivity function T

systems), more detailed results are presented bellow for
n = 2.

C. Second-Order Plant

According to [15] the first matrix inequality of the sys-
tem (4) for d(t, x) ≡ 0, β = 0 can be replaced with the
equality

Xi i+1 + [1 + µ(n− i)]Xi i = 0,
Xi+1 j +Xi j+1 + [2 + µ(2n− i− j)]Xi j = 0,
Xi+1 n + [2 + µ(n− i)]Xi n + yi = 0,
Xn n + yn = 0,

(18)

where j > i = 1, n− 1, and according to (18) for n = 2 the
matrices X and y take the forms

X =

(
X11 −(1 + µ)X11

−(1 + µ)X11 X22

)
,

y =
(
(2 + µ)(1 + µ)X11 −X22 −X22

)
,

where X11 and X22 are chosen in order to X > 0 and
XHµ +HµX > 0, i.e. X11 > 0 and X22 > X11(1 + µ)2.

As k = (k1, k2) = yX−1 one can obtain k1 = −X22

X11
and

k2 = −2−µ. Thus, for n = 2 the coefficients k1 and k2 can
take the following values:

k1 < −0.25(1 + µ)(2 + µ)2

and
k2 = −2− µ.

Thus, according to (17), decreasing k1 allows to get better
attenuation of load disturbances at low frequencies (see
Fig. 5, where µ = 0.5, V = 5).



Fig. 5. Gain curve of the load disturbance sensitivity function PS for the
second-order plant

However, as for n = 2 the amplitude frequency response
for sensitivity function according to (13) takes the form:

|S(jω)| = ω2√
ω4 + (2k1 + k22)V

−2µω2 + k21V
−4µ

,

one can conclude that selection of k1 ∈ (−0.5(2 +
µ)2,−0.25(1 + µ)(2 + µ)2) implies noises attenuation
|S(jω)| < 1 for all finite frequencies (for example, see
Fig. 6). For |k1| > 0.5(2 + µ)2 the function |S(jω)| has
maximum Ms =

−2k1√
−4k1k22−k42

for any value V at frequency

ωms =
√
−2k21V −2µ

2k1+k22
. Thus, the greater |k1| > 0.5(2 + µ)2,

the greater value Ms at greater frequency ωms.
The amplitude frequency response for complementary

sensitivity function T takes the form:

|T (jω)| =
√
ω2V −2µk22 + V −4µk21√

ω4 + (2k1 + k22)V
−2µω2 + k21V

−4µ

and

|T (jω)|max =√
k42

√
k21−2k22k1

−2k31+4k22k
2
1+
√
k21−2k22k1(−2k21+2k1k22+k

4
2)

for any value V at frequency ω =

−k−12 V −µ
√
−k21 +

√
k41 − 2k22k

3
1 . Therefore as |T (jω)|max

does not depend on the values of ω and V we can rewrite
the specification (9)√√√√√√ k42

√
k21 − 2k22k1

−2k31 + 4k22k
2
1 +

√
k21 − 2k22k1(−2k21 + 2k1k22 + k42)

≤ λT

and the greater |k1| > 0.25(1 + µ)(2 + µ)2, the greater
value |T (jω)|max at greater frequency ωmt. Thereby, to
fulfill the specification (9) the selection of the parameter
k1 < −0.25(1 + µ)(2 + µ)2 close to its maximum value
is preferable.

The gain curve of the complementary sensitivity function
T for the same values as in Fig. 5 and Fig. 6 is shown in
Fig. 7.

VII. NUMERICAL EXAMPLE

The loop transfer function L = PC = T
S also can be

considered for frequency domain design using the same
finite-time control scheme. As an example, let us consider the
problem of roll control for a vectored thrust aircraft presented

Fig. 6. Gain curve of the sensitivity function S for the second-order plant

Fig. 7. Gain curve of the complementary sensitivity function T for the
second-order plant

in [6]. The simplified model represents the double integrator
system with some gain in the form

P (s) =
r

Js2
,

where r = 0.25m is the force moment arm and J =
0.0475kg ·m2 is the vehicle inertia.

Assume that the system has to meet the following perfor-
mance specifications:
• the error in steady state is less than 1%;
• the tracking error is less than 10% up to 10 rad/s.
To achieve this performance specifications it is necessary

to increase the crossover frequency ωsc in order to have a
gain at least 10 at a frequency of 10rad/s, where ωsc =
{ω ∈ R+ : |L(jω)| = 1} for the loop transfer function L.
Absolute value of the loop transfer function L takes the form

|L(jω)| = r

J

√
ω−4V −4µk21 + ω−2V −2µk22.

It is easy to see that the value of the crossover frequency is
increased for V tending to zero (see Fig. 8) and for greater
values of |k1| (see Fig. 9). However, in the consideration of
an argument of the loop transfer function

∠L(jω) = arctan

(
ωV µk2
k1

)
one can conclude, that rather large values of |k1| give a very
low phase margin (see Fig. 9) and as the functions |L(jω, V )|
and ∠L(jω, V ) are homogeneous of zero degree then phase
margin is constant independently on the ILF value V (see
Fig. 8).

Thus, to satisfy the performance specifications and provid-
ing of high phase margin the coefficient k1 should be chosen
close to the value −0.25(1 + µ)(2 + µ)2.



Fig. 8. Bode plot for the the loop transfer function L with different values
of V

Fig. 9. Bode plot for the the loop transfer function L with different values
of k1

VIII. CONCLUSIONS

The paper presents frequency domain analysis of the
finite-time control algorithm presented in [14] in order to
make it more attractive for practical implementation. The
analysis is performed in order to fulfill different performance
specifications based on frequency representation of the Gang
of Four and loop transfer function. As an example, the
solution of the problem of roll control for a vectored thrust
aircraft is presented.

Despite the fact that the control scheme is designed for the
multiple integrators system, the frequency domain analysis
can be useful in implementation of the control extended to
the case of MIMO systems presented in [15]. Moreover, the
analysis may be some impetus in studying the same control
scheme in terms of the quantitative feedback theory, where
the ILF value V is presented as V ∈ [Vmin, V0]. Also it
would be of interest to study other specifications, such as
specifications based on the Gang of Six, for instance, and
to create a special toolbox that can be useful for engineers
during designing controllers. These and other aspects are
selected as possible directions for further research.
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