
HAL Id: hal-01299123
https://hal.inria.fr/hal-01299123

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring the Correctness of Business Workflows at the
Syntactic Level: An Ontological Approach

Thi Hoa Hue Nguyen, Nhan Le Thanh

To cite this version:
Thi Hoa Hue Nguyen, Nhan Le Thanh. Ensuring the Correctness of Business Workflows at the
Syntactic Level: An Ontological Approach. 8th Asian Conference - ACIIDS 2016, Mar 2016, Da
nang, Vietnam. pp.533-543, �10.1007/978-3-662-49390-8_52�. �hal-01299123�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49398353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01299123
https://hal.archives-ouvertes.fr


Ensuring the Correctness of Business Workflows
at the Syntactic Level: An Ontological Approach

Thi-Hoa-Hue Nguyen1,2 ? and Nhan Le-Thanh2

1 Information Technology Faculty
Vietnam-Korea Friendship Information Technology College

Da Nang, Vietnam
2 WIMMICS - The I3S Laboratory - CNRS - INRIA

Nice Sophia Antipolis University
Sophia Antipolis, France

huenth@gmail.com,Nhan.LE-THANH@unice.fr

Abstract. High quality business workflow definitions play an important
role in the organization. An incorrectly defined workflow may lead to un-
expected results. Therefore, each business workflow definition should be
carefully analyzed before it is put into use. In this paper, we propose an
ontological approach which is suitable for ensuring the syntactic correct-
ness of business workflows. In details, to represent CPNs with OWL DL,
we first introduce the CPN Ontology. Then, we define axioms, which are
added to the CPN Ontology to provide automated support for estab-
lishing the correctness of business workflows. Finally, by relying on the
CORESE semantic engine, SPARQL queries are implemented to detect
shortcomings in concrete workflows. To the best of our knowledge, this
is a novel approach for the representation and verification of business
workflows based on ontologies.

Keywords: Business Workflow, Correctness, OWL DL, SPARQL, Ver-
ification

1 Introduction

The current tendency in e-business has resulted in more complex business pro-
cesses. However, the specification of a real-world business process is generally
manual and is thus vulnerable to human error. An incorrectly designed work-
flow may lead to failed workflow processes, execution errors or not meet the
requirements of customers, etc. In fact, existing techniques applied to check the
correctness of workflows are particularly used in commercial business workflow
systems. Most of them assume that a workflow is correct if it complies with
“the constraints on data and control flow during execution” [1]. Whether the
workflow is in conformity with the design requirements is neither specified nor
proved. There is thus a great need for developing a thorough and rigorous method

? This work was done as part of a collaboration between Nice Sophia Antipolis Uni-
versity and Da Nang University



2 T.H.H. Nguyen, N. Le-Thanh

that automatically supports workflow designers to ensure workflows being well-
formed.

In this study, we extend our previous work [2] in designing well-formed CPNs-
based business workflow templates (CBWTs) and checking their correctness.
The approach is based on Knowledge Engineering, Coloured Petri Nets (CPNs)
and Semantic Web technologies which provide semantically rich business process
definitions and automated support for CBWTs verification. Our contributions
are:

– Presenting a classification of syntactic constraints in modelling business pro-
cesses and creating their related axioms using Description Logic (DL) in
order to support workflow designers;

– Showing the SPARQL [3] query language is able to verify workflow templates.

The rest of this paper is structured as follows: In Section 2, we briefly intro-
duce our CPN Ontology as a representation Coloured Petri Nets (CPNs) with
OWL DL. We then present syntactic constraints and create their related axioms
added to the CPN Ontology to support designers in establishing well-formed
workflow templates in Section 3. In Section 4, we introduce the SPARQL query
language used to verify CBWTs at the syntactic level. In Section 5 we give re-
lated work. Finally, Section 6 concludes the paper with an outlook on the future
research.

2 Modelling Business Processes with Coloured Petri
Nets - The CPN Ontology

On one hand, Coloured Petri Nets (CPNs) [4] have been developed into a full-
fledged language for the design, specification, simulation, validation and imple-
mentation of large-scale software systems. CPN is a well-proven language which
is suitable for modelling workflows or work processes. Therefore, CPNs are cho-
sen as the workflow language in our work to transform a business process into a
control flow-based business workflow template. However, it is difficult to inter-
operate, share and reuse business processes modelled with CPNs, i.e., business
workflows, because of the lack of semantic representation of CPN components
[2].

On the other hand, an ontology with its components, which provides machine-
readable definitions of concepts, can represent semantically rich workflow defi-
nitions. Once workflow definitions are stored as semantically enriched workflow
templates, developers can easily build their appropriate software systems from
these templates. Therefore, in this section, we shortly introduce the CPN On-
tology, which is first proposed in [2] as a representation of CPNs with OWL
Description Logic (OWL DL). The main purpose is to facilitate business pro-
cesses modelled with CPNs to be easily shared and reused.

In order to develop the CPN Ontology, we translate each element of CPNs
into a corresponding OWL concept. The core concepts of the CPN ontology is



Ensuring the Correctness of Business Workflows at the Syntactic Level 3

Fig. 1: CPN Ontology (excerpt)

depicted in Figure 1. The ontology is described based on DL syntax and the
axioms supported by OWL.

In the CPN Ontology, we define the concept CPNOnt for all possible busi-
ness processes modelled with CPNs. We define the concept Place and the con-
cept Transition to represent all places and transitions of a process model, re-
spectively. In order to represent all directed arcs from places to transitions and
all directed arcs from transitions to places, we define the concept InputArc and
the concept OutputArc, respectively. In our case, one place contains no more
than one token at one time, therefore, the concept Token is defined for all tokens
inside places. To express all transition expressions, the concept GuardFunction
is defined. Transitions consist of control and activity nodes. We define the con-
cept CtrlNode for occurrence condition in the former nodes and the concept
ActNode for occurrence activity in the latter nodes. The concepts Delete and
Insert are defined for all expressions in input arcs and output arcs, respectively.
In order to express all attributes of individuals, we define the concept Attribute.
And for all subsets of I1×I2×. . .×In where Ii is a set of individuals, the concept
Value is defined.

Properties between the concepts in the CPN Ontology are also indicated.
For example, a class Transition has two properties connectsPlace and has-
GuardFunction. Consequently, the concept Transition can be glossed as “The
class Transition is defined as the intersection of: (i) any class having at least
one property connectsPlace whose value is equal to the class Place and; (ii)
any class having one property hasGuardFunction whose value is restricted to
the class GuardFunction” [2].

3 Taxonomy of Constraints in Modelling Business
Processes

To provide automated support for workflow designers in establishing the correct-
ness of ontology-based workflow representations, in this Section we introduce a



4 T.H.H. Nguyen, N. Le-Thanh

set of syntactic constraints. The constraints are categorized into two groups.
Axioms related to the constraints are also defined using a DL as SHOIN (D)
to complete the CPN Ontology.

As mentioned earlier, we aim at representing the correct CBWTs in a knowl-
edge base. Therefore, at first, we define the soundness property that is used as
the criterion to check the correctness of workflow processes at the syntactic level.

Definition 1 (Sound). A CPN-based process model, PM , is sound iff:

(i) PM is connected and well-formed;
(ii) For every state Mj reachable from state Start M0, there also exists another

firing sequence starting from state Mj to state End Me;
(iii) State End Me is the only state which is reachable from state Start M0 with

one token in place e;
(iv) There is no deadlock, no infinite cycle and no missing synchronization in

PM .

3.1 Syntactic Constraints related to the Definition of Process
Model

– Constraints related to places.
Constraint 1. For every place p ∈ P , p connects and/or is connected with
transitions via arcs.
We create the axiom corresponding to Constraint 1 as follows:
hasP lace−.CPNOnt u ¬(∃connectsTrans.hasTrans−.CPNOnt t
∃connectsP lace−.hasTrans−.CPNOnt) v ⊥

Constraint 2. There is one and only one start point in a process model.
We create the axiom corresponding to Constraint 2 as follows:
CPNOnt u ¬(= 1 hasP lace.(connectsTrans.hasGuardFunction.hasActivity.
ActNoce u ¬(∃ connectsP lace−.hasTrans−.CPNOnt))) v ⊥
Constraint 3. There is one and only one end point in a process model.
We create the axiom corresponding to Constraint 3 as follows:
CPNOnt u ¬(= 1 hasP lace.(connectsP lace−.hasGuardFunction.hasActivity.
ActNode u ¬(∃ connectsTrans.hasTrans−.CPNOnt))) v ⊥
Constraint 4. A place has no more than one leaving arc. If a place is
connected to a transition, there exists only one directed arc from the place
to the transition.
We create the axiom corresponding to Constraint 4 as follows:
Place u ¬(≤ 1 hasP lace−.InputArc) v ⊥
Constraint 5. A place has no more than one entering arc. If a transition is
connected to a place, there exists only one directed arc from the transition
to the place.
We create the axioms corresponding to Constraint 5 as follows:
Place u ¬(≤ 1 connectsP lace−.(= 1hasTrans−.OutputArc)) v ⊥
Constraint 6. There are no pairs of activity nodes connected via a place.
We create the axiom corresponding to Constraint 6 as follows:
Place u ∃connectsTrans.hasGuardFunction.hasActivity.ActNode u



Ensuring the Correctness of Business Workflows at the Syntactic Level 5

∃connectsP lace−.hasGuardFunction.hasActivity.ActNode v ⊥
Constraint 7. There are no pairs of control nodes connected via a place.
We create the axiom corresponding to Constraint 7 as follows:
Place u ∃connectsTrans.hasGuardFunction.hasControl.CtrlNode u
∃connectsP lace−.hasGuardFunction.hasControl.CtrlNode v ⊥

– Constraints related to transitions.
Constraint 8. A transition is on the path from the start point to the end
point of a process model.

- If a transition has no input place, it will never be enabled;
- If a transition has no output place, it will not lead to the end.

Consequently, each transition in a workflow must have at least one entering
arc and at least one leaving arc.
We create the axiom corresponding to Constraint 8 as follows:
Transition v ≥ 1 connectsP lace.P lace u ≥ 1 connectsTrans−.P lace
Constraint 9. An activity node has only one entering arc and one leaving
arc.
We create the axiom corresponding to the Constraint 9 as follows:
hasGuardFunction.hasActivity.ActNode v = 1 connectsP lace.P lace u

= 1 connectsTrans−.P lace
Constraint 10. A control node does not have both multi-leaving arcs and
multi-entering arcs.
We create the axiom corresponding to the Constraint 10 as follows:
≥ 2 connectsP lace.P lace u ≥ 2 connectsTrans−.P lace u
hasGuardFunction.hasControl.CtrlNode v ⊥

– Constraints related to directed arcs.
Constraint 11. Directed arcs connect places to transitions or vice versa.
We create the axioms corresponding to the Constraint 11 as follows:
hasP lace−.InputArc ≡ connectsTrans.hasTrans−.CPNOnt
hasTrans−.OutputArc ≡ connectsP lace.hasP lace−.CPNOnt

3.2 Syntactic Constraints Related to Uses of Control Nodes

A poorly designed workflow due to improper uses of control nodes can result in
deadlock, infinite cycle or missing synchronization. However, these errors can be
detected when designing a workflow template and therefore, we can get rid of
them. To do that, we next introduce Constraint 12 and the symptoms related
to deadlock, infinite cycle or missing synchronization.

Constraint 12. There is no deadlock, no infinite cycle and no missing syn-
chronization.

– Deadlock: A deadlock is a situation in which a process instance falls into
a stalemate such that no more activity can be enabled to execute. Figure 2
shows three simple deadlock simulations.

– Infinite cycle: An infinite cycle is derived from structural errors where some
activities are repeatedly executed indefinitely. A simple infinite simulation
is depicted in Figure 3(a).



6 T.H.H. Nguyen, N. Le-Thanh

Fig. 2: Deadlock simulations

– Missing synchronization: Missing synchronization is a situation in which
the mismatch between the building blocks leads to neither deadlock nor
infinite cycle, but results in unplanned executions. Figure 3(b) shows a simple
simulation of missing synchronization.

Fig. 3: Infinite cycle simulation

We next create the axioms related to the control nodes (one of two types of
transitions), including And − split, And − join, Xor − split and Xor − join,
used to detect deadlock, infinite cycle or missing synchronization.

– And-split is connected to at least two output places. Every output place
contains one token. We create the axiom corresponding to And-split as fol-
lows:
AndSplit v Transition u connectsP lace.hasMarking.Token u
connectsTrans−.hasMarking.Token u hasGuardFunction.hasControl.
CtrlNode u = 1 connectsTrans−.P lace u ≥ 2 connectsP lace.P lace

– And-join: There are at least two input places connected to And-join. In
order to activate And-join, every input place has to contain one token. We
create the axiom corresponding to And-join as follows:
AndJoin v Transition u connectsP lace.hasMarking.P lace u
connectsTrans−.hasMarking.Token u hasGuardFunction.hasControl.
CtrlNode u ≥ 2connectsTrans−.P lace u = 1 connectsP lace.P lace

– Xor-split is connected to at least two output places. Unlike And-split, at
any time, one and only one output place of Xor-join can contain a token.
We create the axiom corresponding to Xor-split as follows:



Ensuring the Correctness of Business Workflows at the Syntactic Level 7

XorSplit v Transitionu ¬AndSplit u hasGuardFunction.hasControl.
CtrlNode u = 1 connectsTrans−.P lace t ≥ 2 connectsP lace.P lace t
connectsTrans−.hasMarking.Token

– Xor-join: There are at least two input places connected to Xor-join. Unlike
And-join, Xor-join is activated if one and only one input place contains a
token. We create the axiom corresponding to Xor-join as follows:
XorJoin v Transitionu¬AndJoin u connectsP lace.hasMarking.Token
u ≥ 2 connectsTrans−.P lace. u hasGuardFunction.hasControl.CtrlNode
u = 1 connectsP lace.P lace

3.3 A Wrong Workflow Example

An example of a wrongly designed business process modelled with CPNs is il-
lustrated in Figure 4. The air ticket agent first requires a customer to provide
some information related to the flights that he or she wants to book, includ-
ing name(s), depart, destination, date and class. It then looks for the requested
ticket(s) on its partner websites. For simplicity, we assume that two websites are
utilized. The obtained results, which may consist of no results, some results or
time out, are then evaluated in order to make a decision.

As shown in Figure 4, the example model contains syntactic errors. There
are three end points, i.e., Time out, End 2 and End 3. Besides, the combination
of a Xor-split (the transition t2 - Prepare to look for a flight) and an And-
join (the transition t5 - Collect results) causes a deadlock. Assuming that the
place Request verified contains a token that makes the transition t2 to be
enabled. If the transition Xor-split t2 fires, it consumes the token from its input
place Request verified and then produces one token for only one of its output
places. Consequently, either t3 or t4 may be activated. Since only one of the two
transitions t3 and t3 can fire, not all input places of the transition And-join t5
can get its token. As a result, a deadlock occurs because the transition t6 will
never be enabled to fire.

Fig. 4: A wrongly designed workflow model for the airline booking process

We have introduced the CPN ontology represented in OWL DL and axioms
which are defined to support designers in verifying CPNs-based process models.
It is necessary to note that, to develop or modify CBWTs (i.e., CPN models),



8 T.H.H. Nguyen, N. Le-Thanh

manipulation operations [2], such as inserting new elements, deleting existing
elements, etc., on business process models are required. Therefore, at design
time, workflow templates stored in RDF format need to be verified before they
are put into use. In the next Section, we present the SPARQL query language
used to detect shortcomings in workflow templates represented in RDF syntax.

4 Using SPARQL to Verify Workflow

The CORESE [5], a semantic search engine, developed for answering SPAQRL
queries asked against an RDF knowledge base, is used in our work. We choose
the SPAQRL query language because: (i) It is an RDF query language; (ii) It
is a W3C Recommendation and is widely accepted in the Semantic Web and
also AT community; (iii) Its syntax is quite simple which allows for a query to
include triple patterns, conjunctions, disjunctions and optional patterns; and(iv)
It can be used with any modelling language.

In order to verify a workflow template, SPARQL verification queries are
created based on the syntactic constraints. Two query forms are used in our
work, including ASK and SELECT. According to [3], SELECT query is used
to extract values, which are all, or a subset of the variables bound in a query
pattern match, from a SPARQL endpoint. The variables that contain the return
values are listed after a SELECT keyword. In the WHERE clause, “one or more
graph patterns can be specified to describe the desired result” [6]. ASK query is
used to return a boolean indicating whether a query pattern matches or not.

The following query3 , for example, is used to check whether there exist errors
related to improper uses of control nodes or not. This query is used to detect
if there are any deadlocks caused by the combination of pairs of control nodes,
Xor-split and And-join.

SELECT distinct ?xorsplit ?andjoin

WHERE {

?xorsplit rdf:type h:Xor-split

?andjoin rdf:type h:And-join

?t1 h:hasGuardFunction/h:hasActivity _:b1

?t2 h:hasGuardFunction/h:hasActivity _:b2

?xorsplit h:connectsPlace/h:connectsTrans ?t1

?xorsplit h:connectsPlace/h:connectsTrans ?t2

?t1 h:connectsPlace/h:connectsTrans ?andjoin

?t2 h:connectsPlace/h:connectsTrans ?andjoin

FILTER(?t1!=?t2)}

As a result of the execution of each SPARQL query created based on the
syntactic constraints, we obtain an XML file which results in nodes consisting
of required information (e.g., the name) and causes shortcomings. For example,

3 The prefix is assumed as:
PREFIXh :< http : //www.semanticweb.org/CPNWF# >



Ensuring the Correctness of Business Workflows at the Syntactic Level 9

Figure 5 shows the result of the execution of the above query applied to check
whether the workflow, depicted in Figure 4, contains deadlocks or not.

<?xml version="1.0"?>

<sparql xmlns=’http://www.w3.org/2005/sparql-results#’>

...

<result>

<binding name=’xorsplit’>

<uri>http://WFTemplate/AirlineBooking#t2</uri>

</binding>

<binding name=’andjoin’>

<uri>http://WFTemplate/AirlineBooking#t5</uri>

</binding>

</result>

...

</sparql>

Fig. 5: Checking deadlocks caused of the two control nodes Xor − split and
And− join

The query presented above does not only demonstrate that we can use the
SPARQL query language to check the syntactic correctness of workflow pro-
cesses, but also the useful of terminology provided by the CPN Ontology, such
as Xor-split and hasGuardFunction.

5 Related Work

Today, the problem of ensuring the correctness of process models have been
paid attention in various researches. However, researchers mainly focused on
checking the compliance of models concerning aspects of the syntax and formal
semantics. To process modelling, there exist some formal criteria, such as “sound-
ness”, “completeness”, “well-structureness”. These criteria are used to examine
anomalies, e.g., deadlock, livelock, missing synchronization and dangling refer-
ences. There are some methods have been proposed to verify workflow models,
such as Petri Nets-based [7], [8], logic-based [9], [10], graph reduction-based [11]
methods. However, most of them check the conformance of a workflow process
based on the principle that if the constraints on data and control flow are met
during execution, the workflow is correct.

In fact, the ontology-based approach for modelling business process is not a
new idea [6]. In order to support (semi-)automatic system collaboration, some
works, such as [12], [13], made efforts to build business workflow ontologies.



10 T.H.H. Nguyen, N. Le-Thanh

Machine-readable definitions of concepts and interpretable format, therefore, are
provided via these ontologies. However, they do not mention the issues relating to
a taxonomy of constraints and also the verification of workflows at the syntactic
level.

In our work, the Web Ontology Language is used to develop the CPN On-
tology for representing business processes modelled with CPNs. Our ontological
approach enables the formulation of constraints added to the CPN Ontology to
ensure the soundness of workflow patterns. The constraints are then applied to
concrete CBWTs using an RDF engine in order to automatically verify workflow
processes at the syntactic level.

6 Conclusion

In this paper, we introduce an ontological approach to support designers in
verifying workflow processes. We shortly present the CPN Ontology, a represen-
tation of CPNs and OWL DL, which is defined to take advantage of powerful
reasoning systems. Then, we describe two groups of constraints that ensure the
soundness of well-formed workflow processes. We concentrate on defining axioms
corresponding to the syntactic constraints and introduce some axioms involving
the use of control nodes.

To verify concrete CBWTs, which are represented in RDF format, we specify
the syntactic errors and errors related to improper uses of control nodes as
SPARQL queries. By relying on the CORESE semantic engine, we show that
the SPARQL query language is usable to workflow verification.

We know that checking workflow templates at build-time is not enough to
ensure the proper execution of a workflow template. The ability to check the
correctness of workflow execution is also needed. In our future work, a run-time
environment is going to develop for workflow verification.

References

1. Lu, S., Bernstein, A.J., Lewis, P.M.: Automatic workflow verification and genera-
tion. Theor. Comput. Sci. 353(1-3) (2006) 71–92

2. Nguyen, T.H.H., Le-Thanh, N.: An ontology-enabled approach for modelling busi-
ness processes. In: Beyond Databases, Architectures, and Structures. Volume 424
of Communications in Computer and Information Science. Springer International
Publishing (2014) 139–147

3. W3C: Sparql 1.1 query language. http://www.w3.org/TR/sparql11-query/ (March
2013) W3C Recommendation.

4. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured
petri nets. STTT 2(2) (1998) 98–132

5. Corby, O., et al.: Corese/kgram. https://wimmics.inria.fr/corese
6. Nguyen, T.H.H., Le-Thanh, N.: Ensuring the Semantic Correctness of Workflow

Processes: An Ontological Approach. In Grzegorz J. Nalepa and Joachim Baumeis-
ter, ed.: Proceedings of 10th Workshop on Knowledge Engineering and Software
Engineering (KESE10) co-located with 21st European Conference on Artificial



Ensuring the Correctness of Business Workflows at the Syntactic Level 11

Intelligence (ECAI 2014). Volume 1289. CEUR Workshop Proceedings, Prague,
Czech Republic (August 2014)

7. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1) (1998) 21–66

8. Verbeek, H., Basten, T., van der Aalst, W.: Diagnosing workflow processes using
woflan. The computer journal 44 (1999) 246–279

9. Bi, H.H., Zhao, J.L.: Applying propositional logic to workflow verification. Infor-
mation Technology and Management 5(3-4) (2004) 293–318

10. Wainer, J.: Logic representation of processes in work activity coordination. In:
Proceedings of the 2000 ACM Symposium on Applied Computing - Volume 1. SAC
’00, New York, NY, USA, ACM (2000) 203–209

11. Sadiq, W., Maria, Orlowska, E.: Analyzing process models using graph reduction
techniques. Information Systems 25 (2000) 117–134

12. Koschmider, A., Oberweis, A.: Ontology based business process description. In:
EMOI-INTEROP, Springer (2005) 321–333

13. Sebastian, A., Tudorache, T., Noy, N.F., Musen, M.A.: Customizable workflow
support for collaborative ontology development. In: 4th International Workshop
on Semantic Web Enabled Software Engineering (SWESE) at ISWC 2008. (2008)


