
HAL Id: hal-01102144
https://hal.inria.fr/hal-01102144

Submitted on 15 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defensive JavaScript
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Sergio Maffeis

To cite this version:
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Sergio Maffeis. Defensive JavaScript: Building and
Verifying Secure Web Components. Alessandro Aldini; Javier Lopez; Fabio Martinelli. Foundations
of Security Analysis and Design VII, 8604, Springer, pp.88-123, 2014, Lecture Notes in Computer
Science, 978-3-319-10081-4. �10.1007/978-3-319-10082-1_4�. �hal-01102144�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49395278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01102144
https://hal.archives-ouvertes.fr


Defensive JavaScript

Building and Verifying Secure Web Components

Karthikeyan Bhargavan1, Antoine Delignat-Lavaud1, and Sergio Maffeis2

1 INRIA Paris-Rocquencourt
2 Imperial College London

Abstract. Defensive JavaScript (DJS) is a typed subset of JavaScript
that guarantees that the functional behavior of a program cannot be
tampered with even if it is loaded by and executed within a malicious
environment under the control of the attacker. As such, DJS is ideal for
writing JavaScript security components, such as bookmarklets, single
sign-on widgets, and cryptographic libraries, that may be loaded within
untrusted web pages alongside unknown scripts from arbitrary third par-
ties. We present a tutorial of the DJS language along with motivations
for its design. We show how to program security components in DJS,
how to verify their defensiveness using the DJS typechecker, and how to
analyze their security properties automatically using ProVerif.

1 Introduction

Since the advent of asynchronous web applications, popularly called AJAX or
Web 2.0, JavaScript has become the predominant programming language for
client-side web applications. JavaScript programs are widely deployed as scripts
in web pages, but also as small storable snippets called bookmarklets, as down-
loadable web apps,3 and as plugins or extensions to popular browsers.4 Main-
stream browsers compete with each other in providing convenient APIs and
fast JavaScript execution engines. More recently, Javascript is being used to
program smartphone and desktop applications5, and also cloud-based server ap-
plications,6 so that now programmers can use the same idioms and libraries to
write and deploy a variety of client- and server-side programs.

As more and more sensitive user data passes though JavaScript applications,
its confidentiality and integrity becomes and important security goal. Conse-
quently, JavaScript applications rely on a number of security libraries for cryp-
tography and access control. However, neither the JavaScript language nor its
execution environment (e.g. the web browser) are particularly well suited for
security programming. For example, to aid uniform deployment across different

3 https://chrome.google.com/webstore/category/apps
4 https://addons.mozilla.org/
5 http://dev.windowsphone.com/develop
6 http://node.js



browsers, JavaScript allows a number of core language primitives to be rede-
fined and customized. This means that a JavaScript security library that may
run alongside other partially-trusted libraries must take extra care so that its
functionality is not subverted and its secrets are not leaked.

In this tutorial, we investigate approaches to build and verify JavaScript pro-
grams that implement security-criticial tasks, such as cryptographic protocols.
Our programs must contend not just with the traditional network attacker, but
also with a variety of web-specific attacks, such as malicious hosting websites and
Cross-Site Scripting (XSS). In other words, not just the communication channel
but even parts of the execution environment may be under the control of the
adversary. We propose a typed subset of JavaScript, called Defensive JavaScript,
that enables formal security guarantees for programs even in this threat model.
Our language and verification results previously appeared in [12].

Many existing works investigate the security of formal models of web appli-
cation protocols [3, 17, 8], but none of them can provide concrete security guar-
antees for JavaScript code. Still, we build upon these prior results (especially
[8]) to develop our threat model and verification techniques. Another closely re-
lated line of work investigates the use of type-preserving compilers to generate
JavaScript programs that are secure-by-construction [18, 25]. We will focus only
on language-based protections in JavaScript, but note that HTML-level isola-
tion techniques may also be effectively used to separate trusted web security
components from untrusted JavaScript [4].

In the rest of this section, we will seek to better understand the threat model
and security goals of JavaScript security components through three examples.

1.1 Encrypted Cloud Storage Websites

Storage services (e.g. Dropbox) allow users to store their personal files on servers
hosted within some cloud infrastructure. Since users often rely on these services
to back up important files and share them across devices, the integrity and con-
fidentiality of this data is an important security requirement, especially since
the cloud servers may be under the control of a third party. Consequently, main-
stream storage services typically encrypt user files before storing them in the
cloud. A hacker who breaks into the cloud server to obtain the encrypted files
would also need to steal the file encryption key from the storage service.

Some services, such as SpiderOak and MEGA, seek to provide a stronger
privacy guarantee to their users, sometimes called host-proof hosting–even if
the storage service and its cloud servers are both hacked, the user’s files should
remain confidential. The key mechanism to achieve this goal is that a user’s file
encryption keys are generated and stored on the client-side; even the storage
service does not get to see it, and so cannot accidentally leak it.

For example, to access their files stored on MEGA, users visit the MEGA
website, which downloads and runs a JavaScript program in the browser. The
program asks the user for a master passphrase, derives an authentication token
and an encryption key from the passphrase, and sends the username and au-
thentication token to the website. If the token matches the username, the web



page allows the user to download or upload encrypted files from a cloud server.
The JavaScript program encrypts and decrypts user files upon request, using
the encryption key derived from the master passphrase, but the key and the
passphrase never leave the browser.

Hence, the storage service implements an application-level cryptographic pro-
tocol in JavaScript. This programming pattern is also popular with other security
web applications such as password managers (more below) and with privacy-
preserving websites like ConfiChair [5] and Helios [1].

The main threat to this design is that if the attacker manages to inject a
malicious script into the website, that script will be able to steal the master
passphrase (and hence the user’s files). This script injection may be achieved
by hacking the web server, or by tampering with externally loaded scripts on
the network, or by exploiting a cross-site scripting (XSS) attack. Many such
attacks have been found in previous work [10, 7, 12] and reports from the MEGA
bug bounty program indicate that such attacks are a common concern. Cloud
storage websites employ many techniques to block these attack vectors, such as
Strict Transport Layer Security [20] and Content Security Policy [24], but the
increasing incidence of server-side compromises, man-in-the-middle attacks on
TLS, and XSS vulnerabilities on websites, indicates that it would be prudent to
try to protect user data even if the website had a malicious script.

Even ignoring malicious scripts, to provide any formal security guarantee for
a website security component that runs alongside unknown third party scripts,
the component would need to be robust against bugs in these scripts. To give a
concrete example, the MEGA website relies on about 70 scripts, and less than
10% of their code is related to cryptography; most of the rest implements the
user interface. So the correctness of the cryptographic library and the secrecy of
its keys relies on the good behavior of these UI scripts, which are not written by
security experts and may be difficult to formally review.

1.2 Password Manager Bookmarklets and Browser Extensions

Password managers (e.g. LastPass) help users manage and remember their pass-
words (and other sensitive data such as credit card numbers) for use at various
websites. They are often implemented in JavaScript and deployed as a browser
extension or bookmarklet that detects the login page of a website, looks up
a password database for a matching username and password, and offers to fill
it in automatically. If there is no matching password, it may offer to generate
a difficult-to-guess password and store it in the database. To synchronize and
backup the password database across a user’s devices, many password managers
implement the host-proof encrypted cloud storage pattern described above.

For example, LastPass users can generate a “Login” bookmarklet and add it
to their browser’s bookmarks. The bookmarklet contains a JavaScript program
embedded with an encryption key for the user’s password database. When a user
next visits the login page at some website, she may click on the bookmarklet
to automatically log in. Clicking on the bookmarklet executes its JavaScript
program in the scope of the current page. The program contacts the LastPass



website and retrieves the currently logged-in LastPass user’s encrypted password
data from the cloud server. It then uses the encryption key embedded in the
bookmarklet code to decrypt the password for the current page and fills in the
login form. If the browser does not have an active login session with LastPass,
the bookmarklet has no effect.

The main threat to the bookmarklet design is that it may be clicked on a
malicious website that may then tamper with the JavaScript environment to
subvert the bookmarklet’s functionality. A typical case is if the user acciden-
tally clicks the bookmarklet on a website that looks like a known trusted site.
Or the user has passwords for two differen sites stored in her database, and
one of them may have been compromised. In these situations, the main goal
of the malicious website is to steal password of the user at a different honest
website. The bookmarklet tries to prevent such attacks by identifying the web-
site the bookmarklet has been clicked on and only using its embedded secret
on trusted websites. However, identifying the host website and protecting the
bookmarklet secret are difficult in a tampered JavaScript environment, leading
to many attacks [2, 10, 7, 12]. We propose a programming discipline that enables
secret-keeping bookmarklets that are robust against tampered environments.

As an alternative to bookmarklets, many password manage also provide a
downloadable browser extension that executes a similar JavaScript program,
but in a safer, more isolated JavaScript context. Password manager browser
extensions are subject to their own threat model [9], not detailed here. In par-
ticular, even extensions must protect their secrets from being leaked by bugs in
other included JavaScript programs. To give a concrete example, the LastPass
extension for the Google Chrome browser has 119 JavaScript files, of which only
5 contain any cryptography, but their security guarantees still must rely on the
correctness of these other scripts.

1.3 Single Sign-On and Social Sharing Buttons

Single Sign-On protocols (e.g Facebook’s Login button) are widely used by web-
sites that wish to implement authenticated sessions without the hassle of user
registration and password management. Another advantage is that the web-
site can leverage their users social networks to provide a richer experience (e.g.
Facebook’s Like button). From the user’s viewpoint, single sign-on and social
sharing buttons offer her a convenient and secure way of accessing and sharing
data across different websites, without needing to remember different passwords.

For example, to include the Facebook Login button on a web page, a website
W loads a JavaScript library provided by Facebook that displays the button.
When a user clicks on the button, the program asks Facebook for the currently
logged-in user’s access token for the current website W . If the user is logged in
and has previously authorized Facebook to provide an access token to W , Face-
book returns the access token in a URL. Otherwise, the user is forwarded to a
page where she may login and authorize W (or not.) The program then gives the
access token to the website and also provides functions to access the Facebook
API and read or write (authorized elements of) the current user’s social profile.



The protocol implemented by Facebook is OAuth 2.0 [19], which also prescribes
other message flows for server-side tokens and smartphones. Other popular sin-
gle sign-on protocols, such as OpenID, SAML, and BrowserID, provide similar
message flows that websites may use to obtain access tokens as user-specific
credentials.

The main threat to the single sign-on interaction above is that the access
token may be stolen by a malicious website and then used to impersonate the
user at an honest website, or to read or write the user’s profile information on
her social network. The OAuth 2.0 flow is particularly vulnerable since access
tokens are sent in URLs which may be leaked by Referrer headers, or by HTTP
redirection, or by various browser and application bugs [8, 26, 12]. Since the ac-
cess token is used as a bearer token, and is often not specific to a website, it can
be immediately used by the adversary on any website to impersonate the user.

The BrowserID single sign-on protocol seeks to mitigate the effects of token
theft by using public key cryptography to authenticate the client.7. Mozilla’s
implementation of BrowserID is written fully in JavaScript. The client includes
a JavaScript cryptography library that may be included by any site to retrieve
and sign tokens on behalf of the user. Even the single sign-on server is written
in JavaScript and deployed over node.js. The design of BrowserID has been
carefully evaluated by formal analysis [17], but to prove the code correct, one
must show that all the scripts loaded alongise behave safely. In Mozilla’s imple-
mentation, the server-side protocol moduls is loaded among 158 other node.js

modules, and a bug or malicious function in any of these modules could com-
promise both ther server’s and user’s private keys.

1.4 Towards Verifiably Secure Web Components

We have discussed three popular categories of JavaScript security components
that seek to protect sensitive user data such as files, passwords, and access
tokens from malicious websites using various combinations of authentication
protocols and cryptography. Each of these components is used in conjunction
with a number of other scripts that may modify the JavaScript environment.

Our goal is to write JavaScript security components in a style that their secu-
rity can be formally proved even if the context is malicious. In particular, we aim
for a language-level isolation guarantee for our programs–that their input-output
functional behavior cannot be tampered with by the environment. As a corollary,
any secrets that are correctly protected by cryptography in our programs cannot
be stolen or modified by the adversary. This simple-sounding isolation guaran-
tee would be trivial to obtain in traditional programming langugages with sound
type systems, such as OCaml and Java. However, the flexibility of JavaScript
breaks many guarantees presumed by the programmer and the language must
be reined in before we can achieve our goal.

In Section 2, we discuss the peculiarities of JavaScript and the browser envi-
ronment that make it difficult to isolate security components. In Section 3, we

7 http://login.persona.org



present Defensive JavaScript (DJS), a typed subset of JavaScript that guarantees
isolation from the environment. In Section 4, we present a large cryptographic
library written in DJS and use it to write and verify simple cryptographic web
applications. Section 5 concludes.

2 Secure Messaging in an Untrusted Environment

As a motivating example, we consider how to implement a JavaScript program
that sends an authenticated message to a server. Our target web page is hosted
on a website W at URL http://W.com and it loads three scripts:

1 <html>

2 <body>

3 <script src="attacker1.js"></script>

4 <script src="messaging.js"></script>

5 <script src="attacker2.js"></script>

6 </body>

7 </html>

The first and third scripts are arbitrary malicious scripts chosen by the at-
tacker. The second script is our program that provides an API to send messages
to a server S at the URL http://S.com, via the XMLHttpRequest asynchronous
messaging API provided by the browser. (In some cases, W may be the same
site as S.) We assume that the program and S share a secret MACing key k.
The program uses this key to attach a MAC to each message sent to S.

The security goal is message authentication: every message received and ver-
ified by S must have been sent by our program running at W . In particular, it
should not be possible for the attacker scripts to steal the MAC key k and forge
messages to S. The above web page scenario may seem too paranoid, but more
generally, we want to guarnatee that that even if the surrounding scripts are just
buggy, not malicious, they still cannot accidentally leak the key.

2.1 Secure Delivery of the Secret Key

The first challenge is to deliver the MAC key to messaging.js in a way that
cannot be read by the other two attacker scripts.

Injecting the key as a token into the HTML document, or an HTTP cookie,
or in browser local storage would not work; if the messaging script can read it,
so can the attacker’s script. The only safe place for the key is to embed it into
the messaging program. But even in this case, there are many pitfalls. Consider
the following messaging script messaging.js with a key included on top:

1 var key = k;
2 var api = function(msg){ .../*send authenticated message*/}

Unfortunately, the attacker script attacker2.js can simply read the variable
key from the environment and obtain the key. A better solution would be to
protect the key within the function:



1 var api = function(msg){

2 var key = k;
3 .../*send authenticated message*/

4 }

Now the script attacker2.js can no longer read the local variable key.
However, it can retrieve the source code of the function api as a string by calling
api.toSource(). It can then extract the embedded key k from the string. To
protect the source code of the function, we need to rewrite the function by
wrapping it within an anonymous function closure:

1 var api = (function (){

2 var _api = function(msg){

3 var key = k;
4 .../*send authenticated message*/}

5 return function(msg){return _api(msg);}

6 )();

Now, calling api.toSource() only reveals the code of the wrapper function,
and the code of the real _api function (which embeds the key k) remains private.

There remains another way for the attacker scripts to obtain the source code
of _api. If the script messaging.js is served from the current website’s origin
http://W.com, the source code of the whole script can be retrieved by either
attacker script by making an XMLHttpRequest to the script’s URL:

1 var xhr = new XMLHttpRequest();

2 xhr.open("GET","http://W.com/messaging.js",false);

3 xhr.send();

4 var program = xhr.responseText;

To prevent this, the messaging script must be served from a separate ori-
gin. For example, the website W could set aside a separate origin for serving
only scripts, and place the messaging script at say http://scripts.W.com/

messaging.js. in our example, it would also be suitable to source it from S’s
origin, say at http://S.com/messaging.js, so S can inject the shared key into
the script. In both cases, the attacker scripts on http://W.com would be unable
to make an XMLHttpRequest to read the code, due to the Same Origin Policy.

2.2 Calling External Functions

To construct and send a message, our messaging program will rely on several
external functions either builtin to the JavaScript language or provided by the
browser as part of the DOM library. For example, commonly used string func-
tions such as concatenation (s.concat(t)) or search (s.indexOf(t)) are defined
as methods in the String prototype. Other useful functions on arrays and ob-
jects are provided by the Array and Object prototypes. The window.Math object
provides implementations of many mathematical functions. The XMLHttpRequest

object allows asynchronous messaging with remote servers, and postMessage API
implements client-side messaging between windows. Finally, the document object



(or DOM) provides functions for reading and writing the HTML document (e.g.
document.getElementById(‘‘body’’)).

These external library functions are widely used by JavaScript programs.
However, in our threat scenario, the attacker script attacker1.js may have
redefined every one of these functions by modifying the String, Array, and
Object prototypes, or by redefining these functions and objects in the window and
document objects. For example, the following code redefines the XMLHttpRequest

object, so that all messages send by the messaging script can be intercepted:

1 window.XMLHttpRequest =

2 function(){

3 return {open: function(){/*do whatever*/},

4 send: function(){/*do whatever*/}}}

Suppose our messaging program is written as follows; in addition to the
XMLHttpRequest object (and its methods), the code calls Crypto.HMAC:

1 var api = (function (){

2 var _api = function(msg){

3 var key = k;
4 var xhr = new XMLHttpRequest();

5 xhr.open("GET","http://S.com",false);

6 xhr.send(Crypto.HMAC(key,msg) + "," + msg);

7 }

8 return function(msg){return _api(msg);}}

9 )();

This code exemplifies three dangers of calling an external function.
First, the call to Crypto.HMAC leaks the key, since the attacker may have

redefined the function. Consequently, the only safe choice here is to inline the
code of the HMAC function into the messaging program. The HMAC function in turn
relies on a hashing function (say SHA-256) which would also need to be included
within the program. (To see what these functions look like in JavaScript, see our
implementation in Appendix A.)

Second, the call to any external function exposes _api function to a stack-
walking attack. For example, the attacker can redefine XMLHttpRequest.send so
that when it is called, it reads the source code of its calling function using the
caller method in the Function prototype:

1 stackwalk = function(){var program = stackwalk.caller.toSource();...}

2 window.XMLHttpRequest =

3 function(){

4 return {open: stackwalk,

5 send: stackwalk}}

Adding the above code in attacker1.js will set up the environment such
that when _api calls xhr.open, the attacker obtains the source code of _api and
hence its embedded key. The attack relies on the implementation of the caller

method, and it it works at least in Firefox at the time of writing. More generally,
this kind of stack-walking is a powerful attack vector. Whenever a function f is



called, it can access its caller by accessing f.caller, and the next level on the
call stack by accessing f.caller.caller. At each level, it may examine (and even
overwrite) the arguments of the function.

Third, if our messaging script ever calls an external function, the attacker
may redefine its behavior so that the result of the function is not as expected.
For example, s.concat(t) may always return a constant string or Math.pow may
always return 0. In such cases, the functional integrity of our script has been
compromised, and if the results of these functions are used in the MAC function,
the authentication protocol may be broken even without leaking the secret key.

In summary, any external function calls from a the messaging script may lead
to a full compromise of its secrets and its functionality. To be safe, the script
must never call functions from within security sensitive functions whose source
code or arguments may be secret. Instead, all external function calls should be
factored out into a top-level wrapper function that calls a self-contained API:

1 var api = (function (){

2 var hmac = function(key,msg){/* inlined HMAC code */}

3 var _api = function(msg){

4 var key = k;
5 return (hmac(key,msg) + "," + msg);

6 }

7 return function(msg){return _api(msg);}

8 )();

9 var msg_api = function (msg) {

10 var mac = api(msg);

11 var xhr = new XMLHttpRequest();

12 xhr.open("GET","http://S.com",false);

13 xhr.send(mac);

14 }

Here, the external function call to XMLHttpRequest is performed outside the
sensitive API by a function msg_api that has no access to the secret MACing
key. Walking the stack to get to msg_api does not allow the attacker to steal any
secrets or to tamper with the _api function.

2.3 Implicit Calls to External Functions

In addition to explicit function calls, many JavaScript constructs implicitly trig-
ger methods defined in various prototypes. Since these prototypes may be mod-
ified by the adversary, we must also avoid such implicit calls in defensive code.

The first category of implicit function calls are coercions. For example, in the
expression e == e’, if e is an object and e’ is a number, then the equality will
trigger an implicit coercion e.valueOf of e from string to number. This method
valueOf is defined in the String prototype. More generally, comparison between
any object and a string or a number may trigger the valueOf or toString methods
in that object’s prototype. Hence, by redefining these methods in the Object pro-
totype, the attacker can intercept any function that triggers an implicit coercion
and mount the attacks described in the previous subsection.



The second category of implicit function calls are getters and setters. When-
ever an object is accessed at an undefined property (e.g. o.x), the JavaSript
interpreter traverses the prototype hierarchy to see if the property x is defined
in one of the prototypes that the object is derived from. If, say, none of the pro-
totypes has defined x, but the Object prototype defines a getter function for x,
then reading the property o.x will trigger this function. Similarly, if the Object

prototype has a setter function for x, writing to o.x will call the setter.
By defining getters and setters for specific properties, an attacker script can

cause trusted code to trigger an external function if it ever accesses an undefined
property. Similarly, if an array or string is every indexed out of bounds, it may
trigger a getter or setter in the Array prototype. Consequently, in our setting, the
messaging program should never access arrays, strings, or objects outside their
declared ranges. In particular, the popular JavaScript idiom of first declaring an
empty object and then extending it is vulnerable to attack:

1 Object.defineProperty(Object.prototype,"a",{set:function(){...}});

2 var x = {};

3 x.a = 1; // triggers malicious setter

4 Object.defineProperty(Array.prototype,"0",{set:function(){...}});

5 var y = [];

6 y[0] = 1; // triggers malicious setter

7 Object.defineProperty(Array.prototype,"1",{get:function(){...}});

8 y[0] = y[1]; // should be undefined, but triggers malicious getter

A particular subcase of prototype poisoning is worth mentioning. JavaScript
offers a for...in loop construct that goes through all the properties of an
object. For example for (i in {x:1})print(i) is expected to print ‘‘x’’ and
for (i in [1])print(i) is expected to print the single array index 0. However,
if the attacker modifies Object and Array prototypes to add more properties,
those properties will also be printed here. Even checking that each property was
defined locally within the object using the Object.hasOwnProperty function does
not help, since this function could also be modified by the adversary.

2.4 Defensive Programming Idioms

We have discussed many potential attack vectors that a malicious script may
employ when trying to subvert an honest JavaScript program running in the
same environment. To prevent these attacks, we advocate a defensive program-
ming discipline where programs aim to isolate their security-critical code from
the environment by using function closures, by being loaded from a different
origin, by refusing to explicitly call external functions, and by carefully prevent-
ing the triggering of coercions and prototype lookups. To systematically check
our programs for all these isolation conditions, we propose a static type system.
Defensiveness is a first step towards formal security guarantees. Once scripts
like our messaging program are correctly isolated, we may rely on their context-
independent semantics and on the functional integrity of their cryptographic
libraries to build automated security verification tools.



Alternative Mitigations The injunction that the core messaging API must be
fully self-contained may seem draconian and one may wonder if there are some
cases in which calling external functions is safe. If the goal is only to prevent
stack-walking, one may hide the stack by calling all external functions through a
recursive wrapper function [25]. However, this requires a source-to-source trans-
lation to implement effectively, especially for object methods like xhr.send.

Recent versions of JavaScript give programs the ability to freeze objects
and mark various properties as unmodifiable and/or unconfigurable (cannot be
deleted). It is tempting to suggest that the website W should freeze some objects
or that the browser should guarantee that some DOM properties are unforgeable.
These objects and properties would then be safe to access. However, the problem
with both Object.freeze and Object.defineProperty is that they need to apply
to the top object in the object hierarchy, otherwise it is ineffective. For example,
the properties document.location.href and window.location.href are commonly
considered unforgeable since modifying them would take the webpage to a new
location. Indeed, most browsers prevent JavaScript from redefining these prop-
erties. However, the attacker may directly redefine the window.document object
(FireFox) or the window.location object (Internet Explorer).

Another option is for the website W to run a script first that makes copies
of all relevant objects before they have been tampered by the attacker [18].
However, ensuring that a script runs first on a web page is surprisingly tricky [25].
Moreover, this solution does not work in scenarios where the website W itself
may be malicious or compromised.

One may also use isolation mechanisms outside JavaScript, such as HTML
iframes to effectively separate trusted and untrusted code [4]. In this paper, we
do not investigate such mechanisms and instead focus only on language-based
isolation. We note that the use of iframes relies on the semantics of the Same
Origin Policy which remains to be fully standardized, let alone formalized [28].
Furthermore, iframes may not be available in some JavaScript runtime envi-
ronments, such as smartphones and server applications. In these environments,
defensive programming becomes necessary.

3 Defensive JavaScript

We present a subset of JavaScript that enforces a strong defensive programming
discipline. Our language, Defensive JavaScript (DJS), imposes restrictions on
JavaScript code both at the syntactic level and though a static type system.
The main elements guiding the design of DJS are as follows:

Static Scopes The variable scoping rules of JavaScript are notoriously difficult
to understand. For example, functions may use local variables before they are
declared. More worryingly, if a JavaScript program ever accesses a variable
that is not in its local scope, this access may trigger a getter or setter in
some prototype object. Consequently, we require that all variables in DJS
programs be strictly statically scoped. We impose this by restricting the


