
HAL Id: inria-00144801
https://hal.inria.fr/inria-00144801v2

Submitted on 8 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Failure, Disconnection and Partition Detection in
Mobile Environment

Denis Conan, Pierre Sens, Luciana Arantes, Mathieu Bouillaguet

To cite this version:
Denis Conan, Pierre Sens, Luciana Arantes, Mathieu Bouillaguet. Failure, Disconnection and Par-
tition Detection in Mobile Environment. [Research Report] RR-6184, INRIA. 2007, pp.21. �inria-
00144801v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49393387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00144801v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

84
--

F
R

+E
N

G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Failure, Disconnection and Partition Detection in
Mobile Environment

Denis Conan — Pierre Sens — Luciana Arantes — Mathieu Bouillaguet

N° 6184

Mai 2007

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Failure, Disconnection and Partition Detection in

Mobile Environment

Denis Conan ∗ , Pierre Sens† , Luciana Arantes† , Mathieu Bouillaguet†

Thème COM — Systèmes communicants
Projet Regal

Rapport de recherche n° 6184 — Mai 2007 — 21 pages

Abstract: In mobile environment, nodes can move around and voluntarily leave or join
the network. Furthermore, they can crash or be disconnected from the network due to
the absence of network signals. Therefore, failure, disconnection and mobility may create
partitions in wireless networks which should be detected for fault and disconnection tolerance
reasons.

We present in this article an architecture of local and distributed detectors for mobile
networks that detect failures, disconnections, and partitions. It is basically composed of
three unreliable detectors: a heartbeat failure detector, a vector-based disconnection de-
tector, and an eventually perfect partition detector. The latter ensures the convergence
of detection information within a partition where all participants suspect the same sets of
disconnected, unreachable, and faulty processes.

Key-words: partition detection, failure detector, mobile networks, distributed algorithms

∗ GET / INT, CNRS Samovar, 9 rue Charles Fourier, 91011 Évry, France, Denis.Conan@int-edu.eu
† LIP6 — Université Paris 6 — INRIA, 4 Place Jussieu, 75252 Paris Cedex 05, France,

Pierre.Sens,Luciana.Arantes,Mathieu.Bouillaguet@lip6.fr

Détection des fautes, des déconnexions et des partitions

dans un environnement mobile

Résumé : Dans les environnements mobiles, les nœuds peuvent se déplacer en quittant et
rejoignant le réseau. De plus, ils peuvent être sujets à des fautes ou des déconnexions dues à
l’absence de signal. Ces déconnexions volontaires ou non peuvent créer des partitions qu’il
est important de détecter.

Nous proposons dans cet article une architecture répartie permettant de détecter les
fautes, les déconnexions et les partitions. Cette architecture est composée de trois détecteurs
non fiables présents sur chacun des nœuds: un détecteur de fautes basé sur l’échange de
messages de vie, un détecteur de déconnexions et un détecteur de partitions finalement
parfait. Ce dernier assure pour chaque nœud correct la convergence des informations sur
l’ensemble des nœuds non atteignables et fautifs.

Mots-clés : détection de partitions, détecteur de fautes, réseau mobile, algorithmes
répartis

Detectors in Mobile Environnment 3

1 Introduction

Recent advancements in wireless data networking and portable information appliances have
given rise to the concept of mobile computing. Users can access information and services
irrespective of their movement and physical location. However, such an environment is
extremely dynamic: Nodes can voluntarily disconnect themselves or move around; absence of
wireless network signals can disconnect nodes from the network; nodes can fail and messages
can be lost. Consequently, failure, disconnection, or mobility may cause a node or several
of them to detach from the rest of the network, creating one or more network partitions.

As the geographic extent of the system grows or its connectivity weakens, network par-
titions tend to be more frequent. They may result in a reduction or degradation of services
but not necessarily render the application completely unavailable. Partitions should keep
working as autonomous distributed systems offering services to their clients as far as pos-
sible. Therefore, a mechanism for providing information to the application about network
partition is highly important in wireless environments, and is the focus of this paper. We
propose an eventually perfect unreliable partition detector for wireless systems. Similarly
to an unreliable failure detector [5], an unreliable partition detector can be considered as a
per process oracle, which periodically provides, for each process p, a list of processes sus-
pected to be unreachable, that is those processes which are suspected of being in another
partition than p’s one. A partition detector is unreliable in the sense that it can make mis-
takes. Two properties characterise a failure detector: completeness and accuracy. Roughly
speaking, completeness sets requirements with respect to crashed processes, while accuracy
restricts the number of false suspicions. By analogy, these two properties also characterise
our partition detector, but with respect to reachable processes. Thus, our partition detector
assures the following completeness and accuracy properties: A process p, which is correct,
eventually detects every process that does not take part to p’s partition; and p eventually
stops suspecting correct processes that belong to its partition.

Our partition detector is able to detect partitions due to disconnections as well as failures.
The ultimate goal of characterising the nature of the partition is to help the decision-making
process of applying countermeasures for fault tolerance and disconnection tolerance. Hence,
in order to build our partition detector, a failure detector and a disconnection detector
are required. Both detectors participate in our solution and the partition detector exploits
information provided by them.

For detecting failures, we have chosen the class of heartbeat HB failure detectors, pro-
posed by [1, 2]. The reasons for such a choice are multiple. Firstly, HB failure detectors
can be used to achieve quiescent reliable communication, that is fair links that eventually
stop sending messages, on top of asynchronous partitionable networks. They allow the con-
ception of a quiescent stubborn broadcast primitive which both the disconnection detector
and the partition detector of our solution need for diffusing information over the network.
Another important feature of HB failure detectors in our solution is that they do not output
a list of suspected processes, but a vector of counters. Our partition detector makes use of
such a vector for detecting network partitions: At each process p, the heartbeat sequence
of a process which is not in the same partition of p’s one is bounded. Finally, the HB

RR n° 6184

4 Conan, Sens, Arantes & Bouillaguet

failure detector algorithm of [1, 2] also offers information about the topology of the network
reachable through neighbours. We have then extended it in order to provide for each process
p the information about the set of processes which are reachable from p through its own
neighbours. This information is used by our partition detector.

In our approach, we consider that there is a local connectivity module at each mobile
node which is responsible for informing whether that node can send messages or not [9].
It monitors resources such as energy power, memory space and wireless link quality by
controlling one of their attributes such that, when the raw value of the attribute is below
some threshold, the mobile node is disconnected. The objective of a connectivity module is
to establish a connectivity mode (from strongly connected to disconnected) in a stabilised
manner. However, such connectivity information needs to be spread over the network.
Hence, when a node is locally notified of a disconnection, the disconnection detector that
we propose will “try” to spread the disconnection information over the network, through its
neighbours, by calling the broadcast primitive mentioned above.

The contribution of our paper is then threefold: (1) a modified version of the HB fail-
ure detector of [1, 2] which besides offering information about failure suspicions and the
possibility of building a stubborn reliable broadcast primitive, provides information about
the reachability of nodes; (2) an unreliable disconnection detector that diffuses disconnec-
tion information through the network; and (3) an eventually perfect partition detector that,
based on the information given by the two previous detectors, detects network partitions.

The remainder of this paper is organised as follows. In Section 2, we set out the dis-
tributed system model. Section 3 presents our global architecture and the basic primitives
used throughout the paper. Section 4 describes the heartbeat failure detector for partition-
able networks with terminal mobility and explains how the original algorithm was modified.
The disconnection detector is presented in Section 5, and the partition detector in Section
6. We compare our contribution with related work in section 7 while section 8 concludes
our work.

2 Distributed System Model

We consider a partially synchronous distributed system in which there are bounds on process
speeds and on message transmission delays, these bounds are unknown, but they hold after
some unknown time, which is called GST for Global Stabilisation Time [5]. The system
consists of a set of n processes Π = {p1, p2 ..., pn}. The network of processes is a directed
graph G = (Π, Λ) where Λ ⊂ Π × Π. Without lack of generality, we assume that there
is one process per host. Process q is a neighbour of process p if and only if there is an
unidirectional link from p to q. In mobile environments, a link that is not bidirectional
means in practice that the two processes cannot rely on the same physical and logical
resources in both directions. For argument’s sake, small devices like PDAs consume more
power energy for emitting than for receiving messages on wireless networks, thus leading to
non-uniform radio range. To simplify the presentation, we take the range T of the clock’s

INRIA

Detectors in Mobile Environnment 5

tick to be the set of natural numbers. Processes do not have access to T : It is introduced
for the convenience of the presentation.

Failure model Processes can fail by crashing, that is, by prematurely halting and then
stop performing any further action for ever. We consider a network with two types of links:
Links that are fair lossy and links that crash. A fair lossy link can intermittently drop
messages and do so infinitely, but if a process p repeatedly sends a message m to process q,
then q eventually receives m. Thus, if p sends m to q an infinite number of times and q is
correct, then q receives m from p an infinite number of times. A crashed link stops forever
transmitting messages. Following the terminology given in [1, 2], the network is said to be
partitionable, that is a network in which some links may be unidirectional and may crash, in
other words, the network may contain several unidirectional rings that intersect with each
other. In addition, we assume that each correct process is connected to every other reachable
process through a fair path that is a path containing only fair links and correct processes.

Disconnection model Processes can disconnect and reconnect. In connected mode, a
process may send a message to its neighbours, while in disconnected mode, the resources of
the process terminal are too low to send any application message but control messages may
be transmitted for a while. We assume that every process ends its execution while being
connected and does not crash while being disconnected1. In the sequel, this translates into
the assumption that a terminal that disconnects eventually reconnects. A moving node first
disconnects from the network then it moves to a new location and finally reconnect to the
network. We assume that mobile terminals eventually stop moving.

Partition model Since processes can fail and move, processes can be unreachable due
to crashes or disconnections of other processes or links. We assume that the graph G
is eventually strongly connected. In other words, every process ends its execution being
not partitioned, that is partitions eventually merge into a global partition gathering all the
correct processes. This assumption subsumes the two assumptions of eventually reconnection
and eventually no more movement. In conclusion, the neighbourhood may change during
execution due to hosts mobility and disconnections, and to crash and link failures.

3 General architecture and basic primitives

Figure 1 presents our global architecture. On each node, we provide a basic layer (BL). The
function of this layer is twofold. Firstly, it establishes a connectivity mode (from strongly
connected to disconnected) in a stabilised manner. Secondly, it provides a list of current
neighbours (nghset) by periodically calling of the networking layer. Each change in mode
and nghset is notified to the upper layers.

1In practice, the assumption means that the disconnected, and then terminating or faulty process does
not succeed in leaving the set of participants Π. Then, a mechanism of leases at the application level will
make the incriminated process leaving the set of participants.

RR n° 6184

6 Conan, Sens, Arantes & Bouillaguet

EPPD

mreachable

mode

out

HB dv

QSB
HBFD VBDD

BL

nghset

Figure 1: Overview of the software architecture of a node

On each node p, two detectors are plugged onto BL: The heartbeat failure detector
(HBFD) and the vector-based disconnection detector (VBDD). HBFD outputs a per pro-
cess vector of heartbeat counters HB and a set of mutually reachable processes mreachable.
p and q are mutually reachable if there exists a fair path between p and q, and a fair path
between q and p. Then, the p’s partition, denoted partition(p), is the set of correct processes
mutually reachable by process p. VBDD outputs a per process disconnection counter dv.
Disconnections and (re-)connections are numbered: Disconnection events are odd-numbered
and reconnection events are even-numbered. Since processes are initially connected, the
sequence number being 0, the first disconnection and reconnection are numbered 1 and 2,
respectively, and so on.

At the upper level, the eventually perfect partition detector EPPD uses information
provided by both HBFD and VBDD to compute the set out that is the set of processes not
in the same partition. Based on HBFD, we provide a quiescent stubborn broadcast primitive
QSB used by VBDD to diffuse disconnection and reconnection information.

Each process can use the following primitives to communicate:

• send(dest, m)/receive(from, m) : Two basic point-to-point communication func-
tions to send (resp. receive) message m to (resp. from) its neighbour dest (resp.
from). When a message is issued from a local component, local_send(dest, m) and
local_receive(from, m) functions are used where from and dest are the name of the
component (HBFD, VBDD or BL).

• broadcast(m): This function diffuses message m over fair links to all correct processes
by implementing QSB. This primitive provides the abstraction of stubborn links

INRIA

Detectors in Mobile Environnment 7

hiding the retransmission mechanisms used to make somewhat reliable the transmission
of messages. A formulation of the stubborn delivery property is as follows [7]: If the
sender p, which does not crash, sends a message m to q that is correct, and p is able to
indefinitely delay the sending of any further message, then q eventually receives m. An
important practical consideration is that stubborn links require only a bounded buffer
space (minimum of one message). The quiescence property ensures that only a finite
number of messages is sent when broadcast is invoked a finite number of times. QSB
uses HBFD. Due to the lack of space, we do not present the broadcast algorithm in
this paper.

HBFD, VBDD and EPPD are characterised by both completeness and accuracy prop-
erties defined as follows:

• HB-Completeness: At each correct process p, the heartbeat counter of every process
not in partition(p) is bounded.

• HB-Accuracy: At each correct process p, the heartbeat counter of every process is non-
decreasing. The heartbeat counter of every process in the partition of p is unbounded.

• VBDD-Completeness: Eventually all disconnections and reconnections of correct pro-
cesses are seen by every correct process.

• VBDD-accuracy: No process sees a disconnection (resp. reconnection) before the
disconnection (resp. reconnection) effectively occurs.

• EPPD-Completeness (Strong partition completeness): If some process q remains un-
reachable from a correct process p, then eventually p will always suspect q of not
belonging to partition(p).

• EPPD-Accuracy (Eventual strong partition accuracy): If some process q remains reach-
able from a correct process p, then eventually p will no longer suspect q of not belonging
to partition(p).

4 Failure detection

Our failure detector HBFD is based on the class of heartbeat failure detectors, proposed
by [1, 2]. Such a choice is firstly explained by the need to build quiescent algorithms, that
is algorithms that eventually stop sending messages in partitionable networks. In [2], the
authors prove that, with fair links and in the presence of process crashes, quiescent reliable
communication are impossible without having a failure detection which provides an output
with bounded size. Hence, they propose in the paper the class of heartbeat failure detectors
which can be used to circumvent this impossibility result. Another reason that justifies
our choice is that heartbeat failure detectors are not time-out-based unlike the majority of
current failure detector implementations that both provide lists of suspected processes and
increase time-outs in case of false suspicions.

RR n° 6184

8 Conan, Sens, Arantes & Bouillaguet

Heartbeat failure detectors provide for each process p a vector of counters HB =
[n1, n2, ..., nk] where each nj is a positive integer corresponding to the number of heart-
beats received by process p from pj . Thus, nj is the “heartbeat value of pj at p”. Intuitively,
nj increases as long as pj is correct, not disconnected, and reachable from p. Notice that
heartbeat failure detectors provide the vector HB without any treatment or interpretation.
Then, other detectors, as our partition detector EPPD, can periodically obtain the current
value of HB vector from HBFD in order to deduce lists of suspected processes.

Beside the heartbeat vector HB, our failure detector HBFD gives information about
the topology of the network since each process keeps information about which processes can
be reachable through its neighbours. For each neighbour r of process p, HBFD builds the
set of processes mutually reachable from p through r. This set is called the reachablility
set of p through r and the vector mreachable gathers the set of reachability sets of all
the neighbours of p. The property of mutual reachability, can be expressed as follows: At
each correct process p, for each neighbour r, the reachability set for r (mreachable[r])
eventually contains all the correct processes (e.g., q), such that there is a simple fair path
from p to q through r and a simple fair path from q to p. In a simple fair path, no process
appears more than once. Furthermore, HBFD can also accept requests for emptying some
of the reachable sets in order to restart an accumulation phase of topology discovery. This
functionality is used by our partition detection EPPD, described in Section 6, when a failure
or a disconnection is detected.

HBFD which runs on each node p is presented in Algorithm 1. It is based on the
algorithm for partitionable networks described in [1]. The changes we have made are related
to the addition of nodes mobility, discovery of the network topology through neighbours, and
the reduction of the number of heartbeat messages sent over the network. The variables HB
and mreacheable respectively store the per process heartbeat counters and the per process
mutual reachability sets, as previously described. The set nghbrs controls the current
neighbours of p, while the set paths gathers all the paths of which p is aware since its last
heartbeat sending. Algorithm 1 is executed by process p (p ∈ Π), and it is divided into
five parallel tasks. It provides to the upper client, e.g. the partition detector EPPD, the
heartbeat vector HB and the reachable sets (sets of mreacheable) (line 17). The principle
of the algorithm is the piggy-backing of fair paths in heartbeat messages.

The first task (lines 1–5) corresponds to the code block executed at the creation of the
heartbeat failure detector. The second task (lines 6–9) is triggered when the neighbourhood
changes. Such an information is provided by BL (cf. section 3). This task controls the mo-
bility of nodes and therefore the current set nghbrs of neighbours of p (line 9). Furthermore,
the entries of mreachable corresponding to those processes that are no longer neighbours
of p are set to empty (line 7) since they cannot be reached anymore from p through old
neighbours. However, new neighbours of p are seen as reachable (line 8).

In the third task (lines 10–17), process p periodically increments its own heartbeat and
adds itself to paths, which already contains all paths received in heartbeat messages during
the last period of time. However, before sending to all its neighbours a new heartbeat
message which includes such a variable (line 15), p verifies in line 14 if its previous heartbeat

INRIA

Detectors in Mobile Environnment 9

Algorithm 1: Heartbeat Failure Detector HBFD
1 upon initialisation do
2 nghbrs← ∅ {neighbourhood at p}
3 HB[1..|Π|]← {0, ..., 0} {heartbeat vector at p}
4 mreachable[1..|Π|]← {∅, ..., ∅} {processes reachable through neighbours from p}
5 paths← ∅ {set of paths received in heartbeats during last period of time}
6 upon local_receive(BL,nghset) do
7 for all q ∈ nghbrs \ nghset do mreachable[q]← ∅
8 for all q ∈ nghset \ nghbrs do mreachable[q]← {q}
9 nghbrs← nghset
10 periodically do
11 HB[p]← HB[p] + 1
12 paths← paths ∪ {{p}}
13 for all q ∈ nghbrs do
14 for all path ∈ paths : (∃r ∈ path : r appears more than twice in path) do paths ←

paths \ path
15 for all q ∈ nghbrs do send(q,〈HBFD, paths〉)
16 paths← ∅
17 local_send(EPPD, 〈HBFD, HB, mreachable〉)
18 upon receive(q,〈HBFD, paths〉) do
19 for all path ∈ paths do
20 for all r ∈ Π : r appears after p in path do HB[r]← HB[r] + 1
21 if ∃r ∈ Π : r appears right next to p in path then
22 for all s ∈ Π : s appears after r in path do mreachable[r]← mreachable[r] ∪ {s}
23 endif
24 paths← paths ∪ {(path · p)}
25 endfor
26 upon local_receive(EPPD,〈EPPD, procset〉) do
27 for all s ∈ procset do mreachable[s]← ∅

RR n° 6184

10 Conan, Sens, Arantes & Bouillaguet

messages have not already completed two cycles. In this case, such a path will be removed
from paths (line 14). As we will show in an example below, some topologies require that
heartbeat messages completing a first cycle need to be forwarded to the initiators so that
those processes add processes of the cycle to their mutually reachable sets. Instead of the
condition “more than twice”, one can devise a solution forwarding these heartbeat messages
only to the initiators and removing them from paths for the other neighbours (such that
the condition becomes “more than once” like in [1, 2]). At the end of the third task,
the heartbeat failure detector notifies its clients, EPPD in our case, about new updated
information concerning the heartbeat vectors and reachability sets (line 17).

The fourth task (lines 18–25) handles the reception of messages by p of the form
〈HBFD, paths〉. Upon receiving it from process q, for each path ∈ paths with path =
(p1 · ... · pi · p · r · pj · ... · pk · q), p adds the processes (pj · ... · pk · q), which appears after
its neighbour r, to mreachable[r] (lines 21–22). Therefore, mreachable[r] contains a list of
processes that can be mutually reached from p through r. In addition, process p increases
the heartbeat counters of all the processes that appear after p in path, that is all the pro-
cesses of the sequence (r · pj · ... · pk · q) (line 20), since they are not suspected by p. Process
p appends then itself to path and stores the new path in paths (line 24). Notice that in this
case, p is also reachable from (pj · ... · pk · q) through their respective neighbours.

Finally, the fifth task (lines 26–27) empties some entries of mreachable. As previously
explained, this functionality is used by the partition detector EPPD, described in section 6.

Example of execution of HBFD
In order to explain how nodes dynamically discover which are the other nodes reachable
through their respective neighbours, we show in Figure 2 the scenario of an execution of
Algorithm 1, considering a topology with five nodes.

Node 1 starts by sending to its neighbour node 2 a heartbeat message that contains
the variable paths1 which, in this case, includes just itself, as shown in Figure 2.(a) (line
12). Upon receiving it (cf. Figure 2.(b)), node 2 appends itself to all the received paths,
adding the latter to its variable paths2 (line 24). Notice that it does not update its variable
mreachable2 since it is not included in any of the received paths. Next, the set {2} is being
added to paths2 (line 12) and a new heartbeat message is sent to its neighbours. Both nodes
1 and 3, outgoing neighbours of 2, receive it.

In figure 2.(c), both nodes 1 and 3 receive the above heartbeat message, while in Fig-
ures 2.(d) and 2.(e), node 4 receives the heartbeat messages sent by node 3, and node 5
receives the heartbeat messages sent by node 4, respectively. Next, when node 2 receives
the heartbeat message from node 5 (cf. Figure 2.(f)), it finds itself in some of the received
paths. Therefore, line 22 of the algorithm is executed and node 2 adds nodes 4 and 5 to
mreachable2[3], that is, these nodes are mutually reachable from node 2 through its neigh-
bour node 3.

Finally, Figure 2.(g) shows that the content of variable paths1 of node 1 after having
received the second heartbeat message from node 2. In the scenario, we consider that node
1 has not sent any new heartbeat message after the reception of the first heartbeat message

INRIA

Detectors in Mobile Environnment 11

1

4

3 5

2

1

3

2

4

5

paths = {{1}}
1

mreachable [2] ={3,4,5}
1

paths = {{1,2},{2}}
2

1

4

3

2

1

3 5

2

4

1

4

3 5

2

1

4

3 5

2

mreachable [3] ={4,5}
2

paths = {{1,2,3}{2,3},{3}}

(c)

(g)

{3,4,5,2,1},{4,5,2,1},{5,2,1},{2,1}}
paths = {{1,2,1},{2,1},{1,2,3,4,5,2,1},{2,3,4,5,2,1},

(a) (b) (d)

5 3

paths = {{1,2,1},{2,1}} paths = {{1,2,1},{2,1}}
11

paths = {{1,2,3,4}{2,3,4},{3,4},{4}}
4

1

paths = {{1,2,1},{2,1}}
1

(f)

paths = {{1,2,1},{2,1}}
1

1

4

3 5

2

(e)

paths = {{1,2,3,4,5}{2,3,4,5},
{3,4,5},{4,5},{5}}5

paths = {{1,2,3,4,5,2},{2,3,5,2},
2 {2,3,4,5,2},{4,5,2},{5,2},{2}}

Figure 2: Example of reachability set dynamic construction

from node 2. Node 1 then updates its variable mreachable (mreachable1[2] = {3, 4, 5})
since these nodes appear after its neighbour 2 in path {1, 2, 3, 4, 5, 2, 1}.

Sketch of proof HB-completeness: The proof is by contradiction. Let q be a process
that is not in the partition of p (p 6= q). Assumes that HB[q] is not bounded. Then, p
receives an infinite number of times messages 〈HBFD, paths〉, where there exists a path P
in paths which contains q after p. This path is of the form P = (p1 · . . . · p · . . . · q · . . . · pk).
Since p receives an infinite number of messages from pk, the link pk → p is fair. By repeated
application, for each j = k − 1, . . . , 1, the link pj → pj+1 is fair. Thus, in P , (p · . . . · q) is a
fair path from p to q and (q · . . . · pk · p) is a fair path from q to p. Therefore, p and q are in
the same partition —a contradiction.

HB-accuracy: The first part (the heartbeat counter of every process is nondecreasing)
is obvious since HB[q] can only be changed in lines 11 and 20. For the second part (the
heartbeat counter of every process in the partition of p is unbounded), two cases are possible.
Let q be a process in the partition of p. If q = p, then line 11 is executed infinitely often
(since p is correct) and HB[p] at p is unbounded. Now, assume q 6= p and let (p1 · . . . · pi)
be a simple fair path from p to q, and (pi · . . . · pk) be a simple fair path from q to p, so
that p1 = pk = p and pi = q. For j = 1, . . . , k − 1, let Pj = (p1 · . . . · pj). By induction on
j, we can show that, for each j = 1, . . . , k − 1, pj sends messages 〈HBFD, paths〉 to pj+1 an
infinite number of times, where there is a path P in paths such that P = subpath · Pj . For
j = k − 1, this claim shows that a neighbour of p sends messages M = 〈HBFD, paths〉 to p
an infinite number of times, where there is a path P

′

in paths such that P
′

= subpath ·Pk−1.

RR n° 6184

12 Conan, Sens, Arantes & Bouillaguet

Since p is correct and by the fairness property of the links, p receives messages of the form
of M an infinite number of times. Since q appears after p in Pk−1, HB[q] is incremented an
infinite number of times (line 20). Therefore, HB[q] is unbounded.

5 Disconnection detection

The connectivity information provided by BL (cf. Section 3) remains local to the mobile
node. In addition, a mobile node can voluntarily decide to disconnect itself from the network.
Hence, as we want in our approach to make the difference between a disconnection and
a failure, the disconnection/reconnection information of nodes should be spread over the
network.

We consider that when a node is disconnected from the network, its does not send
application messages anymore. However, this does not mean that control messages sent by
fair links cannot be transmitted; in other words, physical transmission may be still possible
for a while. Thus, contrary to failures which are unexpected, there is a lapse of time
between the connectivity detection of the mode “disconnected” and the effective physical
disconnection. Such a lapse of time can then be used for alerting remote processes of a node
disconnection. Clearly, in the case of a sudden disconnection, no disconnection message can
be sent and the disconnection will be detected as a failure by the failure detector that runs
on correct and connected processes. This false suspicion will last for the duration of the
disconnection and will be corrected when the disconnected process reconnects. On the other
hand, in the case where the end-user disconnects theirself voluntarily, we consider that the
middleware service responsible for isolating the user’s node waits for a short while before
actually performing the disconnection, thus allowing the transmission of control messages
before the interruption of communication. In other words, since it has been initiated by
the end-user, the disconnection information may be sent to other processes before actually
isolating the node.

Then, we introduce the concept of unreliable vector-based disconnection detector, VBDD,
similar to the one of unreliable failure detection. When a process is notified of a disconnection
either by BL or voluntarily by the end-user, VBDD “tries” to transmit the disconnection
information to all the processes by calling QSB. The same principle is used both to diffuse
disconnection and reconnection information.

By analogy with heartbeat failure detectors, the disconnection detector does not output
a list of disconnected processes, but provides a per process vector, named dv, of disconnec-
tion/reconnection event counters. If dv[q] of process p contains an even value, q is considered
to be seen as connected by p, otherwise it is considered to be disconnected. Notice that such
an interpretation of the disconnection vector’s entries is done afterwards by the partition de-
tector EPPD. It is worth mentioning that VBDD considers only disconnection/reconnection
of correct processes. Indeed, by construction, the disconnection detector is not able to sus-
pect processes of being faulty. So, as mentioned in Section 2, we assume that every process
does not crash while being disconnected.

INRIA

Detectors in Mobile Environnment 13

The algorithm for process p of our disconnection detector VBDD for partitionable net-
works which supports node mobility is presented in Algorithm 2. It has four tasks. The prin-
ciple of the algorithm is to diffuse via QSB the disconnection vector dv into VBDD messages
when one of the following events is triggered: new neighbourhood, voluntary disconnec-
tion, connectivity mode change, or delivery of a VBDD message with new information. The
local vector dv keeps information about process disconnection/reconnection, as previously
described. The local variable voluntaryDisc indicates whether the end-user has requested
a voluntary disconnection, and mode is a variable which is updated with the information
provided by BL about the connectivity of node p itself, the latter information being inferred
from raw data from the execution context. One of the role of VBDD is to infer a logical
connectivity mode by mixing these two inputs and storing the result in dv[p], the other role
being to build a coherent distributed view of disconnection events.

The first task (lines 1–4) corresponds to the code block executed at the creation of the
disconnection detector. Every process is considered to be connected at the beginning of the
execution (lines 2–4). The next task (lines 5–10) allows the end-user to voluntarily discon-
nect or reconnect (by opposition to involuntary disconnections or reconnections detected by
BL). The assignment of the variable voluntaryDisc (line 6) is followed by the propagation of
this new disconnection event to every neighbour (line 9). Naturally, voluntary disconnections
outdo involuntary disconnections/reconnections. Thus, when p is not already disconnected,
either voluntarily or involuntarily (mode 6=‘d’), a voluntary disconnection effectively discon-
nects the process. Similarly, when p is currently voluntarily disconnected and involuntarily
connected (mode 6=‘d’), a voluntary reconnection effectively reconnects the process. The
third task (lines 12–18) is executed when there is a change in the connectivity mode which
is detected by BL. If the node becomes disconnected or connected, and the end-user did
not ask for a voluntary disconnection (condition of the if at line 13), p broadcasts the new
disconnection event (line 15).

The last task (lines 19–24) is responsible for the updating of the disconnection vector
as a result of the delivery of a newly-received disconnection vector (dvq), contained in a
VBDD message. At line 20, dv is compared with dvq. If one or more of the values of dv
entries are smaller than the dvq’s ones, dv is updated with the maximum of the entries of
the two vectors (line 21) and dv is broadcast (line 22). This new disconnection message
is going to update the disconnection vector of other processes that might not be aware of
some disconnection/reconnection events. At p, VBDD then provides to the upper detector
EPPD, which runs on p, the disconnection vector dv (line 23).

Sketch of proof VBDD-completeness: In the following, the generic expression “discon-
nection event” is used to refer to all VBDD messages. There are four possible cases: (1) p
successfully sends a VBDD message to all its neighbours; (2) p is physically disconnected
just before sending a VBDD message.; (3) p successfully sends the disconnection event to
at least one correct and connected process q; and (4) p moves. In the first case, by the
eventually strongly connected hypothesis (section 2 page 5) of the distributed model and
by the stubborn delivery property (section 3 page 6), all the correct processes eventually

RR n° 6184

14 Conan, Sens, Arantes & Bouillaguet

Algorithm 2: Vector-based disconnection detector VBDD
1 upon initialisation do
2 dv[1..|Π|]← {0, ..., 0} {Vector of disconnection sequence numbers at p}
3 voluntaryDisc← false {true if voluntary disconnection of p}
4 mode← ‘c’ {connectivity mode at p}
5 upon voluntary disconnection/reconnection by the end user do
6 voluntaryDisc = ¬voluntaryDisc
7 if mode 6= ‘d’ then
8 dv[p]← dv[p] + 1
9 broadcast(〈VBDD, dv〉)
10 local_send(EPPD,〈VBDD, dv〉)
11 endif
12 upon local_receive(BL,newMode) do
13 if newMode 6= mode ∧ ¬voluntaryDisc then
14 dv[p]← dv[p] + 1
15 broadcast(〈VBDD, dv〉)
16 local_send(EPPD,〈VBDD, dv〉)
17 endif
18 mode← newMmode
19 upon receive(q,〈VBDD, dvq〉) do
20 if ¬(∀r ∈ Π : dv[r] ≥ dvq[r]) then {¬(dv ≥ dvq)}
21 for all r ∈ Π do dv[r]← max(dv[r], dvq[r])
22 broadcast(〈VBDD, dv〉)
23 local_send(EPPD,〈VBDD, dv〉)
24 endif

INRIA

Detectors in Mobile Environnment 15

deliver a VBDD message containing a disconnection vector greater than or equal to dv. In
the second case, the VBDD message is sent whenever p reconnects. This is because of the
properties of the stubborn primitive: messages are saved in the mobile terminal’s buffer and
are sent when the terminal reconnects.p then successfully disseminates this message or a
newer one as done in the first case. In the third case, if q is not physically disconnected after
delivering the disconnection event of p, then it successfully disseminates this event as done
in the first case. But, if q is physically disconnected right after the delivery of the VBDD

message of p, again, the disconnection event or a newer one is disseminated whenever process
p or q reconnects to the network, as in the second case. Finally, if q successfully transmits
the disconnection event to at least one of its neighbours, this is again the third case by
recursion. Clearly, by the eventually strongly connected hypothesis and by the stubborn
delivery property, a VBDD message containing dv or a greater dv is eventually delivered by
all the correct processes. In the last case, neighbourhood changes provoke the diffusion of
a VBDD message to the new neighbourhood. Clearly, the decomposition into the first three
cases just studied before is also valid, leading to the same conclusion.

VBDD-accuracy: First of all, notice that the pth entry of the disconnection vector is
only incremented at process p when p executes the code statements corresponding to vol-
untary disconnections/reconnections (line 5) or to involuntary disconnections/reconnections
(line 12). Next, other processes update the pth entry of their disconnection vector only when
treating VBDD messages. Therefore, the pth entry of the disconnection vector of process q
(q 6= p) is always less than or equal to the pth entry of the disconnection vector of p.

6 Partition Detection

A network can become partitioned due to link or node failures as well as node disconnections.
In other words, some nodes may become unreachable to others. Thus, in this section, we
present our generic partition detector EPPD, which establishes, for process p, the set of
suspected processes which are not in partition(p). To this end, EPPD exploits information
given by both HBFD and VBDD.

EPPD has been defined based on the completeness and accuracy properties as described
in section 3. Its specification is inspired from [3], where a failure detection for partitionable
group systems is presented. The authors formalise the stability conditions that are necessary
for solving group membership in asynchronous systems. The specification is close to our
approach because it is expressed by the reachability between pairs of processes rather than
on individual processes being correct or crashed. In our work, we prefer the term partition
detector to underline the fact that the specification is partition-oriented. Considering process
p, EPPD suspects those processes that do not belong to the same partition of p. However,
it provides a list of suspected processes only for stabilised periods. Thus, even if we consider
that the network graph is eventually strongly connected (see section 2) and that client
algorithms eventually terminate, the objective of EPPD specification is to allow algorithms,
adapted for partitionable networks, to terminate their execution with a smaller number of
processes during stabilised periods.

RR n° 6184

16 Conan, Sens, Arantes & Bouillaguet

Algorithm 3 describes our partition detector EPPD. It tries to discover network parti-
tions using both the heartbeat vector and reachability information provided by HBFD, as
well as the disconnection vector provided by VBDD. All local variables are initialised in
the first task (lines 1–5). The set of suspected processes that do not belong to the same
partition of p is noted as out (for “out” of the partition). Hence, in order to be able to
provide such set, we have introduced in the algorithm of EPPD a time-out. It allows to
build an eventually perfect detector based on heartbeat vector values given by HBFD (see
variables HB and prevHB). At the same time, the reachability information is stored in
variable mreach. EPPD also parses disconnection vectors provided by VBDD (see variable
dv).

The second task of EPPD (lines 6–13) monitors the disconnection events received from
the vector-based disconnection detector VBDD. Each entry of the disconnection vector is
analysed. When VBDD at process p notifies a new disconnection of process q, all processes
considered not to be reachable anymore from p due to the disconnection of q, are added to out
by the call of the procedure add (lines 26–33). The latter procedure parses the reachability
sets to detect which are the processes that became unreachable from p, that is processes
that appear to be reachable through no other neighbour. Then, in order to forget those
processes that were previously reachable from p through q (when q was a neighbour of p),
the reachable set mreach[q] is reset. This is done by sending a message to the local HBFD
(line 11). On the other hand, when the event notified by VBDD is a new reconnection of q,
that is q is no more suspected to be unreachable from p, q is removed from out (procedure
remove at lines 34–35).

The last task (lines 14–25) monitors failure by examining both the heartbeat counters
and reachability sets provided by HBFD. For each process in Π, the difference between the
values of the new heartbeat counter HB and the old heartbeat counter prevHB is compared
against the failure detection threshold value 1, which is assumed to be strictly greater than
0. In the test of line 17, a failure suspicion of process q detected at process p is new if
(1) p suspects q (HB[q] − prevHB[q] < 1), and (2) q is not already suspected (q /∈ out).
In this case, process q and all the processes that became unreachable from p due to the
failure suspicion of q are added to out by the call of the procedure add. Contrariwise, a
false suspicion of process q detected at process p (line 20) is new if (1) p does not suspect
q (HB[q] − prevHB[q] ≥ 1), (2) q is already suspected (q ∈ out), and (3) p is not seen
as disconnected. In this case, q is removed from out by the call to the procedure remove

(lines 34–35).

Sketch of proof Strong partition completeness: There are 3 cases to consider: q is in-
cluded in out (1) either due to the disconnection detection of q, (2) or due to the failure
suspicion of q, (3) or even due to the partition suspicion of q following the disconnection or
the failure of another process r. In the first case, from the VBDD-completeness property, we
know that the corresponding disconnection event of q is eventually delivered by every correct
process. Thus, all the correct processes in partition(q) execute the code block at lines 6–13,
and q is added to the set out. In the second case, from the HB-completeness property, we

INRIA

Detectors in Mobile Environnment 17

Algorithm 3: Eventually Perfect Partition Detector EPPD
1 upon initialisation do
2 out← ∅ {processes suspected to be out of partition(p)}
3 mreach← {∅, ..., ∅} {mutually reachable sets}
4 prevHB[1..|Π|]← {0, ..., 0} {previous heartbeat counters}
5 prevDV [1..|Π|]← {0, ..., 0} {previous disconnection vector}
6 upon local_receive(VBDD,〈VBDD, dv〉) do
7 for all q ∈ Π : prevDV [q] < dv[q] do
8 if dv[q] mod 2 = 1 then {new disconnection}
9 call add(q)
10 else call remove(q) {new reconnection}
11 local_send(HBFD,〈EPPD, out〉)
12 endfor
13 prevDV ← dv
14 upon local_receive(HBFD,〈HBFD, HB, mreachable〉) do
15 mreach← mreachable {new mutually reachable sets}
16 for all q ∈ Π : q 6= p do
17 if HB[q]− prevHB[q] < 1 ∧ q /∈ out then {new failure suspicion}
18 call add(q)
19 local_send(HBFD,〈EPPD, out〉)
20 else if HB[q]− prevHB[q] ≥ 1 ∧ q ∈ out ∧ dv[p] mod 2 = 0 then {false suspicion}
21 call remove(q)
22 local_send(HBFD,〈EPPD, out〉)
23 endelseif
24 endfor
25 prevHB ← HB
26 procedure add(q)
27 out← out ∪ {q}
28 if q = p then out← Π \ {p} {local disconnection}
29 else {disconnection or failure of a remote process}
30 for all s ∈ Π : s ∈ mreach[q] ∧ s 6= q ∧ dv[s] mod 2 = 0 do
31 if ∄u ∈ Π : u 6= q ∧ dv[u] mod 2 = 0 ∧ s ∈ mreach[u] then out← out ∪ {s}
32 endfor
33 endelse
34 procedure remove(q)
35 out← out \ {q}

RR n° 6184

18 Conan, Sens, Arantes & Bouillaguet

know that the heartbeat counter of every process q /∈ partition(p) is eventually bounded.
Thus, for all the processes in partition(p), the condition at line 17 is eventually true and q
is added to the set out. The third case, the partition suspicion of q due to the disconnection
detection or the failure suspicion of another process r, is included in the previous cases.
Process q is added to the set out by the call of the procedure add(r) at lines 29–31.

Eventual strong partition accuracy: The proof is by contradiction. Assume a correct
process q ∈ partition(p) is permanently suspected by p, that is q ∈ out. From the HB-
accuracy property, we know that the heartbeat counter of every process in partition(p) is
unbounded. In addition, from the VBDD-accuracy property and since q ∈ partition(p),
q is connected. Therefore, the condition of the test at line 20 is eventually true and q is
eventually removed from the set out —a contradiction.

6.1 Making the difference between disconnection and failure

In the partition detector EPPD, the disconnection events and the reachability information
diminish the detection latency. For instance, if a process q is seen as disconnected by VBDD
before being detected as faulty by HBFD, EPPD immediately declares q out of partition(p).
Similarly, consider a process r reachable from p only through the neighbour q; as soon as
q becomes unreachable, p declares r out of partition(p), without waiting for the detection
by HBFD. In other words, EPPD builds at process p the set of processes suspected to be
unreachable from p but without providing any hint about the cause of the partition.

We have designed a more elaborated version of partition detection which adds semanti-
cal rules to interpret the detection events from lower-layers and which constructs, over the
correct processes of partition(p), a convergence on the following three sets: (1) the set of pro-
cesses suspected to be faulty by all the processes in partition(p), (2) the set of processes seen
as disconnected by all the processes in partition(p), and (3) the set of processes suspected,
by all the processes in partition(p), to be partitioned due to the failure or the disconnection
of another process. Note that the union of these sets is equal to the set out of EPPD. In this
version of the partition detector, the objective is not the accuracy of the individual sets, but
the convergence on the content of each set. The ultimate goal of characterising the cause of
the partition is to help the decision-making process of applying countermeasures for fault
tolerance (e.g., replace faulty processes of a replicated state machine) and disconnection
tolerance (e.g., open new links or adapt applications’ behaviour).

Contrariwise to Algorithm 3, the new algorithm is a distributed algorithm in which each
process diffuses, in partition messages PART and using QSB, its estimate of the knowledge of
which processes are faulty, which ones are disconnected, and which ones are partitioned. In
addition, in order to converge to a common knowledge in a partition, the algorithm applies
semantical rules which prioritise detection hints. The intuitive ideas behind the scene are
(1) a disconnection is “stronger” than a partition, which is “stronger” than a failure, and
(2) prefer hints from local detectors to hints from remote ones. Of course, one can design
other semantical rules than these ones.

The first intuitive idea states that whenever possible, be optimistic, and prefer consid-
ering a process being disconnected rather than suspecting it to be partitioned, rather than

INRIA

Detectors in Mobile Environnment 19

suspecting its failure. For instance, a failure suspicion is new when the corresponding process
is not already suspected to be faulty, but also neither seen disconnected nor suspected to be
partitioned. According to the second intuitive idea, note that the information provided by
the local instance of VBDD may contradict the information contained by PART messages.
The new algorithm gives priority to the hints provided by VBDD. The reason is that the
VBDD-completeness stipulates that eventually all disconnections and reconnections are seen
by all the correct processes in the same partition: Even if VBDD can temporarily provides
false hints, the information is eventually accurate.

7 Related work

The failure detector presented in this paper is based on seminal work on heartbeat failure
detectors by Aguilera, Chen and Toueg [1, 2]. The distributed system model is the same
and is suitable for mobile ad hoc networks: An asynchronous model augmented with failure
detection for partitionable networks. Even if not mentionned in their papers, heartbeat
failure detection algorithms are inherently convenient for tolerating nodes mobility. We
have just implicitly added an neighbourhood detector that notifies topology changes of
the neighbourhood, and modified the transmission and the parsing of paths in heartbeat
messages in order to (1) let the heartbeat message return to the initiator even if the path
includes a cycle and to (2) build the set of processes reachable through neighbours.

In the literature, few unreliable failure detectors explicitly target mobile ad hoc networks.
In [6], the authors propose an adaptation of a gossip based failure detection. Heartbeat
messages are logically stamped, and a vector informing about the last heartbeat messages
received, is piggybacked in every heartbeat message. In order to tolerate nodes mobility,
the failure detector algorithm allows gaps of some heartbeats between adjacent heartbeat
arrivals. Contrary to our distributed model, the links are bidirectional.

In [8], an architecture for local failure detection and tolerating terminal mobility is pre-
sented in the context of sensor networks. The distributed model assumes that every process
uses the same time unit. The mobility is said to be passive, that is nodes are not aware
they are moving, and the network does not partition. In our work, the distributed model is
weaker, but assumes that each node is equipped with a neighbour detector. We do not build
such neighbour detector but claim that network protocols can provide such information.
Furthermore, in [8], the architecture is built around a local failure detector (correct pro-
cesses eventually only suspect processes in the local neighbourhood) and mobility detection
layer. The local failure detection is implemented using any 3P algorithm, not provided in
the paper. The mobility detection algorithm is a periodic gossip diffusing computation with
one initiator and with termination detection.

Concerning disconnection detection, to the best of our knowledge, there is no determin-
istic algorithm in the literature. Concerning partition detection, [3] discusses the property
of a failure detector for partitionable group communication systems, but the authors do
not give any implementation. Our partition detector is inspired by this specification. In
addition, contrary to [3], in our proposition, communication channels can be unidirectional.

RR n° 6184

20 Conan, Sens, Arantes & Bouillaguet

We see our partition detector as the participant detector introduced in [4]: Take the set of
reachable processes as the set of participants and relaunch the consensus in case of the trig-
gering of partition change. In our proposition, the partition detector implicitly relies on a
neighbourhood detector. Our neighbourhood detector conforms to the information accuracy
property of the participant detector. The second property, namely information inclusion, is
not present in our proposition because, contrary to [4], the set of potential participants Π
is known.

8 Conclusion and future work

This paper has presented a derived version of a heartbeat failure detector in which the paths
of processes piggybacked in the heartbeat messages are also parsed to build a topology of
the network reachable through the neighbours. We also used this failure detector to build
a quiescent stubborn broadcast primitive. In addition, the failure detector tolerates the
mobility of the processes, and then topology changes. Since disconnections are frequent in
mobile ad hoc networks, and in order to make the distinction between failures and discon-
nections, the paper has also introduced the concept of unreliable disconnection detection
and has presented a vector-based disconnection detector. Our disconnection detector makes
the benefit of the quiescent stubborn channels to diffuse disconnection information whenever
possible, that is optimistically. The hints provided by the heartbeat failure detector and by
the vector-based disconnection detector are interpreted by an eventually perfect unreliable
partition detector for wireless systems subject to node and link crashes failure, and subject
to nodes mobility. A first version of the partition detector outputs for each process p, a list of
processes suspected to be unreachable, that is those processes which are suspected of being
in another partition than p’s one. A second version of the partition detector also constructs,
over the correct processes of p’s partition, a convergence on the set of processes suspected
to be faulty, the set of processes seen as disconnected, and the set of processes suspected
to be partitioned. The goal of characterising the cause of the partition is to distinguish
countermeasures for fault tolerance and for disconnection tolerance.

The first perspective to this work is the simulation of the protocols’ performance for
mobile ad hoc networks and the comparison with the results presented in [6]. Another
perspective is the study of the effect of the threshold of our eventually perfect partition
detector: In algorithm 3, the threshold is fixed to 1. Last but not least, we plan to use the
partition detector for establishing consensus for partitionable networks, that is on a set of
participants smaller than Π.

References

[1] M. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat Failure Detector for Qui-
escent Reliable Communication and Consensus in Partitionable Networks. Theoretical
Computer Science, 220(1):3–30, June 1999.

INRIA

Detectors in Mobile Environnment 21

[2] M. Aguilera, W. Chen, and S. Toueg. On Quiescent Reliable Communication. SIAM
Journal of Computing, 29(6):2040–2073, Apr. 2000.

[3] Ö. Babaoǧlu, R. Davoli, and A. Montresor. Group Communication in Partitionable
Systems: Specification and Algorithms. IEEE Transactions on Software Engineering,
27(4):308–336, Apr. 2001.

[4] D. Cavin, Y. Sasson, and A. Schiper. Reaching Agreement with Unknown Partici-
pants in Mobile Self-Organized Networks in Spite of Process Crashes. Technical Report
IC/2005/026, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2005.

[5] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2):225–267, Mar. 1996.

[6] R. Friedman and G. Tcharny. Evaluating Failure Detection in Mobile Ad-Hoc Networks.
International Journal of Wireless and Mobile Computing, 1(8), 2005.

[7] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn Communication Channels. Tech-
nical Report TR97, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
1997.

[8] N. Sridhar. Decentralized Local Failure Detection in Dynamic Distributed Systems.
In Proc. 25th IEEE Symposium on Reliable Distributed Systems, pages 143–154, Leeds
(UK), Oct. 2006.

[9] L. Temal and D. Conan. Failure, connectivity, and disconnection detectors. In Proc. 1st
French-speaking Conference on Mobility and Ubiquity Computing, volume 64 of ACM
International Conference Proceeding Series, pages 90–97, Nice, France, June 2004.

RR n° 6184

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Distributed System Model
	General architecture and basic primitives
	Failure detection
	Disconnection detection
	Partition Detection
	Making the difference between disconnection and failure

	Related work
	Conclusion and future work

