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Abstract. In this paper, a new supervised classification method dedicated to binary pre-
dictors is proposed. Its originality is to combine a model-based classification rule with similarity
measures thanks to the introduction of new family of exponential kernels. Some links are estab-
lished between existing similarity measures when applied to binary predictors. A new family of
measures is also introduced to unify some of the existing literature. The performance of the new
classification method is illustrated on two real datasets (verbal autopsy data and handwritten
digit data) using 76 similarity measures.

Keywords. Mixture model, binary predictors, kernel method, similarity measure.

1 Introduction

Supervised classification aims to build a decision rule able to assign an observation x in an
arbitrary space E with unknown class membership to one of L known classes C1, . . . , CL. For
building this classifier, a learning dataset {(x1, y1), . . . , (xn, yn)} is used, where an observation
is denoted by xi ∈ E and yi ∈ {1, . . . , L} indicates the class belonging of xi, i = 1, . . . , n.

Model-based classification assumes that the predictors {x1, . . . , xn} are independent realiza-
tions of a random vector X on E and that the class conditional distribution of X is parametric.
When E = Rp, among the possible parametric distributions, the Gaussian is often preferred
and, in this case, the marginal distribution of X is therefore a mixture of Gaussians. Estima-
tion of model parameters can be achieved with maximum likelihood, see [29]. Some extensions
dedicated to high-dimensional data include [6, 8, 9, 30, 31, 33, 34]. Although model-based clas-
sification is usually enjoyed for its multiple advantages, it is often limited to quantitative data.
Numerous recent works focused on non Gaussian distributions such as the skew normal [43],
asymmetric Laplace [16], t-distributions [1, 15] or skew t-distributions [27, 28, 45].

Only few works exist to handle categorical data using multinomial [12] or Dirichlet [5] dis-
tributions for instance. Recently, a new classification method, referred to as ’parsimonious
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Gaussian process Discriminant Analysis’ (pgpDA), has been proposed [7] to tackle the case of
data of arbitrary nature. See for instance [14] for an application to the classification of hyper-
spectral data. The basic idea is to introduce a kernel function in the Gaussian classification
rule.

In this paper, we focus on the application of the pgpDA method to binary predictors. To
this end, we show how new kernels can be built basing on similarity or dissimilarity measures. In
particular, 76 such measures are considered. Some links are established between these measures
when they are applied to binary predictors. A new family of measures is also introduced to unify
the existing literature. As a result, we end up with a new supervised classification method ded-
icated to binary predictors combining similarity measures and mixture models. Its performance
is illustrated on two real datasets (verbal autopsy data and handwritten digit data). It is shown
that the proposed kernels can lead to good classification results even in challenging problems.

The paper is organized as follows. The principle of pgpDA applied to binary predictors is
explained in Section 2. A brief review on similarity and dissimilarity measures is proposed in
Section 3 together with some unification efforts. The construction of new kernels starting from
similarity measures is presented in Section 4. The method is illustrated on real data in Section 5
and some concluding remarks are provided in Section 6. Proofs are postponed to the Appendix.

2 Classification with binary predictors using a kernel function

Conventional classification algorithms can be turned into kernel ones as far as the original
method depends on the data only in terms of dot products. The dot product is simply changed
to a kernel evaluation, leading to a transformation of linear algorithms to non-linear ones.
Additionally, a nice property of kernel learning algorithms is the possibility to deal with any
kind of data. The only condition is to be able to define a positive definite function over pairs
of elements to be classified [23]. Here, we focus on binary predictors. Let us consider a learning
set {(x1, y1), . . . , (xn, yn)} where {x1, . . . , xn} are assumed to be independent realizations of a
random binary vector X ∈ {0, 1}p. The class labels {y1, . . . , yn} are supposed to be realizations
of a discrete random variable Y ∈ {1, . . . , L}. They indicate the memberships of the learning
data to the L classes denoted by C1, . . . , CL, i.e. yi = k means that xi belongs to the kth cluster
Ck for all i ∈ {1, . . . , n} and k ∈ {1, . . . , L}.

The principle of pgpDA is as follows. Let K be a symmetric non-negative bivariate function
K : {0, 1}p×{0, 1}p → R+. In the following, K is referred to as a kernel function and additional
conditions will be assumed onK. The basic idea is to measure the proximity between individuals
with K, and that close individuals are likely to belong to the same class. To this end, the kernel
K computes inner products between pairs of data in some non-linear space (often referred to
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as a feature space). For all k = 1, . . . , L, let us denote by nk the cardinality of the class
Ck, i.e. nk =

∑n
i=1 I{yi = k} where I{.} is the indicator function. We also introduce rk the

dimension of class Ck once mapped in a non-linear space with the kernel K. In practice, one has
rk = min(nk, p) for a linear kernel and rk = nk for the non-linear kernels considered in Section 4.
See [7], Table 2 for further examples.

For all k = 1, . . . , L, the function ρk : {0, 1}p × {0, 1}p → R+ is obtained by centering the
kernel K with respect to the class Ck:

ρk(x, x′) = K(x, x′)− 1
nk

∑
xi∈Ck

(K(xi, x
′) +K(x, xi)) + 1

n2
k

∑
xi,xj∈Ck

K(xi, xj). (1)

Besides, for all k = 1, . . . , L, let Mk be the nk × nk symmetric matrix defined by (Mk)i,j =
ρk(xi, xj)/nk for all (i, j) ∈ {1, . . . , nk}2. The sorted eigenvalues of Mk are denoted by λk1 ≥
· · · ≥ λknk

while the associated (normed) eigenvectors are denoted by βk1, . . . , βknk
. In the fol-

lowing, βkji represents the ith coordinate of βkj , for (i, j) ∈ {1, . . . , nk}2. The main assumption
of the method is that the data of each class Ck live in a specific subspace of dimension dk of
the feature space (of dimension rk). The variance of the signal in the kth group is modeled by
λk1, . . . , λkdk

and the variance of the noise is modeled by λ. This amounts to supposing that
the noise is homoscedastic and its variance is common to all the classes.

The classification rule introduced in [7], Proposition 2 affects x ∈ {0, 1}p to the class C` if
and only if ` = arg mink=1,...,LDk(x) with

Dk(x) = 1
nk

dk∑
j=1

1
λkj

(
1
λkj
− 1
λ

) ∑
xi∈Ck

βkjiρk(x, xi)

2

+ 1
λ
ρk(x, x)

+
dk∑

j=1
log(λkj) + (dmax − dk) log(λ)− 2 log(nk) (2)

where dmax = max{d1, . . . , dL} and

λ =
L∑

k=1
nk(trace(Mk)−

dk∑
j=1

λkj)
/

L∑
k=1

nk(rk − dk) .

Let us highlight that only the eigenvectors associated with the dk largest eigenvalues of Mk

have to be estimated. This property is a consequence of the above assumption, it allows to
circumvent the unstable inversion of the matrices Mk, k = 1, . . . , L which is usually necessary in
kernelized versions of Gaussian mixture models, see for instance [13, 32, 35, 44, 46]. In practice,
dk is estimated thanks to the scree-test of Cattell [11] which looks for a break in the eigenvalues
scree. The selected dimension is the one for which the subsequent eigenvalues differences are
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smaller than a threshold t. The threshold t can be provided by the user or selected by cross-
validation, see Section 5 for implementation details. The implementation of this method requires
the selection of a kernel function K which measures the similarity between two binary vectors.
The following invariance remark can be made:

Lemma 1. Let K be a symmetric non-negative bivariate function K : {0, 1}p × {0, 1}p → R+.
Then, for all η > 0 and µ ∈ R, the classification rules associated with K and K̃ := ηK + µ

through (2) are the same.

As a consequence, to define a proper kernel method [23], it suffices to find a shifted version of
K which is a positive definite function i.e.

∃ µ ∈ R s.t.
n∑

i=1

n∑
j=1

cicj [K(xi, xj)+µ] ≥ 0 for all n ∈ N, (ci, cj) ∈ R2, (xi, xj) ∈ {0, 1}p×{0, 1}p.

(3)
The construction of kernel functions adapted to binary vectors and satisfying (3) is addressed
in Section 4.

Let us highlight that pgpDA is not the only kernel-based classification method. In Section 5,
pgpDA is compared to Support Vector Machine (SVM) classification [20, 21, 36] and k-nearest
neighbours (kNN) [22], Chapter 13, on two real datasets. From the theoretical point of view,
pgpDA offers a number of advantages compared to SVM: It is naturally a multi-class method;
as a model-based classifier, it provides classification probabilities, and finally its computation
cost is lower than SVM [7].

3 Similarity and dissimilarity measures

Binary similarity and dissimilarity measures play a critical role in pattern analysis problems,
classification or clustering. Since the performance of these methods relies on the choice of
an appropriate measure, many efforts have been made to find the most meaningful similarity
measures over a hundred years, see [2, 37] for examples. The review article [37] lists 76 examples
of such measures. Here, we focus on their application to binary predictors. One of the earliest
measures is Jaccard’s coefficient [26]. It was proposed in 1901 and it is still widely used in
various fields such as ecology and biology.

Let x, x′ be two vectors in {0, 1}p and introduce a =< x, x′ >, b =< 1− x, x′ >,
c =< x,1 − x′ > and d =< 1 − x,1 − x′ >, where < ., . > is usual scalar product on Rp and
1 = (1, . . . , 1)T in Rp. The integer a is often referred to as the intersection of x and x′, (b+ c) is
the difference and d is the complement intersection. Note that one always has a+ b+ c+ d = p.

4



Here, we propose to unify most of the measures proposed in the literature by introducing
the following similarity measure :

S(x, x′) = αa− θ(b+ c) + βd

α′a+ θ′(b+ c) + β′d
(4)

where α ≥ 0, β ≥ 0, θ ≥ 0, (α′, β′) ∈ R2 and θ′ 6= 0. The Symmetric Ratio Model [42] can be
written as

STversky(x, x′) = a

a+ θ′(b+ c)

and is thus a particular case of (4) where α = α′ = 1 and θ = β = β′ = 0. Similarly, Beaulieu’s
similarity [3] defined by

SBeaulieu(x, x′) = −(b+ c)
α′a+ (b+ c) + β′d

can be obtained from (4) with α = β = 0 and θ = θ′ = 1. We shall also consider the particular
case

SSylla & Girard(x, x′) = αa+ (1− α)d, (5)

where θ = 0, β = 1 − α and α′ = β′ = θ′ = 1/p. This new measure can be interpreted as
an extension of Intersection [37] eq. (12) and Russell & Rao [37] eq. (14) measures which both
correspond to the case α = 1. The inclusion of negative matches d in similarity measures is
discussed for instance in [17, 18, 40]. It may reveal useful for instance when the classification rule
depends on the coding of the data, see also Lemma 2 below. The new measure SSylla & Girard can
also be seen as an extension of Sokal & Michener [37] eq. (7) and Innerproduct [37] eq. (13) mea-
sures which both correspond to the special case α = 1/2. Thus, the parameter α in SSylla & Girard

permits to balance the relative weights of positive and negative matches.
More generally, Table 1 displays 28 similarity measures from [37] which can be rewritten using
our formalism (4). It appears that, on binary predictors, many similarity measures are equiva-
lent. For instance, Hamming similarity [37] eq. (15) is equivalent to measures [37] eq. (17)–(23).
Finally, some measures of [37] do not enter in our framework (4) but they can be shown to
be equivalent: Forbesi measure [37] eq. (34) is equivalent to Cosine [37] eq. (31) measure,
Kulczynski-II [37] eq. (41), Driver & Kroeber [37] eq. (42) and Johnson [37] eq. (43) measures
are equivalent, Ochia1 measure [37] eq. (33) is equivalent to Otsuka measure [37] eq. (38),
Hellinger measure [37] eq. (29) is equivalent to Chord measure [37] eq. (30) and Tarantula
measure [37] eq. (75) is equivalent to Ample measure [37] eq. (76).
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Name α θ β α′ θ′ β′ equation in [37]
Jaccard 1 0 0 1 1 0 (1)
Tanimoto - - - - - - (65)

Dice 2 0 0 2 1 0 (2)
Czekanowski - - - - - - (3)

Nei & li - - - - - - (5)
3w-Jaccard 3 0 0 3 1 0 (4)

Sokal & Sneath-I 1 0 0 1 2 0 (6)
Sylla & Girard α 0 1− α 1 1 1

Sokal & Michener 1 0 1 1 1 1 (7)
Innerproduct - - - - - - (13)

Sokal & Sneath-II 2 0 2 2 1 2 (8)
Gower & Legendre - - - - - - (11)
Roger & Tanimoto 1 0 1 1 2 1 (9)

Faith 1 0 0.5 1 1 1 (10)
Intersection 1 0 0 1 1 1 (12)

Russell & Rao - - - - - - (14)
Hamming* 0 1 0 1 1 1 (15)

Squared-Euclid* - - - - - - (17)
Canberra* - - - - - - (18)
Manhattan* - - - - - - (19)

Mean-Manhattan* - - - - - - (20)
Cityblock* - - - - - - (21)
Minkowski* - - - - - - (22)

Vari* - - - - - - (23)
Lance & Williams* 0 1 0 2 1 0 (27)
Bray & Curtis* - - - - - - (28)

Sokal & Sneath-III 1 0 1 0 -1 0 (56)
Kulczynski-I 1 0 0 0 -1 0 (64)
Hamann 1 1 1 1 1 1 (67)

Table 1: Similarity measures. Measures marked with * are obtained by taking the opposite of
the associated dissimilarity measures. The last column refers to the equation number in [37].
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4 Kernels for binary predictors

The goal of this section is to build kernels adapted to binary predictors starting from the
similarity and dissimilarity measures presented in Section 3. The kernels can then be plugged
in the classification rule (2) to build new classification methods designed for binary predictors.
In a first time, we consider the case of linear and Radial Basis Function (RBF) kernels. We
then show in a second time how the RBF kernel can be extended to a wider class of exponential
kernels.

Linear kernels. Let x, x′ ∈ {0, 1}p. The linear kernel Klinear(x, x′) =< x, x′ >= a is the
simplest kernel function. In the considered binary framework, Klinear counts the number of
positive matches between x and x′. It is shown (see [7], Proposition 3) that the associated
classification rule (2) is quadratic and can thus be interpreted as a particular case of the HDDA
(High Dimensional Discriminant Analysis) method [4]. Let us recall that the basic principle of
HDDA is to assume that the original data of each class live in a linear subspace of low dimension.
The next lemma shows that the classification rule associated with a linear kernel is independent
from the coding of the data.

Lemma 2. Let x, x′ ∈ {0, 1}p and introduce K̃linear(x, x′) =< 1 − x,1 − x′ >= d (this kernel
counts the number of negative matches between x and x′). Then, the classification rules (2)
associated with Klinear and K̃linear are equivalent.

Exponential kernels. The best-known exponential kernel is RBF kernel:

KRBF(x, x′) = exp
(
−‖x− x

′‖2

2σ2

)
,

where σ is a positive parameter. In the binary framework, the RBF kernel can be built from
the Hamming similarity measure (see Table 1 or [37] eq. (15)):

Lemma 3. Let x, x′ ∈ {0, 1}p. Then,

KRBF(x, x′) = exp
(
SHamming(x, x′)

2σ2

)
.

We thus propose to extend this construction principle to any similarity measure S by introducing:

K(x, x′) = exp
(
S(x, x′)

2σ2

)
. (6)

In practice, S may be chosen to be (4), (5), or more generally in the set of 76 measures S
described in [37]. The next result is the analogous of Lemma 1 for similarity measures.
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Lemma 4. Let S be a similarity measure S : {0, 1}p × {0, 1}p → R+. Then, for all η > 0 and
µ ∈ R, the classification rules associated with S and S̃ := ηS + µ through (2) and (6) are the
same.

The next result shows that any kernel defined from (4) and (6) verifies condition (3).

Proposition 1. For all α ≥ 0, β ≥ 0, θ ≥ 0, (α′, β′) ∈ R2 and θ′ 6= 0, the family of kernels

K(x, x′) = exp
( 1

2σ2
αa− θ(b+ c) + βd

α′a+ θ′(b+ c) + β′d

)
defines a proper kernel classification method.

5 Experiments

The performance of the proposed method is illustrated on two real datasets described in para-
graph 5.1. Some implementation details are provided in paragraph 5.2. Finally, the results are
presented on paragraphs 5.3, 5.4 and 5.5.

5.1 Datasets

Verbal autopsy Data The goal of verbal autopsy is to get some information from family
about the circumstances of a death when medical certification is incomplete or absent [24]. In
such a situation, verbal autopsy can be used as a routine death registration. A list of p possible
symptoms is established and the collected data X = (X1, . . . , Xp) consist of the absence or
presence (encoded as 0 or 1) of each symptom on the deceased person. The probable cause of
death is assigned by a physician and is encoded as a qualitative random variable Y . We refer
to [39] for a review of automatic methods for assigning causes of death Y from verbal autopsy
data X. In particular, classification methods based on Bayes’ rule have been proposed, see [10]
for instance.

Here, we focus on data measured on the deceased persons during the period from 1985 to
2010 in the three IRD (Research Institute for Development) sites (Niakhar, Bandafassi and
Mlomp) in Senegal. The dataset includes n = 2.500 individuals (deceased persons) distributed
in L = 22 classes (causes of death) and characterized by p = 100 variables (symptoms).

Binary handwritten digit data Handwritten digit and character recognition are popular
real-world tasks for testing and benchmarking classifiers, with obvious application e.g. in postal
services. Here, we focus on the US Postal Service (USPS) database of handwritten digits which
consists of n = 9298 segmented 16 × 16 greyscale images [25]. The dataset is available online
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at http://yann.lecun.com/exdb/mnist. The random vector X is the binarized image and is
represented as a p-dimensional vector with p = 256. The class to predict Y is the digit so that
L = 10. A sample extracted from the dataset is depicted on Figure 1.

Figure 1: A sample from the binary handwritten digit data. Each pixel of a 16 × 16 image is
either 0 (depicted in white) or 1 (depicted in black).

5.2 Experimental design

The implementation of the classification method requires the selection of the hyper-parameter
ω = (t, σ) where t is the threshold (see Section 2) and σ is the kernel parameter see (6). To
this end, a double cross-validation technique is used. The dataset of size n is randomly split
M = 50 times into a learning set Lm of size τn and a test set Tm of size (1 − τ)n where
τ ∈ (0, 1) is a proportion parameter and m = 1, . . . ,M . On each learning set Lm, the optimal
hyper-parameter ω̂m is selected by a 5-fold simple cross-validation, m = 1, . . . ,M . The resulting
optimal hyper-parameter ω̂ is computed as the empirical mode of the set {ω̂1, . . . , ω̂M}. Finally,
the mean Correct Classification Rate (CCR) is computed on the learning sets Lm, m = 1, . . . ,M
and on the test sets Tm, m = 1, . . . ,M . Recall that the CCR is the percentage of well-classified
observations i.e. the number of times that the predicted class coincides with the actual one
divided by the total number of observations.

5.3 Results obtained with Sylla & Girard kernel

We first investigate the use of Sylla & Girard similarity measure (5) when plugged into (6). The
CCR are computed for α ∈ {0, 0.1, . . . , 1} and for several proportions τ thanks to the double
cross-validation procedure described in the previous paragraph. It first appears on Figure 2
that the graphs are not symmetric with respect to α = 0.5. This means that the coding of the
observations does affect the classification. This is different from the linear case, see Lemma 2.
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It is also apparent that the optimal value of α does depend on the dataset. However, in both
considered cases, α = 0.1 permits to outperform the RBF kernel associated with α = 0.5.
Thus, the selection of an optimal value of α is of interest. It can be easily done by introducing
α as an additional hyper-parameter in ω and thus selecting it by double cross-validation, see
Paragraph 5.5 below. Finally, let us highlight that a large panel of values of α give rise to
high CCR on the test set. In particular, a CCR of 87% can be reached on the challenging
example of verbal autopsy data when τ = 78% of the dataset is used to train the classifier.
As a comparison, a classification based on a multinomial mixture model under conditional
independence assumption yields a CCR of about 50% only [41].

Figure 2: Correct Classification Rate (CCR) obtained with Sylla & Girard kernel (5, 6) for
α ∈ {0, 0.1, . . . , 1} and several proportions τ . The results obtained with the RBF kernel (α = 0.5)
are emphasized by a red circle. Left: CCR computed on the learning set, Right: CCR computed
on the test set. Top: results obtained on the verbal autopsy data, bottom: results obtained on
the handwritten digit data.
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5.4 Results obtained with the 76 kernels from [37]

The goal of this paragraph is to compare the performance of the classification methods obtained
by combining the 76 similarity and dissimilarity measures presented in [37] with the exponen-
tial kernel (6). For the sake of completeness, the results obtained with Sylla & Girard kernel
presented above are also included. The classification results are summarized in Table 2 when
τ = 63% of the dataset is used to train the classifier. Only the results associated with the 18
best kernels (in terms of CCR computed on the test set) are reported. It appears that these
kernels achieve good classification results on both datasets with CCR ∈ [78.7%, 89.7%]. It is
also interesting to note that 8 kernels out of the 76 of [37] appear in the top 18 on both test
datasets, namely: Euclid, Hellinger, Dice, 3w-Jaccard, Orchia1, Gower & Legendre, Roger &
Tanimoto and RBF. Let us also highlight that Sylla & Girard kernel should also be included,
leading to a list of 9 kernels with good results on both datasets.

5.5 Comparison with other classification methods

The proposed classification method is compared to the Random Forest method (RandomForest
package, version 4.6-10 from R software), the kNN method (fitcknn function from the statistics
and machine learning toolbox of Matlab) and the SVM method (library libsvm, version 3.2 from
Matlab). The “one-against-all” implementation of the SVM classification method is used. SVM
and Random Forest methods were used with their default parameters. In particular, in case of
Random Forest method, the number of trees to grow is set to ntree=500 and the minimum size
of terminal nodes is set to nodesize=1. Some additional experiments reported in Table 5 and
Table 6 showed that the obtained classifications were not very sensitive to these parameters: The
CCR computed on the test set remains approximately constant when nodesize ∈ {1, . . . , 10}
and ntree ∈ {250, 500, 750, 1000}. The number k of neighbours in kNN method is selected using
the double cross-validation procedure. Sylla & Girard kernel is plugged into pgpDA, kNN and
SVM methods with α ∈ {0.1, 0.2, . . . , 0.9}. The selection of α by double cross-validation has
also been implemented, the resulting value is denoted by α? in the following.

It appears in Table 3 and Table 4 that, on the verbal autopsy dataset, pgpDA method yields
better results than SVM, kNN and Random Forest methods on the test set. Since, on the
learning set, the CCR obtained with Random Forest is larger than the CCR associated with
pgpDA, kNN and SVM methods for all values of α, one can suspect that Random Forest overfits
this dataset. One can also observe that the CCR associated with pgpDA slightly depends on α
(CCR ∈ [72.0%, 76.4%]) whereas CCR associated with SVM and kNN are very sensitive to α
(CCR ∈ [61.2%, 74.6%] and CCR ∈ [53.1%, 61.8%] respectively). At the opposite, SVM, kNN
and Random Forest yield better results than pgpDA on the handwritten digit dataset. The
CCR associated with pgpDA is however satisfying, it is larger than 87.1% whatever the value
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of α is. This may due to the small number of classes (L = 10 here, L = 22 in the previous
situation) which makes the classification problem not so difficult.

The selection by double cross-validation of the parameter α in Sylla & Girard achieves good
results for all the considered classification methods. The selected value remains stable accross
the experiments: α? ∈ {0.3, 0.4} with pgpDA, α? ∈ {0.1, 0.2} with SVM and α? = 0.3 for
kNN. It is a first step towards an automatic choice of the similarity measure in the classification
framework. Finally, let us precise that the experiments were conducted on a two processor
computer (8 cores cadenced a 2.6 GHz). The computations on one learning set Lm from the
handwritten digit dataset took respectively 35 minutes (pgpDA), 40 minutes (SVM), 48 minutes
(kNN) and 11 minutes (Random Forest).

6 Conclusion

This work was motivated by two facts: First, numerous binary similarity measures have been
used in various scientific fields. Second, model-based mixtures offer a coherent response to
the problem of classification by providing classification probabilities and natural multi-class
support. Basing on these remarks, our main contribution is the proposal of a new classification
method combining mixture models and binary similarity measures. The method provides good
classification performances on challenging data sets (high number of variables and classes). We
believe that this method can reveal useful in a wide variety of classification problems with binary
predictors. As a by-product of this work, some new similarity measures are proposed to unify
the existing literature.

This work could be extended to the classification of mixed quantitative and binary predictors.
As suggested in [7], to deal with such data, one can build a combined kernel by mixing a kernel
based on a similarity measure (as proposed here) for the binary predictors and a RBF kernel
for the quantitative ones. The combined kernel could be for instance the weighted sum or the
product of the two kernels, see [19] for further details on multiple kernel learning.

Appendix: Proofs

Proof of Lemma 1. For all k = 1, . . . , L, let ρ̃k be the function defined similarly to (1) by

ρ̃k(x, x′) := K̃(x, x′)− 1
nk

∑
xi∈Ck

(K̃(xi, x
′) + K̃(x, xi)) + 1

n2
k

∑
xi,xj∈Ck

K̃(xi, xj)

= ηK(x, x′)− 1
nk

∑
xi∈Ck

(ηK(xi, x
′) + ηK(x, xi)) + 1

n2
k

∑
xi,xj∈Ck

ηK(xi, xj),

= ηρk(x, x′).

12



Thus, (M̃k)i,j := ρ̃k(xi, xj)/nk = η(Mk)i,j for all (i, j) ∈ {1, . . . , nk}2. Let the sorted eigenvalues
of M̃k be denoted by λ̃k1 ≥ · · · ≥ λ̃knk

and the associated (normed) eigenvectors be denoted by
β̃k1, . . . , β̃knk

. Clearly, λ̃kj = ηλkj and β̃kj = ±βkj for all (j, k) ∈ {1, . . . , nk}2. It follows that

λ̃ :=
L∑

k=1
nk(trace(M̃k)−

dk∑
j=1

λ̃kj)
/

L∑
k=1

nk(rk − dk) = ηλ

and therefore

D̃k(x) := 1
nk

dk∑
j=1

1
λ̃kj

(
1
λ̃kj

− 1
λ̃

) ∑
xi∈Ck

β̃kjiρ̃k(x, xi)

2

+ 1
λ̃
ρ̃k(x, x)

+
dk∑

j=1
log(λ̃kj) + (dmax − dk) log(λ̃)− 2 log(nk)

= Dk(x) + dmax log η.

Since dmax log η does not depend on k, the two classification rules are equivalent.

Proof of Lemma 2. To simplify the notations, let K(x, x′) :=< x, x′ > and

K̃(x, x′) := < 1− x,1− x′ >

= < 1,1 > − < 1, x > − < 1, x′ > + < x, x′ >

= K(1, 1)−K(1, x)−K(1, x′) +K(x, x′).

For all k = 1, . . . , L, replacing in

ρ̃k(x, x′) := K̃(x, x′)− 1
nk

∑
xi∈Ck

(K̃(xi, x
′) + K̃(x, xi)) + 1

n2
k

∑
xi,xj∈Ck

K̃(xi, xj),

yields ρ̃k(x, x′) = ρk(x, x′) in view of (1) and thus the two classification rules are equivalent.

13



Proof of Lemma 3. For all x, x′ ∈ {0, 1}p, we have

‖x− x′‖2 =
p∑

i=1
x2

i +
p∑

i=1
(x′

i)2 − 2
p∑

i=1
xix

′
i

=
p∑

i=1
xi +

p∑
i=1

x′
i − 2

p∑
i=1

xix
′
i

=
p∑

i=1
xi(1− x′

i) +
p∑

i=1
x′

i(1− xi)

= b+ c,

and the conclusion follows.

Proof of Lemma 4. Let us remark that

K̃(x, x′) := exp
(
S̃(x, x′)

2σ2

)
= exp

(
ηS(x, x′) + µ

2σ2

)
= η′ exp

(
S(x, x′)

2σ′2

)

with η′ = exp(µ/(2σ2)) and σ′ = σ/
√
η. The conclusion follows from Lemma 1.

Proof of Proposition 1. Let us introduce

S1(x, x′) := αa− θ(b+ c) + βd,

S2(x, x′) := α′a+ θ′(b+ c) + β′d,

such that
K(x, x′) = exp

( 1
2σ2

S1(x, x′)
S2(x, x′)

)
.

– Let us first prove that S1 defines a proper kernel classification method. Note that, if θ = 0,
then S1(x, x′) = αKlinear(x, x′) + βK̃linear(x, x′) and the conclusion follows. In the case where
θ > 0, one can write

S1(x, x′) = αa− θ(p− a− d) + βd = θp(ua+ vd− 1)

with u := (1+α/θ)/p > 0 and v := (1+β/θ)/p > 0. It is thus clear that S1 verifies condition (3).
– The second step consists in showing that 1/S2 defines a proper kernel classification method.

Let us focus on the case where 0 ≤ α′, β′ < θ′, the other cases being similar. Introduce

14



u′ := (1− α′/θ′)/p > 0 and v′ := (1− β′/θ′)/p > 0 such that

S2(x, x′) = α′a+ θ′(p− a− d) + β′d = θ′p[1− (u′a+ v′d)]

with u′ ∈ [0, 1) and v′ ∈ [0, 1). Since 0 ≤ u′a+ v′d < 1, the following expansion holds:

1
S2(x, x′) = 1

θ′p

∞∑
i=0

(u′a+ v′d)i.

For all N > 0, let

S3,N (x, x′) := 1
θ′p

N∑
i=0

(u′a+ v′d)i.

Since S3,N is obtained from sums and products of Klinear and K̃linear, it follows from [38], Propo-
sition 3.22 (i) and (iii) that S3,N defines a proper kernel classification method for all N > 0. As
a consequence, S3,N verifies condition (3) for all N > 0. Letting N →∞, one can conclude that
1/S2 defines a proper kernel classification method.

– Finally, in view of [38], Proposition 3.22 (ii), (iii) and Proposition 3.24 (ii), it follows that
K defines a proper kernel classification method.

Acknowledgments

The authors would like to greatly thank the referees for their helpful remarks and comments on
the manuscript. The work of Seydou Nourou Sylla is partially founded by La Région Rhône-
Alpes.

15



References

[1] J.L. Andrews & P.D. McNicholas. Model-based clustering, classification, and discriminant
analysis via mixtures of multivariate t-distributions. Statistics and Computing, 22(5), 1021–
1029, 2012.

[2] V. Batagelj & M. Bren. Comparing resemblance measures. Journal of Classification, 12,
73–90, 1995.

[3] F.B. Baulieu. A classification of presence/absence based dissimilarity coefficients. Journal
of Classification, 6, 233–246, 1989.

[4] L. Bergé, C. Bouveyron & S. Girard. HDclassif: An R package for model-based clustering
and discriminant analysis of high-dimensional data, Journal of Statistical Software, 46(6),
1–29, 2012.

[5] N. Bouguila, D. Ziou & J. Vaillancourt. Novel mixtures based on the Dirichlet distribution:
application to data and image classification. In Machine Learning and Data Mining in
Pattern Recognition, pages 172–181, Springer, 2003.

[6] C. Bouveyron & C. Brunet. Simultaneous model-based clustering and visualization in the
Fisher discriminative subspace. Statistics and Computing, 22, 301–324, 2012.

[7] C. Bouveyron, M. Fauvel & S. Girard. Kernel discriminant analysis and clustering with
parsimonious Gaussian process models. Statistics and Computing, to appear, 2015.

[8] C. Bouveyron, S. Girard & C. Schmid, C. High-dimensional discriminant analysis. Com-
munications in Statistics - Theory and Methods, 36, 2607–2623, 2007.

[9] C. Bouveyron, S. Girard & C. Schmid. High-dimensional data clustering. Computational
Statistics and Data Analysis, 52, 502–519, 2007.

[10] P. Byass, D.L. Huong & H.V. Minh. A probabilistic approach to interpreting verbal au-
topsies: Methodology and preliminary validation in Vietnam. Scand. J. Public Health,
31(62):32–37, 2003.

[11] R. Cattell. The scree test for the number of factors. Multivar. Behav. Res. 1(2), 245–276,
1966.

[12] G. Celeux & G. Govaert. Clustering criteria for discrete data and latent class models.
Journal of Classification, 8, 157–176, 1991.

16



[13] M.M. Dundar & D.A. Landgrebe. Toward an optimal supervised classifier for the analysis
of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 42(1), 271–277, 2004.

[14] M. Fauvel, C. Bouveyron & S. Girard. Parsimonious Gaussian process models for the clas-
sification of hyperspectral remote sensing images. Geoscience and Remote Sensing Letters,
to appear, 2015.

[15] F. Forbes & D. Wraith. A new family of multivariate heavy-tailed distributions with variable
marginal amounts of tail-weight: application to robust clustering. Statistics and Computing,
24(6), 971–984, 2014.

[16] B.C. Franczak, R.P. Browne & P.D. McNicholas. Mixtures of shifted asymmetric Laplace
distributions. IEEE Trans. Pattern Anal. Mach. Intell. 36 (6), 1149–1157, 2014.

[17] L.A Goodman & W.H. Kruskal. Measures of association for cross classifications. Journal
of the American Statistical Association, 49, 732–764, 1954.

[18] L.A Goodman & W.H. Kruskal. Measures of association for cross classifications II. Further
discussion and references. Journal of the American Statistical Association, 54, 35–75, 1959.

[19] M. Gönen & E. Alpaydin. Multiple kernel learning algorithms. Journal of Machine Learning
Research, 12, 2211–2268, 2011.

[20] Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Anal.
Appl., 5(2), 168–179, 2002.

[21] Y. Guermeur. VC theory of large margin multi-category classifiers. Journal of Machine
Learning Research, 8, 2551–2594, 2007.

[22] T. Hastie, R. Tibshirani & J. Friedman. The elements of statistical learning (2nd edition).
Springer series in statistics, Springer, Berlin, 2009.

[23] T. Hofmann, B. Schölkopf & A. Smola, A. Kernel methods in machine learning. Annals of
Statistics, 36(3), 1171–1220, 2008.

[24] D.L. Huong, H.V. Minh & P. Byass. Applying verbal autopsy to determine cause of death
in rural Vietnam. Scand. J. Public Health, 31(62), 19–25, 2003.

[25] Y. LeCun, L. Bottou, Y. Bengio & P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of IEEE, 86(11), 2278–2324, 1998.

[26] P. Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du
Jura. Bull. Soc. Vaudoise Sci. Nat., 37, 547–579, 1901.

17



[27] S. Lee & G. McLachlan. Finite mixtures of multivariate skew t-distributions: some recent
and new results. Statistics and Computing, 24(2), 181–202, 2013.

[28] T.I. Lin. Robust mixture modeling using multivariate skew t-distribution. Statistics and
Computing, 20, 343–356, 2010.

[29] G. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York,
1992.

[30] G. McLachlan, D. Peel & R. Bean. Modelling high-dimensional data by mixtures of factor
analyzers. Computational Statistics and Data Analysis, 41, 379–388, 2003.

[31] P. McNicholas & B. Murphy. Parsimonious Gaussian mixture models. Statistics and Com-
puting, 18, 285–296, 2008.

[32] S. Mika, G. Ratsch, J. Weston, B. Schölkopf & K.R. Müllers. Fisher discriminant analysis
with kernels. In: Neural Networks for Signal Processing (NIPS), pp. 41–48, 1999.

[33] A. Montanari & C. Viroli. Heteroscedastic factor mixture analysis. Statistical Modeling, 10,
441–460, 2010.

[34] T.B. Murphy, N. Dean & A.E. Raftery. Variable selection and updating in model-based
discriminant analysis for high dimensional data with food authenticity applications. The
Annals of Applied Statistics, 4, 219–223, 2010.

[35] E. Pekalska & B. Haasdonk. Kernel discriminant analysis for positive definite and indefinite
kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1017–1032, 2009.

[36] B. Scholkopf & A.J. Smola. Learning with Kernels, The MIT Press, 1990.

[37] C. Seung-Seok, C. Sung-Hyuk & C. Tappert. A survey of binary similarity and distance
measures. Systemics, Cybernetics and Informatics, 8, 43–48, 2010.

[38] J. Shawe-Taylor & N. Cristianini. Kernel Methods for Pattern Analysis, Cambridge Univer-
sity Press, 2004.

[39] B.C. Reeves & M.A. Quigley. A review of data-derived methods for assigning causes of
death from verbal autopsy data. Int. J. Epidemiology, 26, 1080–1089, 1997.

[40] P.H.A. Sneath & R.R. Sokal. Numerical Taxonomy: The Principles and Practice of Nu-
merical Classification, W.H. Freeman and Company, San Francisco, 1973.

18



[41] S. Sylla, S. Girard, A. Diongue, A. Diallo & C. Sokhna. Classification supervisée par modèle
de mélange: Application aux diagnostics par autopsie verbale, 46èmes Journées de Statis-
tique organisées par la Société Française de Statistique, Rennes, 2014.

[42] A. Tversky. Feature of similarity, Psychological Review, 84, 327–352, 1977.

[43] F. Vilca, N. Balakrishnan & C. Zeller. Multivariate skew-normal generalized hyperbolic
distribution and its properties. Journal of Multivariate Analysis, 128, 73–85, 2014.

[44] J. Wang, J. Lee & C. Zhang. Kernel trick embedded Gaussian mixture model. In: Proceed-
ings of the 14th International Conference on Algorithmic Learning Theory, pp. 159–174,
2003.

[45] D. Wraith & F. Forbes. Location and scale mixtures of Gaussians with flexible tail be-
haviour: Properties, inference and application to multivariate clustering. Computational
Statistics and Data Analysis, 90, 61–73, 2015.

[46] Z. Xu, K. Huang, J. Zhu, I. King & M.R. Lyu. A novel kernel-based maximum a posteriori
classification method. Neural Networks, 22, 977–987, 2009.

19



Kernel α σ threshold CCR CCR equation
t (learning set) (test set) in [37]

Euclid 4 0.60 88.0 83.8 (16)
Pearson 10 0.95 87.7 83.2 (51)
Hellinger 6 0.60 87.7 83.2 (29,30)
Dice 2 0.60 87.3 83.0 (2,3,5)

3w-Jaccard 2 0.75 87.2 82.9 (4)
Ochia1 2 0.60 87.2 82.8 (33,38)

Gower & Legendre 4 0.80 86.6 82.6 (8,11)
Roger & Tanimoto 2 0.65 85.9 82.4 (9)
Sylla & Girard 0.1 1.9 0.90 85.8 81.5
Sylla & Girard 0.3 2.2 0.85 85.5 81.5

Sylla & Girard = RBF 0.5 1.4 0.80 85.1 81.3 (15,17,. . . ,23)
Sylla & Girard 0.2 1.8 0.80 85.6 81.1

Godman & Kruskal 4 0.95 84.3 80.8 (69)
Sylla & Girard 0.4 2.5 0.80 84.7 80.6

Sokal & Sneath 5 4 0.95 84.7 80.5 (57)
Sylla & Girard 0.6 3.09 0.80 83.2 79.6
Sylla & Girard 0.7 3.34 0.95 83.0 79.5
Sokal & Sneath1 2 0.05 83.4 78.7 (6)

Kernel α σ threshold CCR CCR equation
t (learning set) (test set) [37]

Hellinger 8 0.5 97.6 89.7 (29,30)
Euclid 8 0.5 97.5 89.7 (16)

Sylla & Girard 0.1 3.16 1 92.3 89.6
Sylla & Girard 0.6 6.19 0.5 97.5 89.5
Sylla & Girard 0.7 6.69 0.5 97.5 89.4

Dice 2 0.5 97.4 89.4 (2,3,5)
Ochia1 2 0.5 97.4 89.4 (33,38)

Sylla & Girard = RBF 0.5 5.65 0.5 97.5 89.4 (15,17,. . . ,23)
Roger & Tanimoto 2 0.4 97.3 89.4 (9)
Sylla & Girard 0.8 8 0.5 97.4 89.3
Sylla & Girard 1 8 8 92.3 89.3 (9)
3w-Jaccard 4 0.5 97.3 89.3 (4)

Sylla & Girard 0.9 7.15 0.5 97.3 89.2
Jaccard 4 0.4 97.2 89.2 (1)

Gower & Legendre 10 0.8 97.4 89.1 (8,11)
Sylla & Girard 0.4 6.3 0.5 97.2 89.1
Sylla & Girard 0.3 5.4 0.5 96.9 88.7
Sylla & Girard 0.2 4.4 0.45 97.9 86.8

Table 2: Correct Classification Rate (CCR) on the verbal autopsy dataset (top) and on the
handwritten digit dataset (bottom). The results are sorted by decreasing values of the CCR
computed on the test set. The train set includes τ = 63% individuals from the initial dataset.
The last column refers to the equation number in [37].
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pgpDA SVM kNN
α CCR CCR CCR CCR CCR CCR

(learning set) (test set) (learning set) (test set) (learning set) (test set)
0.1 86.9 76.3 85.3 74.6 64.5 53.1
0.2 86.6 76.4 79.9 70.8 67.4 57.6
0.3 86.1 76.0 79.5 70.4 68.3 59.5
0.4 86.1 76.1 76.0 67.9 69.1 60.9
0.5 85.8 76.1 72.7 65.3 69.0 61.0
0.6 84.3 74.9 70.3 63.5 69.2 61.8
0.7 83.4 74.2 69.2 62.6 68.3 60.9
0.8 83.3 74.1 68.7 62.2 68.5 60.9
0.9 82.8 73.7 68.2 61.7 67.7 59.8
1 82.1 72.0 67.6 61.2 64.6 56.4

pgpDA SVM kNN
α CCR CCR CCR CCR CCR CCR

(learning set) (test set) (learning set) (test set) (learning set) (test set)
0.1 93.4 89.6 100.0 93.1 91.5 91.4
0.2 95.2 87.1 99.9 97.5 94.3 93.8
0.3 97.2 88.9 99.9 97.8 95.5 94.3
0.4 97.4 89.1 99.7 97.7 95.3 93.4
0.5 97.7 89.4 99.4 97.4 94.7 92.0
0.6 97.8 89.4 99.3 97.2 92.5 88.7
0.7 97.8 89.4 99.1 97.0 89.3 83.5
0.8 97.8 89.4 98.3 96.2 82.5 74.7
0.9 97.7 89.3 98.0 96.0 72.5 62.2
1 97.6 89.3 97.7 95.7 56.1 45.2

Table 3: Correct Classification Rate (CCR) on the verbal autopsy dataset (top) and on the
handwritten digit dataset (bottom). Sylla & Girard kernel is plugged into pgpDA, SVM and
kNN methods for α ∈ {0.1, 0.2, . . . , 1}. The CCR associated with the parameter α? selected by
the double cross-validation procedure is emphasized. The train set includes τ = 63% individuals
from the initial dataset.

Random Forest
CCR CCR

(learning set) (test set)
Verbal autopsy 88.7 67.4

Handwritten digit 100.0 94.0

Table 4: Correct Classification Rate (CCR) obtained with Random Forest (nodesize=1 and
ntree=500). The training set includes τ = 63% individuals from the initial dataset.
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CCR (training set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 88.8 87.9 86.9 85.5 83.9 82.7 81.4 79.9 78.1 76.6
500 88.7 88.0 86.9 85.6 84.4 82.9 81.6 79.9 78.3 76.7
750 88.8 88.2 87.0 85.7 84.4 82.9 81.5 79.6 78.1 76.6
1000 88.7 88.2 87.2 85.7 84.2 83.1 81.6 80.0 78.1 76.8

CCR (test set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 67.3 67.1 67.0 67.6 67.0 67.1 66.8 66.3 66.1 65.9
500 67.4 67.8 67.3 67.0 67.4 66.9 66.7 66.4 65.9 65.7
750 67.5 67.6 67.4 67.1 67.2 66.9 66.7 66.5 65.8 65.8
1000 67.9 67.7 67.3 67.3 67.2 67.0 66.7 66.6 66.2 65.5

Table 5: Correct Classification Rate (CCR) obtained with Random Forest for several values
of nodesize and ntree on the verbal autopsy dataset. The CCR obtained with the default
parameters nodesize=1 and ntree=500 are emphasized, and reported in Table 4. The training
set includes τ = 63% individuals from the initial dataset.

CCR (training set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 100.0 100.0 100.0 99.9 99.9 99.8 99.6 99.4 99.2 98.9
500 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.2 99.0
750 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.3 99.0
1000 100.0 100.0 100.0 100.0 99.9 99.8 99.7 99.5 99.3 99.0

CCR (test set)
nodesize 1 2 3 4 5 6 7 8 9 10

ntree
250 93.9 93.8 93.8 93.6 93.5 93.5 93.2 93.1 93.1 93.0
500 94.0 94.0 93.7 93.8 93.7 93.5 93.3 93.3 93.1 93.2
750 93.9 94.0 93.8 93.8 93.7 93.5 93.5 93.3 93.3 93.1
1000 94.0 94.0 93.9 93.8 93.7 93.6 93.4 93.4 93.3 93.2

Table 6: Correct Classification Rate (CCR) obtained with Random Forest for several values of
nodesize and ntree on the handwritten digit dataset. The CCR obtained with the default
parameters nodesize=1 and ntree=500 are emphasized, and reported in Table 4. The training
set includes τ = 63% individuals from the initial dataset.
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