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Abstract

Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating
from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes offer
thus an appropriate framework for modelling and predicting crack propagation. In this paper, the fatigue
crack growth is modelled and predicted by a piecewise-deterministic Markov process associated with
deterministic crack laws. First, a regime-switching model is used to express the transition between Paris’
regime and rapid propagation which occurs before failure. Both regimes of propagation are governed by a
deterministic equation whose parameters are randomly selected in a finite state space. This one has been
adjusted from real data available in the literature. The crack growth behaviour is well-captured and the
transition between both regimes is well-estimated by a critical stress intensity factor range. The second
purpose of our investigation deals with the prediction of the fatigue crack path and its variability based
on measurements taken at the beginning of the propagation. The results show that our method based
on this class of stochastic models associated with an updating method provides a reliable prediction and
can be an efficient tool for safety analysis of structures in a large variety of engineering applications. In
addition, the proposed strategy requires only few information to be effective and is not time-consuming.

Keywords: Fatigue crack propagation, Uncertainties, Stochastic processes, Piecewise-deterministic Markov
processes, Regime-switching models, Prediction

1 Introduction

Fatigue crack growth (FCG) in materials exhibits a wide range of scatter even under controlled experimental
conditions, see [1, 2, 3, 4, 5]. Various sources of scatter exist during the fatigue life, which can be divided into
crack initiation and crack growth periods. For each period, the sources of uncertainties may be different. It
is well-known that crack initiation, including the first micro-crack growth is a discontinuous process which is
dependent on mechanical parameters but also on microstructure and material surface quality (local surface
inhomogeneities, small surface irregularities and slight surface damage). In the second period, the crack
growth mainly depends on mechanical parameters (applied loads, mechanical properties, etc.). For these
reasons, it is technically significant to consider crack initiation and crack growth periods separately. In the
present paper, the work is only focused on the crack growth periods.

Stochastic modelling strategies are relevant to consider the effects of uncertainties. Some papers have
addressed the stochastic process framework to model fatigue crack propagation. Indeed, this context enables
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the introduction of certain variabilities to the typical deterministic laws to describe FCG under constant or
variable amplitude fatigue loading, see for instance [6, 7, 8, 9, 10, 11, 12, 13] and the references therein. Among
the deterministic models of FCG proposed in the literature, the Paris-Erdogan and Forman laws, respectively
proposed in [14] and [15], are widely used because of their simplicity and the limited number of parameters
involved. Certain strategies are provided to input randomness into these models and to treat FCG from a
stochastic point of view. A popular idea suggested in the literature consists in adding to the deterministic
law a multiplicative noise function which is generally a non-negative random process, see for instance [3, 16].
For example, Gaussian white noise is used in [17] to add randomness to the deterministic FCG law. Coupled
with a filtering technique, this modified law excludes the possibility of negative crack growth rates. The
same strategy is followed in [18]. The authors model the noise function by a stationary lognormal random
process with median unity. Another possibility to put randomness in the model is to consider the parameter
of the FCG as random variables [19]. The strip-yield model included in the NASGRO software developed in
[20] is widely used to simulate crack growth under variable amplitude loading, see for instance [21]. More
recently, the authors of [22] used the polynomial chaos expansions in combination with the Karhunen-Loève
series for accurate and efficient representation of random crack propagation data. They used two different
experimental data sets from literature to demonstrate the ability of their model to simulate and predict the
fatigue crack propagation.

Markov processes are also proposed to address stochastic modelling of FCG. In [23], the authors used
Markov chains to propagate the variability affecting non-proportional load sequences. The authors of [24]
considered discrete Markov methods to handle the uncertainties of initial crack length and loading. A
model based on the fracture mechanics theory and the diffusive Markov processes is derived in [25] to
treat the variabilities affecting material resistance and stress loading. Among the Markov processes suitable
to perform crack modelling, one may also consider the class of piecewise-deterministic Markov processes
(PDMP’s) frequently employed in safety and reliability. These stochastic models have been introduced in
[26] to handle both discrete events (changes of regime or failures in our context) and continuous evolution of
physical phenomena (crack length in our context). To the best of our knowledge, [27] was the first paper to
use PDMP’s to model FCG as a degradation mechanism that continuously evolves in time with the growth
rate changing at random times. Among the papers about stochastic models cited above, [16, 19, 7, 8, 10, 11]
propose prediction and validation methods. The reader can also refer to [28] in which the authors propose
an inference method based on maximum relative entropy in order to predict the propagation phase of a crack
knowing only few points of the beginning of the propagation.

Even if among the aforementioned works, the effects of random loading have been sometimes investigated,
the study is limited to the source of uncertainties related to material properties observed in large replicate
fatigue crack propagation tests. Therefore, we use in this article the data set presented in [1] and composed
of 62 specimens of 2024-T3 aluminium alloys tested under constant amplitude loading. The aim of this
paper is to show the ability of PDMP’s to model crack propagation in order to tackle two specific problems:
the first one is to capture the transition time between two regimes of propagation and the second one is to
predict the behaviour of a crack until the exit of the linear Paris regime using the first experimental points
of its propagation as conditional events.

The objective of the first part of this work is to detect the conditions of crack growth instability that is
the transition between the stable region of propagation and the unstable one when the crack growth extends
in a rapid manner. In this way, a regime-switching model is proposed: two deterministic laws are combined
using the more suitable one for each specific period. In the second part, the model is associated with an
updating method to predict the whole trajectory of a given crack in order to manage the structure safety
using experimental data provided by non-destructive control. The potential application of the method is to
give a prediction of the number of loading cycles that allows the crack to reach a critical length. It might be
used to guarantee safety for a mission if the predicted number of cycles is widely greater than the one required
for the mission. FCG is modelled by a PDMP whose deterministic flow is given by either Paris-Erdogan or
Forman law. Uncertainties are integrated through the material parameters of the above-mentioned laws and
through the transition time between regimes of propagation.
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The layout of the paper is as follows. In Section 2, the model formulation is exposed via PDMP’s and
based on known mechanistic crack growth laws. Section 3 is dedicated to the transition between the two
regions of propagation through our model. Section 4 deals with the prediction of crack propagation using
PDMP’s associated with an updating method. Finally, Section 5 gives some elements of discussion and
perspectives.

2 Model formulation

2.1 Definition of PDMP’s

Piecewise-deterministic Markov processes form a class of non-diffusion stochastic models introduced in the
literature in [26] in operational research to model physical systems whose dynamics can be disrupted by punc-
tual and random events (non-continuous changes). Consequently, PDMP’s are described by two variables: a
usual Euclidean state and a discrete variable (called mode or regime) which takes values in a discrete set. In
this context, the state variable is representative of the physical system (state, speed, length of a crack, etc.)
while the discrete variable reflects the operating mode or a regime of evolution (region of propagation in our
case). It should be noted that the dynamic of the Euclidean variable of a PDMP is governed, between two
jumps, by a deterministic differential equation, unlike models often encountered in the literature in which
the physical states are assumed to be piecewise-constant or diffusive. The randomness of such a process
comes from the jump times and the punctual changes occuring at these times.

More precisely, a PDMP is a two-component process (µt, Xt) where the mode µt takes its values in a
finite state spaceM, while Xt represents the physical variable and evolves in an open subset of R or Rd. The
motion of the continuous part Xt is governed by the flow G of a deterministic differential equation whose
parameters are directed by the mode µt. The trajectory of such a process is defined in a very intuitive and
iterative way: starting from (µ0, X0) = (M,x), the path is given between times 0 and T1 by:

µt = M and Xt = GM (x, t),

where T1 is the first jump time whose distribution depends on the couple (M,x). At time T1, a jump occurs
according to a jump rate, and the mode is switched according to a transition matrix that gives the probability
from one state to another, and so on. Note that even if the PDMP framework allows at time T1 a jump of
the continuous physical variable Xt of the model, in most of the applications the jump occurs only on the
discrete part µt of the process. In our case, a jump at time T1 only affects the discrete variable µt. The
following diagram is given to sum up the procedure:

• The process starts from (µ0, X0) = (M,x);

• The first jump time T1 is a random function of (M,x);

• For any time 0 ≤ t < T1, µt = M and Xt is a deterministic function ofM and x, that is Xt = GM (x, t);

• At time T1, XT1
= GM (x, T1) and µT1

is a random function of M and XT1
whose distribution is given

by a transition matrix;

• Back to first step from (µT1 , XT1).

An appropriate selection of the state space and of the main features of the process provide a large
variety of stochastic models covering many applications as management of complex systems (see [29, 30]),
modelling of degradation (see [31]) or biology (see [32]). The mathematical properties and the numerical
implementations of these processes are the main topic of many recent publications, see [26, 33, 34, 35, 36, 37]
and the references therein. In the present paper, the selected stochastic models involve differential equations
between jumps such as Paris-Erdogan and Forman laws described in the sequel.
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2.2 Deterministic crack growth models

For ductile materials, FCG rate can be correlated with the cyclic variation of stress intensity factor. The
typical logarithmic plot of da/dN versus ∆K is shown in Figure 1: the curve is divided into 3 regions. In
region I, referred to near-threshold region, crack propagation is a discontinuous process which is extremely
slow at very lows values of ∆K. In the large and linear region II, a power-law relationship between crack
growth rate and stress intensity factor range is observed. Finally, region III corresponds to the increase of
crack propagation rate when the stress intensity factor tends to the critical value KC . Many deterministic
laws have been proposed in the literature for modelling the crack behaviour in region II. Among them,
Paris-Erdogan’s law is certainly the most used for steels and aluminium alloys. It was introduced in [14] and
is defined from the following equation:

da
dN

= C(∆K)m, (1)

where da/dN is the crack growth rate per cycle, a is the fatigue crack length, N is the number of cycles, C
and m are the Paris’ law parameters and ∆K is the range of the stress intensity factor. In most cases, ∆K
is given by the formula:

∆K = Y (a)∆σ
√
πa, (2)

where Y (a) is a dimensionless factor that considers the crack shape and the geometry of the specimen and
∆σ = σmax − σmin is the stress range.

Even with its popularity and its accuracy in describing the region II of propagation, the model given by
equation (1) is not well-adapted to express the transition at the beginning of region III. Among the variants
of Paris equation developed to overcome this drawback, the authors of [15] suggested a model called Forman
law and given by equation (3). This law captures the rapid increasing of growth in region III and includes
the stress ratio R = σmin/σmax and the fracture toughness KC :

da
dN

=
C(∆K)m

(1−R)KC −∆K
, (3)

where KC represents the maximal value of the stress intensity factor required to induce failure. In our
approach, the fracture toughness KC is assumed to be fixed and known.

Figure 1 approximately here.

2.3 PDMP’s applied to fatigue crack propagation

PDMP’s are suitable for modelling and predicting degradation processes induced by the presence of cracks
in structural components. In particular, the changes of regime at jump times are suitable to express the
damage induced by crack propagation. Within this context, the authors of [27] consider that FCG changes
through small shocks occurring at random times. Precisely, these authors choose to use PDMP’s without
any constraint on the number of possible jumps associated with the deterministic Paris’ law. They note
that the jump rate is not time-homogeneous since the frequency of jumps increases at the end of the path.
Unlike this approach, it is assumed that crack propagation can be expressed by a simple PDMP with only
one change of regime (or jump) in order to give a physical meaning to this jump and also to bring some
flexibility to the model called regime-switching model. In the first case presented in Section 3, the jump
can express the transition between two regimes of propagation when two distinct laws are used before and
after the jump. In this case, the deterministic flow G driving the propagation between two jumps is given
by either the differential equation (1) in the first part or equation (3) in the second part. In Section 4, this
idea may also give some flexibility to a model of propagation based on a unique law. Indeed, for the model
presented in Section 4, the differential equation G driving the propagation will be given by equation (1) but
its parameters will change at the jump time. The main ideas for the construction of the model are given in
the sequel.
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• The equation driving the evolution of the crack length before the change of regime (GM1) or after (GM2)
is chosen between Paris law (1) and Forman law (3). Both equations depend on a two-dimensional
parameter (m,C).

• At time 0, (m1, C1) is randomly selected in a finite state spaceM, and FCG deterministically evolves
according to the deterministic equation of propagation given GM1

with (m,C) = (m1, C1) until a
random time denoted by T . Next, new parameters (m2, C2) are selected according to a Markov
transition onM: after T , the process follows the equation GM2 with parameters (m2, C2).

The model is thus defined from the following features:

• The two equations of propagation GM1 and GM2 . It should be noted that they can be obtained from
the same mechanistic law.

• The initial distribution of (m1, C1), the parameters of GM1
, given by a probability distribution onM.

• The law of the jump time depending on the parameters (m1, C1).

• The law of transition between the parameters of the first regime (m1, C1) and the second one (m2, C2).
This transition is defined from a stochastic matrix onM.

Figure 2 displays a possible path given by the model.

Figure 2 approximately here.

3 Transition of FCG between region II and region III

The aim is to investigate the transition between regions II and III of propagation. Region II of the crack
propagation is assimilated to the Paris linear regime (see Figure 1). This is justified by the analysis of
the crack growth rates in terms of ∆K (see Figure 3). This transition is assumed to occur at the regime-
switching time between Paris and Forman equations. We need a model that allows a regime-switching and
PDMP’s introduced in the previous section are particularly well-adapted for this purpose. Paris equation (1)
is considered for the crack growth propagation GM1

corresponding to region II and Forman law (3) is used
for GM2 corresponding to the rapid crack propagation in region III. T is the random time of jump between
both regimes. Experimental data provided in [1] are fitted to theoretical curves issued from the model and
a set of parameters is obtained then statistically analysed.

3.1 Experimental data

In [1], 62 identical centre-cracked aluminium alloy specimens (152 mm wide and 2.54 mm thick) were tested
under constant amplitude loading ∆σ= 48.28 MPa at a stress ratio R = 0.2. The number of loading cycles
for the crack tip to advance a predetermined increment ∆a was recorded from an initial crack length of 9
mm to a final length of 49.8 mm. 68 crack growth histories were obtained from these tests. For each crack
and each measurement 1 ≤ i ≤ 164, ai denotes the crack length after N i loading cycles. These quantities
represent the empirical data required to build the proposed modelling. The 68 experimental crack length
curves versus the number of cycles are presented in Figure 3. A large scatter is obtained which corresponds
to the variability of the crack growth process. The logarithmic representation of the crack growth rate in
terms of ∆K is also presented in Figure 4. As it was schematized in Figure 1, a linear increase of da/dN is
observed on the largest part of the propagation with some changes at the end and to a lesser extend, at the
beginning.

Figures 3 and 4 approximately here.
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3.2 Fit of experimental curves

This section is devoted to the determination, for each experimental curve, of the nearest theoretical curve
coming from the model. This problem is addressed with an optimisation formulation. By definition of
our model, a theoretical curve is determined by five parameters (m1, C1, T,m2, C2) with (m1, C1) the Paris
law parameters, (m2, C2) the Forman law parameters and T the jump time. Thus, to properly fit each
experimental curve to a theoretical one, the optimal parameters (m∗

1, C
∗
1 , T

∗,m∗
2, C

∗
2 ) that minimise an

objective function must be determined. The latter measures the distance between crack lengths given by
the experimental curve and by the theoretical one obtained by discretisation of deterministic laws. For each
experimental curve, the optimisation problem can be stated as follows:

Minimise
(m1,C1,T,m2,C2)

f(m1, C1, T,m2, C2) =

164∑
i=1

[
aitheo(m1, C1, T,m2, C2)− aiexp

]2
, (4)

where aitheo and aiexp are theoretical and experimental crack lengths at each measurement i, respectively.
The authors would like to emphasise that this optimisation problem is far to be obvious. Initially, the
values assigned to the material parameters are randomly selected from the range of values, and a simulated
annealing algorithm is used to solve the above optimisation problem. A metaheuristic algorithm is justified
by its ability to determine the global optimum even in this highly non-convex context. The reader can find
further information about the implementation of simulated annealing algorithms and parameter selection in
[38, 39].

3.3 Results

The quality of the fitting is examined first. Figure 5 displays the graphs of the worst (left) and the best
(right) fitted versions of the experimental curves among the 68’s. In each case, the model fits very well the
crack length evolution. It may be pointed out that the end of crack propagation is accurately described
by the regime-switching model using Forman’s law for the transition between region II and region III as
shown in Figure 6 that focuses on the end of propagation of three experimental curves fitted by either the
regime-switching model, or another one with the Paris law for the second regime. A connection can be
established between this result and the comment of [27] already presented in Subsection 2.3. Actually the
authors of [27] notice that, in their model, the number of jumps increases at the end of the propagation.
According to us, this result is due to the rapid increase of the crack propagation related to the beginning of
crack growth instability which is characterized, in our case, by the switching to a more appropriate law.

Mean Standard deviation Minimum Maximum
m1 2.8362 0.1421 2.3291 3.2605

log(C1) -25.9688 0.8405 -28.5290 -23.0989
m2 3.6354 0.1233 3.2448 3.9218

log(C2) -25.3412 1.0853 -25.7594 -22.2450

Table 1: Statistics of parameters m and log(C) for the first and second regimes.

Figures 5 and 6 approximately here.

Statistics about m and log(C) for each regime and relationships between them are presented in Table
1 and Figure 7. The values of the coefficient of multiple correlation R2 for both Paris and Forman laws
demonstrate the accuracy of the linear model between these parameters. This correlation between m and
log(C), already known in the literature for propagation with only one regime (see [40, 41, 42]) is again
observed in both regimes of our model. According to [42], the correlation between Paris parameters m and
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log(C) is due to the fact that the transition from Paris’ regime (region II) to region III coincides with the
Griffith-Irwin theory of instability. On the other hand, the authors of [41] stated that the high correlation
between m and log(C) is only due to the logarithmic representation. It should be mentioned that, since the
relationship between parameters is found for both regimes with Paris and Forman laws, the correlation is
only formal without real physical relevance. However, this linear relationship between m and log(C) in each
region, very helpful for the to model of PDMP, will be used in Section 4.

Figure 7 approximately here.

From now on, we focus on the analysis of the transition time, that is the crack length, the number of
cycles and the stress intensity factor range ∆K values at the estimated transition time T ∗. Their statistical
characteristics are listed in Table 2. As expected, the jump associated to the transition between Paris and
Forman laws occurs at the end of the propagation. The mean value of ∆K is equal to 20.8 MPa

√
m and

corresponds to the end of the linear part of the log(da/dN) versus log(∆K) curve (see Figure 4) obtained
for ∆K = 21 MPa

√
m. Considering that the crack instability condition is reached for Kmax = KC at the

transition between region II and region III, the corresponding stress intensity factor is given by:

∆K = Kmax −Kmin = (1−R)KC , (5)

where R = Kmin/Kmax = 0.2. Mean, maximal and minimal values of fracture thoughnessKC connected with
∆K values obtained from the above equation are presented in Table 2. KC values are contained between
20 and 32 MPa

√
m. In handbooks [43, 44], minimal and maximal values for fracture thoughness determined

experimentally for the 2024-T3 aluminium alloy are equal to 15 MPa
√
m and 50 MPa

√
m, respectively.

There is a good agreement between estimated values obtained in this study and lower values recorded in
handbooks. This result means that the choice of PDMP with only one jump combined with appropriate
deterministic laws gives results with significant physical relevance in terms of ∆K. This quantity itself is
deterministically related to the length of the cracks through equation (2). The knowledge of such a critical
crack length is very important for safety of structures and may be used as a criterion for a designer to avoid
sudden failures.

Mean Standard deviation Minimum Maximum
Crack length (mm) 39.53 4.55 30.40 48.20

Transition times (number of cycles) 241401 19184 192389 296091
∆K (MPa

√
m) 20.8 1.0544 16.5 25.3

KC (MPa
√
m) from equation (5) 25.8 NA 20.6 32

Table 2: Statistics about the crack length at the jump time, the transition time and the corresponding stress
intensity factor range.

4 Prediction of fatigue crack propagation

The purpose of this part is to predict the whole trajectory of FCG on some device from the knowledge of
a few inspections performed at the beginning of the propagation. It is assumed that the device is no more
available for monitoring after a certain time. Nevertheless, the first measurements are used to better forecast
the future crack path. The framework is thus simpler than real-time monitoring, which has been investigated
by some authors like [45, 16, 46, 19]. From a mathematical point of view, it consists in predicting the crack
behaviour knowing only the first points of its curve. The principle of the updating method is the following: a
suitable model of crack propagation is constructed and then, the knowledge of the beginning of propagation
of a given crack allows us to reduce the possible paths inside the model, these paths leading to the future
of this given crack. We present first the dynamic model and the updating method, then the quality of the
prediction is analysed for the whole trajectory (phases II and III) of each crack of the Virkler dataset.
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4.1 Calibration of the model

We consider a PDMP model for crack propagation updated from measurements taken at the beginning of
the propagation. As a consequence, Forman’s law, very suitable to detect crack growth exit of the linear
regime of Paris, is not well-adapted in this new context. For this reason, we propose a model only based on
the Paris’ law both before and after the jump time at which only material parameters m and C change. In
the framework of Subsection 2.3, we model crack propagation as follows: crack growth rate is first driven
by Paris equation (1) with a set of parameters and at a random time, the set of parameters related to Paris
dynamic changes. To avoid any confusion with the previous work presented in Subsection 2.3, this new model
is called Paris model with one jump. Randomness comes again from three sources: the stochastic choice
of parameters at the beginning denoted by (m1, C1), the random jump time T and the random transition
between parameters (m1, C1) and (m2, C2). Nevertheless, we would like to emphasise that the aim of this
second investigation is to provide a simulation model suitable to predict FCG, while the goal of the previous
part was to capture the transition between regimes II and III of the propagation.

Let us recall that the features of a PDMP for crack propagation are the finite state space M for the
material parameters (m,C), their initial distribution, their transition matrix and finally the distribution
of the jump time. The last three govern the randomness of our simulation model and will be estimated
by their empirical version. First of all, we mimic Subsection 3.2 and more precisely equation (4) to fit
each experimental curve to a theoretical one issued from the Paris model with one jump. These new data
(m∗

1, C
∗
1 , T

∗,m∗
2, C

∗
2 ) are used to fit the features of our simulation model:

• Finite state spaceM for the parameters (m,C)
We group the 68 values of m∗

1 in p classes and we propose the centers of these classes as a first set of
points for m. Then we use the linear link between m and log(C) to propose two corresponding values
of C at each class center m, that is log(C) = a + bm + σ and log(C) = a + bm − σ where a, b and
σ have been estimated from the linear regression between m∗

1 and log(C∗
1 ). Now we have a first set of

2p pairs of (m,C) corresponding to the first regime of prediction for the given crack. A second set of
points forM is chosen using the fitted law of log(C∗

1 )− log(C∗
2 ) (Gaussian in our case) and again from

the linear correlation between m∗
2 and log(C∗

2 ). The final setM thus contains 4p pairs (m,C).

• Initial distribution of parameters (m,C)
The initial law of these parameters is given by a probability law on M obtained as the empirical
distribution of the 68 values of m∗

1 on the classes obtained at the previous step.

• Jump time distribution
The jump time law depends on the parameters (m,C). Thus, we simply use an exponential variable
with constant coefficient estimated by maximum likelihood in each mode of (m,C).

• Transition distribution of parameters (m,C)
The transition law between parameters (m1, C1) and (m2, C2) is given by a transition matrix on M
obtained from the empirical conditional distribution of the 68 values of (m∗

1, C
∗
1 ) and (m∗

2, C
∗
2 ) on the

classes build at the first step.

Figure 8 shows a set of simulated curves from p = 1. It should be noted that in this case there are only
4 possibles values for parameters m and C in M. We see that even if we have two possible curves at the
beginning of the propagation, and only two propagation regimes after the jump time T , the bundle is rich
because of the diversity of jump times. We can note that the simulated bundle includes the experimental
one (see Figure 3). It is also interesting to choose p > 1 in the purpose of prediction. This is the object of
the next section.

Figure 8 approximately here.
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4.2 Updating method

The idea developed in [47] and [28] is followed here. The assumption of the updating method is to use the
information of the first points of the propagation of a given crack in order to reduce the number of possible
trajectories of the model: it means that the set of parameters (m,C) inM is reduced to predict the future
of the propagation. It leads to a thin and precise bundle of crack paths. Suppose that ` measures from an
experimental curve are observed. The Paris model contains 2p theoretical curves corresponding to 2p values
of (m,C) for the first part of the propagation. For a given experimental curve, from ` points of measure, the
distance to each of the 2p theoretical curves defined by the model for the beginning of the propagation can
be defined as the cost function

f(m,C) =
∑̀
i=1

[
aitheo(m,C)− aiexp

]2
.

We proceed in three steps:

Step 1. The 2p values f(m,C), (m,C) ∈M, are computed in order to choose the r (r < 2p) nearest curves
among the 2p theoretical curves of the model. Figure 9 (top) summarizes this procedure for p = 5 and r = 4:
the experimental measurements are drawn with black points and here the 4 nearest theoretical curves (solid
lines) are chosen among the 2p = 10 possible paths.

Step 2. We work with each of the r possible trajectories chosen at the first step and corresponding to r
values of (m,C). For a given crack and each number of cycles N i corresponding to the point of measure
aiexp, the 2p possible paths corresponding to the parameters (m,C) of the second regime starting from the
point (N i, aitheo(m,C)) are drawn. The distance to the second part of the experimental curve is computed.
Again the r nearest among the 2p possible paths are chosen. This step is illustrated in Figure 9 (bottom)
for the jump time at the third measure with p = 5 and r = 4.

Step 3. We are now ready for the simulation of a crack in the prediction bundle of the experimental curve.
A curve is randomly chosen in the r theoretical curves defined at step 1 according to the law of the initial
distribution of (m,C) restricted to the r curves. The jump time is drawn according to the jump distribution
determined for this curve. If this jump occurs before the last observation, we choose it, otherwise, the jump
time is made at the (` − 1)th observation. For the second part of the propagation, we choose randomly
between the r theoretical curves corresponding to this jump time and determined at step 2. The law is the
transition distribution given by the model and restricted to the r curves. We repeat this scheme for each
simulated FCG to build the prediction bundle.

Figure 9 approximately here.

4.3 Validation and results

Unlike [28] in which the authors performed their simulation study only on some specific cracks and until
250 000 cycles, the whole trajectory is predicted for all cracks. A leave-one-out method is proposed in order
to tackle the versatility of our updating procedure. Indeed, for each experimental crack, the parameters of
the Paris model are computed with the 67 remaining cracks. From the ` first points of propagation of the
involved crack, the obtained model is used to simulate a prediction bundle until the final length 49.8 mm
(corresponding to a final number of cycles between 222 000 and 321 000 cycles according to the crack) and
the quality of the prediction is investigated with the following criterion: the distance between the crack and
its prediction bundle. This quantity equals 0 if and only if the crack remains inside the bundle along the
propagation. More precisely, we determine for each measurement aiexp, ` ≤ i ≤ 164, the simulated curve of
the prediction bundle that reaches first the size aiexp, and νimin denotes the corresponding number of cycles.
The curve that reaches this size at last is also computed and νimax stands for the corresponding number of
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cycles. The quantity di denotes the distance between the experimental curve and its prediction bundle at
measure i and is defined by:

di = 0 if νimin ≤ N i ≤ νimax,
di = νimin −N i if N i ≤ νimin,
di = N i − νimax if νimax ≤ N i.

It should be underlined that the couples (νimin, a
i
exp) and (νimax, a

i
exp) define the extreme curves of the

prediction bundle. The overall distance between the experimental curve and its prediction bundle is the sum
of these local distances normalised by the total number of cycles N164 used to reach the final length 49.8
mm, that is:

D =
1

N164

164∑
i=`+1

di.

Results of the leave-one-out method using the model with p = 5, that is to say from 20 possible sets of
parameters, have been selected. Three different crack behaviours are distinguished according to the number of
cycles reached after 160 measurements (end of propagation). Cracks are considered rapid for N160 < 240 000
cycles, while they are slow for N160 > 280 000 cycles, and thus average for 240 000 < N160 < 280 000
cycles. Figure 10 presents three experimental curves with their predicted bundle for two rapid cracks and
a slow one. The normalised distance values D defined earlier are calculated for both cracks. For the rapid
crack, the experimental curve is always located in the bundle (D = 0) or goes out only during a short
time around 125 000 cycles (D ' 0.2). For the slow crack, the experimental curve, is not well-predicted
and the corresponding value of D is about 11.6. In this case, the real crack path is discountinuous and
presents irregularities due to local microstructural variations characterised by the stop or the slowing down
of the crack. However, in this case, the bundle is slightly situated above the experimental curve showing
that, in terms of prediction, the model overestimates the real crack behaviour. Overall results of the cross
validation are presented in Table 3. The quantity d160 indicates if the crack is in the bundle at the end of
its propagation. 38% of the experimental curves remain inside the bundle along the propagation (D = 0),
72% are at a very low distance (0 ≤ D < 1), and two among three are inside the bundle at the end of
the propagation (d160 = 0). Furthermore, it should be noted that all the rapid cracks are well-forecasted
(0 < D < 1), while any slow crack is accurately simulated (D > 1). For slow and some average cracks, the
path is not always well-predicted but, in these cases, the bundle is always located above the experimental
curve. Consequently, this kind of method does not always accurately describe the whole crack path, in
particular in the difficult framework of slow cracks as it is the case in Figure 10 (bottom). Actually, the
model always overestimates irregular slow cracks, which is a good point to systematically reduce the risk of
rupture, probably because of the micro-inhomogeneities along the crack path. On the contrary, the prediction
carried out for rapid cracks and for a large number of average cracks, which appear as the most dangerous
situations, is very powerful.

Figure 10 approximately here.

Rapid cracks Average cracks Slow cracks
Occurrences 11 50 7
D = 0 8 18 0

0 < D < 1 3 20 0
D > 1 0 12 7
d160 = 0 9 35 1

Table 3: Normalised distance D and crack location at the end of the propagation d160 for the different types
of crack.
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5 Conclusion

The ability of a simple model of PDMP to address specific problems of fatigue crack propagation has been
highlighted in this work. Virkler data have been used in order to confirm the efficiency of our model. In
the first part of the paper, we have investigated the advantage to use a switching model with two adapted
deterministic laws to capture the change between region II and region III where the crack growth instability
occurs. It has been emphasised that the linear relationship between the material parameters m and log(C)
exists in both regimes of propagation. The transition to region III has been detected and and described in
terms of number of cycles, length and stress intensity factor. In addition, the mean stress intensity factor
range resulting from the model is very close to the minimal fracture thoughness proposed in handbooks for
the 2024-T3 aluminium alloy. The idea developed in this paper could be extended to the modelling of the
transition between region I and region II by using specific deterministic propagation laws for small cracks.
The second problem investigated in this article deals with the crack path prediction using few information at
the beginning of the propagation. In practice, the length evolution of a crack found in structural components
subjected to cyclic loading can be obtained when structures are periodically inspected with non-destructive
technics (NDT). It has been highlighted that the PDMP model combined with an efficient updating method
is able to predict the FCG until the rapid crack propagation regime. According to [48] results provided that
a good inspection at the beginning of the propagation is very useful to predict the whole propagation and
particularly the time to reach a critical length. It could be used to plan further inspections. A dynamic
model is well-adapted probably because it takes into account the transition to region III. The proposed
study has stated the potential of the PDMP model to predict crack propagation based on the knowledge of
some information that may be issued from NDT. In particular, this may be applied to safety monitoring of
structures after intensive tests on other datasets (for instance simulated via NASGRO software [20]) and of
course on real structures for validation. There are other perspectives like the estimation of the remaining
life, online updating of the prediction from new measurements and the use of PDMP’s for modelling crack
propagation in other materials (probably with different deterministic laws).
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Figure 1: Schematic illustration of the different regimes of fatigue crack propagation. The vertical dashed
lines indicate the transition between crack propagation regimes.

Figure 2: Example of a theoretical curve of the model of propagation.
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Figure 3: Crack length versus number of cycles for the 68 experiments provided in [1].

Figure 4: Crack growth rate in terms of ∆K computed from the 68 experiments provided in [1].
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Figure 5: Experimental (solid line) and theoretical (dashed line) curves for the worst (left) and the best
(right) fitted propagation length curves.

Figure 6: End of propagation for three different experimental cracks and fitting by regime-switching models
with Paris or Forman law for the second regime.
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Figure 7: Linear relationship between the material parameters m and log(C) in the Paris-Forman fitting in
the first (top, R2 = 0.997) and second (bottom, R2 = 0.819) regimes.
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Figure 8: Simulation of crack propagation curves from parameter p = 1. The dispersions of the experimental
dataset and of the simulated bundle are quite similar. Indeed, all the experimental curves reach the final
length between 210 000 and 320 000 cycles. This is also the case for more than 95% of the simulated curves
presented in Figure 6. Note that there is only two curves of propagation before (resp. after) the transition.
However the scattering of the bundle is due to the one of the jump times visible here.
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Figure 9: First (top) and second (bottom) steps of the updating method. Experimental measurements
(` = 10) are drawn with black points and solid lines indicate the r = 4 nearest theoretical curves among the
2p = 10 possible paths.
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Figure 10: Three experimental propagations with the extreme curves of their prediction bundle obtained
from the ` = 10 first measures: rapid cracks with D = 0 and D = 0.2 and slow crack with D = 11.6 (from
top to bottom).
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