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Periodic motion and bifurcations induced
by the Painlevé paradox

R.I. Leinea,∗, B. Brogliatob, H. Nijmeijera

a Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands 
b INRIA Rhône-Alpes, ZIRST Montbonnot, 655 avenue de l’Europe, 38334, Saint Ismier cedex, France

In this paper we study the periodic motion and bifurcations of the Frictional Impact Oscillator, which consists of an object 
with normal and tangential degrees of freedom that comes in contact with a rigid surface. The Frictional Impact Oscillator 
contains the basic mechanism for a hopping phenomenon observed in many practical applications. We will show that the 
hopping or bouncing motion in this type of systems is closely related to the Painlevé paradox. A dynamical system exhibiting 
the Painlevé paradox has nonuniqueness and nonexistence of solutions in certain sliding modes. Furthermore, we will show that 
this type of systems can exhibit the Painlevé paradox for physically realistic values of the friction coefficient.

Keywords:Nonuniqueness; Multibody dynamics; Linear complementarity problem; Contact

1. Introduction

If a finger is pushed over a table, then a hopping motion of the finger can be observed when the finger and table are sufficiently
rough. The same phenomenon occurs when a piece of chalk is pushed over the blackboard, often resulting in a dotted line which
indicates periodic detachment. Brake systems, consisting of a pin-on-disk mechanism, can exhibit an intermittent motion, where
the pin periodically loses contact with the disk, accompanied by a squealing noise (Ibrahim, 1994). Robotic manipulators, which
touch a surface of an obstacle, may also show a kind of bouncing motion, normally regarded as undesirable (Brogliato, 1999).
In this paper we will study a Frictional Impact Oscillator, which consists of a rigid object with normal and tangential degrees of
freedom that comes in contact with a rigid surface. The Frictional Impact Oscillator, introduced in this paper, contains the basic
mechanism for the hopping phenomenon observed in many practical applications. We will show that the hopping or bouncing
motion in this type of systems is closely related to the Painlevé paradox (which we explain in the sequel). Furthermore, we will
show that this type of systems can exhibit the Painlevé paradox for arbitrary (positive) values of the friction coefficient.

The hopping phenomenon is explained and analyzed using Amontons–Coulomb’s law and Newton’s restitution law. We
acknowledge that these contact laws provide only a crude approximation of the reality of dry friction and impact. However, in
most engineering situations, the higher-order information needed for a more accurate description is not available and we have to
be content with some moderately precise calculation, accounting at least for the main features of phenomena (Moreau, 1988).
The hopping phenomenon occurs generally in complex systems with many degrees of freedom and many contact points. Our
aim is to describe the basic mechanism of the hopping motion with a system that is as simple as possible. We will show that
a two degree of freedom model (which we call the Frictional Impact Oscillator) with a single contact, assuming Amontons–
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Coulomb’s law and Newton’s restitution law, is sufficient to describe the essential features of the phenomenon. This relatively
simple model shows a complex dynamical behaviour, which might give insight in the dynamics of more complex systems.

The rigid multibody theory (Brogliato, 1999; Glocker, 1995, 2001; Moreau, 1988; Pfeiffer and Glocker, 1996), which
assumes instantaneous impact between rigid bodies and Amontons–Coulomb friction model in tangential direction, provides
a good approach to study the dynamics when one is interested in the global motion of the system. Mechanical systems with
friction and impact, modelled with a rigid multibody approach, belong to the class of hybrid systems (i.e. systems with a
mixed continuous and discrete nature in time). The transitions in time from one hybrid mode to another (e.g., from contact to
detachment or stick to slip) demand the choice of the next hybrid mode. A rigorous way to perform this search is to formulate
the problem as a Linear Complementarity problem (LCP). The solution of the LCP can be nonunique, giving an undeterminate
next hybrid mode, and the solution of the LCP may even not exist, which leads to inconsistency in the model. The occurrence
of inconsistency in a mechanical rigid multibody system due to friction is known as thePainlevé paradox.

It has been known since the end of the 19th century that the combination of Amontons–Coulomb friction together with the
assumption of rigidity can cause inconsistencies for high values of the friction coefficient (Jellet, 1872; Painlevé, 1895a, 1895b,
1905). Painlevé (1895a, 1895b, 1905) considered the sliding motion of rigid objects1 in contact with the ground, which have
inconsistencies in the sliding mode. The problem of a sliding rod studied by Painlevé became the classical example of a hybrid
system with inconsistencies. Lecornu (1905a) proposed velocity jumps to escape from inconsistent modes, often now addressed
as impacts without collisions. A number of studies show that inconsistencies occur in the classical Painlevé example when the
friction coefficientµ is larger than 4/3 (Glocker, 1995; Lötstedt, 1981; Mason and Wang, 1988). The classical Painlevé example
was recently studied in more detail in (Génot and Brogliato, 1999). New results on how the solution passes singular points in
the sliding mode were presented in (Génot and Brogliato, 1999).

The critical value of 4/3 is very large and not likely to occur in physical situations. In (Génot, 1998) an adapted version
of the classical Painlevé example was proposed, where the rod has a rounded tip, which lowers the critical friction coefficient
to 0.63 (the example with a rounded tip was inspired by Moreau (1986)). The original example studied by Painlevé (1895b),
being the contact of a box with the ground, can have a much lower critical friction coefficient for a small radius of gyration
(see Appendix A). The occurrence of the Painlevé paradox of a rigid body with a friction rotor was studied in (Wilms and
Cohen, 1981, 1997) and a critical friction coefficient was found which can take arbitrary (positive) values depending on other
parameters. A similar conclusion is drawn in the present paper.

A model of a hopping finger was studied by Moreau (1986). Stick–slip motion with and without flight phase were reported,
as well period-doubled motion, but the occurrence of the Painlevé paradox was not studied. The Frictional Impact Oscillator,
presented in the present paper, is slightly different and lends itself better to an analytical investigation of the Painlevé paradox.

Control of the sliding motion of an end-effector of a robot on the surface of an obstacle can be hampered by the same
instability phenomena which govern the Frictional Impact Oscillator. It is expected that the results on the Frictional Impact
Oscillator, which will be studied in the sequel, can help to design better control schemes for constrained robotic motion.

Unilateral contact laws, as are used in the rigid multibody approach, lead to nonsmooth mathematical models due to their
set-valued nature. Bifurcations in smooth systems are well understood (Guckenheimer and Holmes, 1983) but little is known
about bifurcations in nonsmooth systems (Leine, 2000). Literature on bifurcations in nonsmooth mechanical systems seems to
be divided in two groups:

(1) Bifurcations in systems withfriction, which belong to the class of Filippov-systems. Literature on this topic is vast (for
instance (Dankowicz and Nordmark, 2000; Galvanetto and Knudsen, 1997; Hensen et al., 2002a, 2002b; Leine and Van
Campen, 1999, 2002; Popp et al., 1995; Van de Vrande et al., 1999; Wiercigroch, 1996; Yoshitake and Sueoka, 2000).
A general theory for bifurcations in Filippov-systems is not available but attempts to explore in that direction are made (di
Bernardo et al., 1999; Leine et al., 2000; Leine, 2000).

(2) Bifurcations in systems withimpact (Foale and Bishop, 1994; Ivanov, 1996; Meijaard, 1996; Nordmark, 1997; Peterka,
1996). The impacts are almost always considered to be frictionless and the systems very often contain only a single contact.

Literature on bifurcations in systems with multiple contacts with combined friction and impact is hardly available. An impact
oscillator with friction is studied in (Blazejczyk-Okolewska and Kapitaniak, 1996) but the impact and friction are in different
contact points for this system and the contact problem is therefore decoupled. Mechanical systems with combined impact and
friction are studied in (Leine et al., 2002) and bifurcation diagrams are constructed with the aid of a one-dimensional Poincaré

1 The original example studied by Painlevé in (Painlevé, 1895b) is that of a box on an inclined plane. A brief description of the
original example of Painlevé is given in Appendix A. The classical example of Painlevé, being a sliding rod, was studied in (Painlevé,
1905).
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map. The topic of bifurcations which are created by the Painlevé paradox has up to now not been addressed in literature and
will be studied in the present paper.

The main results on the classical Painlevé example will be briefly discussed in Section 3. The Frictional Impact Oscillator
will be studied in Section 4. This model can be simplified which leads to the Simplified Frictional Impact Oscillator (Section 5).
Critical friction coefficients of the Painlevé paradox will be derived for both models and numerical results for the periodic
solutions will be given. Bifurcations diagrams of the models are presented in Section 6. The notation as well as the methods of
(Glocker, 1995; Pfeiffer and Glocker, 1996) are used for the dynamics of rigid multibody systems with impact and friction and
are reviewed in Section 2.

2. Mathematical modeling of impact with friction

In this section we will briefly review some aspects of a mathematical theory for the dynamics of rigid bodies with completely
inelastic frictional impact as has been formulated in (Glocker, 1995, 2001; Pfeiffer and Glocker, 1996). A shorter version of this
formulation can be found in (Leine et al., 2002).

For the description on the dynamics of multibody systems it is convenient to introduce four contact sets, which describe the
kinematic state of the constraints of the system:

IG = {1,2, . . . , nG},
IS = {i ∈ IG | gNi = 0} with nS elements,

IN = {i ∈ IS | ġNi = 0} with nN elements,

IH = {i ∈ IN | ġT i = 0} with nH elements, (2.1)

wheregNi and ġT i denote the normal contact distance and tangential relative velocity of constrainti. The setIG consists of
nG indices of all constraints, which we want to take into account.IS contains thenS indices of the constraints with vanishing
normal distance but arbitrary relative velocity. In the setIN are thenN indices of the potentially active normal constraints,
which fulfill the necessary conditions for continuous contact (vanishing normal distance and no relative velocity in normal
direction). The setIN contains therefore all indices of slipping or sticking contacts. ThenH elements of the setIH correspond
to the potentially active constraints in tangential direction (sticking). The setsIS, IN , IH are not constant, because the contact
configuration of the dynamical system changes with time due to stick–slip transitions, impact and contact loss.

The dynamics of a multibody system can be expressed for almost allt by the equation of motion

M(t,q)q̈ − h(t,q, q̇)−
∑
i∈IS

(
wN(t,q)λN +wT (t,q)λT

)
i
= 0, (2.2)

whereM is the symmetric mass matrix,q the vector of generalized coordinates,h the vector with all smooth elastic, gyroscopic
and dissipating generalized forces andλN andλT the vectors with normal and tangential contact forces. The vectorswN and
wT are the normal and tangential force directions.

We assume the generalized coordinatesq(t) to be absolute continuous functions in time and the generalized velocitiesq̇(t)

to be functions of locally bounded variations, when a solution exists of course. We therefore can define the left and right limits
q̇(t−) andq̇(t+) at each time instantt > t0 (Brogliato, 1999; Glocker, 2001). Furthermore, we assume the generalized velocities
to be right-continuous, i.e.̇q(t)= q̇(t+). We specify the initial condition att = t0 by (q0, q̇0)= (q(t0), q̇(t0)). If we allow a
first velocity jump to occur att0 then we seṫq0 = q̇(t−0 ) (Moreau, 1988). Typically, the contact forcesλN andλT become
impulsive when an impact occurs and we haveq̇(t−) �= q̇(t+).

More conveniently we put (2.2) in the form

Mq̈ − h−WNλN −WT λT = 0, (2.3)

where the dependencies ont,q, q̇ have been omitted for brevity and whereWN andWT are matrices containing the generalized
force directions in normal and tangential direction. The contact distancesgNi andgT i are gathered in the vectorsgN andgT .
We can express the contact velocities and accelerations in the generalized accelerations by[

ġN
ġT

]
=

[
WT
N

WT
T

]
q̇ +

[
w̃N
w̃T

]
,

[
g̈N
g̈T

]
=

[
WT
N

WT
T

]
q̈ +

[�wN
�wT

]
. (2.4)

Each closed contacti ∈ IN is characterized by a vanishing contact distancegNi and normal relative velocitẏgNi . Under the
assumption of impenetrabilitygNi � 0, only two situations may occur:
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Fig. 2.1. Complementarity of contacts.

g̈Ni = 0∧ λNi � 0 (contact is maintained),

g̈Ni > 0∧ λNi = 0 (detachment). (2.5)

From (2.5) we see that the normal contact law shows a complementary behaviour: the product of the contact force and
acceleration is always zero:

g̈NiλNi = 0, i ∈ IN . (2.6)

The complementary behaviour of the normal contact law is depicted in Fig. 2.1(a) and shows a corner of admissible
combinations of̈gNi andλNi .

We assume Amontons–Coulomb law to hold in the tangential direction. For a closed contacti ∈ IN , with friction
coefficientµi , the following three cases are possible:

ġT i = 0 ⇒ |λT i |�µiλNi (sticking),

ġT i < 0 ⇒ λT i =+µiλNi (negative sliding),

ġT i > 0 ⇒ λT i =−µiλNi (positive sliding), i ∈ IN . (2.7)

To determine the tangential contact force during sticking, one can formulate unilateral laws for sticking contacts. For a closed
sticking contacti ∈ IH the following three cases are possible:

g̈T i = 0 ⇒ |λT i |�µiλNi (remains sticking),

g̈T i < 0 ⇒ λT i =+µiλNi (commences negative sliding),

g̈T i > 0 ⇒ λT i =−µiλNi (commences positive sliding), i ∈ IH . (2.8)

The normal and tangential contact law lead, together with the equations of motion, to the coupled normal-tangential contact
problem for the stick–slip and detachment transitions of the multibody system[

g̈N
g̈H

]
=

[
WT
N

M−1(WN +WGµG) WT
N

M−1WH

WT
HM−1(WN +WGµG) WT

HM−1WH

][
λN
λH

]
+

[
WT
N

M−1h+�wN
WT
HM−1h+�wH

]
(2.9)

with2

0 � g̈N ⊥ λN � 0 ∈ IN ,
λH ∈ −µHλN diag

(
∂|g̈H |

) ∈ IH , (2.10)

where

2 The notationa ⊥ b means thata stands perpendicular tob, i.e. aTb = 0. It follows therefore from the complementarity conditions
0� a ⊥ b � 0, that if ai > 0 thenbi = 0 and vice versa.
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WG =wT i, i ∈ IN\IH ,
gH = gT i , λH = λT i, WH =wT i, �wH = �wT i , i ∈ IH ,
µH ∈R

nH×nN , µG ∈R
nN−nH×nN , (2.11)

and where the subdifferential of convex analysis∂|x| = Sign(x) has been used. Equations (2.9) can be transformed into an LCP
as has been formulated in (Glocker, 1995; Pfeiffer and Glocker, 1996).

If an impact occurs, then we generally have a discontinuity in the generalized velocitiesq̇ . The impact is assumed to begin
at a timet− and to end at a timet+. The time differencet+ − t− is assumed to be “infinitely small”3 in the rigid multibody
approach. The equation of motion is integrated over the impact time:

M
(
q̇(t+)− q̇(t−)

)= [
WN WT

] [
ΛN
ΛT

]
, (2.12)

which yields the velocity jumṗq(t+)− q̇(t−) as a function of the impulsesΛN andΛT in normal and tangential direction
defined by

ΛNi = lim
t+→t−

t+∫
t−
λNi dt, ΛT i = lim

t+→t−

t+∫
t−
λT i dt, i ∈ IS . (2.13)

Due to the unilateral character of the contact constraint only nonnegative normal contact forces are possible,λNi � 0, which
results in nonnegative values of the normal impulsesΛNi � 0. At the end of the completely inelastic impact the approaching
process of the bodies has to be completed. Thus negative values of the contact velocities are forbidden,ġNi (t

+) � 0. If an
impulse is transferred (ΛNi > 0), then the corresponding contact participates in the impact andġNi (t

+)= 0. If no impulse is
transferred (ΛNCi = 0), then the corresponding constraint is superfluous and we allow velocitiesġNi (t

+)� 0. The impact law
in normal direction is therefore expressed by the complementarity condition

ΛNi � 0, ġNi (t
+)� 0, ΛNi ġNi (t

+)= 0, i ∈ IS . (2.14)

Possible stick–slip transitions during the collision with reversed sliding prevent an analytical integration of Coulomb’s friction
law (2.8) over the impact time interval. However, we state the tangential impact law as

ġT i(t
+)= 0 ⇒ |ΛT i |� µiΛNi (sticking),

ġT i(t
+) < 0 ⇒ ΛT i =+µiΛNi (negative sliding),

ġT i(t
+) > 0 ⇒ ΛT i =−µiΛNi (positive sliding), i ∈ IS, (2.15)

with the remark that (2.15) coincides with Coulomb’s friction law (2.8) in the cases of continuous sliding during the impact
and of arbitrary transitions to sticking at the end of the impact. Only events of reversed sliding or transitions from sticking to
sliding with a sliding phase at the end of the impact are different from Coulomb’s law (Glocker, 1995; Moreau, 1988; Pfeiffer
and Glocker, 1996).

Evaluating the contact velocities (2.4) att+ andt− gives[
ġN(t

+)
ġT (t

+)

]
=

[
WT
N

WT
T

] (
q̇(t+)− q̇(t−)

)+ [
ġN(t

−)
ġT (t

−)

]
∈R

2nS . (2.16)

Substitution of (2.12) in (2.16) together with the contact laws (2.14) and (2.15) gives the set of equations[
ġN(t

+)
ġT (t

+)

]
=

[
WT
N

M−1WN WT
N

M−1WT

WT
TM−1WN WT

TM−1WT

][
ΛN
ΛT

]
+

[
ġN(t

−)
ġT (t

−)

]
(2.17)

with

0 � ġN(t
+)⊥ΛN � 0 ∈ IS,

ΛT ∈−µSΛN diag
(
∂|ġT (t+)|

) ∈ IS, (2.18)

whereµS = diag(µi), i ∈ IS . The formulation of the coupled normal-tangential contact problem for completely inelastic
impact is given by (2.17) and is usually solved by reformulating it as an LCP.

3 Mathematically more correct is to consider the impact as a singleton, i.e. a point in time, and the equation of motion as a measure
differential equation, which is beyond the scope of this paper (see (Glocker, 2000; Moreau, 1988)).

5



In the sequel we will use an event-driven integration scheme to obtain solutionsq(t) of unilaterally constrained mechanical
systems. The equation of motion (2.3) for given index sets is numerically integrated until an impact, stick–slip or detachment
event occurs. If the event is an impact event, then the impact equations (2.17) have to be solved, after which the new generalized
velocitiesq̇ are known. Subsequently, Eq. (2.9) on acceleration level have to be solved, because the impact might cause stick–
slip transitions or detachment of other contacts. The new accelerationsq̈ are known after having solved (2.9). The new index
sets can then be setup and a new smooth integration phase can start. Basically any ODE-solver can be used for the integration
of the smooth phase as long as the solver supports event detection.

The event-driven integration scheme complies with a certain solution concept. The solution remains in a smooth mode as
long as some indicator inequalities are met (e.g.,|λT | � λN in the stick mode,gN � 0 in the unconstrained mode). If an
indicator function is violated, then an event occurs, and Eqs. (2.17) and (2.9) are solved which are basically LCPs. The LCPs
derived from (2.17) and (2.9) determine the mode change, i.e. they indicate the next mode. The solution of the LCPs can be
nonunique, indicating nonuniqueness of the next mode and therefore nonuniqueness of the solutionq(t). The solution of the
LCPs can also be nonexistent, implying that there is no continuation possible in any mode, and therefore nonexistence of the
solutionq(t).

3. The classical Painlevé example

In this section we will briefly summarize some results on the classical Painlevé problem of a sliding rigid rod. The rigid
body formulation of the model is taken from (Glocker, 1995) and the main results from (Brogliato, 1999; Génot and Brogliato,
1999).

Consider a rigid homogeneous slender rod with massm, length 2sand inertiaJS = 1
3ms

2 (see Fig. 3.1). The rod is sliding
with one tip over a rigid ground. Amontons–Coulomb friction model is supposed to hold at the contact point with constant
friction coefficientµ > 0. The system has three degrees of freedom, which we gather in a vector of generalized coordinates
q = [x y ϕ]T. The normal contact distance and tangential contact velocity are

gN = y − s sinϕ, ġT = ẋ − sϕ̇ sinϕ. (3.1)

The system matrices of the Painlevé problem become

M =
[
m 0 0
0 m 0
0 0 JS

]
, h=

[ 0
−mg

0

]
, WN =

[ 0
1

−s cosϕ

]
, WT =

[ 1
0

−s sinϕ

]
, (3.2)

w̃N = w̃T = 0, �wN = sϕ̇2 sinϕ, �wT =−sϕ̇2 cosϕ. (3.3)

It is relatively easy to show that a dynamic frictional catastrophe can occur in this simple system. We assume that the rod
is sliding over the ground in forward direction, i.e.,gN = 0, ġN = 0 andġT > 0. It therefore holds thatλT = −µλN . The
equations of motion become in the forward sliding mode:

mẍ =−µλN , mÿ =−mg+ λN , JSϕ̈ = s(−cosϕ +µsinϕ)λN . (3.4)

The rod remains in sliding contact with the ground wheng̈N = 0 and will detach when̈gN > 0, with

g̈N = ÿ − s cosϕϕ̈ + sϕ̇2 sinϕ. (3.5)

Fig. 3.1. The classical Painlevé example.
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The normal contact acceleration becomes in the forward sliding mode (substituting (3.4) in (3.5)):

g̈N =AλN + b, (3.6)

with

A(ϕ)= 1

m

(
1+ 3cosϕ(cosϕ −µsinϕ)

)
, b(ϕ, ϕ̇)= sϕ̇2 sinϕ − g. (3.7)

Note thatA is a function ofϕ andµ while b is function ofϕ andϕ̇. Between the normal contact accelerationg̈N and the normal
contact forceλN the following complementarity conditions hold:

0 � g̈N ⊥ λN � 0. (3.8)

The complementarity conditions (3.8) express that if the contact detaches,g̈N > 0, then it must hold thatλN = 0, while if
the normal contact force is positiveλN > 0 the contact remains closed̈gN = 0. The linear equation (3.6) together with the
complementarity conditions (3.8) gives a scalar Linear Complementarity Problem (LCP) for the detachment of the rod in the
forward sliding mode. The scalar LCP withg̈N =AλN +b, 0� g̈N ⊥ λN � 0 has a unique solution forA> 0, two solutions for
A< 0∧ b > 0, no solution forA< 0∧ b < 0 or infinitely many solutions forA= b = 0 (hyperstatic case). The solutions of the
LCP are indicated in Table 3.1. The occurrence of inconsistency (the LCP has no solution) and indeterminacy (nonuniqueness
of solutions) is called the Painlevé paradox (Génot and Brogliato, 1999).

The Painlevé paradox will occur whenA(ϕ) becomes negative, which happens for large enough values ofµ. The critical
value ofµ for whichA(ϕ)= 0 occurs atµ= µc(ϕ) with

µc(ϕ)= 1+ 3cos2ϕ

3sinϕ cosϕ
. (3.9)

Table 3.1
LCP solutions

A b Number of solutions LCP solutions

A> 0 b > 0 unique solution λN = 0∧ g̈N = b
A> 0 b < 0 unique solution λN =− b

A
∧ g̈N = 0

A< 0 b > 0 two solutions λN =− b
A
∧ g̈N = 0 orλN = 0∧ g̈N = b

A< 0 b < 0 no solution ∅

Fig. 3.2. The(ϕ, ϕ̇)-plane of the classical Painlevé problem (Génot and Brogliato, 1999).

7



The critical friction µc(ϕ) coefficient is minimal forϕ = arctan 2, givingµcmin = 4/3. This minimum critical friction
coefficient changes for other ratios ofms2/JS but will always be larger than 1 form > 0 andJS > 0. Forµ � µcmin there
exists an interval ofϕc1< ϕ < ϕc2 for whichA< 0 with

ϕc1= arctan

(
3µ−

√
9µ2− 16

2

)
, ϕc2= arctan

(
3µ+

√
9µ2− 16

2

)
. (3.10)

The (ϕ, ϕ̇)-plane is depicted in Fig. 3.2 together with the four different LCP modes for detachment in forward sliding.
A detailed study of the singular pointsPc1 andPc2 (Fig. 3.2) is given in (Génot and Brogliato, 1999). It is proven in (Génot
and Brogliato, 1999) that the solution can reach the singular pointsPc1 andPc2, depending on the friction coefficient, either
with a finite contact force or with a contact force reaching infinite values.

In the sequel we will present a model, consisting of a body with normal and tangential degrees of freedom, which exhibits
the Painlevé paradox. We will prove that a minimum critical friction coefficient for the Painlevé paradox is possible which can
be arbitrary small depending an some mass ratio. Furthermore, we will analyze the bifurcations of this model and will show
that a figure like Fig. 3.2 can be a very useful tool to analyze bifurcations caused by Painlevé paradoxes.

4. The Frictional Impact Oscillator

A human finger which is pushed over a table may exhibit periodic motion with stick and slip phases. When the friction
between the finger-tip and the table is sufficiently high, even periodic motion may be observed with phases where the finger
is not in contact with the table, i.e. the finger detaches from the table causing a ‘flight’ phase after which an impact occurs to
another phase of the periodic motion. In this section we will study a simple system, called the Frictional Impact Oscillator, which
exhibits the same phenomenon. The system is low-dimensional (2 degrees-of-freedom) but shows rich dynamic behaviour, being
complicated by the Painlevé paradox.

A similar system was studied by Moreau (1986). The system of Moreau consists of a bar with a rounded tip which is mounted
elastically in horizontal and vertical direction, which leads to a 3 degree-of-freedom system. The horizontal compliance is not
essential for the phenomenon and is neglected in the present study, which facilitates the analysis.

4.1. Model

The Frictional Impact Oscillator is depicted in Fig. 4.1. The system consists of a mass-spring-damper system (with
coordinatey and constantsm2, k, c), which can be looked upon as the ‘hand’, robot arm or supporting structure. A mass-
less rigid bar, representing the ‘finger’ or end-effector of a robot, is attached by a hinge to the ‘hand’ or robot arm, respectively.
The hinge can only move in the vertical direction by a displacementy. The bar is mounted at the hinge by a rotational spring
and dashpot (kϕ, cϕ ). A massm1 is located at the tip of the bar. The springsk andkϕ are unstressed wheny = 0 andϕ = ϕ0,
respectively. The tip of the bar can make contact with a belt, which is moving at constant velocityvdr. The contact is regarded

Fig. 4.1. The Frictional Impact Oscillator.
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to be completely inelastic but frictional (µ> 0). Pure Amontons–Coulomb friction is assumed without Stribeck effect (µ is not
dependent on the relative velocity). The normal contact distance and tangential contact velocity are

gN = l(1− cosϕ)+ y, ġT = lϕ̇ cosϕ + vdr. (4.1)

The rotation of the barϕ and the vertical displacement of the hingey can be gathered in a vector of generalized coordinates
q = [ϕ y]T. The kinetic and potential energy of the system can be expressed by

T = 1

2
m1l

2ϕ̇2+m1l sinϕ ẏϕ̇ + 1

2
(m1+m2)ẏ

2,

V = 1

2
kϕ(ϕ − ϕ0)

2+ 1

2
ky2+m1g(l− l cosϕ + y)+m2gy. (4.2)

Lagrange’s equations of motion can be put in the form of (2.3). The system matrices and vectors of the Frictional Impact
Oscillator become

M =
[

m1l
2 m1l sinϕ

m1l sinϕ m1+m2

]
, h=

[ −kϕ(ϕ − ϕ0)− cϕϕ̇ −m1gl sinϕ
−ky − cẏ − (m1+m2)g−m1l cosϕ ϕ̇2

]
, (4.3)

WN =
[
l sinϕ

1

]
, w̃N = 0, �wN = lϕ̇2 cosϕ,

WT =
[
l cosϕ

0

]
, w̃T = vdr, �wT =−lϕ̇2 sinϕ. (4.4)

4.2. Forward slip,ġT > 0

The motion of the system in the forward slip mode is constraint withλN � 0 and λT = −µλN . The equations of motion
become

m1l
2ϕ̈ +m1l sinϕ ÿ + cϕϕ̇ + kϕ(ϕ − ϕ0)= l(sinϕ −µcosϕ)λN −m1gl sinϕ,

m1l sinϕ ϕ̈ + (m1+m2)ÿ + cẏ + ky +m1l cosϕ ϕ̇2= λN − (m1+m2)g. (4.5)

Elimination ofλN together with the conditionsgN = ġN = g̈N = 0 gives a second-order differential equation

M(ϕ)ϕ̈+D(ϕ)ϕ̇2+ C(ϕ)ϕ̇+F(ϕ)= 0, (4.6)

with

M(ϕ)= (
m1 cos2ϕ +m2 sinϕ(sinϕ −µcosϕ)

)
l2,

D(ϕ)= (
(−m1+m2)sinϕ cosϕ −m2µcos2ϕ

)
l2,

C(ϕ)= cϕ + cl2 sinϕ(sinϕ −µcosϕ),

F(ϕ)= kϕ(ϕ − ϕ0)+ kl2(1− cosϕ)(sinϕ −µcosϕ)+ (
(m1+m2)µcosϕ −m2 sinϕ

)
lg. (4.7)

The system can have (multiple) equilibriaϕeq in the forward sliding mode, which obey

F(ϕeq)= 0 (4.8)

and a nonzero contact force

λN =−kl(1− cosϕeq)+ (m1+m2)g � 0. (4.9)

If the condition

K(ϕ)= ∂F(ϕ)
∂ϕ

> 0 ∀ϕ (4.10)

holds with

∂F
∂ϕ
= kϕ + kl2

(
(1− cosϕ)(cosϕ +µsinϕ)+ sinϕ(sinϕ −µcosϕ)

)− lg((m1+m2)µsinϕ +m2 cosϕ
)

(4.11)

then at most one equilibrium in the forward sliding mode exists. This is a sufficient condition forF(ϕ) to have at most one
zero but not a necessary condition. We assume in the forthcoming thatkϕ is chosen large enough that indeedK(ϕ) > 0 for all
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ϕ of interest. This means that the unique equilibriumϕeq, if it exists and obeysλN > 0, must be close toϕ0. The equilibrium is
approximately located at

ϕeq≈ ϕ0− F(ϕ0)

K(ϕ0)
. (4.12)

The equation of motion forM(ϕ) �= 0 can be written in first-order form as

ϕ̇ =ψ, ψ̇ =−M(ϕ)−1(
D(ϕ)ψ2+ C(ϕ)ψ +F(ϕ)

)
. (4.13)

Linearization around the equilibrium(ξ,ψ)= (0,0) with ξ = ϕ − ϕeq gives

ξ̇ =ψ, ψ̇ =−(
M(ϕeq)

−1−M(ϕeq)
−2M′(ϕeq)ξ

)(
C(ϕeq)ψ +F(ϕeq)+K(ϕeq)ξ

)+H.O.T. (4.14)

with M′(ϕ)= ∂M/∂ϕ. It should be noted thatF(ϕeq)= 0. The eigenvalue problem therefore yields

M(ϕeq)λ
2+ C(ϕeq)λ+K(ϕeq)= 0. (4.15)

The equilibrium is stable ifM(ϕeq) > 0,C(ϕeq) > 0 and K(ϕeq) > 0 orM(ϕeq) < 0,C(ϕeq) < 0 andK(ϕeq) < 0. Note that
the friction coefficientµ can cause a negative feedback of the damping forces. The equilibrium undergoes a Hopf bifurcation
for M(ϕeq) > 0,K(ϕeq) > 0 when the friction coefficientµ passes the critical value

µd = tanϕeq+ cϕ

cl2 sinϕeqcosϕeq
, (4.16)

for whichC(ϕeq)= 0.4 The value ofM(ϕeq) becomes zero when

µ= tanϕeq+ m1

m2

1

tanϕeq
,

which is in fact the Painlevé paradox.

4.3. Painlevé paradox

In this subsection we will study the Painlevé paradox in the forward and backward sliding mode with similar techniques as
presented in (Génot and Brogliato, 1999).

The solution remains in the forward sliding mode ifġT > 0 andg̈N = 0 and in the backward sliding mode ifġT < 0 and
g̈N = 0. The body detaches from the belt wheng̈N > 0. For the normal contact accelerationg̈N holds:

g̈N = l sinϕϕ̈ + ÿ + l cosϕϕ̇2. (4.17)

Substituting (2.3) in (2.4) together withgN = ġN = 0 gives

g̈N =
{
A+λN + b, ġT > 0,
A−λN + b, ġT < 0,

(4.18)

with

A+(ϕ) = WT
NM−1(WN −µWT )= cos2ϕ

N(ϕ)

(
1+ m2

m1
tanϕ(tanϕ −µ)

)
, (4.19)

A−(ϕ) = WT
NM−1(WN +µWT )= cos2ϕ

N(ϕ)

(
1+ m2

m1
tanϕ(tanϕ +µ)

)
, (4.20)

b(ϕ, ϕ̇) = WT
NM−1h+�wN

= cos2ϕ

N(ϕ)

(
−m2

m1

tanϕ

l cosϕ

(
cϕϕ̇ + kϕ(ϕ − ϕ0)

)+ cl sinϕϕ̇ + kl(1− cosϕ)+ m2l

cosϕ
ϕ̇2

)
− g (4.21)

and

N(ϕ)=m1 cos2ϕ +m2. (4.22)

4 If µ passesµd , then it follows thatC(ϕeq) changes sign. A pair of complex conjugated eigenvalues move thereforethroughthe imaginary
axis, implying a Hopf bifurcation.
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The notationA+ is used to denote the value ofA in the forward sliding mode, whileA− will be used for the backward sliding
mode. Note thatA± are functions ofϕ andµ, andb is a function ofϕ andϕ̇. The linear equation (4.18) gives together with the
complementarity conditions

0 � g̈N ⊥ λN � 0

a scalar Linear Complementarity Problem for the detachment in the forward and backward sliding mode.
The Painlevé paradox occurs in the forward sliding mode whenA+(ϕ) becomes negative, leading to inconsistency or

indeterminacy of the forward sliding mode (depending on the sign ofb(ϕ, ϕ̇)). The valueA+(ϕ) can become negative for
sufficiently large values of the friction coefficientµ. The critical value occurs atµ=µ+c (ϕ) for whichA+(ϕ)= 0,

µ+c (ϕ)= tanϕ + m1

m2

1

tanϕ
. (4.23)

The critical valueµ+c (ϕ) is minimal whenϕ = arctan
√
m1/m2 giving

µcmin= 2
√
m1

m2
. (4.24)

Forµ� µcmin there exists an interval ofϕ+
c1<ϕ < ϕ

+
c2 for whichA+ < 0 with

ϕ+
c1= arctan

(
1

2
µ+

√
1

4
µ2− m1

m2

)
, ϕ+

c2= arctan

(
1

2
µ−

√
1

4
µ2− m1

m2

)
. (4.25)

With respect to the previous section we have to remark the following lemma.

Lemma 4.1. Consider a mechanical systemM(q)q̈ − h(q, q̇) − WN(q)λN − WT (q)λT = 0 with n degrees of freedom
q ∈ R

n and with a single unilateral contact point, i.e.λN ,λT ∈ R. Let M(q) be nonsingular. Let the system be for
some nonzero time-intervalt ∈ U in the forward sliding mode,λT = −µλN , and the detachment LCP be described by
g̈N = A(q)λN + b(q, q̇). The motion in the forward slip mode can be described in a set of minimal coordinatesa by the
reduced systemM(a)ä+H(a, ȧ)= 0, with a ∈R

f , f = n− 1. It holds thatA(q)= 0 if and only ifM(a)=O.

Proof. The proof relies upon a coordinate transformation to minimal coordinates by using the virtual work equations (Glocker,
2001, Section 3.7) after which we substitute the contact forceλN = −b/A. Let a ∈ R

f be a set of coordinates such that
any positionq compatible with the constraintgN = 0, is uniquely determined by the values ofa. By such coordinates, the
constraints are implicitly fulfilled, i.e. forq(a, t) one has

gN
(
q(a, t), t

)≡ 0, ∀a, ∀t ∈U. (4.26)

At least locally we may assume the parameterization such that the Jacobian ofq with respect toa has full rankf . Equation (4.26)
also holds fora∗ neara. For t = tc ∈ U being fixed we expand (4.26) in a Taylor series

gN
(
q(a∗, tc), tc

)≈ gN (
q(a, tc), tc

)+ ∂gN (q)
∂q

∂q

∂a
(a∗ − a). (4.27)

Taking into account thatgN(q(a, tc), tc)= gN(q(a
∗, tc), tc)= 0 by (4.26) we obtain

0=WT
NQ; WT

N(a, t)=
∂gN

∂q
, Q(a, t)= ∂q

∂a
, (4.28)

with q = q(a, t), because (4.26) holds for every directionδa = a∗ − a ∈R
f . By differentiation ofq(a, t) we obtain

q̇ =Qȧ+ κ̃, q̈ =Qä+ κ̄, (4.29)

with κ̃(a, t) = ∂q/∂t and κ̄(a, ȧ, t) = Q̇ȧ + ˙̃κ . Evaluation of the virtual work equations (Glocker, 2001) for admissible and
nonadmissible virtual displacements using (4.28) and (4.29) gives the two equations:

QTMQä −QT(h−Mκ̄)+µQTWT λN = 0,

WT
NM−1(WN −µWT )λN +WT

N(M
−1h− κ̄)= 0. (4.30)

Note that the termµQTWT λN does not drop out from the first equation. The second equation of (4.30) can be rewritten as

g̈N =AλN + b = 0, (4.31)
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with

A(q)=WT
NM−1(WN −µWT ), b(q, q̇)=WT

N

(
M−1h− κ̄

)=WT
NM−1h+�wN (4.32)

andWT
N

κ̄ =−�wN . The first equation of (4.30) becomes

AQTMQä −AQT(h−Mκ̄)−µQTWT b = 0 (4.33)

which is in the formM(a)ä+H(a, ȧ)= 0. It follows thatM(a)=O if and only ifA(q)= 0. ✷
Lemma 4.2.Letµ andq be such thatA(q)= 0, with q = q(t,a). It holds thatH(a, ȧ)= 0 if and only ifb(q, q̇)= 0.

Proof. It follows from Lemma 4.1 thatM(a) = O but we cannot immediately state fromM(a)ä = −H(a, ȧ) that
H(a, ȧ)= 0 because the accelerationsä are not necessarily bounded. However, ifA(q)= 0 then it follows thatb(q, q̇)= 0 if
and only ifH(a, ȧ)= 0. ✷

These lemma’s have the following implications for the Frictional Impact Oscillator:

Lemma 4.3.It holds thatA+(ϕ)= 0 if and only ifM(ϕ)= 0.

Proof. The proof follows immediately from Lemma 4.1 withϕ = a andA+(ϕ)=A(q(a)). For the Frictional Impact Oscillator
it holds thatM(ϕ)= l2N(ϕ)A+(ϕ) andN(ϕ) > 0∀ϕ from which also follows the lemma.✷
Lemma 4.4. Let µ = µ+c > 0 and be bounded such thatA+(ϕ) = 0. Then it holds thatb(ϕ, ϕ̇) = 0 if and only if
D(ϕ)ϕ̇2+ C(ϕ)ϕ̇ +F(ϕ)= 0.

Proof. The proof follows immediately from Lemma 4.2 withH(a, ȧ)=D(ϕ)ϕ̇2+C(ϕ)ϕ̇+F(ϕ). It follows fromµ= µ+c > 0
and the restriction thatµ+c is bounded that sinϕ �= 0. Forµ= µ+c it holds that

b(ϕ, ϕ̇)=−m1

m2

sinϕ

N(ϕ)l

(
D(ϕ)ϕ̇2+ C(ϕ)ϕ̇+F(ϕ)

)
from which follows the lemma. ✷

We can conclude from Lemmas 4.3 and 4.4 that whenϕ is such thatA+ = 0, then the slip equation (4.6) is fulfilled only
whenb = 0. Note that it must hold in the forward slip mode thatg̈N = 0 from which follows thatb = 0 when A+ = 0. Let us
denote the singular point in the(ϕ, ϕ̇)-plane for whichA+ = 0 and b= 0 byPc. The pointPc is located outside the(ϕ, ϕ̇)-plane
shown in Fig. 4.4, at the intersection of the vertical lineA+ and the curveb = 0. It follows that a solution in the forward slip
mode can only reach the lineA+ = 0 in the(ϕ, ϕ̇)-plane through the singular pointPc. Singular points of this type were studied
in detail in (Génot and Brogliato, 1999) for the classical Painlevé example. The contact forceλN might become unbounded
atPc . We assume in the sequel that periodic solutions, if they exist, do not pass the critical pointPc (i.e. the critical point is not
located on a periodic solution of interest). Indeed, for the hopping phenomenon, which is of interest in the current paper, critical
points likePc do not play a role (at least not for the parameter set we study).

The Painlevé paradox can also occur in the backward sliding mode. The friction forceλT now works in the opposite direction
and the Painlevé paradox can therefore only occur for negative values ofϕ. The valueA− can become negative for sufficiently
large values of the friction coefficientµ and negative values ofϕ. The critical value occurs atµ= µ−c for whichA− = 0. It can
easily be verified thatµ−c =−µ+c , being minimal whenϕ =−arctan

√
m1/m2 giving again the critical valueµcmin (4.24). For

µ � µcmin there exists an interval ofϕ−
c1 > ϕ > ϕ

−
c2 for whichA− < 0 with ϕ−

ci
=−ϕ+

ci
, i = 1,2. However, we will focus in

the sequel on the Painlevé paradox in the forward sliding mode because a possible sliding equilibrium is located in the forward
sliding mode forvdr> 0.

4.4. Analysis of periodic motion

The Frictional Impact Oscillator can exhibit periodic motion with slip, stick and flight phases. We will explore how the
topology of the periodic solution depends on the regions defined by the linesA = 0 andb = 0. We will consider two cases:
case 1 withµ= 0.5<µcmin and case 2 withµ= 1>µcmin, whereµcmin= 0.6325. The other parameters arem1= 0.1 kg,
m2= 1 kg, l = 1 m,k = 100 N/m, kϕ = 100 Nm,c= 10 N/(ms),cϕ = 0 Nm/s,ϕ0= π/8, vdr= 1 m/s,g = 10 Nm/s2.
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Fig. 4.2. The(ϕ, ϕ̇)-plane of the Frictional Impact Oscillator,µ= 0.5.

Fig. 4.3. Time history of the Frictional Impact Oscillator,µ= 0.5.

Case 1.µ = 0.5. Solutions in the forward slip mode exist and are unique becauseA > 0, ∀ϕ for µ < µcmin. The lines
b = 0 (4.21) andġT = 0 are drawn in the plane(ϕ, ϕ̇) of Fig. 4.2. The time history of the contact distancegN and contact
velocity ġT are shown in Fig. 4.3. The borders of the friction cone on the lineġT in Fig. 4.2 are obtained numerically and
depicted by a small circle (◦). The part of the linėgT between the two◦ signs is therefore the stick mode. Note that the friction
cone lies, for this parameter set, totally outside the detachment regionA+ > 0, b > 0. A stable periodic solution is found
numerically and consists of the following phases: stick–slip–flight. The dynamics of the flight phase is not only dependent on
(ϕ, ϕ̇) and is therefore depicted in grey. The stick to slip transition occurs at the border of the friction cone. The body remains
some time in forward slipping contact with the belt in the spaceA+ > 0, b < 0 until the lineb= 0 is hit. The sign ofb changes
at the lineb = 0, giving the LCP solutionλN = 0, g̈N > 0, which means that the body detaches from the belt. The body
remains in flight (unconstrained free motion) until an impact occurs (gN = 0). The impact causes the velocitiesϕ̇ and ẏ to
jump. However, the jump is so small that the discontinuity cannot be seen at the scale of Figs. 4.2 and 4.3. The impact results
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Fig. 4.4. The(ϕ, ϕ̇)-plane of the Frictional Impact Oscillator,µ= 1.

Fig. 4.5. Time history of the Frictional Impact Oscillator,µ= 1.

in sticking of the body to the belt. Other coexisting periodic solutions might exist in theory but were not found numerically for
this parameter set.

Case 2.µ = 1. All four regions of Table 3.1 exist for this parameter set and are depicted in Fig. 4.4. The friction cone
is now bordered partly by the regionA+ < 0, b > 0 (the indeterminate mode of the detachment LCP of the forward
slip mode) and is partly bordered by the regionA+ < 0, b < 0 (the inconsistent mode of the detachment LCP of the
forward slip mode). A periodic solution was found which contains a stick phase and a flight phase (depicted in grey). The
velocity jump due to the impact is depicted by a dotted line. The impact causes the post-impact state to be in the stick
mode.
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A few fundamental questions should be put forward at this point:

(1) Is the solution at the end of the stick phase locally unique? The forward slip mode is at this point undeterminate.
(2) Can an impact cause a post-impact state which is in the forward sliding mode with nonexistence of solution?

These questions are very hard to answer due to the nonlinear terms in the Frictional Impact Oscillator, which make the
analysis cumbersome. Instead, it is much more convenient to look at a piecewise linear simplified version of this model, which
we call the Simplified Frictional Impact Oscillator. The above questions will be answered for the Simplified Frictional Impact
Oscillator. Later, when we look at bifurcation diagrams in Section 6, it will be shown that the Simplified Frictional Impact
Oscillator is to some extent a good approximation of the Frictional Impact Oscillator.

5. The Simplified Frictional Impact Oscillator

In this section a simplified version of the Frictional Impact Oscillator will be studied. For small values ofϕ − ϕ0 1 we
can approximate the Frictional Impact Oscillator (Fig. 4.1) with the Simplified Frictional Impact Oscillator depicted in Fig. 5.2.
Note that the angleγ is constant. Fig. 5.1 might help to understand the relation between the two models. The Frictional Impact
Oscillator is pushed over the belt, while the Simplified Bounce Model seems to be dragged over the belt.

5.1. Model

The Simplified Frictional Impact Oscillator consists of a mass-spring-damper system (m1, k1, c1) which stands under a fixed
angleγ and is attached to a vertically suspended mass-spring-damper system (m2, k2, c2). The springs are unstressed when
u1= 0 and u2= 0. The correspondence between the constants of the Frictional Impact Oscillator and the Simplified Frictional
Impact Oscillator isu1= l(ϕ− ϕ0), u2= y, γ = ϕ0, k1= kϕ/l2, c1= cϕ/l2, k2= k andc2= c.

The kinetic and potential energy of the system can be expressed by

Fig. 5.1. Simplification of the Frictional Impact Oscillator (left) for small rotations of the rod.

Fig. 5.2. Model of the Simplified Frictional Impact Oscillator.
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T = 1

2
m1u̇

2
1+m1 sinγ u̇1u̇2+ 1

2
(m1+m2)u̇

2
2,

V = 1

2
k1u

2
1+

1

2
k2u

2
2+m1g sinγ u1+ (m1+m2)gu2. (5.1)

The system matrices and vectors of the Simplified Frictional Impact Oscillator become

M =
[

m1 m1 sinγ
m1 sinγ m1+m2

]
, h=

[ −k1u1− c1u̇1−m1g sinγ
−k2u2− c2u̇2− (m1+m2)g

]
, (5.2)

gN = u1 sinγ + u2, ġT = u̇1 cosγ + vdr (5.3)

WN =
[

sinγ
1

]
, WT =

[
cosγ

0

]
, w̃N = 0, �wN = 0, w̃T = vdr, �wT = 0. (5.4)

5.2. Forward slip,ġT > 0

The motion of the system in the forward slip mode is constraint withλN � 0 and λT = −µλN . The equations of motion
become

m1ü1+m1 sinγ ü2+ c1u̇1+ k1u1= (sinγ −µcosγ )λN −m1g sinγ,

m1 sinγ ü1+ (m1+m2)ü2+ c2u̇2+ k2u2= λN − (m1+m2)g. (5.5)

Elimination ofλN together with the conditionsgN = ġN = g̈N = 0 gives a second order differential equation

Mγ ü1+ Cγ u̇1+Kγ u1=Fγ , (5.6)

with

Mγ =m1 cos2γ +m2 sinγ (sinγ −µcosγ ), Cγ = c1+ c2 sinγ (sinγ −µcosγ ),

Kγ = k1+ k2 sinγ (sinγ −µcosγ ), Fγ =−
(
(m1+m2)µcosγ −m2 sinγ

)
g, (5.7)

where theMγ ,Cγ ,Kγ andFγ are constants contrary to (4.7). The system has an equilibriumu1eqin the forward sliding mode

u1eq=
Fγ
Kγ
= (−(m1+m2)µcosγ +m2 sinγ )g

(k1+ k2 sinγ (sinγ −µcosγ ))
, (5.8)

whenλN =−k2u1eqsinγ + (m1+m2)g � 0 and Kγ �= 0.
The equilibrium is stable ifMγ > 0, Cγ > 0 and Kγ > 0 or Mγ < 0, Cγ < 0 and Kγ < 0. The equilibrium undergoes a

Hopf bifurcation forMγ > 0,Kγ > 0 when the friction coefficientµ passes the critical value

µdγ = tanγ + c1
c2

1

sinγ cosγ
(5.9)

for whichCγ = 0.

5.3. Stick mode

In the stick mode holdsgN = ġN = g̈N = ġT = g̈T = 0 and |λT | < µλN . It follows that u2 = −u1 sinγ and u̇1 =
−vdr/cosγ . The normal contact force therefore becomes

λN = c2vdr tanγ − k2u1 sinγ + (m1+m2)g. (5.10)

The condition that the contact force must be in the interior of the friction cone,|λT |<µλN , results in an intervalu−stick<u1<

u+stick with

u±stick=
c1

vdr
cosγ + (sinγ ±µcosγ )(c2vdr tanγ + (m1+m2)g)−m1g sinγ

k1+ k2 sinγ (sinγ ±µcosγ )
. (5.11)

The solutions to the detachment LCP for the stick mode exist and are unique which follows from

g̈N = ü1 sinγ + ü2= 1

m1+m2
(λN + c2u̇1 sinγ + k2u1 sinγ )− g. (5.12)

The stick mode is therefore consistent and determinate.
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5.4. Painlevé paradox

Similar to the Frictional Impact Oscillator we analyze the Painlevé paradox of the Simplified Frictional Impact Oscillator in
the forward and backward slip mode.

The normal acceleration̈gN = ü1 sinγ + ü2 in the forward and backward slip mode becomes

g̈N =
{
A+γ λN + bγ , ġT > 0,

A−γ λN + bγ , ġT < 0,
(5.13)

with

A+γ =WT
NM−1(WN −µWT )= cos2γ

Nγ

(
1+ m2

m1
tanγ (tanγ −µ)

)
, (5.14)

A−γ =WT
NM−1(WN +µWT )= cos2γ

Nγ

(
1+ m2

m1
tanγ (tanγ +µ)

)
, (5.15)

bγ (u1, u̇1)=WT
NM−1h+�wN = sinγ

Nγ

(
cos2γ (c2u̇1+ k2u1)− m2

m1
(c1u̇1+ k1u1)

)
− g (5.16)

and

Nγ =m1 cos2γ +m2. (5.17)

Note thatA±γ is not dependent onu1 and u̇1. The valueA+γ , belonging to the forward slip mode, can become negative for

sufficiently large values of the friction coefficientµ. The critical value occurs atµ=µ+cγ for whichA+γ = 0,

µ+cγ = tanγ + m1

m2

1

tanγ
. (5.18)

The critical valueµ+cγ is minimal whenγ = arctan
√
m1/m2 giving

µcmin= 2
√
m1

m2
. (5.19)

The Simplified Frictional Impact Oscillator has therefore the same critical friction coefficient for consistency and determinacy
of the forward sliding mode as the Frictional Impact Oscillator. The piece-wise linear character of the Simplified Frictional
Impact Oscillator allows us however to derive the following important lemma’s.

Lemma 5.1.If µ= µ+cγ such thatA+γ = 0, then the point(u1, u̇1)= (u−stick,−vdr/cosγ ) is located on the linebγ (u1, u̇1)= 0.

Proof. Forµ= µ+cγ (5.18) holds

k1+ k2 sinγ (sinγ −µcosγ )=−m1

m2

(
k2 cos2γ − k1m2

m1

)
(5.20)

and

c1
vdr

cosγ
+ (sinγ −µcosγ )

(
c2vdr tanγ + (m1+m2)g

)−m1g sinγ

=− vdr

cosγ

m1

m2

(
c2 cos2γ − m2

m1
c1

)
− m1

m2
Nγ

g

sinγ
.

The border of the friction cone becomes (5.11)

u−stick=
vdr

cosγ
(
c2 cos2γ − m2

m1
c1

)+Nγ g
sinγ

k2 cos2γ − k1m2
m1

.

Substitution ofu1= u−stick andu̇1=−vdr/cosγ into (5.16) yieldsbγ (u1, u̇1)= 0. ✷
Lemma 5.2.If µ= µ+cγ such thatA+γ = 0, then the equilibrium point(u1, u̇1)= (u1eq,0) is located on the linebγ (u1, u̇1)= 0.
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Proof. Substitution ofu1= u1eq (5.8) andu̇1= 0 into (5.16) together with (5.20) yieldsbγ (u1, u̇1)= 0. ✷
The above lemma’s show that the equilibrium as well as the left border of the friction cone pass to the left side of the line

bγ = 0 when µpasses the critical value for the Painlevé paradox. The equilibrium and the left border of the friction cone can
therefore not be located in, or be bordered by, the inconsistent modeA+γ < 0, bγ < 0.

5.5. Analysis of periodic motion

The Simplified Frictional Impact Oscillator can exhibit periodic motion with slip, stick and flight phases similar to the
Frictional Impact Oscillator. We will explore how the topology of the periodic solution depends on the regions defined by the
value ofA±γ and the linebγ = 0. We will consider two cases (similar to the two cases of the Frictional Impact Oscillator): case 1

with µ = 0.5< µ+cγ and case 2 withµ = 1> µ+cγ , whereµ+cγ = 0.6556. The other parameters arem1 = 0.1 kg,m2 = 1 kg,

l = 1 m,k1= 100 N/m, k2= 100 N/m, c1= 0 N/(m s),c2= 10 N/(m s),vdr= 1 m/s,g = 10 N m/s2.

Case 1.µ= 0.5. The values ofA±γ are not dependent onu1 for the Simplified Frictional Impact Oscillator and are both positive
for the parameter set of case 1. The forward and backward slip modes are therefore always consistent and determinate. The lines
bγ = 0 (5.16) andġT = 0 are drawn in the plane(u1, u̇1) of Fig. 5.3. The time history of the contact distancegN and contact
velocity ġT are shown in Fig. 5.4 for a periodic solution of the system. The borders of the friction cone on the lineġT in Fig. 5.3
are given by (5.11) and are depicted by a small circle (◦). The part of the linėgT between the two◦ signs is therefore the stick
mode. Note that the friction cone lies, for this parameter set, totally outside the detachment regionbγ > 0. A periodic solution
is found numerically and consists of the following phases: stick–slip–flight–slip. The numerically obtained Floquet multipliers
indicate that the periodic solution is stable, which agrees with its (locally) attracting nature. The stick to slip transition occurs at
the border of the friction cone. The body remains some time in forward slipping contact with the belt in the spacebγ < 0 until
the linebγ = 0 is hit. The sign ofbγ changes at the linebγ = 0, giving the LCP solutionλN = 0, g̈N > 0, which means that
the body detaches from the belt. The body remains in flight (unconstrained free motion) until an impact occurs (gN = 0). The
impact causes the velocitiesu̇1 andu̇2 to jump. The impact results in slipping contact of the body to the belt. Other coexisting
periodic solutions might exist theoretically but were not found numerically.

Case 2.µ = 1. The value ofA+γ is negative for case 2. The friction cone is now partly bordered by the regionbγ > 0 (the
indeterminate mode of the detachment LCP of the forward slip mode) and partly by the regionbγ < 0 (the inconsistent mode
of the detachment LCP of the forward slip mode). A periodic solution was found which contains a stick phase. At the end of
the stick phase, when the solution is on the border of the friction cone, detachment occurs. The problem is identical to case 2 of
the Frictional Impact Oscillator. The detachment LCP has two solutions:

Fig. 5.3. The(u1, u̇1)-plane of the Simplified Frictional Impact Oscillator,µ= 0.5,A+γ = 0.5070.

18



Fig. 5.4. Time history of the Simplified Frictional Impact Oscillator,µ= 0.5.

Fig. 5.5. The(u1, u̇1)-plane of the Simplified Frictional Impact Oscillator,µ= 1,A+γ =−1.1218.

(1) λN =−bγ /A+γ ∧ g̈N = 0, implying forward slip;
(2) λN = 0∧ g̈N = bγ , the body detaches and solution proceeds in a flight phase as the depicted periodic solution does.

The undeterminacy of the detachment LCP at the end of the stick phase for case 2 suggests that the solution(q(t), q̇(t))

might be nonunique after this transition. We will have to check rigourously uniqueness at this point. The relationship between
uniqueness of solutions of the LCP and uniqueness of solutions(q(t), q̇(t)) is not simple in general, see (Brogliato, 1999)
§2.2.3 and Remark 5.18 therein. Let us therefore consider the following lemma.
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Fig. 5.6. Time history of the Simplified Frictional Impact Oscillator,µ= 1.

Lemma 5.3.Letµ>µ+cγ , Kγ > 0 and

(
q(t0), q̇(t0)

)= [
u−stick −u−sticksinγ − vdr

cosγ
vdr tanγ

]T
.

The solutionq(t) to the initial value problem of the Simplified Frictional Impact Oscillator with initial condition(q0, q̇0) at
t = t0 is locally unique and the solution proceeds in a flight phasegN > 0.

Proof. It follows from the initial condition(q(t0), q̇(t0)) thatgN(t0)= ġN (t0)= 0. The starting point from(u1(t0), u̇1(t0))=
(u−stick,−vdr/cosγ ) is at the border of the stick modėgT = 0, λT = −µλN . The solution might proceed in the following
modes: stick, backward slip, forward slip, flight. Continuation to all of the four modes will be analyzed.

Stick: Assume that a solutionq(t) exists on(t0 − ε, t0 + ε), ε > 0. If the solution remains in the stick mode, thenu̇1(t)

is continuous att = t0. It holds thatu1(t0+ ε) < u1(t0), ε > 0 becausėu1(t0) < 0. The solution therefore does not
remain in the stick modeu−stick< u1< u

+
stick. Continuation in the stick mode is impossible.

Backward slip: The detachment LCP in the backward slip mode is given byg̈N = A−γ λN + bγ . It holds thatA−γ > 0 (5.15).
From Lemma 5.1 and the linearity ofbγ (5.16) inu1 andu̇1, it follows thatbγ (t0) > 0. Consequently it must hold
that g̈N (t0) > 0 and a transition to the flight mode will occur immediately.

Forward slip: The detachment LCP in the forward slip mode is given byg̈N = A+γ λN + bγ . It holds thatA+γ > 0 (5.14) and
bγ (t0) > 0. The detachment LCP for the forward slip mode has two solutions:
(a) λN =−bγ /A+γ ∧ g̈N = 0 which would imply forward slip. If the solution proceeds in the forward slip mode then

it holds that

g̈T (t0)=M−1
γ

(−Cγ u̇1(t0)−Kγ u1(t0)+Fγ
)
cosγ = 0.

Furthermore it holds that∃ξ > 0, u1(t0 + ε) = u1(t0) − ξ for an arbitrary smallε > 0 becausėu1(t0) < 0. It
therefore must hold thaẗgT (t0+ ε)=M−1

γ Kγ ξ cosγ < 0 becauseMγ < 0 andKγ > 0. Consequently it holds
that ġT (t0+ ε) < 0. The solution will therefore not stay in the forward slip mode but transition to backward slip
will occur immediately. From the backward slip mode a transition will occur to the flight mode;

(b) λN = 0∧ g̈N = bγ > 0, the solution does not stay in forward slip but transition to the flight mode will occur
immediately.

Flight: In the flight mode it holds thatλN = 0. It follows thatg̈N (t0)= bγ (t0) > 0. Continuation in the flight mode is possible
for a nonzero time interval. Existence of the solution is therefore proven.

It can be concluded that the flight mode is the only possible mode for continuation during a nonzero time interval. The other
modes are not possible to enter (stick phase) or switch immediately to the flight mode. The solution will switch to the flight
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mode in a finite number of mode switches and in a zero time interval. The solution is therefore locally unique and proceeds in
the flight phase. ✷

Uniqueness of the stick-to-flight transition has been proven. Until now nothing has been said about the existence and
uniqueness of the solution after the impact. For the following lemma we will introduce the notation:

Aγ (α) = WT
NM−1(WN − αµWT )= cos2γ

Nγ

(
1+ m2

m1
tanγ (tanγ − αµ)

)
, (5.21)

Bγ (α) = WT
TM−1(WN − αµWT )= cos2γ

Nγ

(
tanγ

m2

m1
− αµ

(
1+ m2

m1

))
, (5.22)

with −1 � α � 1. It follows thatA+γ =Aγ (1),A−γ =Aγ (−1) and we introduce the abbreviationB+γ = Bγ (1), B−γ = Bγ (−1).
Let us prove the following result.

Lemma 5.4.Let (q(t0), q̇(t
−
0 )) be an initial condition for which holdsgN(t0) = 0 and ġN (t

−
0 ) < 0 implying an impact at

t = t0. Letµ >µ+cγ . The post-impact solution(q(t0), q̇(t
+
0 )) is locally unique and proceeds in either the backward slip mode,

the stick mode or the flight mode.

Proof. The impact equations are[
ġN (t

+
0 )

ġT (t
+
0 )

]
=

[
WT
N

M−1WN WT
N

M−1WT

WT
TM−1WN WT

TM−1WT

][
ΛN
ΛT

]
+

[
ġN (t

−
0 )

ġT (t
−
0 )

]
, (5.23)

with the impulses in normal and tangential direction

ΛN = lim
t+0 →t−0

t+0∫
t−0

λN dt, ΛT = lim
t+0 →t−0

t+0∫
t−0

λT dt . (5.24)

For completely inelastic impact it must hold thatġN (t
+
0 ) = 0. The post-impact state might be in the forward slip mode,

backward slip mode or on the line of zero relative velocity,ġT (t
+
0 ) = 0. Continuation in each of the following modes will

be analyzed.

Forward slip: We will prove that continuation in the forward sliding mode is impossible byreductio ad absurdum. In the
forward slip mode it must hold thaṫgT (t

+
0 ) > 0 and ΛT = −µΛN with ΛN � 0. Substitution into (5.23) gives

A+γ ΛN + ġN (t−0 )= 0. However,A+γ < 0 for µ>µ+cγ andġN (t
−
0 ) < 0. Consequently the normal impulse has to be

ΛN =−ġN (t−0 )/A+γ < 0 which is contrary to what was assumed before.

Backward slip: In the backward slip mode it must hold thatġT (t
+
0 ) < 0 andΛT = µΛN with ΛN � 0. Substitution

into (5.23) givesA+γ ΛN + ġN (t−0 ) = 0 from which follows thatΛN = −ġN (t−0 )/A−γ > 0. Furthermore we have

ġT (t
+
0 )= B−γ ΛN + ġT (t−0 ). It must hold thatġT (t

+
0 ) < 0. Continuation in the backward sliding mode is therefore

only possible wheṅgT (t
−
0 ) < (B

−
γ /A

−
γ )ġN (t

−
0 ).

Zero relative velocity: For a jump to zero relative velocity it must hold that∃α, α ∈ [−1,1], for which

ġT
(
t+0

)= Bγ (α)ΛN + ġT (
t−0

)= 0 and ΛN =−
ġN (t

−
0 )

Aγ (α)
> 0.

Furthermore, for the stick mode we have the additional conditionu−stick< u1 < u
+
stick. It follows thatAγ (α) > 0 to

assureΛN > 0 which gives the conditionα < µ+cγ /µ. Substitution ofΛN in ġT (t
+
0 )= 0 yields the condition

ġT (t
−
0 )

ġN (t
−
0 )
= Bγ (α)
Aγ (α)

, α ∈
[
−1,

µ+cγ
µ

)
.

The ratioBγ (α)/Aγ (α) attains the values

Bγ (α)

Aγ (α)
∈

(
−∞, B

−
γ

A−γ

]
, α ∈

[
−1,

µ+cγ
µ

)
.
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A velocity jump to ġT (t
+
0 ) = 0 is therefore only possible wheṅgT (t

−
0 ) � (B−γ /A−γ )ġN (t−0 ). There are three

situations to distinguish:
(a) u−stick � u1(t0)� u+stick. It is immediate that the post-impact solution will be in the stick mode.

(b) u1(t0) > u
+
stick. Continuation in the forward slip mode is impossible as it violatesλN > 0. Continuation in the

flight mode is impossible becausebγ < 0 for u1> u
+
stick andġT = 0. Continuation in the backward slip mode is

possible ifg̈T (t
+
0 ) < 0 which is true foru1> u

+
stick. The solution will proceed in the backward slip mode.

(c) u1(t0) < u
−
stick. It follows from Lemma 5.3 that the solution will proceed in the flight mode.

We conclude that the post-impact solution exists and is unique and will proceed either in the backward slip mode, the stick
mode or the flight mode, depending on the sign ofġT (t

−
0 )/ġN (t

−
0 )−B−γ /A−γ and the value ofu1(t0). ✷

6. Bifurcations

In the previous sections we analyzed the Frictional Impact Oscillator and in more detail the Simplified Frictional Impact
Oscillator. The obtained results will help us to understand the bifurcations which occur when we vary a parameter of these
systems. We are interested in bifurcations which occur due to the Painlevé paradox. The friction coefficientµ is therefore
a natural parameter to take as bifurcation parameter.

We will first study a bifurcation diagram of the Simplified Frictional Impact Oscillator and then compare it with
a corresponding bifurcation diagram of the Frictional Impact Oscillator. The bifurcation diagram of the Simplified Frictional
Impact Oscillator is depicted in Fig. 6.1 with the maximal value of|u̇1| on the vertical axis andµ as varying parameter. For small
values ofµ we observe that the equilibrium in the forward slip mode (5.8) is stable. The equilibrium loses stability at point A
whenµ is increased toµdγ = 0.4142 (5.9) for whichCγ = 0. The equilibrium undergoes a Hopf bifurcation, due to vanishing
damping, and a branch of periodic solutions is born (see Fig. 6.2). The equilibrium is located in the interior of a linear region
of the piece-wise linear system. An infinite number of marginally stable periodic solutions exist around the equilibrium (i.e. the
system locally behaves as a perfect linear system). The marginally stable periodic solution at point D (Fig. 6.2) touches the line
bγ = 0. Periodic solutions with a larger norm max|u̇1| will contain a flight phase and a slip phase. The branch turns due to this
nonlinear effect and the periodic solutions on the branch D–B are therefore unstable limit cycles (isolated periodic solutions).
The branch turns around at the fold bifurcation point B. The limit cycles between point B and C are stable limit cycles which
contain slip, stick and flight phases. The limit cycle on the branch B–C forµ = 0.5 is depicted in Fig. 5.3. The sign ofMγ

changes atµ= µ+cγ for whichMγ = 0, i.e., the Painlevé paradox occurs. Points C and E are points on the periodic branch and

equilibrium branch, respectively, forµ= µ+cγ . The limit cycle on the periodic branch right of point C forµ= 1 is depicted in

Fig. 6.1. Bifurcation diagram of the Simplified Frictional Impact Oscillator,c1 = 0.
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Fig. 6.2. Zoom of Fig. 6.1,c1 = 0.

Fig. 6.3. Bifurcation diagram of the Frictional Impact Oscillator (compare with Fig. 6.1).

Fig. 5.5. Lemmas 5.1 and 5.2 hold at point C and E. Lemma 5.1 states that the border of the friction cone crosses the linebγ = 0
atµ= µ+cγ , which affects the topology of a periodic solution with a stick phase. The periodic solution left of point C (which
looks similar to Fig. 5.3) is therefore topologically different from the periodic solution right of point C (which looks similar to
Fig. 5.5). The branch is nonsmooth at point C, but no additional branch is created or destroyed at point C. Point C is therefore
not a bifurcation point. The topology of the equilibrium changes at point E. According to Lemma 5.2, the equilibrium will be
in a space with an indeterminate solution whenµ>µ+cγ . The branch left of point E therefore contains normal equilibria, while
the branch right of point E has equilibria which locally do not have uniqueness of solutions. No additional branch of equilibria
or periodic solutions is created at point E, and is therefore not a bifurcation point.

The bifurcation diagram of the Frictional Impact Oscillator is depicted in Fig. 6.3. The stable periodic solution forµ= 0.5
corresponds with Fig. 4.2 and forµ= 1 with Fig. 4.4. The bifurcation diagram of the Frictional Impact Oscillator looks similar
to the bifurcation diagram of the Simplified Frictional Impact Oscillator (Fig. 6.1). However, the Frictional Impact Oscillator
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Fig. 6.4. Bifurcation diagram of the Simplified Frictional Impact Oscillator,c1= 10.

Fig. 6.5. The(u1, u̇1)-plane of the Simplified Frictional Impact Oscillator,c= 10,µ= 0.5773,A+γ = 0.2553.

is more complicated than its simplified version and we can give less definite answers. For the Frictional Impact Oscillator we
are not equipped with Lemmas 5.1–5.4. We can therefore not say that the equilibrium enters an indeterminate solution whenµ

passesµcmin, although it will happen somewhere in the neighborhood. Likewise, the topology of the stable periodic solution
will change at a value ofµ close toµcmin. The simplification of the Frictional Impact Oscillator by means of the Simplified
Frictional Impact Oscillator does not only give more insight but also allows us to find exact values of important points in the
bifurcation diagram.

The Painlevé paradox played a role in the previous bifurcation diagrams but did not lead to a bifurcation. The Painlevé
paradox can however lead to a bifurcation if the parameter set is slightly different. Let us look again at the Simplified Frictional
Impact Oscillator. We take the same parameter set as before but now withc1 = 10, leading toµdγ > µ

+
cγ . The bifurcation

diagram is depicted in Fig. 6.4. The equilibrium loses in this case stability whenµ passes the critical valueµ+cγ (point A in
Fig. 6.4), at which the Painlevé paradox occurs. A branch of unstable periodic solutions originates from point A. Point A is
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therefore a bifurcation point. The branch of periodic solutions turns around at the fold bifurcation point B. The stable periodic
solutions on the branch which starts at point B, are periodic solutions which are characterized by a flight phase followed by
an impact to zero relative velocity with immediate detachment (case (c) in the proof of Lemma 5.4). The equilibrium, an
unstable periodic solution and a stable periodic solution are coexistent for 0.55< µ < µ+cγ . Fig. 6.5 shows the attractors for
µ= 0.5773. The post-impact velocity of the unstable periodic solution depends onµ, but the post-impact velocity of the stable
periodic solution is zero and therefore independent ofµ. This explains why the branch of stable periodic solutions is perfectly
horizontal.

7. Conclusions

In the previous sections we analyzed the Frictional Impact Oscillator and in more detail the Simplified Frictional Impact
Oscillator. It was shown that both models have the same critical value of the friction coefficient for the Painlevé paradox.
A peculiarity of these models is that the critical friction coefficient depends only on a mass ratio and can therefore be made
arbitrary small, i.e.,

µcmin= 2
√
m1

m2
.

The Painlevé Paradox can therefore occur at physically realistic values of the friction coefficient. This fact was not apparent
from the classical Painlevé example (Fig. 3.1).

As stated in the introduction, many systems exhibit a kind of frictional hopping motion (e.g., a finger or piece of chalk
pushed over a table, robot in contact with an obstacle, brake systems). In fact, the Frictional Impact Oscillator (and its simplified
version) can be seen as a sort of archetype of these systems, carrying the basic mechanism for the frictional hopping/bouncing
phenomenon. What can we conclude from the analysis of the (Simplified) Frictional Impact Oscillator with respect to the
existence of hopping/bouncing motion in these type of systems?

• If the mass of the end-effector of the structure,m1, is small with respect to the mass of the supporting structurem2, then
the Painlevé paradox can occur at physically realistic values of the friction coefficient. Take for instancem1/m2 = 1/36,
which is certainly realistic in robotic applications, then the critical friction coefficient becomesµcmin= 1/3.

• Hopping motion can occur when the friction coefficientµ is large enough such that either
(1) the linear damping terms vanish/become negative (µ>µdγ for the Simplified Frictional Impact Oscillator);
(2) the Painlevé paradox occurs (µ>µcγ for the Simplified Frictional Impact Oscillator).

• For many practical applications it might very well be thatµcγ < µdγ and that the Painlevé paradox is the actual cause of
(undesirable) periodic motion. To avoid the hopping phenomenon in these type of systems, one should therefore increase
the massm1 of the end-effector.

• The support stiffnessk and dampingc (or k2 andc2 of the Simplified Frictional Impact Oscillator) can be looked upon as
the PD-action of a position controller for the link with massm2. When the friction is high enough such thatµ> tanϕ, then
the D-action will diminish the dissipation in the system. In fact, the friction causes negative feedback, which can lead to
instability of the forward sliding equilibrium.

Bifurcation diagrams of both models were analyzed in Section 6. It was shown that the Painlevé paradox can lead to a bi-
furcation of branches but not necessarily. In any case the occurrence of the Painlevé paradox will introduce subspaces of the
state space in which there is locally no existence or uniqueness. The phase portrait of a dynamical system with the Painlevé
paradox is therefore topologically different from the phase portrait of a dynamical system without the Painlevé paradox. If the
Painlevé paradox occurs at a critical value of the bifurcation parameter, then a topological transition will occur at this critical
point, which might lead to a bifurcation of branches of periodic solutions or equilibria, but not necessarily.

The (ϕ, ϕ̇)-planes with linesA = 0, b = 0 andġT = 0 (like Figs. 4.4, 4.2 and 5.5, 5.3) proved to be valuable tools when
analyzing bifurcations induced by the Painlevé paradox. The linesA = 0, b = 0 andġT = 0 determine the subspaces where
detachment, indeterminacy or inconsistency occurs, which greatly affects the topology of periodic solutions and equilibria.
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Fig. A.1. The original Painlevé problem.

Appendix A. The original Painlevé problem

The original example of Painlevé is different from the classical example of Painlevé and is unfortunately forgotten. The
original example of Painlevé studied in (Painlevé, 1895b, pp. 114–115) is that of a planar box sliding over an inclined plane. In
fact, Painlevé speaks of a three dimensional cylinder with its base in contact with the inclined plane, but this does not make any
difference for the planar case. The plane has a slopeα. The box has the three degrees of freedomx, y andϕ (its base is parallel
to the plane forϕ = 0). The mass of the box ism and its inertia around the center of mass S isJS = k2m, wherek is the radius
of gyration. Assume that att = 0 the box is sliding downward,̇gT > 0, from which follows thatλT = −µλN . Sliding of the
box over the plane is possible whenµ< r/l, which can be derived with simple momentum analysis. Ifr/l < µ< r/l + k2/rl,
then the box will turn around the contact point A. Ifµ > r/l + k2/(rl), then an inconsistency occurs which is now known as
the Painlevé paradox. Assume that the box is slipping in forward direction,ġT > 0, and the box begins to rotate,ϕ = 0. The
equations of motion in vertical and angular direction are in this case

mÿ =−mg cosα+ λN , JSϕ̈ =−rλN − lλT = (−r +µl)λN . (A.1)

The contact distancegN of point A relative to the slope can be expressed in the coordinates by

gN = y − l cosϕ − r sinϕ. (A.2)

The contact acceleration becomes for forward slipping withϕ = 0,

g̈N = ÿ − rϕ̈ + lϕ̇2. (A.3)

Substitution of the equations of motion (A.1) in the contact acceleration (A.3) gives the LCP

g̈N =
(

1

m
− r

k2m
(−r +µl)

)
λN − g cosα + lϕ̇2=AλN + b (A.4)

with the complementarity condition 0� g̈N ⊥ λN � 0. The solution to the detachment LCP can become nonunique or
nonexistent whenµ passes the critical valueµc with

µc = r
l
+ k

2

rl
. (A.5)

The analysis of Painlevé (1895) ends at this point. Ten years later, in 1905, Painlevé presented a sliding rod problem in his
discussion with Lecornu and de Sparre (Lecornu, 1905a, 1905b; de Sparre, 1905; Painlevé, 1905).

If we assume the box to be homogeneous then we obtainJS = k2m= 1
3(r

2+ l2)m. The critical friction coefficient becomes

µc = r
l
+ 1

3

(
r

l
+ l

r

)
(A.6)

which is minimal for rl = 1
2. The minimal friction coefficient is therefore

µcmin= 4

3
, (A.7)

which is identical to that of the classical Painlevé problem. However, if all the mass is concentrated at S, giving a radius of
gyrationk = 0, thenµc = r/l which can take any positive value.
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