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Periodic motion and bifurcations induced
by the Painlevéparadox
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In this paper we study the periodic motion and bifurcations of the Frictional Impact Oscillator, which consists of an objec
with normalandtangential degrees of freedom that comes in contact with asigihce. Thé-rictional Impact Oscillator
contains the basimechanism for a hopping phenomenon observed in many practical applications. We will show that the
hopping or bouncing motion in this type of systems is closely relai¢ie Painlevé paradox. A dynamical system exhibiting
the Painlevéparadox has nonuniqueness and nonexistence of solutions in certain sliding modes. Furthermore, we will show
this type ofsystems can exhibit the Painlevé paradox for physically realistic values of the friction coefficient.

Keywords:Nonuniqueness; Multibody dynamics; Linear complementarity problem; Contact

1. Introduction

If a finger is pushed over a table, then a hopping motion of the finger can be observed when the finger and table are sufficie
rough. The same phenomenon occurs when a piece of chalk is pushed over the blackboard, often resulting in a dotted line v
indicates periodic detachment. Brake systems, consisting of a pin-on-disk mechanism, can exhibit an intermittent motion, wi
the pin periodically loses contact with the disk, accompanied by a squealing noise (lbrahim, 1994). Robotic manipulators, wt
touch a surface of an obstacle, may also show a kind of bouncing motion, normally regarded as undesirable (Brogliato, 19
In this paper we will study a Frictional Impact Oscillator, which consists of a rigid object with normal and tangential degrees
freedom that comes in contact with a rigid surface. The Frictional Impact Oscillator, introduced in this paper, contains the bz
mechanism for the hopping phenomenon observed in many practical applications. We will show that the hopping or bounc
motion in this type of systems is closely related to the Painlevé paradox (which we explain in the sequel). Furthermore, we
show that this type of systems can exhibit the Painlevé paradox for arbitrary (positive) values of the friction coefficient.

The hopping phenomenon is explained and analyzed using Amontons—Coulomb’s law and Newton’s restitution law. '
acknowledge that these contact laws provide only a crude approximation of the reality of dry friction and impact. However,
most engineering situations, the higher-order information needed for a more accurate description is not available and we ha
be content with some moderately precise calculation, accounting at least for the main features of phenomena (Moreau, 1
The hopping phenomenon occurs generally in complex systems with many degrees of freedom and many contact points.
aim is to describe the basic mechanism of the hopping motion with a system that is as simple as possible. We will show
a two degree of freedom model (which we call the Frictional Impact Oscillator) with a single contact, assuming Amonton



Coulomb’s law and Newton'’s restitution law, is sufficient to describe the essential features of the phenomenon. This relativ
simple model shows a complex dynamical behaviour, which might give insight in the dynamics of more complex systems.

The rigid multibody theory (Brogliato, 1999; Glocker, 1995, 2001; Moreau, 1988; Pfeiffer and Glocker, 1996), whicl
assumes instantaneous impact between rigid bodies and Amontons—Coulomb friction model in tangential direction, prov
a good approach to study the dynamics when one is interested in the global motion of the system. Mechanical systems
friction and impact, modelled with a rigid multibody approach, belong to the class of hybrid systems (i.e. systems with
mixed continuous and discrete nature in time). The transitions in time from one hybrid mode to another (e.g., from contac
detachment or stick to slip) demand the choice of the next hybrid mode. A rigorous way to perform this search is to formul
the problem as a Linear Complementarity problem (LCP). The solution of the LCP can be nonunique, giving an undetermir
next hybrid mode, and the solution of the LCP may even not exist, which leads to inconsistency in the model. The occurre
of inconsistency in a mechanical rigid multibody system due to friction is known &Rdiinéevé paradox.

It has been known since the end of the 19th century that the combination of Amontons—Coulomb friction together with t
assumption of rigidity can cause inconsistencies for high values of the friction coefficient (Jellet, 1872; Painlevé, 1895a, 18¢
1905). Painlevé (1895a, 1895b, 1905) considered the sliding motion of rigid dbjeatentact with the ground, which have
inconsistencies in the sliding mode. The problem of a sliding rod studied by Painlevé became the classical example of a hy
system with inconsistencies. Lecornu (1905a) proposed velocity jumps to escape from inconsistent modes, often now addre
as impacts without collisions. A number of studies show that inconsistencies occur in the classical Painlevé example wher
friction coefficientu is larger than 43 (Glocker, 1995; Létstedt, 1981; Mason and Wang, 1988). The classical Painlevé exampl
was recently studied in more detail in (Génot and Brogliato, 1999). New results on how the solution passes singular point
the sliding mode were presented in (Génot and Brogliato, 1999).

The critical value of 43 is very large and not likely to occur in physical situations. In (Génot, 1998) an adapted versiol
of the classical Painlevé example was proposed, where the rod has a rounded tip, which lowers the critical friction coeffic
to 0.63 (the example with a rounded tip was inspired by Moreau (1986)). The original example studied by Painlevé (1895
being the contact of a box with the ground, can have a much lower critical friction coefficient for a small radius of gyratic
(see Appendix A). The occurrence of the Painlevé paradox of a rigid body with a friction rotor was studied in (Wilms ar
Cohen, 1981, 1997) and a critical friction coefficient was found which can take arbitrary (positive) values depending on otl
parameters. A similar conclusion is drawn in the present paper.

A model of a hopping finger was studied by Moreau (1986). Stick—slip motion with and without flight phase were reporte
as well period-doubled motion, but the occurrence of the Painlevé paradox was not studied. The Frictional Impact Oscilla
presented in the present paper, is slightly different and lends itself better to an analytical investigation of the Painlevé parac

Control of the sliding motion of an end-effector of a robot on the surface of an obstacle can be hampered by the se
instability phenomena which govern the Frictional Impact Oscillator. It is expected that the results on the Frictional Impe
Oscillator, which will be studied in the sequel, can help to design better control schemes for constrained robotic motion.

Unilateral contact laws, as are used in the rigid multibody approach, lead to nonsmooth mathematical models due to t
set-valued nature. Bifurcations in smooth systems are well understood (Guckenheimer and Holmes, 1983) but little is kne
about bifurcations in nonsmooth systems (Leine, 2000). Literature on bifurcations in nonsmooth mechanical systems seer
be divided in two groups:

(1) Bifurcations in systems witfriction, which belong to the class of Filippov-systems. Literature on this topic is vast (for
instance (Dankowicz and Nordmark, 2000; Galvanetto and Knudsen, 1997; Hensen et al., 2002a, 2002b; Leine and
Campen, 1999, 2002; Popp et al., 1995; Van de Vrande et al., 1999; Wiercigroch, 1996; Yoshitake and Sueoka, 20
A general theory for bifurcations in Filippov-systems is not available but attempts to explore in that direction are made |
Bernardo et al., 1999; Leine et al., 2000; Leine, 2000).

(2) Bifurcations in systems witmpact (Foale and Bishop, 1994; lvanov, 1996; Meijaard, 1996; Nordmark, 1997; Peterka,
1996). The impacts are almost always considered to be frictionless and the systems very often contain only a single con

Literature on bifurcations in systems with multiple contacts with combined friction and impact is hardly available. An impax
oscillator with friction is studied in (Blazejczyk-Okolewska and Kapitaniak, 1996) but the impact and friction are in differen
contact points for this system and the contact problem is therefore decoupled. Mechanical systems with combined impact
friction are studied in (Leine et al., 2002) and bifurcation diagrams are constructed with the aid of a one-dimensional Poinc

1 The original example studied by Painlevé in (Painlevé, 1895b) is that of a box on an inclined plane. A brief description of tt
original example of Painlevé is given in Appendix A. The classical example of Painlevé, being a sliding rod, was studied in (Painle\
1905).



map. The topic of bifurcations which are created by the Painlevé paradox has up to now not been addressed in literature
will be studied in the present paper.

The main results on the classical Painlevé example will be briefly discussed in Section 3. The Frictional Impact Oscilla
will be studied in Section 4. This model can be simplified which leads to the Simplified Frictional Impact Oscillator (Section &
Critical friction coefficients of the Painlevé paradox will be derived for both models and numerical results for the period
solutions will be given. Bifurcations diagrams of the models are presented in Section 6. The notation as well as the methoc
(Glocker, 1995; Pfeiffer and Glocker, 1996) are used for the dynamics of rigid multibody systems with impact and friction au
are reviewed in Section 2.

2. Mathematical modeling of impact with friction

In this section we will briefly review some aspects of a mathematical theory for the dynamics of rigid bodies with complete
inelastic frictional impact as has been formulated in (Glocker, 1995, 2001; Pfeiffer and Glocker, 1996). A shorter version of t
formulation can be found in (Leine et al., 2002).

For the description on the dynamics of multibody systems it is convenient to introduce four contact sets, which describe
kinematic state of the constraints of the system:

I ={12,...,nG},

Is={iel;|gn; =0} withngelements

In={ielg|gn; =0} withny elements

Ig={iely|gri =0 withny elements (2.1)

wheregy; andg¢r; denote the normal contact distance and tangential relative velocity of constraim set/; consists of
ng indices of all constraints, which we want to take into accodigittontains the: g indices of the constraints with vanishing
normal distance but arbitrary relative velocity. In the ggtare then indices of the potentially active normal constraints,
which fulfill the necessary conditions for continuous contact (vanishing normal distance and no relative velocity in norrr
direction). The sel contains therefore all indices of slipping or sticking contacts. iTheslements of the sdty correspond
to the potentially active constraints in tangential direction (sticking). Thelsets,, Iy are not constant, because the contact
configuration of the dynamical system changes with time due to stick—slip transitions, impact and contact loss.

The dynamics of a multibody system can be expressed for almadbylhe equation of motion

M(t,9)§ —h(t,q.9)— Y _ (wy(t, @y +wr(t, @)ht); =0, (2.2)

ielg

whereM is the symmetric mass matrig,the vector of generalized coordinatéshe vector with all smooth elastic, gyroscopic
and dissipating generalized forces ang andi; the vectors with normal and tangential contact forces. The veatgrand
wy are the normal and tangential force directions.

We assume the generalized coordinatés to be absolute continuous functions in time and the generalized velagities
to be functions of locally bounded variations, when a solution exists of course. We therefore can define the left and right lin
q(t7) andg(: 1) at each time instant> rq (Brogliato, 1999; Glocker, 2001). Furthermore, we assume the generalized velocitie:
to be right-continuous, i.61() = ¢(tT). We specify the initial condition at= g by (g, §o) = (¢ (o), ¢ (t0)). If we allow a
first velocity jump to occur atp then we setjg = ¢(f;) (Moreau, 1988). Typically, the contact forckg and A7 become
impulsive when an impact occurs and we hgye™) # ¢t 1).

More conveniently we put (2.2) in the form

Mi—h—Wyky — WrAp =0, (2.3)

where the dependencies oy, § have been omitted for brevity and wha#ey and W are matrices containing the generalized
force directions in normal and tangential direction. The contact distang¢eandgr; are gathered in the vectoggy andgy.
We can express the contact velocities and accelerations in the generalized accelerations by

(-0 () (-2 =

Each closed contacte Iy is characterized by a vanishing contact distagige and normal relative velocityy; . Under the
assumption of impenetrabilityy; > 0, only two situations may occur:
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Fig. 2.1. Complementarity of contacts.
gni =0AAy; =0 (contactis maintained)
gNi >0AAyN; =0 (detachment) (2.5)

From (2.5) we see that the normal contact law shows a complementary behaviour: the product of the contact force
acceleration is always zero:

gNniANi =0, iely. (2.6)

The complementary behaviour of the normal contact law is depicted in Fig. 2.1(a) and shows a corner of admissi
combinations of y; andiy; .

We assume Amontons—Coulomb law to hold in the tangential direction. For a closed comtagf, with friction
coefficienty;, the following three cases are possible:

gri =0 = |A7i| <upiiy;  (sticking),

81i <0 = A =+uiAn; (negative sliding),

g1i >0 = Ap; =—p;An;  (positive sliding) i€ Iy. (2.7)
To determine the tangential contact force during sticking, one can formulate unilateral laws for sticking contacts. For a clo:
sticking contact € Iy the following three cases are possible:

g1i=0 = |Ar;|<uiry; (remains sticking)

81i <0 = Ar; =+uiry; (commences negative sliding)

gri >0 = Ap; =—p;Ay; (commences positive sliding) i € Iy. (2.8)

The normal and tangential contact law lead, together with the equations of motion, to the coupled normal-tangential con
problem for the stick—slip and detachment transitions of the multibody system

[gN] _ [WLM‘1<WN +Weng) WLM‘le] [xN] . [WLM‘lh +wN] 29
gn WLMT(Wy+Weng) WLMIwyl[re WLMth+wy
with?

0<gyLliny=0 ely,

Ay e —npiydiagdlgyl) € 1p, (2.10)
where

2 The notationa L b means thak stands perpendicular th, i.e. aTd = 0. It follows therefore from the complementarity conditions
0<alb>0,thatifa; >0 thenb; =0 and vice versa.



Wg=wr;, ie€ly\lgy,
8&H =8Ti» Ag =Ari, Wp=wr, wy =wr;, iely,
py € RUXAN -y o RANTRHXAN, (2.11)

and where the subdifferential of convex analyiis| = Sign(x) has been used. Equations (2.9) can be transformed into an LCP
as has been formulated in (Glocker, 1995; Pfeiffer and Glocker, 1996).

If an impact occurs, then we generally have a discontinuity in the generalized velgcilibs impact is assumed to begin
at a timer~ and to end at a time*. The time differencet — ¢~ is assumed to be “infinitely smafl’in the rigid multibody
approach. The equation of motion is integrated over the impact time:

M@GehH —qa)=[Wy Wr] [ﬁ;v] (2.12)

which yields the velocity jumg (r1T) — ¢(+7) as a function of the impulse4 y and A7 in normal and tangential direction
defined by

tt t+

Ayi = lim /)‘Ni dr, Ari = lim /)"Ti dr, ielg. (213)
tt—r— tt—r—
T~ T~
Due to the unilateral character of the contact constraint only nonnegative normal contact forces are pagsibl@, which
results in nonnegative values of the normal impulgags > 0. At the end of the completely inelastic impact the approaching
process of the bodies has to be completed. Thus negative values of the contact velocities are forRidden> 0. If an
impulse is transferredqy; > 0), then the corresponding contact participates in the impacggp@ ) = 0. If no impulse is
transferred Al y¢; = 0), then the corresponding constraint is superfluous and we allow velagitjgst) > 0. The impact law
in normal direction is therefore expressed by the complementarity condition

ANi 20, gniD) 20, Anigni) =0, iels. (2.14)
Possible stick—slip transitions during the collision with reversed sliding prevent an analytical integration of Coulomb’s frictic
law (2.8) over the impact time interval. However, we state the tangential impact law as

i) =0= |Ari| <piAy; (sticking)

é1itt) <0 = Ar; =+p;Ay;  (negative sliding)

eritT)>0 = Ap;=—u;Ay; (positive sliding) i e Ig, (2.15)

with the remark that (2.15) coincides with Coulomb’s friction law (2.8) in the cases of continuous sliding during the impa
and of arbitrary transitions to sticking at the end of the impact. Only events of reversed sliding or transitions from sticking
sliding with a sliding phase at the end of the impact are different from Coulomb’s law (Glocker, 1995; Moreau, 1988; Pfeiff
and Glocker, 1996).

Evaluating the contact velocities (2.4)rdt andr~ gives

. T .
gN(t+):| |:WN:| N [gN(t )] 2n
> = 1) —q(t N e RS, 2.16
[gT(f+) wr (@@ —qaH)+ gr) (2.16)
Substitution of (2.12) in (2.16) together with the contact laws (2.14) and (2.15) gives the set of equations
ana™) WYM™TIWy WIM™IWr T Ay gn(tT)
. (t+) = T 1 T 1 A + . (t_) (217)
gr WiM~twy wWiMlwy [[Ar &r
with
0<gntT) LAy >0 e Is,
Ar € —pgAy diagdlgr ¢ )))  €ls, (2.18)

where ug = diag(u;), i € Is. The formulation of the coupled normal-tangential contact problem for completely inelastic
impact is given by (2.17) and is usually solved by reformulating it as an LCP.

3 Mathematically more correct is to consider the impact as a singleton, i.e. a point in time, and the equation of motion as a meas
differential equation, which is beyond the scope of this paper (see (Glocker, 2000; Moreau, 1988)).
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In the sequel we will use an event-driven integration scheme to obtain solgtionaf unilaterally constrained mechanical
systems. The equation of motion (2.3) for given index sets is numerically integrated until an impact, stick—slip or detachm
event occurs. If the event is an impact event, then the impact equations (2.17) have to be solved, after which the new genere
velocitiesq are known. Subsequently, Eq. (2.9) on acceleration level have to be solved, because the impact might cause s
slip transitions or detachment of other contacts. The new accelergtiares known after having solved (2.9). The new index
sets can then be setup and a new smooth integration phase can start. Basically any ODE-solver can be used for the integ
of the smooth phase as long as the solver supports event detection.

The event-driven integration scheme complies with a certain solution concept. The solution remains in a smooth mod
long as some indicator inequalities are met (eligr,| < Ap in the stick modegy > 0 in the unconstrained mode). If an
indicator function is violated, then an event occurs, and Egs. (2.17) and (2.9) are solved which are basically LCPs. The L!
derived from (2.17) and (2.9) determine the mode change, i.e. they indicate the next mode. The solution of the LCPs cal
nonunique, indicating nonuniqueness of the next mode and therefore nonuniqueness of theg@utidre solution of the
LCPs can also be nonexistent, implying that there is no continuation possible in any mode, and therefore nonexistence o
solutiong (7).

3. The classical Painlevé example

In this section we will briefly summarize some results on the classical Painlevé problem of a sliding rigid rod. The rig
body formulation of the model is taken from (Glocker, 1995) and the main results from (Brogliato, 1999; Génot and Brogliat
1999).

Consider a rigid homogeneous slender rod with maskength 2sand inertia/g = %msz (see Fig. 3.1). The rod is sliding
with one tip over a rigid ground. Amontons—Coulomb friction model is supposed to hold at the contact point with consta
friction coefficienty > 0. The system has three degrees of freedom, which we gather in a vector of generalized coordina
g =[x y ¢]7. The normal contact distance and tangential contact velocity are

gy =y—ssing,  gr =X —sgsing. (3.1)
The system matrices of the Painlevé problem become
m 0 O 0 0 1
M:[o n o} h:[_mg] WN:[ 1 } WT:[ 0 } @2)
0 0 Jg 0 —s5 COSp —ssing
wy =wr =0, Wy = s¢2sing, Wy = —s5¢2 COSp. (3.3)

It is relatively easy to show that a dynamic frictional catastrophe can occur in this simple system. We assume that the
is sliding over the ground in forward direction, i.gy =0, ¢y =0 andgy > 0. It therefore holds that; = —uiy. The
equations of motion become in the forward sliding mode:

miX =—puiy, my =—mg -+ Ay, Js¢ = s(—Ccosp + using)Ay. (3.4
The rod remains in sliding contact with the ground wiggn= 0 and will detach whefgy > 0, with

N =y—scos<p¢5+s¢zsin(p. (3.5)

/s

Fig. 3.1. The classical Painlevé example.
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The normal contact acceleration becomes in the forward sliding mode (substituting (3.4) in (3.5)):
EN=Aly + b, (3.6)
with

1 . . .2 .
A(p) = Z(l+ 3 cosp(cosy — ,uSII‘lga)), b(p,p) = s<p25|ngo —-g. 3.7)

Note thatA is a function ofy andu while b is function ofp and¢. Between the normal contact acceleratignand the normal
contact forcen  the following complementarity conditions hold:

0<gny Lain =0 (3.8)

The complementarity conditions (3.8) express that if the contact detaghes,0, then it must hold that ; = 0, while if
the normal contact force is positivey > 0 the contact remains closgq; = 0. The linear equation (3.6) together with the
complementarity conditions (3.8) gives a scalar Linear Complementarity Problem (LCP) for the detachment of the rod in
forward sliding mode. The scalar LCP wigly = AAy +b,0< gy L An > 0 has a unique solution fot > 0, two solutions for
A <O0AD > 0, no solution forA < 0A b < 0 or infinitely many solutions foA = b = 0 (hyperstatic case). The solutions of the
LCP are indicated in Table 3.1. The occurrence of inconsistency (the LCP has no solution) and indeterminacy (nonuniquel
of solutions) is called the Painlevé paradox (Génot and Brogliato, 1999).

The Painlevé paradox will occur whef(¢) becomes negative, which happens for large enough valugs Biie critical
value of u for which A(¢) = 0 occurs aju = (@) with

14 3cogy
. =" 7 3.9
Help) 35ing coSg (3.9)
Table 3.1
LCP solutions
A b Number of solutions LCP solutions
A>0 b>0 unique solution AN=0Agn=0D
A>0 b<0 unique solution An=—2Agn=0
A<O b>0 two solutions )LN:fZ/\g'N:Oor)LN:O/\g'N:b
A<O0 b<0 no solution 7]
6 T T T T T
A>0b>0 |A<0
b>0 A4>0,6>0
2l -
\
P
2+ —
A=0 A=0
\A<0
S0 A>0,6<0 b<0 A>0,b<0 -
e -
-4 -
A>0,b>0

Fig. 3.2. The(p, )-plane of the classical Painlevé problem (Génot and Brogliato, 1999).
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The critical friction uc(¢) coefficient is minimal forg = arctan2, givingu:min = 4/3. This minimum critical friction
coefficient changes for other ratios mf2/Jg but will always be larger than 1 for > 0 andJg > 0. For i > y,min there
exists an interval 0.1 < ¢ < ¢ for which A < 0 with

3u—+/9u2 —16 3 92— 16
%Famar(“— v ) m:arcta(f”— v )

, (3.10)

The (¢, ¢)-plane is depicted in Fig. 3.2 together with the four different LCP modes for detachment in forward sliding
A detailed study of the singular poins.; and P> (Fig. 3.2) is given in (Génot and Brogliato, 1999). It is proven in (Génot
and Brogliato, 1999) that the solution can reach the singular péjnt&nd P.o, depending on the friction coefficient, either
with a finite contact force or with a contact force reaching infinite values.

In the sequel we will present a model, consisting of a body with normal and tangential degrees of freedom, which exhit
the Painlevé paradox. We will prove that a minimum critical friction coefficient for the Painlevé paradox is possible which c:
be arbitrary small depending an some mass ratio. Furthermore, we will analyze the bifurcations of this model and will sh
that a figure like Fig. 3.2 can be a very useful tool to analyze bifurcations caused by Painlevé paradoxes.

4. The Frictional Impact Oscillator

A human finger which is pushed over a table may exhibit periodic motion with stick and slip phases. When the frictic
between the finger-tip and the table is sufficiently high, even periodic motion may be observed with phases where the fir
is not in contact with the table, i.e. the finger detaches from the table causing a ‘flight’ phase after which an impact occur:
another phase of the periodic motion. In this section we will study a simple system, called the Frictional Impact Oscillator, whi
exhibits the same phenomenon. The system is low-dimensional (2 degrees-of-freedom) but shows rich dynamic behaviour, &
complicated by the Painlevé paradox.

A similar system was studied by Moreau (1986). The system of Moreau consists of a bar with a rounded tip which is moun
elastically in horizontal and vertical direction, which leads to a 3 degree-of-freedom system. The horizontal compliance is
essential for the phenomenon and is neglected in the present study, which facilitates the analysis.

4.1. Model

The Frictional Impact Oscillator is depicted in Fig. 4.1. The system consists of a mass-spring-damper system (w
coordinatey and constantip, k, ¢), which can be looked upon as the ‘hand’, robot arm or supporting structure. A mass:
less rigid bar, representing the ‘finger’ or end-effector of a robot, is attached by a hinge to the ‘hand’ or robot arm, respectivi
The hinge can only move in the vertical direction by a displacemeiihe bar is mounted at the hinge by a rotational spring
and dashpotk, c¢y). A massm is located at the tip of the bar. The springandk, are unstressed when= 0 andy = ¢,
respectively. The tip of the bar can make contact with a belt, which is moving at constant vejpcitire contact is regarded

D

Fig. 4.1. The Frictional Impact Oscillator.
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to be completely inelastic but frictiongl(> 0). Pure Amontons—Coulomb friction is assumed without Stribeck effec fiot
dependent on the relative velocity). The normal contact distance and tangential contact velocity are

gn =1(1—cosp) +y, gr =19 Cosp + vgr. (4.1)

The rotation of the bap and the vertical displacement of the hingean be gathered in a vector of generalized coordinates
g =[¢ y1T. The kinetic and potential energy of the system can be expressed by

_ 1— 2.2 L } .2
T = 2mll @ +mlsing y¢ + 2(m1+m2)y ,

1 1
V= Ek‘p(sﬁ—wo)er Eky2+m1g(l—lcosw+y)+ngy- (4.2)

Lagrange’s equations of motion can be put in the form of (2.3). The system matrices and vectors of the Frictional Imp
Oscillator become

_[ ma® mylsing _ —ky (9 — @0) — cpp —myglsing 4.3)
milsing mq+my |’ —ky — ¢y — (m1 +ma)g —mylcosp ¢2 |’ '
WN:[[ST(‘)], wy =0, EN:lgbzcos(p,
Wr = [’ ol } Br=van Wy = —lgPsing. (4.4)

4.2. Forward slip,g7 >0

The motion of the system in the forward slip mode is constraint wigh> 0 and & = —uA . The equations of motion

become

mllz(}i +m1lsing § + cp@ + k(@ — @g) =1(SiNg — 1 COSP) Ay — myglsing,

malSing § + (m1+m2)5 + ¢y + ky +m1l cosp ¢2 = Ay — (m1 + m2)g. (4.5)
Elimination of Ay together with the conditiongy = ¢y = gy = O gives a second-order differential equation

M@ +D(@)§? +C (@) + F(p) =0, (4.6)
with

M(p) = (m1 coL ¢ + my sing(sing — ucos@)lz,

D(p) = ((—myq + mp) sing cosp — mou cos? g&)lz,

Clp)=cp + clzsingo(simp — 1 COSp),

F(@) = ko(p — 90) + kI?(1 — cosp) (sing — 1 cOSp) + ((m1 + m2) coSp — masing)lg. (4.7)
The system can have (multiple) equilibtiag in the forward sliding mode, which obey

Flpep =0 (4.8)
and a nonzero contact force

Ay = —kl(1— cospeq) + (m1 +m2)g > 0. (4.9)

If the condition

0
K(p) = 7 @) >0 Vo (4.10)
dp
holds with
OF ) _ o .
i kg + k17((1 — cosp)(cosp + using) + sing(sing — . cosp)) — Ig((m1 + m2)p Sing + m2 cosp) (4.11)

then at most one equilibrium in the forward sliding mode exists. This is a sufficient conditigA(for to have at most one
zero but not a necessary condition. We assume in the forthcomingthisichosen large enough that indefédp) > 0 for all
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¢ of interest. This means that the unique equilibriggg, if it exists and obeya ; > 0, must be close tpg. The equilibrium is
approximately located at

F(¥0)
RNpg— ———- 4.12
Yeq™~ ¢0 K(¢o) ( )
The equation of motion foM (¢) # 0 can be written in first-order form as

g=v, ¥ =-M@e@ HD@V*+COV +F(@). (4.13)
Linearization around the equilibriuiig, v) = (0, 0) with & = ¢ — geq gives

E=v,  Y=—(Mged !~ Mlpeq *M (¢eq)¥)(C(geq ¥ + F(geq) + K(peq)é) + H.O.T. (4.14)
with M’ () = 3M/dg. It should be noted thaf (peq) = 0. The eigenvalue problem therefore yields

M(peq)h? + C(geq)t + K(geg) =0. (4.15)

The equilibrium is stable iM (peg) > 0,C(eq > 0 and Kgeq) > 0 or M(peg) < 0,C(peg) < 0 and(peq < 0. Note that
the friction coefficientu can cause a negative feedback of the damping forces. The equilibrium undergoes a Hopf bifurcati
for M(geq > 0, K(peg) > 0 when the friction coefficient passes the critical value

C
g = tangeq + —5— b (4.16)
cl SINYeqCOSYeq

for which C(geq) = 0.4 The value ofM (peq) becomes zero when

— tanpeq+ "Lt
H= ¥eq mo tan(peq’

which is in fact the Painlevé paradox.
4.3. Painlevé paradox

In this subsection we will study the Painlevé paradox in the forward and backward sliding mode with similar techniques
presented in (Génot and Brogliato, 1999).

The solution remains in the forward sliding modejf > 0 andg = 0 and in the backward sliding modegdf < 0 and
gy = 0. The body detaches from the belt whg&p > 0. For the normal contact acceleratigg holds:

gN =1sinpg + § +1 cospg?, (4.17)
Substituting (2.3) in (2.4) together wilhyy = ¢n = 0 gives

. A+)\.N +b gT >0
_ , : 4.18
&N {A‘AN+b, ér <0, (4.18)
with
_ co m
AT(@) = WM YWy —uWrp) = —¢(1+ —Ztanw(tango—u)), (4.19)
N(p) mi
cod
A~(g) = WM YWy +uWp) = “’(1+ @tanw(tan<p+u)), (4.20)
N(p) mj
b(g.9) = WAMh+wy
cofy [ mp tang , . o mal 5
= ——= ko (@ — /sin kl(1—cosp) + —=—¢2 ) — 4.21
No) ( mllcow(cwwﬂL 0@ — @0)) + clsingg + ki ( Sp) cosy? g (4.21)
and
N(g) =m1coS ¢ + my. (4.22)

4 If 1 passeguy, then it follows thaiC(peg) changes sign. A pair of complex conjugated eigenvalues move thetaforghthe imaginary
axis, implying a Hopf bifurcation.
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The notationA™ is used to denote the value afin the forward sliding mode, whild ~ will be used for the backward sliding
mode. Note thatt* are functions of» andy, andb is a function ofp andg. The linear equation (4.18) gives together with the
complementarity conditions

0<gny LAin=20

a scalar Linear Complementarity Problem for the detachment in the forward and backward sliding mode.

The Painlevé paradox occurs in the forward sliding mode wherip) becomes negative, leading to inconsistency or
indeterminacy of the forward sliding mode (depending on the sigh(gf¢)). The valueA™ (¢) can become negative for
sufficiently large values of the friction coefficient The critical value occurs at = /Lj_(gz}) for which A™ (¢) =0,

1

+ mi
—tang + — ——. 4.23
ue (@) w+m2tan¢ (4.23)

The critical valueujr(ga) is minimal wheny = arctan,/m1/m» giving
mj
Hemin=2,]—. (4.24)
m2

For i > 1. min there exists an interval ¢ff; < ¢ < ¢, for which AT < 0 with

1 1 m 1 1 m
+ 2 1 + 2 1
=arctanl =u + /- uc — , L =arctal —u — | -puc— . 4.25
e d SH ,/411 2) @9 d S 2# 2) (4.25)

With respect to the previous section we have to remark the following lemma.

Lemma 4.1. Consider a mechanical systeM(q)§ — h(q,q) — Wn(@)Any — W (@)l = 0 with n degrees of freedom
g € R" and with a single unilateral contact point, i.e.y, A7 € R. Let M(q) be nonsingular. Let the system be for
some nonzero time-intervale U in the forward sliding moderr = —uAy, and the detachment LCP be described by
gn = A(@) Ay + b(q,¢). The motion in the forward slip mode can be described in a set of minimal coordindbgsthe
reduced systemM (a)d + H(a,a) =0, witha € RS, f =n— 1. ltholds thatA(q) = 0 if and only if M(a) = O.

Proof. The proof relies upon a coordinate transformation to minimal coordinates by using the virtual work equations (Glock
2001, Section 3.7) after which we substitute the contact farge= —b/A. Leta € R/ be a set of coordinates such that
any positiong compatible with the constrainty = 0, is uniquely determined by the valuesafBy such coordinates, the
constraints are implicitly fulfilled, i.e. fog (a, r) one has

gn(qa,1),t)=0, Va, VieU. (4.26)

Atleastlocally we may assume the parameterization such that the Jacobiaitbfespect ta has full rankf . Equation (4.26)
also holds fo™ neara. Fort =t € U being fixed we expand (4.26) in a Taylor series

dgn(q) 9q
dq Oda

Taking into account thag 5 (¢ (a, tc), tc) = gn (g (a™, tc), tc) = 0 by (4.26) we obtain

gn(ga*. 1), te) ~ gn(q(a,te). tc) + (@* —a). (4.27)

) ]
98N 0 =4 (4.28)
aq da

0=WL0; Wh(an=
with ¢ = ¢ (a, 1), because (4.26) holds for every directim= a* — a € R/ . By differentiation ofg(a, ) we obtain
g=Qa+k, §=Qad+k, (4.29)

with i (a,t) = 3¢/t andi(a,a,t) = Qa + i. Evaluation of the virtual work equations (Glocker, 2001) for admissible and
nonadmissible virtual displacements using (4.28) and (4.29) gives the two equations:

Q"M Qi— Q" (h—Mit)+ Q" Wriy =0,
WM YWy —uWpay + WL (M th—i) =0. (4.30)
Note that the termu QT WAy does not drop out from the first equation. The second equation of (4.30) can be rewritten as
EN=AAN+D=0, (4.31)
11



with

A =WAM Wy —uWr),  blg.)=WL(M h—-)=w M h+wy (4.32)
and W]TV:E = —wy. The first equation of (4.30) becomes

AQ"™M Qi —AQT(h—Mit) — uQ"Wrb=0 (4.33)
which is in the formM (a)d + H(a, a) = 0. It follows that M (a) = O ifand only if A(g) =0. O

Lemma 4.2.Let u andg be such thatA(g) =0, withg = ¢ (¢, a). It holds thatH(a, a) = 0if and only ifb(q, §) = 0.

Proof. It follows from Lemma 4.1 thatM(a) = O but we cannot immediately state frotM (a)d = —H(a,a) that
H(a, a) = 0 because the acceleratiainsre not necessarily bounded. Howeverfy) = O then it follows that (g, ¢) =0 if
and only ifH(a,a)=0. O

These lemma’s have the following implications for the Frictional Impact Oscillator:
Lemma 4.3.1t holds thatA* (¢) = 0 if and only if M (¢) = 0.

Proof. The proof follows immediately from Lemma 4.1 wigh=a andA* (¢) = A(g(a)). For the Frictional Impact Oscillator
it holds thatM () = lZN((p)A+((p) andN (¢) > OV from which also follows the lemma. O

Lemma 4.4. Let u = u} > 0 and be bounded such that*(p) = 0. Then it holds thatb(p, ¢) = 0 if and only if
D(p)¢? +Clg)p + F(p) =0.

Proof. The proof follows immediately from Lemma 4.2 wii(a, @) = D(9)¢2 +C (@) + F(@). It follows from = uF > 0
and the restriction that,™ is bounded that sip = 0. Foru = uJ it holds that

m1 Sing
m2 N(p)!
from which follows the lemma. O

b(g, ) = — (D@)§? +C(@)g + F(9))

We can conclude from Lemmas 4.3 and 4.4 that whéa such thatdAt = 0, then the slip equation (4.6) is fulfilled only
whenb = 0. Note that it must hold in the forward slip mode tigat = 0 from which follows that» = 0 when A" = 0. Let us
denote the singular point in tig, ¢)-plane for whichA™ = 0 and b= 0 by P,.. The pointP, is located outside thep, ¢)-plane
shown in Fig. 4.4, at the intersection of the vertical lin& and the curve = 0. It follows that a solution in the forward slip
mode can only reach the line™ = 0 in the (g, ¢)-plane through the singular poit.. Singular points of this type were studied
in detail in (Génot and Brogliato, 1999) for the classical Painlevé example. The contach fpnceéght become unbounded
at P.. We assume in the sequel that periodic solutions, if they exist, do not pass the criticapiet the critical point is not
located on a periodic solution of interest). Indeed, for the hopping phenomenon, which is of interest in the current paper, crit
points like P, do not play a role (at least not for the parameter set we study).

The Painlevé paradox can also occur in the backward sliding mode. The frictioriforaawv works in the opposite direction
and the Painlevé paradox can therefore only occur for negative valgesTbe valueA™ can become negative for sufficiently
large values of the friction coefficiept and negative values @f. The critical value occurs at = . for which A= =0. It can
easily be verified that, = —u.", being minimal wherp = — arctan,/m1/m3 giving again the critical valug, min (4.24). For
K = iemin there exists an interval @f ; > ¢ > ¢_, for which A~ < 0 with ¢_; = —(p:;., i =1, 2. However, we will focus in
the sequel on the Painlevé paradox in the forward sliding mode because a possible sliding equilibrium is located in the forw
sliding mode forug, > 0.

4.4. Analysis of periodic motion

The Frictional Impact Oscillator can exhibit periodic motion with slip, stick and flight phases. We will explore how the
topology of the periodic solution depends on the regions defined by thedire® andb = 0. We will consider two cases:
case 1 withu = 0.5 < . min and case 2 withe = 1 > . min, Wherew, min = 0.6325. The other parameters arg = 0.1 kg,
mp =1Kkg,l =1m,k=100N/m, ky, =100 Nm,c =10 N/(ms),cy =0 Nm/s,pg=7/8, v4gr =1 m/s,g =10 Nm/sz.
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Fig. 4.2. The(p, ¢)-plane of the Frictional Impact Oscillatge, = 0.5.
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Fig. 4.3. Time history of the Frictional Impact Oscillatpr= 0.5.

Case 1.u = 0.5. Solutions in the forward slip mode exist and are unique because0, V¢ for u < puemin- The lines

b =0 (4.21) andgyr = 0 are drawn in the planép, ¢) of Fig. 4.2. The time history of the contact distange and contact
velocity g7 are shown in Fig. 4.3. The borders of the friction cone on the gipdn Fig. 4.2 are obtained numerically and
depicted by a small circle]. The part of the lingr between the twe signs is therefore the stick mode. Note that the friction
cone lies, for this parameter set, totally outside the detachment regios 0, b > 0. A stable periodic solution is found
numerically and consists of the following phases: stick—slip—flight. The dynamics of the flight phase is not only dependent
(¢, ¢) and is therefore depicted in grey. The stick to slip transition occurs at the border of the friction cone. The body rema
some time in forward slipping contact with the belt in the space> 0, b < 0 until the lineb = 0 is hit. The sign ob changes

at the lineb = 0, giving the LCP solutiorhyy =0, gn > 0, which means that the body detaches from the belt. The body
remains in flight (unconstrained free motion) until an impact occgpfs £ 0). The impact causes the velocitigsand y to
jump. However, the jump is so small that the discontinuity cannot be seen at the scale of Figs. 4.2 and 4.3. The impact re:

13



2,
=

2Lk

A* =0 b=0 At =0

/ a

A >0 AT <0,b>0

b>0 At <0,6<0 At >0,b6<0 7

equilibrium\A

+ m

A" >0,6>0 AT >0,6<0

0.05

0.04

0.03

0.02

0.01

. +
ot @ .
Per Pe2

Fig. 4.4. The(p, ¢)-plane of the Frictional Impact Oscillatgr, = 1.
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Fig. 4.5. Time history of the Frictional Impact Oscillatpr= 1.

in sticking of the body to the belt. Other coexisting periodic solutions might exist in theory but were not found numerically fc
this parameter set.

Case 2. = 1. All four regions of Table 3.1 exist for this parameter set and are depicted in Fig. 4.4. The friction con
is now bordered partly by the regioA™ < 0, b > 0 (the indeterminate mode of the detachment LCP of the forward
slip mode) and is partly bordered by the regidi < 0, b < 0 (the inconsistent mode of the detachment LCP of the
forward slip mode). A periodic solution was found which contains a stick phase and a flight phase (depicted in grey). T
velocity jump due to the impact is depicted by a dotted line. The impact causes the post-impact state to be in the s
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A few fundamental questions should be put forward at this point:

(1) Is the solution at the end of the stick phase locally unique? The forward slip mode is at this point undeterminate.
(2) Can an impact cause a post-impact state which is in the forward sliding mode with nonexistence of solution?

These questions are very hard to answer due to the nonlinear terms in the Frictional Impact Oscillator, which make
analysis cumbersome. Instead, it is much more convenient to look at a piecewise linear simplified version of this model, wt
we call the Simplified Frictional Impact Oscillator. The above questions will be answered for the Simplified Frictional Impa
Oscillator. Later, when we look at bifurcation diagrams in Section 6, it will be shown that the Simplified Frictional Impac
Oscillator is to some extent a good approximation of the Frictional Impact Oscillator.

5. The Simplified Frictional Impact Oscillator

In this section a simplified version of the Frictional Impact Oscillator will be studied. For small values-afy < 1 we
can approximate the Frictional Impact Oscillator (Fig. 4.1) with the Simplified Frictional Impact Oscillator depicted in Fig. 5.2
Note that the anglg is constant. Fig. 5.1 might help to understand the relation between the two models. The Frictional Impa
Oscillator is pushed over the belt, while the Simplified Bounce Model seems to be dragged over the belt.

5.1. Model

The Simplified Frictional Impact Oscillator consists of a mass-spring-damper systgrin( c1) which stands under a fixed
angley and is attached to a vertically suspended mass-spring-damper syseky,(c2). The springs are unstressed when
u1 =0 and i = 0. The correspondence between the constants of the Frictional Impact Oscillator and the Simplified Frictior
Impact Oscillator isiy = (¢ — ¢0), u2 =y, y = 90, k1 = kg /12, c1 = cp /1%, kp =k andcp = c.

The kinetic and potential energy of the system can be expressed by

QO O

Fig. 5.1. Simplification of the Frictional Impact Oscillator (left) for small rotations of the rod.

C2

} v = constant

w

1

O

Fig. 5.2. Model of the Simplified Frictional Impact Oscillator.
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1 .2 . .. 1 .2
T = Emlul +mqSinyuqu + E(ml +mp)u5,
1 -, 1 5 .
V = §k1u1+§k2u2 +mqigsinyuy + (my +mp)guy. (5.1)
The system matrices and vectors of the Simplified Frictional Impact Oscillator become
M= my m1Siny ’ P —klul—c%dl—mlgsiny ’ (5.2)
mqSiny m1+mo —koup — coutp — (m1 +mo)g
gN = upSiny +uy, g1 =11 COSy + vyr (5.3)
WN=[S"1W] WT:[COOSV], Wy=0  wy=0  wWr=vg. wr=0. (5.4)

5.2. Forward slipgr >0

The motion of the system in the forward slip mode is constraint wigh> 0 and i = —uA . The equations of motion
become

m1ii1 + mqSinyiip 4+ cquq + kquq = (Siny — ncosy)iy —mygsiny,
mqSinyii1 + (m1 + m2)iip + cotip + kouo = Ay — (m1 +mo)g. (5.5)

Elimination of A y together with the conditiongy = ¢y = gy = 0 gives a second order differential equation

with
M, :mlcoszy + mapsiny (siny — ucosy), Cy =c1+cpsiny(siny — ucosy),
Ky =k1 + ksiny (siny — ncosy), Fy =—((m1 +mp)ucosy —masiny)g, (5.7)

where theM,,, Cy, K), andF, are constants contrary to (4.7). The system has an equilibriggin the forward sliding mode

Fy _ (=(m1+mp)ucosy +mpsiny)g
Uleq= 1= = : - » (5.8)
Ky (k1 + ko siny (siny — ucosy))
wheniy = —kpuieqsiny + (mg1 +mp)g > 0and K, #0.
The equilibrium is stable iM, > 0,C, >0and k;, >0 or M, <0,C, <0 and K, < 0. The equilibrium undergoes a
Hopf bifurcation forM,, > 0, K, > 0 when the friction coefficient passes the critical value

c1 1

' (5.9)
¢ siny cosy

Hay =tany +
for which C,, = 0.
5.3. Stick mode

In the stick mode holdgy = ¢y = gy = &7 = g7 = 0 and|A7| < uiy. It follows that up = —ugsiny andiq =
—vgr/cosy. The normal contact force therefore becomes
AN = covgrtany — kouq Siny + (mq + mo)g. (5.10)
The condition that the contact force must be in the interior of the friction dage,< wi v, results in an interval ; , <u1 <
+ ith
Usgick Wit

4 Clgosy + (Siny £ peosy)(covgrtany + (mq +mo)g) —mygsiny

ol = - - 5.11
“stick k1 + ko siny (siny + pcosy) 6.11)
The solutions to the detachment LCP for the stick mode exist and are unique which follows from
gN =iu1siny +iip = —————(Ay + cpug Siny + koug siny) — g. (5.12)
mq +m2

The stick mode is therefore consistent and determinate.

16



5.4. Painlevé paradox

Similar to the Frictional Impact Oscillator we analyze the Painlevé paradox of the Simplified Frictional Impact Oscillator i
the forward and backward slip mode.
The normal acceleratiogy = ii1 Siny + iip in the forward and backward slip mode becomes

ATAN +by, &r>0,

iv =127 ; 5.13
SNZV Ay by, g7 <0, (513)
with
cos
AL =WEM YWy —uwp) == (1+ "2 tany (tany — u)), (5.14)
Y mi
cos
Ay =WEM YWy +uWp) =7 (1+ Z—i tany (tany + u)), (5.15)
Y
. _ _ sin . m .
by (uy. i) =W\ M h+wy = =7 (COSZV(Czul +kou1) — 2 (eqig + klul)) -8 (5.16)
N, my
and
Ny =m1coy + my. (5.17)

Note thatA)f is not dependent on1 andi1. The vaIueA;;, belonging to the forward slip mode, can become negative for
sufficiently large values of the friction coefficient The critical value occurs at = ,u,jg, for which A;,F =0,

=tan —_ 5.18
Wiy Y+ i Tany (5.18)

The critical valuep,jy is minimal wheny = arctan,/m1/m> giving
mi
Hemin=2[—. (5.19)
mj3

The Simplified Frictional Impact Oscillator has therefore the same critical friction coefficient for consistency and determina
of the forward sliding mode as the Frictional Impact Oscillator. The piece-wise linear character of the Simplified Friction
Impact Oscillator allows us however to derive the following important lemma’s.

Lemmab5.1.If u = ujy such thatA;,r =0, then the pointuy, ii1) = (ugie, —vdr/COSY) is located on the liné,, (u1, ii1) = 0.

Proof. For =g, (5.18) holds

k1 + ko siny(siny —p,cos;/)z—m<k2co§y —klﬂ) (5.20)
mo mq
and
v . .
c1 Coiry + (siny — pcosy)(covgrtany + (my +mp)g) —migsiny

vdr m m m
= —l(czcoszy——zcl)——lNy.i.
cosy m2 my my " siny

The border of the friction cone becomes (5.11)

vd mp 8
cosry (02 COéV - m_lcl) + Ny siny

Uiy, =
stick ko co& y — klﬁ—i

Substitution ofuy = ug;. andii; = —vgy/cosy into (5.16) yieldsy (u1,11) =0. O

Lemmab.2.If u = /Jy such thatA)J,r = 0, then the equilibrium pointu1, i1) = (u1eq 0) is located on the linéy, (u1,17) =0.
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Proof. Substitution ofi; = u3eq(5.8) andii; = 0 into (5.16) together with (5.20) yields, (u1,i1) =0. O

The above lemma’s show that the equilibrium as well as the left border of the friction cone pass to the left side of the li
b, =0 when ppasses the critical value for the Painlevé paradox. The equilibrium and the left border of the friction cone c:
therefore not be located in, or be bordered by, the inconsistent mﬂjde 0,b, <0.

5.5. Analysis of periodic motion

The Simplified Frictional Impact Oscillator can exhibit periodic motion with slip, stick and flight phases similar to the
Frictional Impact Oscillator. We will explore how the topology of the periodic solution depends on the regions defined by tl
value ofA)j,E and the lineb,, = 0. We will consider two cases (similar to the two cases of the Frictional Impact Oscillator): case !

with = 0.5 < p, and case 2 withe = 1> pf,,, wherepd, = 0.6556. The other parameters ang = 0.1 kg, mp = 1 kg,
I =1m,kq =100 N/m, kp =100 N/m, ¢1 = 0 N/(ms),co = 10 N/(ms),vgr = 1 m/s, g = 10 N mys2.

Case 1.u =0.5. The values oﬁ\;} are not dependent an for the Simplified Frictional Impact Oscillator and are both positive
for the parameter set of case 1. The forward and backward slip modes are therefore always consistent and determinate. The
by, =0(5.16) and¢r =0 are drawn in the plane:1, i) of Fig. 5.3. The time history of the contact distange and contact
velocity ¢ are shown in Fig. 5.4 for a periodic solution of the system. The borders of the friction cone on thg ImEig. 5.3

are given by (5.11) and are depicted by a small cire)e The part of the ling; between the twe signs is therefore the stick
mode. Note that the friction cone lies, for this parameter set, totally outside the detachmenbyegidn A periodic solution

is found numerically and consists of the following phases: stick—slip—flight—slip. The numerically obtained Floguet multiplie
indicate that the periodic solution is stable, which agrees with its (locally) attracting nature. The stick to slip transition occurs
the border of the friction cone. The body remains some time in forward slipping contact with the belt in thé,spaBeuntil

the lineb,, = 0 is hit. The sign ob,, changes at the link, = 0, giving the LCP solutiorhy =0, gy > 0, which means that

the body detaches from the belt. The body remains in flight (unconstrained free motion) until an impactggcu)( The
impact causes the velocitiég and:i, to jump. The impact results in slipping contact of the body to the belt. Other coexisting
periodic solutions might exist theoretically but were not found numerically.

Case 2. = 1. The value ofA;,r is negative for case 2. The friction cone is now partly bordered by the région 0 (the
indeterminate mode of the detachment LCP of the forward slip mode) and partly by the bggiofi (the inconsistent mode

of the detachment LCP of the forward slip mode). A periodic solution was found which contains a stick phase. At the end
the stick phase, when the solution is on the border of the friction cone, detachment occurs. The problem is identical to case
the Frictional Impact Oscillator. The detachment LCP has two solutions:

3 T T
+
AT >0
sk i
by >0
flight,
1k i
.5 of .
detachment—___ >/ B gr=20
—1F / -
stick
_ sli
L 4y >0 P i
_3 1 1 L 1 L 1 1 Il 1
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 (8]

i

Fig. 5.3. The(uq, i17)-plane of the Simplified Frictional Impact Oscillater,= 0.5, A?; =0.5070.
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Fig. 5.5. The(uq, i17)-plane of the Simplified Frictional Impact Oscillater,= 1, A;,r =-1.1218.

(1) Ay =—by/A} A gy =0, implying forward slip;
(2) Ay =0A gy = by, the body detaches and solution proceeds in a flight phase as the depicted periodic solution does.

The undeterminacy of the detachment LCP at the end of the stick phase for case 2 suggests that théggojuiion)
might be nonunique after this transition. We will have to check rigourously uniqueness at this point. The relationship betwe
uniqueness of solutions of the LCP and uniqueness of solutig$, ¢(¢)) is not simple in general, see (Brogliato, 1999)
§2.2.3 and Remark 5.18 therein. Let us therefore consider the following lemma.
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Lemma5.3.Letu > ujy, Ky >0and

.
. — — . Udr
(q(10).4(10)) = [”stick “UgtickSINY ~cosy Udrtam’] .

The solutiong (r) to the initial value problem of the Simplified Frictional Impact Oscillator with initial conditigg, o) at
t = 1g is locally unique and the solution proceeds in a flight phage> 0.

Proof. It follows from the initial condition(q (zg), ¢ (fg)) thatgy (f9) = ¢ (o) = 0. The starting point fronfu1 (rg), it1(tg)) =
(Ugiicle —Vdr/COSY) is at the border of the stick modgr =0, A7 = —uAy. The solution might proceed in the following
modes: stick, backward slip, forward slip, flight. Continuation to all of the four modes will be analyzed.

Stick:  Assume that a solutiog(z) exists on(tg — ¢, g + €), € > 0. If the solution remains in the stick mode, théq(z)
is continuous at = 1. It holds thatuq (g + €) < u1(tg), ¢ > 0 becausei1(tg) < 0. The solution therefore does not
remain in the stick mode ;. < u1 < u:tick' Continuation in the stick mode is impossible.

Backward slip: The detachment LCP in the backward slip mode is give§py= A, Ay + by . It holds that4, > 0 (5.15).
From Lemma 5.1 and the linearity &f, (5.16) inu1 andiiq, it follows thatb, (tg) > 0. Consequently it must hold
thatgy (tg) > 0 and a transition to the flight mode will occur immediately.

Forward slip: The detachment LCP in the forward slip mode is giverghy= A;,FAN + by . It holds thaltA;,r >0 (5.14) and
by (tg) > 0. The detachment LCP for the forward slip mode has two solutions:

@ Ay = —by/A;,r A gn = 0 which would imply forward slip. If the solution proceeds in the forward slip mode then
it holds that

g1 (10) = MY (=Cy i1 (t0) — Ky ua(t0) + Fy ) cosy =0.

Furthermore it holds thadé > 0, uq(tg + ) = u1(tg) — & for an arbitrary smalk > 0 becauseiq(rg) < O. It
therefore must hold thaiy (19 +¢) = M;llc,,s cosy < 0 becauseM,, < 0 and/C, > 0. Consequently it holds
thatgr (fg + ) < 0. The solution will therefore not stay in the forward slip mode but transition to backward slip
will occur immediately. From the backward slip mode a transition will occur to the flight mode;

(b) Ay =0A gy =by > 0, the solution does not stay in forward slip but transition to the flight mode will occur
immediately.

Flight:  Inthe flight mode it holds thaty = 0. Itfollows thatg y (19) = by (tg) > 0. Continuation in the flight mode is possible
for a nonzero time interval. Existence of the solution is therefore proven.

It can be concluded that the flight mode is the only possible mode for continuation during a nonzero time interval. The otl
modes are not possible to enter (stick phase) or switch immediately to the flight mode. The solution will switch to the flig
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mode in a finite number of mode switches and in a zero time interval. The solution is therefore locally unique and proceed
the flight phase. O

Uniqueness of the stick-to-flight transition has been proven. Until now nothing has been said about the existence
uniqueness of the solution after the impact. For the following lemma we will introduce the notation:

co&
Ay@) = WM YWy —auWp) = -1 (1+ %tany(tany - otp.)), (5.21)
y 1
By(@) = WIM YWy —auWyp) = @(tany@ —a,u(l—l— @)) (5.22)
14 T Ny mi ml

with -1 <o < 1. Itfollqws thatA;,r =Ay(1), A, = Ay(=1) and we introduce the abbreviatiam;r =By (1), B, = By(-1).
Let us prove the following result.

Lemma 5.4.Let (¢ (to), 4 (5 )) be an initial condition for which holdgy (o) = 0 and gy (1) < 0 implying an impact at
t=1g. Letu > ujy. The post-impact solutiofy (g), t}(ta_)) is locally unique and proceeds in either the backward slip mode,

the stick mode or the flight mode.

Proof. The impact equations are

[g'N<t0+ ]_[WLM—le W]TVM—lwr] |:ANi|+|:gN(t6)i| (5.23)
g1 g) wiM=twy wimiwr |l Ar grtg) ]’ '
with the impulses in normal and tangential direction
g g
Ay = lim /)‘-N dr, Ar = lim /AT dr. (524)
Y 1y
fo fo

For completely inelastic impact it must hold th@,{,(za“) = 0. The post-impact state might be in the forward slip mode,

backward slip mode or on the line of zero relative velocgty,(tar) = 0. Continuation in each of the following modes will
be analyzed.

Forward slip: We will prove that continuation in the forward sliding mode is impossiblerdguctio ad absurdumin the
forward slip mode it must hold thagT(tar) >0 and & = —uAy with Ay > 0. Substitution into (5.23) gives

A;,FAN +én(1g) =0. However,A]J,r <0forpu > /Jy andgy (75 ) < 0. Consequently the normal impulse has to be
AN =—gnN (to_)/A;,r < 0 which is contrary to what was assumed before.

Backward slip: In the backward slip mode it must hold thgf(tar) <0 and Ay = uAy with Ay > 0. Substitution
into (5.23) givesAjAN + ¢n(tg ) = 0 from which follows thatdy = —gy(15)/A, > 0. Furthermore we have
gT(tar) = B;AN + 87 (ty). It must hold tha@T(tar) < 0. Continuation in the backward sliding mode is therefore

only possible whergr (15) < (B, /A})&n (15)-
Zero relative velocity: For a jump to zero relative velocity it must hold that, o € [—1, 1], for which

; oo (1 gn(ig)
¢1(1g) = By @Ay +é7(ig) =0 and Ay=--—02">
Ay(a)
Furthermore, for the stick mode we have the additional conditign, < u1 < M:tick' It follows thatA,, (a) > 0 to

assured y > 0 which gives the conditionr < /LZS,/M. Substitution ofAy in g7 (zar) = 0 yields the condition
érlo) _ By@ [_1 uiy>
gnlty) Ay@)’ ’

The ratioB,, (a)/Ay (a) attains the values

By @) € (—oo B—;} o€ [—1 ij).
Ay (@) i/ "
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A velocity jump to gT(zgf) = 0 is therefore only possible whegy (1;) > (B, /A})én (g ). There are three
situations to distinguish:

(@) ugpie Su1lto) < u;ick. It is immediate that the post-impact solution will be in the stick mode.

(b) u1(rg) > u:tick' Continuation in the forward slip mode is impossible as it violatgs> 0. Continuation in the

flight mode is impossible becausg < 0 for uy > M:tick andgr = 0. Continuation in the backward slip mode is

possible ifgr (tar) < 0 which is true for > “;rtick‘ The solution will proceed in the backward slip mode.
() ua(t0) < uggy- It follows from Lemma 5.3 that the solution will proceed in the flight mode.

We conclude that the post-impact solution exists and is unique and will proceed either in the backward slip mode, the s
mode or the flight mode, depending on the siggptiy)/én (1g) — B, /A, and the value ofi1(1p). O

6. Bifurcations

In the previous sections we analyzed the Frictional Impact Oscillator and in more detail the Simplified Frictional Impa
Oscillator. The obtained results will help us to understand the bifurcations which occur when we vary a parameter of th
systems. We are interested in bifurcations which occur due to the Painlevé paradox. The friction cogffisi¢ghérefore
a natural parameter to take as bifurcation parameter.

We will first study a bifurcation diagram of the Simplified Frictional Impact Oscillator and then compare it with
a corresponding bifurcation diagram of the Frictional Impact Oscillator. The bifurcation diagram of the Simplified Frictionz
Impact Oscillator is depicted in Fig. 6.1 with the maximal valu@igf on the vertical axis and as varying parameter. For small
values ofu we observe that the equilibrium in the forward slip mode (5.8) is stable. The equilibrium loses stability at point ,
whenp is increased t@uy,, = 0.4142 (5.9) for whiclC,, = 0. The equilibrium undergoes a Hopf bifurcation, due to vanishing
damping, and a branch of periodic solutions is born (see Fig. 6.2). The equilibrium is located in the interior of a linear regi
of the piece-wise linear system. An infinite number of marginally stable periodic solutions exist around the equilibrium (i.e. t
system locally behaves as a perfect linear system). The marginally stable periodic solution at point D (Fig. 6.2) touches the
b, =0. Periodic solutions with a larger norm mpiq | will contain a flight phase and a slip phase. The branch turns due to this
nonlinear effect and the periodic solutions on the branch D-B are therefore unstable limit cycles (isolated periodic solutior
The branch turns around at the fold bifurcation point B. The limit cycles between point B and C are stable limit cycles whi
contain slip, stick and flight phases. The limit cycle on the branch B-G.fer0.5 is depicted in Fig. 5.3. The sign d¥1,,
changes at = uj}, for which M,, =0, i.e., the Painlevé paradox occurs. Points C and E are points on the periodic branch ar

equilibrium branch, respectively, far = uj},. The limit cycle on the periodic branch right of point C fer= 1 is depicted in

4 T - —T T

350 : : “

25+ : : g

5
.« 1SF g
&
g :
1+~ B . . 5 —
i periodic branches
: :
oSt ! : J
1 :
1
0 cquilibrium branch Ay,  E N
LM, >0,C, <0,
Y My >0,0,>0,K,>0 : Ky >0 M, <0,0,<0,K, >0
-1 1 Il 1 Il Il Il : 1 L 1
0 0.1 0.2 0.3 04y, 05 0.6 0.7 0.8 0.9 |

by
Fig. 6.1. Bifurcation diagram of the Simplified Frictional Impact Oscillatgr= 0.
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Fig. 6.3. Bifurcation diagram of the Frictional Impact Oscillator (compare with Fig. 6.1).
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Fig. 5.5. Lemmas 5.1 and 5.2 hold at point C and E. Lemma 5.1 states that the border of the friction cone crossés thedline
atu = ujry, which affects the topology of a periodic solution with a stick phase. The periodic solution left of point C (whick
looks similar to Fig. 5.3) is therefore topologically different from the periodic solution right of point C (which looks similar to
Fig. 5.5). The branch is nonsmooth at point C, but no additional branch is created or destroyed at point C. Point C is there
not a bifurcation point. The topology of the equilibrium changes at point E. According to Lemma 5.2, the equilibrium will by
in a space with an indeterminate solution whes ujy. The branch left of point E therefore contains normal equilibria, while
the branch right of point E has equilibria which locally do not have uniqueness of solutions. No additional branch of equilibi
or periodic solutions is created at point E, and is therefore not a bifurcation point.
The bifurcation diagram of the Frictional Impact Oscillator is depicted in Fig. 6.3. The stable periodic solutioe-f0:5

corresponds with Fig. 4.2 and far= 1 with Fig. 4.4. The bifurcation diagram of the Frictional Impact Oscillator looks similar
to the bifurcation diagram of the Simplified Frictional Impact Oscillator (Fig. 6.1). However, the Frictional Impact Oscillato
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Fig. 6.5. The(uq, u1)-plane of the Simplified Frictional Impact Oscillater= 10, x = 0.5773,Aj =0.2553.

is more complicated than its simplified version and we can give less definite answers. For the Frictional Impact Oscillator
are not equipped with Lemmas 5.1-5.4. We can therefore not say that the equilibrium enters an indeterminate solution whe
passesi. min. although it will happen somewhere in the neighborhood. Likewise, the topology of the stable periodic solutic
will change at a value of. close tou,. min- The simplification of the Frictional Impact Oscillator by means of the Simplified
Frictional Impact Oscillator does not only give more insight but also allows us to find exact values of important points in tl
bifurcation diagram.

The Painlevé paradox played a role in the previous bifurcation diagrams but did not lead to a bifurcation. The Painle
paradox can however lead to a bifurcation if the parameter set is slightly different. Let us look again at the Simplified Frictior
Impact Oscillator. We take the same parameter set as before but nowwiti0, leading tou,, > ujy. The bifurcation
diagram is depicted in Fig. 6.4. The equilibrium loses in this case stability wheasses the critical valuej}, (point A'in
Fig. 6.4), at which the Painlevé paradox occurs. A branch of unstable periodic solutions originates from point A. Point A



therefore a bifurcation point. The branch of periodic solutions turns around at the fold bifurcation point B. The stable perioc
solutions on the branch which starts at point B, are periodic solutions which are characterized by a flight phase followed
an impact to zero relative velocity with immediate detachment (case (c) in the proof of Lemma 5.4). The equilibrium, :
unstable periodic solution and a stable periodic solution are coexistent5rQu < /Lj_y. Fig. 6.5 shows the attractors for
= 0.5773. The post-impact velocity of the unstable periodic solution depengs ot the post-impact velocity of the stable
periodic solution is zero and therefore independent of his explains why the branch of stable periodic solutions is perfectly
horizontal.

7. Conclusions

In the previous sections we analyzed the Frictional Impact Oscillator and in more detail the Simplified Frictional Impa
Oscillator. It was shown that both models have the same critical value of the friction coefficient for the Painlevé parad
A peculiarity of these models is that the critical friction coefficient depends only on a mass ratio and can therefore be m:
arbitrary small, i.e.,

Hemin =2 ml-
m2

The Painlevé Paradox can therefore occur at physically realistic values of the friction coefficient. This fact was not appat
from the classical Painlevé example (Fig. 3.1).

As stated in the introduction, many systems exhibit a kind of frictional hopping motion (e.g., a finger or piece of cha
pushed over a table, robot in contact with an obstacle, brake systems). In fact, the Frictional Impact Oscillator (and its simpli
version) can be seen as a sort of archetype of these systems, carrying the basic mechanism for the frictional hopping/boul
phenomenon. What can we conclude from the analysis of the (Simplified) Frictional Impact Oscillator with respect to t
existence of hopping/bouncing maotion in these type of systems?

o If the mass of the end-effector of the structurg,, is small with respect to the mass of the supporting structirethen
the Painlevé paradox can occur at physically realistic values of the friction coefficient. Take for instgiwe = 1/36,
which is certainly realistic in robotic applications, then the critical friction coefficient becomgg, = 1/3.

e Hopping motion can occur when the friction coefficienis large enough such that either
(1) the linear damping terms vanish/become negafive (14, for the Simplified Frictional Impact Oscillator);

(2) the Painlevé paradox occuys ¢ 1.0, for the Simplified Frictional Impact Oscillator).

e For many practical applications it might very well be that, < 14, and that the Painlevé paradox is the actual cause of
(undesirable) periodic motion. To avoid the hopping phenomenon in these type of systems, one should therefore incr
the massn1 of the end-effector.

e The support stiffnesk and damping: (or k2 andc; of the Simplified Frictional Impact Oscillator) can be looked upon as
the PD-action of a position controller for the link with mags. When the friction is high enough such that- tang, then
the D-action will diminish the dissipation in the system. In fact, the friction causes negative feedback, which can lead
instability of the forward sliding equilibrium.

Bifurcation diagrams of both models were analyzed in Section 6. It was shown that the Painlevé paradox can lead to ¢
furcation of branches but not necessarily. In any case the occurrence of the Painlevé paradox will introduce subspaces ¢
state space in which there is locally no existence or uniqueness. The phase portrait of a dynamical system with the Pair
paradox is therefore topologically different from the phase portrait of a dynamical system without the Painlevé paradox. If
Painlevé paradox occurs at a critical value of the bifurcation parameter, then a topological transition will occur at this critic
point, which might lead to a bifurcation of branches of periodic solutions or equilibria, but not necessarily.

The (¢, ¢)-planes with linesA =0, b = 0 andgy = 0 (like Figs. 4.4, 4.2 and 5.5, 5.3) proved to be valuable tools when
analyzing bifurcations induced by the Painlevé paradox. The lines0, » = 0 and¢y = 0 determine the subspaces where
detachment, indeterminacy or inconsistency occurs, which greatly affects the topology of periodic solutions and equilibria.
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Fig. A.1. The original Painlevé problem.

Appendix A. The original Painlevé problem

The original example of Painlevé is different from the classical example of Painlevé and is unfortunately forgotten. T
original example of Painlevé studied in (Painlevé, 1895b, pp. 114-115) is that of a planar box sliding over an inclined plane
fact, Painlevé speaks of a three dimensional cylinder with its base in contact with the inclined plane, but this does not make
difference for the planar case. The plane has a slofée box has the three degrees of freedam andg (its base is parallel
to the plane fop = 0). The mass of the box is8 and its inertia around the center of mass 3gs= k%m, wherek is the radius
of gyration. Assume that at= 0 the box is sliding downward;7 > 0, from which follows that.y = —ui . Sliding of the
box over the plane is possible whan< /1, which can be derived with simple momentum analysis/If< u <r/l + kz/rl,
then the box will turn around the contact point Auf> r/I + k2/(rl), then an inconsistency occurs which is now known as
the Painlevé paradox. Assume that the box is slipping in forward direg}ior; 0, and the box begins to rotate,= 0. The
equations of motion in vertical and angular direction are in this case

my = —mg cosx + Ay, Js¢p=—riny —IAr = (—r +ury. (A1)
The contact distancgy of point A relative to the slope can be expressed in the coordinates by

gN =y —1cosp — rsing. (A.2)
The contact acceleration becomes for forward slipping with 0,

EN=F—ri+16% (A3)
Substitution of the equations of motion (A.1) in the contact acceleration (A.3) gives the LCP

. 1 r .2

gN:<Z—@(—r+ul)>k]v—gc0$a+l(p =Aly+b (A4

with the complementarity condition € g5 L Ay > 0. The solution to the detachment LCP can become nonunique or
nonexistent whem passes the critical valye. with
T k2
e = 7 + N
The analysis of Painlevé (1895) ends at this point. Ten years later, in 1905, Painlevé presented a sliding rod problem ir
discussion with Lecornu and de Sparre (Lecornu, 1905a, 1905b; de Sparre, 1905; Painlevé, 1905).
If we assume the box to be homogeneous then we olitain k2m = %(r2 +12)m. The critical friction coefficient becomes

(A.5)

r 1/r I
— (4 A.6
ne=r+3(5+1) (A6)
which is minimal for% = % The minimal friction coefficient is therefore
4
MHemin = § (A-7)

which is identical to that of the classical Painlevé problem. However, if all the mass is concentrated at S, giving a radius
gyrationk = 0, thenu. = r/1 which can take any positive value.
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