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Signal identification in ERP data by decorrelated Higher
Criticism Thresholding

Emeline Perthame, Ching-Fan Sheu, David Causeur

May 3, 2016

Abstract: Event-related potentials (ERPs) are intensive recordings of electrical activity along the
scalp time-locked to motor, sensory, or cognitive events. A main objective in ERP studies is to
select (rare) time points at which (weak) ERP amplitudes (features) are significantly associated
with experimental variable of interest. The Higher Criticism Thresholding (HCT), as an optimal
signal detection procedure in the “rare-and-weak” paradigm, appears to be ideally suited for iden-
tifying ERP features. However, ERPs exhibit complex temporal dependence patterns violating the
assumption under which signal identification can be achieved efficiently for HCT. This article first
highlights this impact of dependence in terms of instability of signal estimation by HCT. A factor
modeling for the covariance in HCT is then introduced to decorrelate test statistics and to restore
stability in estimation. The detection boundary under factor-analytic dependence is derived and the
phase diagram is correspondingly extended. Using simulations and a real data analysis example,
the proposed method is shown to estimate more efficiently the support of signals compared with
standard HCT and other HCT approaches based on a shrinkage estimation of the covariance matrix.

1 Introduction

Event-related potentials (ERP) are voltage changes along the scalp time-locked to some physical
or mental occurrence in the ongoing electrical brain activity recorded as electroencephalogram
(EEG). Like functional magnetic resonance imaging (fMRI), ERPs are noninvasive instruments
that directly reflect cortical neuronal activity. Unlike fMRI, ERPs studies provide better tempo-
ral resolution to chart the time course of mental processes and are less expensive to conduct. In
basic research, ERPs offer a psychophysiological method for studying attentional processes, lan-
guage, and memory functions, yielding information not available from behavioral studies alone. In
clinical research, ERPs are one of several noninvasive biomarkers that have been proposed for eval-
uating neurological and psychiatric disorders such as Alzheimer’s disease, amnestic mild cognitive
impairment, attention deficit, hyperactivity disorder, among others.
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For a typical trial in a study, ERP amplitudes are measured in milliseconds (ms) for up to one or
more seconds with reference to the onset of an external event. ERP waveforms are notoriously
noisy and highly variable, both within and between subjects, which explains why ERPs are usually
averaged across trials of the same condition for the same subjects. To identify time points at
which ERP amplitudes can reliably be linked to either stimulus (or response) events, researchers
must shift, simultaneously, through thousands of features for significance testing. A balance must
be struck between keeping a low false positive error rate while maintaining sufficient power for
correct signal identification. How to achieve this objective for ERP data exhibiting arbitrarily
strong temporal dependence is the focus of the present paper.

Searching for time points at which ERP amplitudes are significantly associated with a response
variable can be seen as a signal identification issue in the “Rare and Weak” (RW) paradigm intro-
duced by [8]. Large-scale significance analysis of ERP waveforms is indeed based on a T -vector
T = (T1, . . . , TT ) of test statistics for the collection of corresponding null hypotheses H0,t of no
association between the ERP measured at time t and the target variable. The RW paradigm pro-
vides a simple yet useful framework to investigate test procedures for detecting the presence of a
nonzero signal. In the multiple testing setting, [8] proposed Higher Criticism Thresholding (HCT)
inspired by an idea of [27] based on the significance of an overall body of tests. HCT is known to
be effective to detect signals under independence. Indeed, closed-form detection bounds can be de-
rived analytically and [8] demonstrated that HCT attains the theoretically optimal decision limits.
For the more challenging objective of selecting non-null features for classification or prediction,
[9] also demonstrated the superior performance of HCT with respect to multiple testing procedures
controlling False Discovery Rate (FDR).

As reported in [6], the pronounced dependence observed in ERP waveforms can induce a long-
range regularity for the test statistics resulting in spuriously small p-values outside of the support
of the signal and causing the non-null features to be misidentified. This instability in the ranking
of p-values due to dependence has also been reported in high-dimensional genomic data analysis
(see for example [11], [1], [20]). Although HCT is known to be effective even when tests are
weakly correlated (see [13]), its performance can still be improved when dependence is accounted
for ([1] and [14]). For example, [14] reported that the theoretical detection bounds derived in the
RW framework are markedly affected by a strong dependence among the test statistics. Therefore,
[14] extended the RW framework by introducing the so-called innovated HCT (iHCT) and showed
that iHCT restores the effectiveness of the HCT procedure under strong dependence.

Elsewhere, for feature selection in the Linear Discriminant Analysis (LDA) context, [1] applied
HCT to Correlated Adjusted T-scores (CAT-scores), which are tests statistics decorrelated by a
James-Stein shrinkage estimator of the covariance matrix (see [29]). [1] showed that performance
of HCT is improved by this decorrelation using an inverse-square root of the covariance matrix.
Alternatively, [20] extended the decorrelation method introduced in [11] based on a regression
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factor model, to generalized linear modeling for a variable selection issue in supervised classifica-
tion. [20] devised an adaptive algorithm to jointly estimate signal, covariance matrix and the class
probabilities in order to efficiently decorrelate data for classification.

As demonstrated by [6], the complex dependence pattern observed in the correlation structure
of test statistics derived from ERP data can be well approximated using a factor decomposition,
often with a moderate number of factors. The procedure proposed in this paper is expected to
better select ERP features which are associated with treatment variable of interest. Moreover, it
also takes advantage of simple and efficient algebraic tools to derive an inverse-square root of the
covariance matrix. This article is organized as follows. Section 2 describes the oddball auditory
ERP paradigm to motivate the subsequent modeling and data analysis issues. It also introduces
signal detection methods in a multivariate linear settings for ERP experiments. A brief review
of actual methods dealing with HCT under independence and dependence is presented in Section
3. The factor model framework is introduced in Section 4, leading to an extension of detection
boundary under dependence and a Factor-innovated HCT method. The properties of the method
are demonstrated through simulations and a real data study in Section 5. We conclude with a
discussion in Section 6.

2 Signal detection in ERP experiments

We first consider hereafter the statistical testing for the mean comparison of I groups of ERP
curves, with ni curves in group i. The n = n1 + . . . + nI ERP curves are observed at timepoints
in {t1, . . . , tT } on J subjects. The former signal detection issue is first motivated by an auditory
oddball ERP study.

2.1 The auditory oddball experiment

In ERP studies, perhaps the most commonly used experimental task is the oddball paradigm ([21]).
In this paradigm, typically two classes of stimuli are presented, one occurring frequently (standard)
and the other occurring infrequently (target). The subject is required to distinguish between the two
stimuli and to respond to the stimuli that are designated as targets.

An auditory ERP study was performed at Kaohshung Medical University in Taiwan to provide an
illustrative data set for the present investigation. The task uses two pure tones of 500 Hz and 1,000
Hz. The former is presented 120 out of 150 trials, whereas the latter (target) is presented only
for 30 trials. The order of tone presentation is random and the subject is asked to (silently) count
the number of targets. At each of 4 electrode locations (FZ, C3, C4, & O1), ERP waveform was
obtained from each of the two tone conditions for each of the J = 15 participants, each curve
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Figure 1: ERP curves for subjects 1 (blue lines) and 2 (orange lines) of the auditory oddball exper-
iment in conditions Hz500 (plain) and Hz1000 (dashed)
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begins at -100 milliseconds (ms) and terminates at 399.5 milliseconds (ms) with two records per
1 ms. The stimulus onset is at 0 ms. For subsequent analysis, only the ERPs from the electrode
location FZ will be used.

[28] and many other studies have demonstrated that an ERP waveform across the parieto-central
area of the skull is usually observed around 300 ms (the so-called P300 component) and is larger
after the target event. The question to be addressed is whether it is possible to select time points at
which ERP features can reliably detect which one of the two tones was presented to the subject and
whether these time points are indeed around 300 ms as expected. This verification is of fundamental
importance if the P300 component is to be considered as an electrophysiological marker for further
assessment of psychiatric and neurological disorders.

It is conjectured that brain activations would be different over different time points depending on
whether participants listen tones of 500Hz or 1000Hz. The data consist of T = 799 time points
measured for J = 15 subjects and I = 2 conditions. Figure 1 shows ERP curves for subjects 1
(blue) and 2 (orange) for condition Hz500 (plain) and Hz1000 (dashed) as an example. This figure
illustrates the large variability among subjects.
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Figure 2: Within-condition standard errors in the auditory ERP dataset
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2.2 Multivariate linear settings

One-way analysis of variance Let Yijt denote the ERP at time t, t in {t1, . . . , tT }, in condition i,
with i in [1; I], for subject j, with j in [1;ni]. The total number of ERP curves is n = n1 + . . .+nI .
The following multivariate one-way analysis of variance model is first assumed:

Yijt = x′0ijµt + ait + εijt, (1)

where x0ij is a r-profile of baseline covariates for subject j, which does not depend on condi-
tion i, and εijt are random errors, normally distributed with mean 0, standard deviations σ =
(σt1 , . . . , σtT )′ and correlation matrix R. In the above auditory oddball experiment, x0ij = (1, δj)
where δj is just the 0− 1 variable which takes the value 1 if the subject is j. As shown in Figure 2,
the within-condition standard errors s = (st1 , . . . , stT )′ vary quite a lot along time, where s2

t is the
degree-of-freedom corrected mean squared error at time t.

Moreover, the image plot of the within-condition correlation matrix among ERPs in Figure 3 shows
that it is both structured by a strong-autocorrelation component and a block pattern.

Model (1) is similarly expressed as follows in matrix notations:

Yt = X0µt +Xat + εt,

where Yt = (Y11t, . . . , Y1,n1,t, Y21t, . . . , Y2,n2,t, . . . , YI1t, . . . , YI,nI ,t)
′, X0 is the n × r matrix

whose rows are x′0ij , at = (a2t, . . . , aIt)
′ is the (I − 1)−vector of condition effect parameters, X
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Figure 3: Within-condition correlations in the auditory ERP dataset
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is a n×(I−1) matrix whose kth columnXk is 0, except the entries between indices n1+. . .+nk+1
and n1+. . .+nk+1 which are equal to 1, and εt = (ε11t, . . . , ε1,n1,t, ε21t, . . . , ε2,n2,t, . . . , εI1t, . . . , εI,nI ,t)

′.

Under the within-subject independence assumption introduced above, for all heteroscedasticity
and correlation pattern (σ,R), the generalized least-squares (GLS) estimate of at coincides with
the maximum likelihood (ML) estimator under normality:

ât = S−1
xx Sxyt , (2)

where Sxx is the (I − 1) × (I − 1) empirical variance matrix derived from the design matrix of
model (1):

Sxx =
1

n
X ′P0X,

where P0 = In −X0(X ′0X0)−1X ′0. Similarly, Sxyt is the (I − 1)− empirical covariance vector:

Sxyt =
1

n
X ′P0Yt.

Finally, the residual variance σ2
t is estimated by the residual degree of freedom-corrected mean

square of residuals errors:

s2
t =

Y ′t (P0 − P )Yt
n− (r + I − 1)

, (3)

where P is the n× n orthogonal projection matrix:

P = XP0

[
X ′P0X

]−1
P0X

′.

Signal detection Signal detection can be expressed as the statistical test of the whole-signal null
hypothesis

H0 : for all t, at = 0.

The type-I error rate α for the former test is also the probability of declaring erroneously that, for
at least one time t, at 6= 0. Controlling the type-I error rate for the global test on the whole curves
can therefore be viewed as equivalent to controlling the Family-Wise Error Rate (FWER), namely
the probability of at least one false rejection, in the simultaneous testing of the collection of null
hypothesis

H0t : at = 0.
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For each of the former tests, the following F-tests Ft are appropriate:

Ft =
n

I − 1

â′tSxxât
s2
t

.

Let pt = 1−GI−1,n−(r+I−1)(Ft), whereGI−1,n−(r+I−1)(.) is the probability distribution function
of the Fisher distribution with (I − 1) and (n− (r+ I − 1)) degrees of freedom, denote the corre-
sponding p-value. Many multiple testing methods can be used to determine a rejection threshold p∗

on the p-values for the simultaneous tests of H0t, t = {t1, . . . , tT }. In the present situation of in-
dependent tests, one of the most famous method is the Bonferroni correction: choosing p∗ = α/T
ensures that the Family-Wise Error Rate (FWER) is lower than α:

PH0

(⋃
t

[ n

I − 1

â′tSxxât
s2
t

≥ f∗
])
≤ α,

where f∗ = G−1
I−1,n−(r+I−1)(1−p

∗). However, the FWER-controlling multiple testing procedures
are known to be conservative and the Bonferroni correction is not adapted to dependence among
tests.

Multivariate analysis of variance An alternative approach is to derive a single test statistics for
H0 by gathering the curves into a single vector Y = (Y ′t1 , Y

′
t2 , . . . , YtT )′. The multivariate analysis

of variance model (1) is now expressed in the following expanded form:

Y = [IT ⊗X0]µ+ [IT ⊗X]a+ ε,

= X̃0µ+ X̃a+ ε, (4)

where ⊗ is the Kronecker matrix product, µ = (µt1 , . . . , µtT )′ and a = (a′t1 , . . . , a
′
tT

)′. The above
expanded linear framework is not homoscedastic. Indeed,

Var(ε) = [DσRDσ]⊗ In = Vε,

where Dσ is the T × T diagonal matrix which diagonal terms are σt1 , . . . , σtT .

Therefore,

Var(âgls) =
1

n
[DσRDσ]⊗ S−1

xx . (5)

Recent papers (see [4, 24, 25]) suggest analysis of variance F-tests based on the above presentation
of the ERP curves. Furthermore, [4, 24, 25] take advantage of this framework to introduce a smooth
non-parametric model for µ and a, using B-splines or wavelets. This modifies the design matrix of
the model and correspondingly reduces the number of regression coefficients. Indeed, if ϕ stands
for the T × S matrix associated to the basis functions, e.g. B-splines, (such that ϕis = φs(ti), s =
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1, . . . , S; i = 1, . . . , T ), then X̃0 = ϕ⊗X0 and X̃ = ϕ⊗X in expression (4) and the parameters
µ and a are respectively Sr− and S(I−1) vectors of regression coefficients on the basis functions.
In the former functional analysis of variance approach, the handling of dependence in Vε remains
the same as in the multivariate linear model (4).

The Generalized Least Squares (GLS) method is here appropriate since it provides the minimum
variance linear unbiased estimator of the regression parameters provided (σ,R) is known. The
corresponding F-statistics for H0 : a = 0 is given by the following expression:

Fgls = nâ′gls([D1/σR
−1D1/σ]⊗ Sxx)âgls. (6)

which null distribution is χ2
(I−1)T . However, Fgls cannot be calculated because its expression

depends on the unknown variance parameters. To handle this issue, the analysis of variance F-tests
in [4, 24, 25] are either based on the usual homoscedastic assumption Vε = σ2InT or an assumption
of a lag-1 autoregressive process for R:

Rρ =


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

...
...

...
ρT−1 ρT−2 ρT−3 . . . 1

 ,

where ρ is the lag-1 autocorrelation.

Homoscedasticity assumption Let Ŷ denote the vector of fitted values of Y , using the above
GLS estimates of the model parameters. The corresponding F-test for the null hypothesisH0 : a =
0 under the homoscedasticity and independence assumption is given by the following expression:

Fols = n
â′gls(IT ⊗ Sxx)âgls

σ̂2
, (7)

where

σ̂2 =
(Y − Ŷ )′(Y − Ŷ )

T (n− (r + I − 1))
. (8)

Heteroscedasticity assumption Note that, if the above homoscedasticity assumption is relaxed,
then Vε = Dσ2 ⊗ In and the corresponding F-statistics:

Fs = nâ′gls(D1/s2 ⊗ Sxx)âgls, (9)
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where s2 = (s2
t1 , . . . , s

2
tT

)′ is given by expression (3), is explicitly derived from the sum of the
individual Ft statistics:

Fs = (I − 1)

T∑
i=1

Fti . (10)

Therefore, in the present situation, heteroscedasticity can be straightforward accounted for by con-
sidering that the null distribution of Fs is the distribution of (I − 1)× the sum of T independent
FI−1,n−(r+I−1) variables. In the following, the former null distribution is denoted F̄I−1,n−(r+I−1).

Autoregressive covariance assumption Under the lag-1 autoregressive covariance assumption,
let us introduce the matrix Lρ,σ defined as follows:

Lρ,σ =


− ρ
σt1

1
σt2

0 . . . 0

0 − ρ
σt2

1
σt3

. . . 0
...

...
...

0 0 . . . − ρ
σtT−1

1
σtT

 .

If ε∗ = (Lρ,σ ⊗ In)ε stands for the (n − 1)T− vector of innovations, then it is straightforward
checked that Var(ε∗) = (1− ρ2)I(n−1)T . Therefore, starting from a non-zero initial estimate ρ̂0 of
ρ to derive Lρ,σ, an update is obtained by the variance of the corresponding ε∗:

ρ̂2
1 = 1−

∑n
i=1

∑T
j=1 ε

∗2
itj

(n− (r + I − 1))(T − 1)
.

Plugging-in this updated estimate of ρ in Lρ,σ provides new decorrelated residuals ε∗ and in turn a
new estimate ρ̂2 of ρ. This defines an iterative algorithm which converges to the so-called Feasible
GLS estimator ρ̂ of ρ.

A corresponding feasible version Fs,ρ̂ of the Fgls-statistics is obtained by plugging-in the estimates
of σt and Rρ in expression (6):

Fs,ρ̂ = nâ′gls(D1/sR
−1
ρ̂ D1/s ⊗ Sxx)âgls. (11)

The exact null distribution of Fs,ρ̂ is untractable. The analysis of variance F-tests are usually based
on the asymptotic approximation of the null distribution by a F(I−1)T,(n−(r+I−1))T degrees of
freedom.

Finally, we suggest here to consider the F-test based on Fs (see expression (9)). Noticing that

Cor(Fti , Ftj ) ≈n→+∞ ρ2|i−j|,

the null distribution of Fs under the lag-1 autoregressive covariance assumption can be approxi-
mated by the distribution of (I − 1)× the sum of lag-1 autocorrelated FI−1,n−(r+I−1) variables,
with auto-correlation ρ2. In the following, this null distribution is denoted F̄I−1,n−(r+I−1)(ρ).
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Figure 4: Expected difference ERP curve in the simulation study
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2.3 Impact of a model misspecification on signal detection

In order to compare the different signal detection strategies described in the present section, we
simulate datasets which dimensions and distribution mimic those obtained from the real auditory
oddball dataset. The original dataset contains 30 ERP curves observed in two conditions, 15 curves
in each condition on the time interval [0;400ms], at the frequency of 1 observation every half mil-
lisecond. We focus here on the significance of the difference curve. In the present simulation
settings, it is assumed under H1 that the expected ERP curve are constantly zero in condition 1,
whereas it describes the waveform plotted in Figure 4 in condition 2. In the next section, we
will show that, in the Rare-and-Weak paradigm of [8], the present situation falls into the so-called
estimable region in terms of sparsity and weakness of the signal in the phase diagram under inde-
pendence.

1000 datasets are generated, underH0 and underH1, with n = 30 rows and T = 800 columns, with
standard deviation profiles s and a lag-1 autoregressive correlation matrix, with autocorrelation
ρ = 0.99. Note that the estimated auto-correlation in the auditory oddball experiment is 0.997. On
each simulated dataset, the following F-tests are implemented:

1. The F-test Fols (see expression (7)) based on the homoscedasticity and independence as-
sumption, with the null distribution FT,(n−2)T ;

2. The same F-test as above calculated in the model including a B-spline smoothing of the re-
gression coefficients. The corresponding F-test is implemented using the functions bam and
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anova.gam in the R package mgcv with the default option for the choice of the smoothing
parameter (minimizing the Generalized Cross Validation criterion). Note that the null distri-
bution of the F-statistics is still a Fisher distribution, whose degrees-of-freedom accounts for
the smoothness of the fit by means of the trace of the smoothing matrix;

3. The F-test Fs,ρ̂ (see expression (11)) with the null distribution FT,(n−2)T ;

4. The same F-test as above calculated in the model including a B-spline smoothing of the
regression coefficients. The corresponding F-test is also implemented in the function bam,
using arguments especially designed to introduce a lag-1 autocorrelation prior;

5. The F test Fs (see expression 9) with the null distribution F̄I−1,n−(r+I−1)(ρ̂). The calcula-
tion of the p-values are based on Monte-Carlo estimation of the former null distribution.

Figure 5 displays the empirical null probability distribution function of the p-values for five F-
statistics. The plots confirms that the main impact of the model misspecification here is a too
liberal Fols-test, not controlling the type-I error rate. The concern is even more obvious when
the fit is based on regression spline smoothing. This is consistent with the observation reported
in many papers, including [4], that the confidence bands based on the homoscedasticity and inde-
pendence assumption are strikingly too narrow. Another conclusion is that the approximate null
distribution of Fs,ρ̂ is obviously wrong, leading to a too liberal test, both without and with spline
smoothing. The F-test based on the sum of individual F-tests, with an ad-hoc correction of the null
distribution, turns out to control the type-I error rate at the desired level. Correspondingly, Figure
6, which shows the empirical non-null probability distribution functions of the same five F-tests,
demonstrates the lesser ability of Fs to detect the signal.

Finally, the above simulation study shows that, provided we can efficiently derive the null dis-
tribution of the F-test under the dependence assumption, a signal detection strategy based on the
individual Ft statistics can help achieving a correct control of the type-I error rate. The Higher
Criticism Thresholding method presented hereafter is also exclusively based on the vector of Ft
statistics. Note that, in the above simulation study, the ERP time dependence is supposed to be
described by a lag-1 autoregression dependence structure, which is far from true (see Figure 3 for
the image plot of the correlation matrix calculated with the auditory oddball dataset).

In the following, to be consistent with the framework defined by [8], we will focus on the situation
where I = 2. Consequently, we will prefer dealing with the T-tests T = (Tt1 , . . . , TtT )′ deduced
by taking the signed square root of the F-tests F = (Ft1 , . . . , FtT )′.
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Figure 5: Empirical null probability distribution function of the F-test p-values under lag-1 au-
toregressive correlation
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Figure 6: Empirical non-null probability distribution function of the F-test p-values under lag-1
autoregressive correlation
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3 Higher Criticism for signal detection

3.1 Variants of the Higher Criticism method

The Higher Criticism (HC) method is designed to detect signals, namely to provide a single p-value
for the significance of a signal, based on the vector of significance tests for the individual coordi-
nates of this signal. It was initially proposed by [27] in his course notes at Princeton University and
brought up to date by [8]. HC is designed to be optimal in a rare and weak model for the signal,
defined in [8] as a sparse normal mixture model for z-scores. In this paper, we use the equivalent
notation of [14]

T = µ+ E , E ∼ N (0, R), (12)

where R is set to the identity matrix and µ is a sparse T -vector with a proportion of non-null
features 0 ≤ εT ≤ 1 and non zero entries set to the same signal amplitude AT ≥ 0. Note
that the normality assumption introduced above holds for most ERP studies in which the tests
for the association between the ERPs and the response variable can be handled by t-tests for the
significance of a single parameter ([6], [12]). The RW model supposes a subtle situation in which
the signal is rare, as εT = T−β with β ∈ (1

2 , 1) and weak AT =
√

2r log(T ), 0 < r < 1.
When parameters (β, r) are known, explicit detection boundaries can be calculated for the RW
setup under independence, which separate the space (β, r) into undetectable, detectable ([16])
and estimable ([8]) regions and are summarized in a so-called phase diagram (see Figure 7): if
r > ρ∗D(β), the signal is detectable which means that the sum of type I and type II errors of
the Neymann-Pearson Likelihood Ratio test (LRT) tends to 0 when the number of tests tends to
infinity. If r > ρ∗E(β), the signal is not only detectable but the support of non null coordinates is
identifiable. If (β, r) are out of these bounds, the signal is undetectable so that the sum of type I
and type II errors for any test tends to 1 as the number of tests tends to infinity. The bounds ρ∗D of
detectability and ρ∗E of estimability have the following expressions:

ρ∗D(β) =

{
β − 1

2 if 1
2 < β ≤ 3

4

(1−
√

1− β)2 if 3
4 < β < 1,

,

ρ∗E(β) = β.

In the example introduced in the simulation study of the previous section, the difference curve
between two conditions shows a waveform. Therefore, the corresponding curve of r coefficients
is not constant on intervals of nonzero signals as in the above RW setup, as shown in Figure 8.
However, note that a proportion of 3% (β = 0.52) of the signal has a r coefficient larger than 0.7.
The corresponding RW situation (β = 0.52, r = 0.7) falls into the estimable region in the phase
diagram displayed in Figure 7.
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Figure 7: Phase diagram of undetectable, detectable and estimable regions under independence
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Figure 8: r coefficient curve in the simulation setting of section 2. A proportion of 3% (β = 0.52)
of the signal has an amplitude larger than 0.7.
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Signal detection by HC starts from the observation that the presence of a signal generates a discrep-
ancy between the empirical distribution of the p-values and the theoretical null uniform distribution
U [0; 1]. Indeed, it is expected that, for non-zero signal coordinates, the corresponding t-th increas-
ingly ordered p-value p(t) is such that p(t) � t/T . This discrepancy is measured by a Higher
Criticism function HC(p(t), t). The various HC methods are based on different definitions of the
HC objective function: [9] and [17] standardize the difference t/T −p(t) by the standard-deviation
of ordered p-values under the null, V ar(p(t)) = t

T (1 − t
T ) and define the HC objective function

as:

HC(p(t), t) =
√
T

t/T − p(t)√
t/T (1− t/T )

.

Alternatively, [8] and [14] suggest to standardize the difference t/T − p(t) by p(t)(1 − p(t)) and
define the HC objective function as:

HC(p(t), t) =
√
T

t/T − p(t)√
p(t)(1− p(t))

.

Using arguments from the theory of empirical processes, [8] shows that

HC∗√
2 log log T

→ 1, in Probability,
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where HC∗ is the maximum of HC(p(t), t). It is deduced that the type-I error rate of any signal
detection rule of the form HC∗ ≥ (1 + a)

√
2 log log T , for a > 0, tends to 0 as T tends to infinity.

Moreover, [8] shows that the former tests are optimal in the sense that, for any Rare-Weak situation
(r, β) within the detectable region, the type-II error rate of the tests based on HC∗ also tends to 0
when T tends to infinity. This property is known as the optimal adaptivity of Higher Criticism. In
order to obtain a testing strategy which controls the type-I error rate, [5] suggest to derive the value
of a from a Monte-Carlo estimation of the null distribution of HC∗. We have implemented the
former method in the simulation study introduced in the previous section. Figures 9 and 10 display
the empirical null (resp. non-null) probability distribution function of the p-values for the HC
statistics and the Fσ̂-statistics, which accounts for dependence. The plots show the two methods
have similar performance.

Note that, in practice, the HC function is often only maximized over a subset I of features with
small p-values:

HC∗ = max
t∈I

HC(p(t), t).

Thus, another major variation among the different HCT methods is on the definition of the subset
I: for [8] and [9], I = {t, 1/T ≤ t/T ≤ α0} where α0 ∈ [0, 1] is a preset proportion of small p-
values. Alternatively, [14] proposes to avoid the extremely small p-values by taking I = {t, 1/T ≤
p(t) ≤ α0}. At last [17] proposes a global maximization I = {1, . . . , T}. In the above simulation
of the HC statistics, the value α0 = 0.1 has been chosen, to be consistent with the recommendation
in [8].

In the next sections, the standard HCT refers to the following criterion:

HC∗ = max
1/T≤t/T≤α0

√
T

t/T − p(t)√
t/T (1− t/T )

(13)

which appears to be the most widely used in the literature.

In a feature selection objective for supervised classification, [9] highlight the link between maxi-
mizing the HC function and minimizing the error rate of the classifier implemented on the features
selected as follows: if the maximum value HC∗ of the HC function is reached at index t∗, then the
subset of selected features is given by {t, pt ≤ p(t∗)}. [9] demonstrates that the former Higher Crit-
icism Threholding (HCT) method outperforms methods based on the False Discovery Rate (FDR)
thresholding. However, [17] shows the equivalence between HCT and the definition of a cutoff on
the local FDR.
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Figure 9: Empirical null probability distribution function of the p-values of the HC and Fσ̂ statis-
tics under lag-1 autoregressive correlation
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Figure 10: Empirical non-null probability distribution function of the p-values of the HC and Fσ̂
statistics and under lag-1 autoregressive correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical non−null pdf of p−values

p−value

Higher Criticism
Sum F
Theoretical uniform

20



3.2 HCT under dependence

Even if the optimality of HCT is known to be robust to weak dependence, the simulation study
above suggests that it would be improved by explicitly taking into account dependence. The ex-
isting variants of HC accounting for dependence are mainly based on a decorrelation step of the
vector T of test statistics. Initially proposed by [29] in a multiple testing framework but also used
as a variable selection procedure in a supervised classification issue in [1], the Correlation-Adjusted
T-scores are defined as:

τadj = R−1/2τ,

where τ are standard t-scores arising from a multiple testing procedure. The correlation matrix R
is estimated by a James-Stein estimator Rγ = γIm + (1− γ)R as proposed by [22]. Interestingly,
[22] provide an analytical expression for the estimation of γ. The inverse square root ofRγ is com-
putationally feasible in high dimension by observing that the matrix Z = 1

γRγ can be decomposed
as Z = Im +UMU ′ where M is a definite positive symmetric matrix and U an orthonormal basis
matrix. Hence,

Zα = Im − U(Ir − (Ir +M)α)U ′ (14)

where r is the rank of the empirical correlation matrix. Even if it is efficient in practice, especially
for many applications in genomic data analysis, the estimator proposed by [22] seems to fail to
catch the dependence structure of ERP data. Indeed, the right panel of Figure 11 displays an
image of the residual correlation matrix presented in Figure 3, which shows that the blocks of
auto-correlation are underestimated.

Similarly, [14] propose the innovated HCT (iHCT) based on a preliminary whitening of T . To this
end, they introduce a matrix Um such as UmRU ′m = Im and apply standard HCT to decorrelated
test statistics in the manner of [29]. They recommend to use the inverse of the Cholesky factoriza-
tion of the matrix R, which is computationally unstable in high dimension. As the support of the
signal is slightly shifted by this linear transformation, the authors propose to restore the support by
smoothing techniques applied on Um, in the context of an auto-regressive dependence pattern.

4 Factor-Innovated Higher Criticism Thresholding

The proposed method is conceptually similar to innovated HCT and CAT-scores except that the
decorrelation is based on a factor model. In many areas in which high-throughput devices are used
to observe complex systems, such as neuroscience (see [6]) or genomics (see [3], [11], [19], [26]),
this model is now widely used to implement data reduction techniques. In these papers, the authors
suggest to cope with dependence by adjusting data from the effects of a moderate number of latent
variables, which catch the dependence structure.
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Figure 11: Estimation of within-condition correlation matrix by AFA algorithm ([23]) under a
factor model assumption with 6 factors (left panel) and by the shrinkage estimator of [22] (right
panel)
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4.1 Whitening using latent factors

Factor model assumes the conditional independence of the variables given latent factors. Indeed,
conditionally on latent factors, Expression (1) becomes:

Yijt = x′0ijµt + ait + b′tzij + eijt, (15)

where zij = (zij1, . . . , zijq) is normally distributed with mean 0q and variance Iq and eij =
(eij,t1 , . . . , eij,tT )′ are independent random error vectors such that eij ∼ NT (0T ,ΨΣ) where ΨΣ

is a diagonal matrix of specific variances described hereafter. q is the number of latent factors,
q � T . The algorithms developed in a large number of papers (see [11], [6] [26], [18], [20]) are
designed for the estimation of the latent factors in order to adjust data from their effects. In this
paper, we intentionally focus on another implication induced by the rank-reduced factor structure
of the covariance matrix Σ. Indeed, factor model assumes equivalently that the covariance matrix
Σ can be decomposed as follows:

Σ = ΨΣ +BΣB
′
Σ,

where BΣ is a T × q matrix of loadings, which describes the common dependence shared by
the variables and ΨΣ = diag(ΨΣ,1, . . . ,ΨΣ,T) is a diagonal matrix, which defines the specific
variance. A similar factor structure holds for residual correlation matrix:

R = Ψ +BB′,

where ΨΣ = Dσ2Ψ, Ψ = diag(Ψ1, . . . ,ΨT) and BΣ = DσB.

The parameters (Ψ, B) are estimated by an EM-algorithm proposed by [23] and implemented in
the R package ERP available online on the CRAN ([7]). The authors provide an adaptive estimation
of the dependence structure under the factor model (15) based on a simultaneous estimation of
the signal and covariance matrix. Moreover, the method is designed to take advantage of a prior
knowledge on time intervals where the signal does not occur in order to denoise the least-squares
estimation of the signal. The number of factors q is estimated by the variance inflation criterion
proposed by [11].

The left panel of Figure 11 illustrates that factor modeling is flexible enough to recover the depen-
dence pattern observed in the auditory oddball ERP dataset. The Figure shows an image plot of the
estimation of correlation matrix presented in Figure 3 by a factor model with q̂ = 6 factors.

4.2 Detection boundary

Deriving exact boundaries in an arbitrary dependence pattern is impossible since the possibly non-
homogeneous dependence along time can generate a different detectability and estimability of the
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signal for some subset of features. By the way, [14] do not propose a closed-form phase diagram
under dependence but explicit lower and upper bounds for the detection boundaries under some
dependence patterns. In this section, we also propose to extend the phase diagram presented in
Section 3 to the dependent case in a factor model framework.

Provided the test statistics are linear transformations of the response variables, which is generally
the case for t-tests, the covariance structure of the test statistics is inherited from the residual cor-
relation of those response variables. If Z stands for the same linear transformation applied to the
n× q matrix Z, which rows are zij , then model (12) for the test statistics T becomes:

T = µ+BZ ′ + E , E ∼ N (0,Ψ).

Equivalently,

Ψ−1/2(T −BZ ′) = Ψ−1/2µ+ E∗ , E∗ ∼ N (0, IT ). (16)

The above equation offers a RW setup similar to model (12), in which the decorrelated test statistics
Ψ−1/2(T − BZ ′) are independent with equal variance 1, given the factors Z . Upper and lower
bounds for the detection boundary of a signal with constant amplitude AT =

√
2r log(T ) for

a proportion εT of signal coordinates are deduced. Indeed, depending on the distribution of the
specific variances Ψt along the features, the amplitude of the transformed signal Ψ−1/2µ can take
any values between γ0 = AT /

√
Ψmax =

√
2r log(T ) and γ0 = AT /

√
Ψmin =

√
2r log(T ),

where Ψmin = mint(Ψt), Ψmax = maxt(Ψt), r = r/Ψmin and r = r/Ψmax . The conditions
on (r, β) for detectability established under independence can be invoked here, with two different
values r and r for the strength parameter r, providing respectively the lower and upper bounds for
detectability. First, if r satisfies the following condition:

r > Ψmaxρ
∗
D(β), (17)

then all the signal is detectable. Moreover, if r does not satisfy the following condition,

r > Ψminρ
∗
D(β), (18)

then the signal can not be detected. Between these two bounds, detection of the signal is uncertain,
depending on the correspondence between the profile of specific variances and the support of the
signal.

The same reasoning for estimability gives similar forms for estimation boundaries. At last, we
propose to define a factor RW setup in which the sparsity of the signal is given by

εT = T−β with β ∈ (1/2, 1),

and the strength of the signal by

AT =
√

2rlog(T ) with 0 < r < Ψmax.
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Under independence, the signal strength is set to
√

2r log(T ) with 0 < r < 1 to make signal
detection challenging. Indeed,

√
2 log(T ) is the expectation of the maximum of T independent

normal variables with mean 0 and variance 1. Note that signals with amplitudes
√

2r log(T ),
with Ψmax < r ≤ 1, are considered as weak under independence but not under dependence.
Consistently, this observation is also reported by [14], who explains that correlated designs are
actually favorable for signal detection with procedures accounting for dependence. Moreover, this
is illustrated by Figure 12, which shows the detectability and estimability phase diagrams obtained
with the estimated specific variances in the auditory oddball experiment. Indeed, the plot confirms
that both the detectability and the estimability regions are wider under dependence.

The bounds in Expressions (17) and (18) are consistent with the ones established by [14]. Indeed,
Theorems 3.1 and 4.2 of the former paper give the same expression as above for the detection
bounds, where γ

0
and γ0 are defined as follows:

γ0 = lim inf
T→+∞

max√
T≤k≤T−

√
T
R−1
kk ,

γ0 = lim sup
T→+∞

max√
T≤k≤T−

√
T
R−1
kk ,

where (R11, . . . , Rkk, . . . , RTT ) stands for the diagonal of matrix R. In the present situation, the
following sandwich inequality holds:

γ0 =
1

max(Ψ)
≤ diag(R−1) ≤ 1

min(Ψ)
= γ0,

which gives expressions (17) and (18).

4.3 Factor innovated HCT

As in [29] and [14], we propose a factor-innovated HCT (F-iHCT) which consists in applying
standard HCT to decorrelated test-statistics. In the factor RW setup defined above, we define the
following square root L of the correlation matrix R, such as R = LL′:

L = (Im − U [(Iq + [Iq +D2]1/2)−1 + Iq]−1U ′)Ψ−1/2,

whereU andD comes from the singular value decomposition of the standardized loadings Ψ−1/2B =
UDV . Note that this formula only requires inversion and square root computation of diagonal ma-
trices. The decorrelated test statistics are therefore deduced:

T ∗ = L′T

and the corresponding p-values are denoted p∗t . HCT is then applied on the collection of p-values
p∗ = (p∗1, . . . , p

∗
T ).
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Figure 12: Detection (upper plot) and identification (lower plot) boundaries for the auditory oddball
ERP data. The grey line is the boundary under independence and black lines are upper and lower
bounds of detectability (top) and identification (bottom) of a signal under dependence.
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5 Simulation results and real data analysis

The properties of the proposed method are now compared to standard HCT and to some other
methods based on decorrelation by innovations or by adjustment for effect of latent variables.
The comparison is made through a simulation study and an application on the auditory oddball
experiment.

5.1 Simulation study

Simulation settings The properties of F-iHCT are now investigated through simulations. 1,000
datasets with dimensions 30 × 799 are generated according to a multivariate normal distribution.
Both the correlation structure and the within-condition variances are estimated from the auditory
oddball ERP data introduced in section 2 (see Figure 3 and Figure 2). This simulation plan mimics
the observed data on the oddball experiment by dimensions and covariance structure except that the
true signal is known. Each dataset is split into two balanced groups. The normal distribution has
expectation zero for the first 15 subjects (group 1) and the expectation for the 15 last subjects (group
2) is plotted on Figure 13. The difference curve is therefore a waveform with various amplitudes
and the indices of non null features are in [150ms, 200ms]. 1, 000 training datasets are generated
for each signal strength. Eight corresponding testing data of size 1000 × 799 with two balanced
groups are also generated according to the same simulation plan for a prediction purpose. The RW
model parameters for this simulation plan are εT = 12% and the maximum amplitude of signals
is expressed as AT =

√
2rlog(T ) with r taking 8 equally distributed values in [0.004; 0.688].

According to the RW setup, the present combination of r and β characterizes a not very sparse
signal, with a weak to strong strength.

Methods Four methods are compared in this simulation study and are described hereafter. As in
[9] and [10] the variable selection step by different versions of HCT, with two possible values for
α0 (α0 = 0.1 or 0.5), is followed by a supervised classification by Diagonal Discriminant Analysis
on the subset of selected variables. The following methods are compared:

1. Variable selection by standard HCT on raw p-values, classification by Naives Bayes (see [2])
denoted by Standard HCT;

2. Variable selection by HCT on CAT-scores ([29, 1]), classification by diagonal Shrinkage
Discriminant Analysis (SDA, see [1]) denoted by CAT-scores;

3. Variable selection by Factor-innovated HCT, classification by conditional Bayes classifier
(proposed by [20]) denoted by F-iHCT;

4. Variable selection by standard HCT performed on p-values adjusted for effects of latent
factors as returned by the AFA ([23]) procedure using erpfatest function of R package
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Figure 13: Simulation study - Signal amplitude curves along time

ERP ([7]), classification by conditional Bayes classifier (see [20]) denoted by AFA.

For all the methods described above, the proportion of signal recovery, called precision, the false
discovery rate (FDR), the number of selected features and the prediction error rate are computed.
For all datasets, variable selection and estimation of classification rule are performed on training
data (including the optimization of meta-parameters) and prediction error is computed on testing
data.

Results When α0 is well specified regarding to the proportion of null hypothesis (α0 = 0.1),
Figure 14 shows that selection by CAT-scores appears to be the most efficient to catch weak signals,
with both the smallest FDR and the largest precision for small amplitudes of signal. Even if CAT-
scores does not achieve the best performance for large signal strengths, the FDR, precision and
number of selected variables are remarkably stable. Standard HCT seems robust to dependence as
the method performs well in term of FDR but its precision is small regarding methods based on
decorrelation. Moreover, the number of selected variables is also small, which suggests that HCT is
conservative under dependence. Lastly, classification by Naive Bayes fails as the error rates are the
largest for weak to moderate strengths of signal. Variable selection and classification procedures
based on the factor model assumption (AFA and F-iHCT) provide the best results both in terms of
false positive, recovery of the signal and prediction error. FDR turns out to be small for moderate
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Table 1: Real data study - Number of selected time points for ERP auditory experiment
α0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Number of variables 40 80 120 160 200 240 280 320 360 400

to high signal strengths and a correct power of signal identification is achieved.

As shown on Figure 15, all methods are affected by a misspecification of α0 parameter (α0 =
0.5). CAT-scores method selects too many variables so it achieves a good precision at the cost of
large FDR. F-iHCT and AFA perform well in classification despite the number of false positives.
Classification and precision rates of standard HCT are also affected by this wrong choice of α0.

5.2 ERP data analysis

The 4 methods compared in the simulation study are now applied on the auditory oddball ERP data
presented in Section 2. It is reminded that the purpose associated to the oddball experiment is to
predict a new label from ERP curves. For each method, the number of selected features and the
prediction error are computed. As the number of observations is small, the classification error is
computed by leave-one-out cross-validation (CV).

Table 1 shows the number of selected features by the 4 compared selection methods for different
values of α0. Whatever the value of α0, the 4 methods select the same number of features. The
difference between all methods lies on the indices of selected features as they do not selected the
same time points, as shown as an example on Figure 17.

Figure 16 presents the cross-validated error rates for several values of α0. For values of α0 larger
than 0.15, standard HCT is stable and performs rather well. For more sparse models, standard
HCT reaches larger error rates and is improved by decorrelation methods based on a factor model
assumption (AFA and F-iHCT). The performance of the CAT-scores method varies slightly de-
pending on α0. The curves of F-iHCT and AFA are erratic for values of α0 smaller than 0.125 but
they stabilize when α0 increases. For values of α0 larger than 0.275, F-iHCT and AFA appear to
be the most effective methods as they perfectly classify data. Nevertheless, one can notice that for
equal error rates, the two methods do not select the same features as shown on the bottom of Figure
17.

Figure 17 shows the curve of the mean difference among the two groups and the time points selected
by the 4 compared methods for α0 = 0.125 (top) and α0 = 0.275 (bottom). These values of α0 are
chosen because they provide two levels of sparsity but comparably small CV error. As expected,
time points after 300ms are selected by all methods which is consistent with the literature but time
points around 100 ms also appear to be significant.
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Figure 14: Results of the simulation study depending on signal strength and α0 = 0.1: False Dis-
covery Rate (top left), Precision (top right), Number of selected features (bottom left), Prediction
error (bottom right).
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Figure 15: Results of the simulation study depending on signal strength and α0 = 0.5: False Dis-
covery Rate (top left), Precision (top right), Number of selected features (bottom left), Prediction
error (bottom right).
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Figure 16: Real data study - Cross-validated prediction error of standard HCT, HCT performed on
CAT-scores, factor innovated HCT and HCT performed on pvalues provided by AFA on auditory
ERP experiment for several values of α0

32



To conclude, this study highlights the importance of the choice of α0 in HCT, since it has a sig-
nificant impact on the sparsity and classification rates of the models for all methods. The method
denoted by AFA which performs decorrelation by adjustment of covariates for the effect of la-
tent factors seems to be the most suitable method in this example, even if F-iHCT also achieves
interesting classification rates.

6 Discussion and conclusion

This article addresses signal detection and identification in Event-Related-Potentials (ERP) data. It
is motivated by an ERP study in the oddball paradigm, where two classes of stimuli are presented to
subjects, one occurring frequently (standard) and the other occurring infrequently (target). The aim
is to identify time intervals of ERP curves which could be markers for the rare-frequent difference
and to derive a classification rule. When the selection statistics are independent, Higher Criticism is
known to be optimal as a signal detection method in the Rare-and-Weak setup initially introduced
by [8]. Higher Criticism Thresholding is moreover efficient to estimate the support of the signal.
The Rare-and-Weak setup is conceptually adapted to the ERP signal detection issue. However,
selection statistics in ERP signal identification issues are characterized by a strong and complex
dependence structure.

In ERP data analysis, signal detection is usually handled by F-tests for the overall nullity of the sig-
nal on the whole time interval of observation. Under heteroscedasticity and independence, we show
that the corresponding Generalized Least Squares (GLS) F-test is expressed as a sum of the individ-
ual F-tests for each feature, which gives an explicit expression for the null distribution. Similarly,
under a dependence pattern structured by a lag-1 auto-correlation, we show that the former GLS
F-test can also be implemented, provided the null distribution accounts for the auto-correlation be-
tween the individual F-tests. A simulation study in which dependence among simulated features is
structured by a strong lag-1 auto-correlation, demonstrates that the former test controls the type-I
error rate, which is far from true for other F-tests, such as those obtained in Functional Analysis of
Variance approaches.

The present paper proposes a variant of the HCT procedure which takes advantage of a factor model
assumption to decorrelate the test statistics. Indeed, this framework provides algebraical tools to
derive an inverse square root of the correlation matrix involved in the computation of innovations.
Moreover, similarly to [15] and [8], a phase diagram under a general dependence assumption is
deduced and the Factor Innovated HCT, a decorrelated HCT based on innovations, is proposed.

The method is assessed by a more intensive simulation study, in which the dependence structure
of simulated datasets mimics the observed correlation pattern in the auditory oddball ERP dataset.
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Figure 17: Real data study - Signal estimation (grey line) and significant time points (blue points)
selected by standard HCT, HCT performed on CAT-scores, factor innovated HCT and HCT per-
formed on p-values provided by AFA for α0 = 0.125 (top) and α0 = 0.275 (bottom) on auditory
ERP experiment
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This study illustrates that methods based on decorrelation of HCT under a factor model assumption
perform well both in selection and classification. Indeed, F-iHCT and AFA, which is based on data
adjustment for latent factors, achieve similar results. When applied on the oddball ERP dataset, all
compared methods (standard HCT, CAT-scores, F-iHCT and AFA) select time points around 300
ms as expected but lower cross-validated error rates are achieved by the two methods based on a
factor model assumption. Both application on simulations and on real data reveal the sensitivity of
HCT to the choice of α0 parameter, which determines the sparsity of the model.

The above promising results in signal identification should now be exploited in the construction
of optimal signal detection strategies in ERP study. Indeed, provided the null distribution of the
F-iHC statistics can be estimated, it could be interesting to compare the subsequent testing method
to the class of F-tests.
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