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ON THE DYNAMICS OF A CLASS OF MULTI-GROUP MODELS FOR

VECTOR-BORNE DISEASES

ABERRAHMAN IGGIDR, GAUTHIER SALLET, AND MAX O. SOUZA

Abstract. The resurgence of vector-borne diseases is an increasing public health concern, and there is a

need for a better understanding of their dynamics. For a number of diseases, e.g. dengue and chikungunya,

this resurgence occurs mostly in urban environments, which are naturally very heterogeneous, particularly
due to population circulation. In this scenario, there is an increasing interest in both multi-patch and multi-

group models for such diseases. In this work, we study the dynamics of a vector borne disease within a
class of multi-group models that extends the classical Bailey-Dietz model. This class includes many of the

proposed models in the literature, and it can accommodate various functional forms of the infection force.

For such models, the vector-host/host-vector contact network topology gives rise to a bipartite graph which
has different properties from the ones usually found in directly transmitted diseases. Under the assumption

that the contact network is strongly connected, we can define the basic reproductive number R0 and show

that this system has only two equilibria: the so called disease free equilibrium (DFE); and a unique interior
equilibrium—usually termed the endemic equilibrium (EE)—that exists if, and only if, R0 > 1. We also

show that, if R0 ≤ 1, then the DFE equilibrium is globally asymptotically stable, while when R0 > 1, we

have that the EE is globally asymptotically stable.

1. Introduction

1.1. Background. The global resurgence of vector-borne diseases is a growing concern for public health
officers in many countries [26]. Diseases like dengue and chikungunya continue to spread all over the world,
hand in hand with the spread of their associated vectors; cf. [66]. Thus, in the United States the Aedes
albopictus, the tiger mosquito, is fixating very rapidly, while in Europe Ae. albopictus is also spreading at a
fast rate—cf. [53]. The result of this fixation is already evident: Italy and the South of France have already
had documented cases of chikungunya [9], and there is a growing number of dengue cases detected in the
US [4]. Furthermore, dengue is now the leading cause in US of acute febrile state of travelers returning from
Asian, South American and Caribbean countries [10]. In the particular case of dengue, the main vector,
Ae. Aegypti, is anthropophilic, and it lives only on urban or semi-urban areas. It is also a very sedentary
mosquito: it will usually fly no more than about five hundred meters from its birth place, unless in extreme
adverse conditions. These observations suggest that one should not expect that dengue will spread through
the diffusion of the vector.

Indeed a number of such resurgent diseases occur in highly urban areas and are transmitted by vectors
that do not disperse very far compared to other species—cf. [37] and references therein. On the other hand, in
the case of an urban area with an efficient transportation system, movements from one location to another
are fast. Then, for a given individual, disease transmission will mostly likely happen either at its home
region or at its usual destination location. In this scenario, susceptible individuals can become infected in
areas that are geographically apart from their residence area, and infected individuals can travel quite long
distances and be able to infect vectors in very distinct areas were they themselves infected. Since the disease
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dynamics is likely to be largely dependent on whether one has a homogeneous or a heterogeneous population,
with heterogeneity favoring the establishment of epidemics—cf. [17,32,72]—this suggests that in areas with
significant population movement, the epidemiological dynamics can be strongly influenced by the circulation
of human hosts. The link between host circulation and the disease dynamics seems to be first pointed out
by [1,12,77] in slightly different frameworks. In any case, circulation naturally segregates host and vector by
their registered and current location, and it is then natural to consider the so-called meta-population models
as candidates for modeling the disease dynamics. Such meta-population models can be either of multi-patch
or of multi-group type. In some regimes, the latter can arise as a limit model of the former—e.g. in the case
of fast sojourn times; cf. [1].

The previous discussion suggests that the use of multi-group models might become a valuable modeling
tool for understanding the disease dynamics in urban settings, and indeed there is a growing interest in
the literature on these models. See [73] for a recent review on such models, and for a discussion on their
importance in the epidemiological modeling, and [62] for a study in a star network. In addition, see also [79]
for empirical studies on the impact of human movement on the disease dynamics and [2] for complementary
views to [1, 12]. For a theoretical review on multi-group models, see [82].

The overall interest in these epidemic models has, in turn, raised a natural interest in understanding their
qualitative dynamical properties. This has fostered a considerable literature addressing this problem, and
which we now briefly review.

1.2. Disease dynamics. From the point of view of epidemiological mathematical modeling, the first natural
question about any disease-dynamics model is what are its stability features as a function of the basic
reproduction number, R0. Following [70], we say than an epidemic model has the sharp R0 property if the
following holds: when R0 ≤ 1, the only feasible equilibrium is the so-called disease free equilibrium (DFE),
and it is globally asymptotically stable (GAS); when R0 > 1, there is a single interior equilibrium, the
so-called endemic equilibrium (EE), which is then GAS.

The literature on mathematical epidemiology and the study of Sharp R0 property is long and large,
particularly for directly transmitted diseases, but it is considerably smaller for vector-borne diseases. The
development of the models for indirectly transmitted diseases can be traced back to Ross malaria model as
discussed in [67]—see also the recent review in [71] and the classical monographs [6, 15]. Nevertheless, the
bulk of the theory in the literature is leaned towards directly transmitted diseases and uniform populations—
see [3, 13] for instance. For vector-borne diseases, a very natural model is the coupling of a SIR model for
the humans with a SI model. This model is reasonable for mosquito borne diseases, since they do not have
a well developed immunological system, while most of the arboviruses confer lifetime stability. This model
seems to be first suggested in [6, 15] and it is now known as the Bailey-Dietz model. The global dynamics
of this model was first studied in [18] using a Lyapunov function argument for the stability of the DFE,
while the Poincaré-Bendixson property for 3-D competitive systems is used to show the stability of the EE;
see also [8, 90] for later similar studies. A global stability analysis using only Lyapunov functions has been
obtained only recently— [75]. See also [55,80] for various results on global stability of epidemiological models.

In the framework of multi-group epidemic models for directly transmitted diseases, the first paper was
probably by Rushton and Mauser [68], but seminal results are in Lajmanovich and Yorke [52] and in the
book of Hethcote and Yorke [34]; but see also [65]. Stability results can be found in Thieme [33, 80]; see
also chapter 23 of [82]. Global stability of multi-group SIR model is due to [27] by using a combinatorial
argument arising from graph theory; see also [28] for a more extensive presentation of their method. For
indirectly transmitted diseases, the first global stability result seems to be due to [32], who observed that
a monotone dynamics argument of [52] was also applicable to a SI-SI multi-group model. More recently,
general global stability results were obtained by [70]; see also [29] for results on multi-stage models. None
of these results, however, cover the case of vector-borne diseases, since vector and host populations might
follow different dynamics. Additional references in meta-population models for vector-borne diseases, but
without studying the sharp R0 property are [5,36] for models with heterogeneous populations and [89] for a
numerical study of a multi-patch model with spatial heterogeneities.

For higher dimensional systems, global stability of endemic equilibrium is usually done by finding an
appropriate Lyapunov function— [32] being a notable exception. The use of Lyapunov functions to study
the global dynamics of ecological and epidemiological models can be traced at least to the works in the late
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seventies of Goh [21–24], Harrison [30, 31] and Hsu [38]. Since then, it has been successfully used in many
studies, and even rediscovered [19,20,45–47,49]. Recent applications of Lyapunov functions in epidemic and
ecological models with meta-populations include [29, 40, 41, 43, 48, 51, 56, 57, 59, 69, 76, 78, 86, 91]. See also
the recent surveys on the construction and use of Lyapunov functions in models of population dynamics
by [19, 39]. Additionally, there is also recent work aiming to obtain similar results for multi-group models,
but without recurring to graph theoretic arguments [54, 63]. Shuai and van den Driessche [70] discuss
two systematic approaches (graph-theoretic and matrix-theoretic) to guide the construction of Lyapunov
functions. For results towards infinite dimensional problems, see [83].

In this work, we show that the sharp R0 property holds for a very natural multi-group extension of the
Bailey-Dietz model—that has been used to model, inter alia, the dynamics of dengue [64]. This extension also
accommodates a large number of choices for the modeling of the infection-force, including the most popular
ones—see §2 for an additional discussion on this issue. A special case within the class of models discussed
here was studied in [16] which, however, presents an incorrect proof of the global stability of the endemic
equilibrium1. This work can also seen as an extension of the multi-group framework for direct-transmitted
diseases in [27,28].

1.3. Outline. In Section 2 we introduce the relevant class of multi-group models and identify the relevant
network structure, which is a bipartite graph, that we term the host-vector network. This bipartite graph
can be reducible, even when the group network is strongly connected. This is markedly different from
directly transmitted diseases. On the assumption that the host-vector network is strongly connected, we
can meaningfully define an R0. For the models discussed here, the existence and uniqueness of the Endemic
Equilibrium (EE), when, R0 > 1 is not obvious from the governing equations, and these issues are tackled
in Section 3, where the local stability is also established. We then study the global dynamics in section 4:
when R0 ≤ 1, we show that the disease free equilibrium (DFE) is globally asymptotically stable. We then
address the global stability of the EE and, we then show that it is globally asymptotically stable when
R0 > 1 using a ”vectorial” extension of the Lyapunov function used in [75] together with an extension of
the graph-theoretical approach developed in [27,28]. A discussion of the results is given in Section 5.

2. A class of multi-group models for vector-borne diseases

In the following, we provide the basic set up for a class of multi-group models for indirectly transmitted
diseases. These models are built upon the classical single-patch/group model by [6,15], and include some of
the models studied in [1, 12] and the models studied in [2].

2.1. The basic model. We consider the classical Bailey-Dietz model:

(1)



Ṡh = Λh − β1
Sh Iv
Nh

− µh Sh

İh = β1
Sh Iv
Nh

− γh Ih − µh Ih

Ṙh = γh Ih − µhRh

Ṡv = Λv − β2
Sv Ih
Nh

− µv Sv

İv = β2
Sv Ih
Nh

− µv Iv,

where Sh, I, R denote, as usual, the class of susceptible, infections and removed, respectively. The super-
scripts h and v indicate that the quantity refers to the host or to the vector. Also, Nh = Sh + Ih +Rh and
Nv = Sv + Iv are the total host and vector, respectively, populations. Although they are not necessarily
constant, they are taken as so in many applications.

The constant β1 is a composite biological constant that embodies all the biological processes relating to
transmission from mosquito to man, from the biting rate of the mosquitoes through the probability to develop
and infection after a bite. Analogously β2 captures the effect of transmission from man to mosquito. The
constant µh is the per capita human mortality, γh denotes the per capita rates at which infectious individual

1The matrix whose kernel should yield the coefficients for the Lyapunov function is actually not singular for n > 2. For
n = 2, a careful checking shows that the claimed cancellation properties do not hold.
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recover and are permanently immune. The parameter Λv is the constant recruitment of mosquitoes and µv

is the per capita vector mortality.
Let

N =
Λh

µh
and V =

Λv

µv
.

Using the techniques in [84], it is straightforward to see that the reproduction number of (1) is

R2
0 =

β1 β2 V

µv (µh + γh) N
=

β1 β2 m

µv (µh + γh)

with m =
V

N
, the classical vectorial density. The basic reproduction ratio R0 is the same than for a

classical Ross’s model [3, 5, 6, 67].

As for Ross’s model we will use the prevalences, i.e., defining x1 =
Sh

N
, x2 =

Ih
N

, x3 =
Rh

N
and y1 =

Sv

V
,

y2 =
Iv
V

. Then, two equilibria are possible: the disease free equilibrium (1,0,0,1,0) and, when R0 > 1, a

positive endemic equilibrium (x̄1, x̄2, x̄3, ȳ1, ȳ2).
The global stability of (1) was originally studied by [18], who showed that the endemic equilibrium is

globally asymptotically stable when R0 > 1, and that the disease-free is the global attractor when R0 ≤ 1
using the so-called Poincaré-Bendixson theorem for competitive systems—cf. [74]. More recently, [75] has
obtained a proof using only Lyapunov functions

2.2. A class of multi-group models for vector-borne diseases. We consider that both host and vector
populations are divided in n groups, where each group i has a host population of Nh,i and a vector population
of Nv,i. At each node i, we assume a generalized form of (1) by allowing that the susceptible of group i to
have contact of mosquitoes of group j = 1, . . . , n. This is specified by an infection term for the host Th, of
the form:

Th,i = Sh,i

n∑
j=1

Li,j(Nh, Nv)Iv,j .

Analogously, we allow susceptible mosquitoes of each group i to have contact with infected hosts group
j = 1, . . . , n, with an infection force for the vectors, Tv, of the form:

Tv,i = Sv,i

n∑
j=1

Mi,j(Nh, Nv)Ih,j .

These assumptions then lead to the following multi-group epidemic model:

(2)



Ṡh,i = Λh,i − Sh,i

∑n
j=1 Li,j(Nh, Nv)Iv,j − µh,i Sh,i

İh,i = Sh,i

∑n
j=1 Li,j(Nh, Nv)Iv,j − γh,i Ih,i − µh,i Ih,i

Ṙh,i = γh,i Ih,i − µh,iRh,i

Ṡv,i = Λv,i − Sv,i

∑n
j=1 Mi,j(Nh, Nv)Ih,j − µv,i Sv,i

İv,i = Sv,i

∑n
j=1 Mi,j(Nh, Nv)Ih,j − µv,i Iv,i,

where

Nh = (Nh,i), with Nh,i = Sh,i + Ih,i +Rh,i and Nv = (Nv,i), with Nv,i = Sv,i + Iv,i.

The functions Li,j ,Mi,j : Rn ⊕ Rn → R are assumed to be smooth and positive when Nh, Nv have positive
entries. These are mild assumptions, and they can accommodate a variety of functional forms for the
infections force—see [88] for a discussion on the different conclusions implied by different assumptions on
the infection force; see also [2] for a discussion on the different transmission force related to dengue. These
functions also encode the cross-infection information among all the groups, which will depend on the modeling
assumptions that led to the multi-group structure.

Remark 2.1. Similar models have been considered in the literature. See [12] for a multi-group SIS-SI model
and [1] for a multi-group SEIR-SEI model, obtained as the fast sojourn limit of a more general model.
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Remark 2.2. While model (2) can be easily modified to include disease induced death, the analysis carried
out in the sequel cannot be extended to such models, except in the case of constant population. However, for
diseases as dengue or chikungunya, this is not a very restricting assumption, as their morbidity is, generally,
not high. Dengue can be an exception to that, if there are two epidemics in a row with an intermediate
time spacing. In this case, enhanced immunological reaction can cause the so-called severe dengue fever,
previously known as haemorraghic dengue, which can be highly fatal if not treated appropriately [25, 87].

We can rewrite (2) as

(3)



Ṅh,i = Λh,i − µh,iNh,i

Ṅv,i = Λv,i − µv,iNv,i

Ṡh,i = Λh,i − Sh,i

∑n
j=1 Li,j(Nh, Nv)Iv,j − µh,i Sh,i

İh,i = Sh,i

∑n
j=1 Li,j(Nh, Nv)Iv,j − γh Ih,i − µh,i Ih,i

İv,i = (Nv,i − Iv,i)
∑n

j=1 Mi,j(Nh, Nv)Ih,j − µv,i Iv,i.

In what follows, we write Sh = (Sh,i), i = 1, . . . , n and similarly for Ih and Iv. Also, let

N̄h =

(
Λh,i

µh,i

)
and N̄v =

(
Λv,i

µv,i

)
.

Then, it is clear that, for (3), the set

Ω = {(Sh, Ih, Iv, Nh, Nv) ∈ R5n
+ | 0 ≤ Sh + Ih ≤ N̄h 0 ≤ Iv ≤ N̄v, 0 ≤ Nh ≤ N̄h, 0 ≤ Nv ≤ N̄v}

is a compact absorbing and positively invariant set.
Also, notice that the system (3) is of triangular form, and hence its stability analysis can be considerably

simplified. There are a number of results that allow for such a simplification in the study of global stability
of systems of this kind [81,85]. For the convenience of the reader, we recall the following result:

Theorem 2.1 (See Vidyasagar [85], Theorem 3.1). :
Consider the following C1 system:

(4)


ẋ = f(x) x ∈ Rn , y ∈ Rm

ẏ = g(x, y)
with an equilibrium point, (x∗, y∗), i.e.,
f(x∗) = 0 and g(x∗, y∗) = 0.

If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x), and if y∗ is GAS in Rm,
for the system ẏ = g(x∗, y), then (x∗, y∗) is (locally) asymptotically stable for (4). Moreover, if all the
trajectories of (4 ) are forward bounded, then (x∗, y∗) is GAS for (4).

Since (N̄h, N̄v) is a globally asymptotically stable equilibrium for the first two equations of (3), we can
use Theorem 2.1 to reduce the study of the stability properties of (3) to the study of the stability of

(5)



Ṡh,i = Λh,i − Sh,i

n∑
j=1

Li,j(N̄h, N̄v)Iv,j − µh,i Sh,i

İh,i = Sh,i

n∑
j=1

Li,j(N̄h, N̄v)Iv,j − γh,i Ih,i − µh,i Ih,i

İv,i = (Nv,i − Iv,i)
n∑

j=1

Mi,j(N̄h, N̄v)Ih,j − µv,i Iv,i.

In what follows, we shall denote by Λh, µh and γh the vectors of Rn
+ whose components are respectively Λh,i,

µh,i and γh,i. We shall also write M = M(N̄h, N̄v) and L = L(N̄h, N̄v). System (5) can then be written in
5



the following vectorial notation:

(6)


Ṡh = Λh − diag(Sh)LIv − diag(µh)Sh

İh = diag(Sh)LIv − diag(µh + γh)Ih

İv = diag(N̄v − Iv)M Ih − diag(µv)Iv ,

where for v ∈ Rn, diag(v) denotes the n× n diagonal matrix whose main diagonal is v.

2.3. The Host-Vector contact network. We shall need an assumption about the network topology in
system (6). For a matrix A, we write Γ(A) for the associated graph. We begin with a definition:

Definition 2.1 (Host-Vector Contact Network). Given nonnegative matrices L and M , we write

M =

(
0 L
M 0

)
.

The graph associated to M, Γ(M), is denoted the host-vector contact network, or contact network for short.

Hypothesis 2.1. The contact network is strongly connected, i.e., M is nonnegative and irreducible.

Remark 2.3. Notice that irreducibility of L and M are neither necessary nor sufficient for the irreducibility
of M. As an example, consider

C =

(
0 1
1 0

)
and D =

(
1 0
1 1

)
; M1 =

(
0 C
C 0

)
and M2 =

(
0 Dt

D 0

)
.

Then C is irreducible and D is reducible. Nevertheless, M1 is reducible and M2 is irreducible.

The irreducibility of M is associated to the strong connectivity of the corresponding directed bipartite
graph. This is a consequence of the infection process, when considered between hosts (or vectors) themselves,
is a two step process. Thus, even when the circulation structure (the non-zero patterns of L andM) is strongly
connected, this is not necessarily the case for the host-vector contact structure of an indirectly transmitted
disease, and this is a significant difference to directly transmitted ones.

In the following Proposition we shall give a useful characterization of the irreducibility ofM that will be
used later on:

Proposition 2.1. M is irreducible if, and only if, the following conditions are satisfied:

(1) Both LM and ML are irreducible;
(2) We have that Lv,Mv � 0, for some v � 0 (and hence, for every v � 0).

Moreover, in this case, we also have that

ρ(M)2 = ρ(LM) = ρ(ML),

and that both LM and ML have right and left positive eigenvectors associated to ρ(M)2.

Proof. Firstly, we compute

M2k =

(
(LM)k 0

0 (ML)k

)
and M2k+1 =

(
0 L(ML)k

M(LM)k 0

)
,

Assume M is irreducible. Then there is some natural n such that

(I +M)2n =

2n∑
m=0

(
2n

m

)
Mm =

( ∑n
k=0

(
2n
2k

)
(LM)k L

∑n−1
k=0

(
2n

2k+1

)
(ML)k

M
∑n−1

k=0

(
2n

2k+1

)
(LM)k

∑n
k=0

(
2n
2k

)
(ML)k

)
� 0.

Hence, we have that
(I +ML)n, (I + LM)n � 0,
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and both LM and ML are irreducible as claimed. In addition, we have L
∑n−1

k=0

(
2n

2k+1

)
(ML)k � 0. Thus L

applied to a column of
∑n−1

k=0

(
2n

2k+1

)
(ML)k is positive. The argument for M is similar.

Conversely, if both LM and ML are irreducible, then we have that the main diagonals of (I +M)2n are
positive. The remaining blocks are also positive, since L and M are acting on positive matrices.

Finally, let (u, v) be a positive eigenvector associated to ρ(M) = ρM. The we necessarily have Lu = ρMv
and Mv = ρMu. Hence LMv = ρ2Mv, and similarly MLu = ρ2Mu. Furthermore u and v are positive
right eigenvectors of ML and LM , respectively, associated to ρ2M. The argument for left eigenvectors is
analogous. �

Remark 2.4. We observe that System (6) can be recast as a special case of the multigroup SIR model treated
in [27], as follows: Replace Nv − Iv by Sv in the last equation of (6). Include the redundant equation:

Ṡv = Λv − diag(Sv)M Ih − diag(µv)Sv.

Let S = (S1, . . . , S2n)t, I = (I1, . . . , I2n)t and set Si = Sh,i, Sn+i = Sv,i, Ii = Ih,i, In+i = Iv,i, for
i = 1, . . . , n. Further, letM be as given in definition 2.1 and let Λ = (Λh Λv)t, µ = (µh µv)t, and γ = (γh 0)t.
Then (S I)t satisfies

Ṡ = Λ− diag(S)MI− diag(µ)S

İ = diag(S)MI− diag(µ+ γ)I,

for which the sharp threshold property holds. Nevertheless, we shall obtain this result by considering equa-
tion (6) directly, and using a related but different approach. This can be seen as an extension to indirect
transmitted diseases of the framework introduced in [27, 28].

3. Equilibria and local stability

We will show that for our vectorial disease with sub-populations structure, System (2), the results of [33,82]
are conserved. Namely we obtain that the DFE is locally asymptotically stable, iff R0 ≤ 1, and the
existence and uniqueness of a strongly endemic equilibrium when R0 > 1. This equilibrium is always locally
asymptotically stable. For global results, see Section 4.

Using the now standard techniques [14,84], we define the basic reproduction ratio as

R0 = ρ(N ), N =

 0 diag(µh + γh)−1 diag(N̄h)L

diag(µv)−1 diag(N̄v)M 0

 .

Remark 3.1. Since µv, µh � 0, we have that N is irreducible if, and only if,M is irreducible. In particular,
if Hypothesis 2.1 holds then N is irreducible and we have that

R2
0 = ρ

(
diag(µh + γh)−1 diag(µv)−1 diag(N̄h)Ldiag(N̄v)M

)
.

Theorem 3.1. Assume that hypothesis 2.1 holds. Then system (6) (and hence system (2)) has a unique
endemic equilibrium if, and only if, R0 > 1. Moreover this equilibrium is locally asymptotically stable with
respect to System (6).

Proof. We denote by S∗h, I∗h and I∗v the expression of an endemic equilibrium. Recall that the notation 1

refers to the vector of Rn
+ whose components are all equal to 1. We have the following relation, defining an

endemic equilibrium:

Λh = diag(µh + LI∗v )S∗h(7a)

diag(µh + γh) I∗h = diag(S∗h)LI∗v(7b)

diag(µv) I∗v = diag(N̄v − I∗v )M I∗h(7c)

From (7a) we obtain
7



S∗h = diag(µh + LI∗v )−1 Λh

Rewriting (7c) as

diag(µv) I∗v = diag(M I∗h) (N̄v − I∗v )

Substituting for S∗h in (7b) we obtain

I∗h = diag(µh + γh)−1 diag(µh + LI∗v )−1 diag(LI∗v ) Λh(8a)

I∗v = diag(µv + M I∗h)−1 diag(M I∗h) N̄v(8b)

Hence (I∗h, I
∗
v ) is a fixed point of the following application

F (x, y) =

diag(µh + γh)−1 diag(µh + Ly)−1 diag(Ly) Λh

diag(µv + M x)−1 diag(M x) N̄v


We will use a result of Hethcote and Thieme [33], which we recall for the convenience of the reader:

Lemma 3.1 (See Theorem 2.1 in [33]). Let F (w) be a continuous, monotone non-decreasing, strictly sub-
linear, bounded function which maps the nonnegative orthant Rn

+ = [0,∞)n into itself. Let F (0) = 0 and
F ′(0) exist and be irreducible. Then F (w) does not have a nontrivial fixed point on the boundary of Rn

+.
Moreover, F (x) has a positive fixed point iff ρ(F (′0)) > 1. If there is a fixed point, then it is unique.

We have to check, for our function F defined on Rn
+ × Rn

+, the conditions of Theorem 3.1.
It is immediate that F is continuous, bounded and maps the nonnegative orthant Rn

+ × Rn
+ into itself.

The function F is monotone since the Jacobian of F is

JF (x, y) =

[
0 A1

A2 0

]
where

A1 = diag(µh + γh)−1 diag(µh + Ly)−1 diag(Λh)
[
In − diag(µh + Ly)−1 diag(Ly)

]
L.

and

A2 = diag(N̄v) diag(µv + M x)−1
[
In − diag(µv + M x)−1 diag(M x)

]
M.

Then JF (x, y) is a Metzler matrix, i.e. a matrix whose off diagonal terms are nonnegative [42, 58]. These
matrices are also known as quasi-positive matrix [74, 82]. This proves that F is monotone [35,74]. Now, we
have to check the strict sublinearity. We use the equivalent definition of [35], using the standard ordering of
Rn and the classical notations x ≤ y if, for any index i, xi ≤ yi; x < y if x ≤ y and x 6= y ; x� y if xi < yi
for any index i;
F is strongly sublinear if

0 < λ < 1, w � 0 =⇒ λF (w)� F (λw).

With x� 0 and y � 0, since M is irreducible, we must have M
(
x
y

)
� 0, and hence we have Ly � 0 and

M x � 0. Thus, µh + λLy � µh + Ly and a similar inequality µv + λM x � µv +M x. This proves the
strict sublinearity. Using the formula for the Jacobian of F , we have

JF (0, 0) =

 0 diag(µh + γh)−1 diag(N̄h)L

diag(µv)−1 diag(N̄v)M 0


This matrix is irreducible, sinceM is irreducible, and ρ(JF (0, 0)) = R0. All the requirements of Theorem 3.1
are satisfied. This proves that there exists a unique positive endemic equilibrium in Rn

+ when R0 > 1.
Moreover, looking at the expression of F , it is clear that this equilibrium is in the compact Ω.
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We will prove the asymptotic stability of this positive equilibrium. The proof is adapted from [33], using
Krasnosel′skĭı’s trick [50]. The difference is that we have to vectorize this proof for the infective of human
host and vectors. We will show that the linearized equation has no solution of the form X(t) = exp(z t)X0

with X0 ∈ C3n, z ∈ C, <z ≥ 0 for X0 eigenvector and z corresponding eigenvalue of the Jacobian computed
at the endemic equilibrium. Let X0 = (U, V,W ) ∈ C3n be such an eigenvector for the eigenvalue z. Then

z U = −diag(µh)U − diag(LI∗v )U − diag(S∗h)LW(9a)

z V = diag(LI∗v )U − (µh + γh)V + diag(S∗h)LW(9b)

zW = diag(N̄v − I∗v )M V − µV W − diag(M I∗h)W(9c)

Adding the sub-equations (9a) and(9b) we obtain the relation

diag(µh + z1)U = −diag(µh + γh + z1)V

Replacing U in (9b) and (9c) yields after some rearrangements

(10)

diag
(
1+ z diag(µh + γh)−11+ diag(z1 + µh + γh) diag(z1+ µh)−1 diag(µh + γh)−1 LI∗v

)
V

diag
(
1+ z diag(µv)−11+ diag(µv)−1M I∗h

)
W

 =

 0 diag(µh + γh)−1 diag(S∗h)L

diag(µv)−1 diag(N̄v − I∗v )M 0

 V
W


The matrix

H =

 0 diag(µh + γh)−1 diag(S∗h)L

diag(µv)−1 diag(N̄v − I∗v )M 0


is a nonnegative irreducible matrix, since its associated graph is isomorphic to Γ(M). From equations (7b)
and (7c), we have that

H

[
I∗h
I∗v

]
=

[
I∗h
I∗v

]
.

Note that

[
I∗h
I∗v

]
is the positive Perron-Frobenius vector of H.

We assume that <z ≥ 0. Let η(z) be the minimum of the real part of the components of the two vectors

z diag(µh + γh)−11+ diag(z1+ µh + γh) diag(z1+ µh)−1 diag(µh + γh)−1LI∗v
and

z diag(µv)−11+ diag(µv)−1M I∗h
Since <z ≥ 0, I∗v � 0, I∗h � 0, the irreducibility of M implies that we have η(z) > 0. Taking the absolute
values in (10) gives

[1 + η(z)]

[
|V |
|W |

]
≤ H

[
|V |
|W |

]
Let r the minimum number such that [

|V |
|W |

]
≤ r

[
I∗h
I∗v

]
.

We now have

[1 + η(z)]

[
|V |
|W |

]
≤ H

[
|V |
|W |

]
≤ r H

[
I∗h
I∗v

]
= r

[
I∗h
I∗v

]
.

Since η(z) > 0 if <z ≥ 0, we obtain a contradiction to the minimality of r. Thus <z < 0, which proves the
asymptotic stability at the endemic equilibrium. �
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4. Global Dynamics

In this section, we discuss a number of results concerning the global dynamics of system (6). We begin
by introducing some notation to allow an easier handling of the vector calculations.

Definition 4.1. The entry-wise product for vectors, the Hadamard product, will be denoted by ◦. Namely,
if (X1, . . . , Xn), (Y1, . . . , Yn) ∈ Rn, then

(X1, . . . , Xn) ◦ (Y1, . . . , Yn) = (X1Y1, . . . , XnYn).

For a vector X = (X1, . . . , Xn) ∈ Rn and for f : I ⊂ R→ R, we shall write

f(X) = (f(X1), . . . , f(Xn)).

In particular, if X = (X1, . . . , Xn)� 0, then X−1 = (X−11 , . . . , X−1n ).

We collect some useful facts about the manipulation of expression involving Hadamard products in the
following Lemma:

Lemma 4.1. If X1, . . . ,Xm ∈ Rn and M ∈Mn(R) then we have

(1) X1 + · · ·+ Xm ≥ m m
√

X1 ◦ . . . ◦Xm;

(2) X1 ◦ (MX2) = diag(X1)MX2 = diag(MX2)X1;

(3) if X1 = X1(t), and if f is differentiable then
d

dt
f(X1) = Ẋ1 ◦ f ′(X1).

It turns out that it is more convenient to work with system (6) in prevalence form, so that the susceptible
population at the disease-free equilibrium (DFE), for both host and vector populations in each group, is
unity. Let

Dh = diag(N̄h), Dv = diag(N̄v),

(X,Y ) = D−1h (Sh, Ih), Z = D−1v Iv

A = LDv and B = MDh

Therefore system (6) reads

(11)


Ẋ = µh ◦ (1−X)− diag(X)AZ

Ẏ = diag(X)AZ − (µh + γh) ◦ Y

Ż = diag(1− Z)BY − µv ◦ Z

With this notation, the DFE is (1, 0, 0) and we shall write the EE as (X̄, Ȳ , Z̄), with

X̄i =

(
S∗h,i
N̄h,i

)
, Ȳi =

(
I∗h,i
N̄h,i

)
and Z̄i =

(
I∗v,i
N̄v,i

)
.

Notice that, since in the new coordinates we have diag(N̄h) = diag(N̄v) = diag(1), the next generation
operator is now given by

N =

(
0 diag(µh + γh)−1A

diag(µv)−1B 0

)
.

Also, the absorbing set can now be written as

K =
{

(X,Y, Z) ∈ R3n s.t. 0 ≤ X + Y ≤ 1, 0 ≤ Z ≤ 1
}
.

We begin with the stability of the DFE when R0 ≤ 1:

Theorem 4.1. Assume that hypothesis 2.1 holds and that R0 ≤ 1. Then the DFE is globally asymptotically
stable. If R0 > 1, then the DFE is unstable.
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Proof. Since N is irreducible, let (α, β) be a left, positive eigenvector of N , associated to the eigenvalue R0.
Let

V = 〈α, Y 〉+ 〈β, (µh + γh) ◦ µ−1v ◦ Z〉 and R = 〈α,diag(1−X)AZ〉+ 〈β, (µh + γh) ◦ µ−1v ◦ diag(Z)BY 〉.
Notice that R ≥ 0, and that R vanishes in the set

S0 = {(X,Y, Z) ∈ K : diag(1−X)AZ = diag(Z)BY = 0 , Y, Z 6= 0}.
Computing the derivative of V along the flow, we have:

V̇ = 〈α, Ẏ 〉+ 〈β, (µh + γh) ◦ µ−1v ◦ Ż〉
= 〈α,diag (X)AZ − (µh + γh) ◦ Y 〉+ 〈β, (µh + γh) ◦ µ−1v ◦ (diag(1− Z)BY − µv ◦ Z)〉
= 〈α,AZ − (µh + γh) ◦ Y 〉+ 〈β, (µh + γh) ◦ µ−1v ◦ (BY − µvZ)〉 −R
= [R0〈(µh + γh) ◦ β, Z〉 − 〈(µh + γh) ◦ α, Y 〉+R0〈(µh + γh) ◦ α, Y 〉 − 〈(µh + γh) ◦ β, Z〉]−R
= (R0 − 1) [〈(µh + γh) ◦ α, Y 〉+ 〈(µh + γh) ◦ β, Z〉]−R
≤ 0,

provided that R0 ≤ 1.
Also, notice that when R0 < 1, we have that V̇ = 0 if, and only if, Y = Z = 0. Since the DFE is the

unique invariant compact set in this latter case, LaSalle principle implies that it is globally asymptotically
stable. If R0 = 1 then we observe that V̇ = 0 holds in S0, which contains the set {(X,Y, Z)|Y = Z = 0}.
Nevertheless, it can then be easily verified from system (11) that the DFE is the only invariant set contained
in S0. Thus the result follows once again from LaSalle invariance principle.

If R0 > 1, then if both Y and Z are sufficient close to zero, we have V̇ (1, Y, Z) > 0. By continuity, this
is also true in a neighbourhood of (1, 0, 0), and hence the DFE is unstable.

�

Before we can tackle the global stability of the endemic equilibrium, when R0 > 1, we need some prelim-
inary results.

Lemma 4.2. Assume that Hypothesis 2.1 holds, and let

N̄ =

(
0 diag(µh + γh)−1 diag(X̄)A

diag(µv)−1 diag(1− Z̄)B 0

)
.

Then, N̄ is irreducible, ρ(N̄ ) = 1 and N̄ has a positive left eigenvector (ξ, η)t associated to ρ(N̄ ). In
addition, let

T = diag(µv)−1 diag(µh + γh)−1 diag(X̄)Adiag(1− Z̄)B.

Then ρ(T ) = 1, and T tη = η.

Proof. Since Hypothesis 2.1 holds, we have that N is irreducible, and hence N̄ is irreducible. From the
equilibrium relationship we also have

N̄
(
Ȳ
Z̄

)
=

(
Ȳ
Z̄

)
,

and hence we have
ρ(N̄ ) = 1.

The remaining claims follow from Proposition 2.1. �

Before giving the next definition, we introduce some terminology. For a given digraph G, we will denote
its set of vertices by V(G), and the set of edges of G by E(G) ⊂ V(G)×V(G). A c-edge colored multidigraph
(c-ECM for short) is a multi-digraph where the parallel edges must have different colors—and therefore a
maximum of c parallel edges are allowed. If G is a c-ECM, we will write C(G) for its set of colors. Thus each
edge of G can be uniquely described as an ordered triple (v1, v2, c) ∈ E(G) ⊂ V(G)× V(G)× C(G).

Definition 4.2 (Transitive Contact Multigraph). Given a contact network Γ(M), we define the transitive
contact multigraph (TCM for short) M as the n-ECM of order n, obtained from Γ(M) by taking V(M) =
{1, . . . , n} and defining (i, j, k) ∈ E(M) if Li,kMk,j 6= 0.
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Remark 4.1. Notice that if we collapse all the parallel edges, then we obtain a graph isomorphic to Γ(LM).
In particular, Proposition 2.1 then says that M is strongly connected.

Remark 4.2. If (i, j, k) ∈ M, then this means that an infected host in group j can be the origin of an
infection of a host in group i by infecting a vector of group k, which then infects the host in group i. Within
the fast travelling interpretation, this means that an infected host that is resident in region j can travel to
region k, where it infects a vector there. This infected vector will subsequently infect a susceptible host of
region i that travels to region k. See Figure 1 for an example of a host-vector contact network, and the
corresponding transitive contact multigraph.

1

2 3

(a) Host-vector contact network

1

2 3

(b) Transitive contact multigraph

Figure 1. In (a) we display a host-vector contact network. Within the travelling inter-
pretation of the model, the solid lines indicate the travelling patterns of susceptible hosts
(specified by the nonzero entries of L), while the dotted lines indicate the travelling pattern
of the infected hosts (specified by the nonzero entries of M). Notice that, in this example,
neither L or M are irreducible, but M is. In (b) we display the corresponding TCM: the
red dotted edge indicates a connection through region 1, the green dashed edges indicate
connections through region 2, and the blue dashed-dotted edges indicate connections trough
region 3.

We will now give a graph-theoretical interpretation of η.

Proposition 4.1. Let ζ = diag(Ȳ )η. Then ζ spans the kernel of the graph Laplacian of M. In particular,
its entries are given by (a multiple of) the principal minors along the diagonal and, therefore, it is equal to
the sum of the weight product of weights of a spanning tree of M, over all such spanning trees.

Proof. From the equilibrium relations, we have

T Ȳ = Ȳ

and hence

T̃ · 1 = 1, where T̃ =
−1

diag(Ȳ )T diag(Ȳ ).

Thus, we also have

T̃ tζ = ζ, ζ = diag(Ȳ )η.

Notice now that

I − T̃ t =


1− T̃11 −T̃21 · · · −T̃n1
−T̃12 1− T̃22 · · · −T̃n2

...
...

. . .
...

−T̃1n −T̃2n · · · 1− T̃nn

 =


∑

i 6=1 T̃i1 −T̃21 · · · −T̃n1
−T̃12

∑
i 6=2 T̃i2 · · · −T̃n2

...
...

. . .
...

−T̃1n −T̃2n · · ·
∑

i 6=n T̃in

 ,
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where we have used that
n∑

i=1

T̃i,j = 1, j ∈ {1, . . . , n}.

Therefore ζ is in the kernel of the matrix Laplacian of T̃ t.
In addition, we have that

Γ(T̃ t) = Γ(T̃ ) = Γ(T ),

and the latter is isomorphic to M when collapsing all the parallel edges, and hence the Laplacian of M with its
edge directions reversed is I−T̃ t. Furthermore, since Γ(M) is strongly connected we have, by Proposition 2.1,
that M is also strongly connected and thus the kernel of the associated Laplacian is one-dimensional [11].
The other claims follow from Kirchhoff’s theorem for multigraphs—cf. [7]. �

Theorem 4.2. Assume that Hypothesis 2.1 holds and that R0 > 1. Then the EE is globally asymptotically
stable.

Proof. Let

V = 〈X − X̄ ◦ log(X), η〉+ 〈Y − Ȳ ◦ log(Y ), η〉+ 〈Z − Z̄ log(Z), ξ̄〉, ξ̄ = (µh + γh) ◦ µ−1v ◦ ξ,
where (ξ, η)t is the positive left eigenvector of N̄ as discussed in Lemma 4.2. In particular, we have that

At diag(X̄)η = µv ◦ ξ̄. and Bt diag(1− Z̄)ξ̄ = (µh + γh) ◦ η.
Then

V̇ = 〈Ẋ ◦
(
1− X̄ ◦X−1

)
, η〉+ 〈Ẏ ◦

(
1− Ȳ ◦ Y −1

)
, η〉+ 〈Ż ◦

(
1− Z̄ ◦ Z−1

)
, ξ̄〉

= 〈µh ◦ (1−X)− diag(X)AZ − µh ◦ (1−X) ◦ X̄ ◦X−1 + (diag(X)AZ) ◦ X̄ ◦X−1, η〉
+ 〈diag(X)AZ − (µh + γh) ◦ Y − (diag(X)AZ) ◦ Ȳ ◦ Y −1 + (µh + γh) ◦ Ȳ , η〉
+ 〈diag(1− Z)BY − µv ◦ Z − (diag(1− Z)BY ) ◦ Z̄ ◦ Z−1 + µv ◦ Z̄, ξ̄〉

= 〈µh ◦
(
1+ X̄ −X − X̄ ◦X−1

)
, η〉+ 〈(AZ) ◦ X̄, η〉 − 〈µv ◦ Z, ξ̄〉 − 〈(µh + γh) ◦ Y, η〉

+ 〈(µh + γh) ◦ Ȳ , η〉 − 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉+ 〈diag(1− Z)BY, ξ̄〉
− 〈(diag(1− Z)BY ) ◦ Z̄ ◦ Z−1, ξ̄〉+ 〈µv ◦ Z̄, ξ̄〉.

Now observe that

〈(AZ) ◦ X̄, η〉 = 〈diag(X̄)AZ, η〉 = 〈Z,At diag(X̄)η〉 = 〈µv ◦ Z, ξ̄〉.
Also, from the equilibrium equations:

(µh + γh) ◦ Ȳ = µh ◦ (1− X̄) and diag(X̄)AZ̄ = µh ◦ (1− X̄).

Thus,
〈µv ◦ Z̄, ξ̄〉 = 〈Z̄, At diag(X̄)η〉 = 〈µh

(
1− X̄

)
, η〉.

Combining all this information, we find that

V̇ = 〈µh ◦
(
31− X̄ −X − X̄ ◦X−1

)
, η〉 − 〈(µh + γh) ◦ Y, η〉 − 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉

+ 〈diag(1− Z)BY, ξ̄〉 − 〈(diag(1− Z)BY ) ◦ Z̄ ◦ Z−1, ξ̄〉
= 〈µh ◦

(
31− X̄ −X − X̄ ◦X−1

)
, η〉+ 〈diag(1− Z̄)BY, ξ̄〉 − 〈(µh + γh) ◦ Y, η〉

− 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉+ 〈diag(Z̄ − Z)BY, ξ̄〉 − 〈(diag(1− Z)BY ) ◦ Z̄ ◦ Z−1, ξ̄〉.
We also have

〈diag(1− Z̄)BY, ξ̄〉 = 〈Y,Bt diag(1− Z̄)ξ̄〉
= 〈(µh + γh) ◦ Y, η〉.
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and

〈diag(Z̄ − Z)BY, ξ̄〉 − 〈(diag(1− Z)BY ) ◦ Z̄ ◦ Z−1, ξ̄〉
=
〈[

2Z̄ − Z − Z̄ ◦ Z−1
]
◦BY, ξ̄

〉
.

Hence, we are left with

V̇ = 〈µh ◦
(
31− X̄ −X − X̄ ◦X−1

)
, η〉+

〈[
2Z̄ − Z − Z̄ ◦ Z−1

]
◦BY, ξ̄

〉
− 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉.

Now we write

1 = X̄ + 1− X̄ and 1 = Z̄ + 1− Z̄.

Then, we also have

−X − X̄2 ◦X−1 ≤ −2X̄,

and analogously for Z − Z̄2 ◦ Z−1.
Therefore, we find

V̇ ≤ 3〈µh ◦
(
1− X̄

)
, η〉 − 〈µh ◦ X̄ ◦ (1− X̄) ◦X−1, η〉

− 〈Z̄ ◦ (1− Z̄) ◦ Z−1 ◦ (BY ), ξ̄〉 − 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉.

Notice that the inequality above for V̇ is strict, except when X = X̄ and Z = Z̄.
Since

ξ̄ = diag(µv)−1At diag(X̄)η,

we can then write

V̇ ≤ 3〈µh ◦
(
1− X̄

)
, η〉 − 〈µh ◦ X̄ ◦ (1− X̄) ◦X−1, η〉

− 〈µ−1v ◦ X̄ ◦A
(
Z̄ ◦ (1− Z̄) ◦ Z−1 ◦ (BY )

)
, η〉 − 〈(diag(X)AZ) ◦ Ȳ ◦ Y −1, η〉.

Let

Ā = diag(X̄)Adiag(Z̄) and B̄ = diag(µv)−1 diag(Z̄)−1 diag(1− Z̄)B diag(Ȳ ).

Then Ā1 = µh ◦ (1− X̄) and B̄1 = 1. We can then write

V̇ ≤ 3〈Ā1, η〉 − 〈
(
Ā1
)
◦ X̄ ◦X−1, η〉

− 〈Ā
(
Z̄ ◦ Z−1 ◦

(
B̄
(
Y ◦ Ȳ −1

)))
, η〉 − 〈X ◦ X̄−1 ◦

(
Ā
(
Z ◦ Z̄−1

))
◦ Ȳ ◦ Y −1, η〉

=

n∑
i=1

ηi

[
3
(
Ā1
)
i
− X̄i

Xi

(
Ā1
)
i
−
(
Ā
(
Z̄ ◦ Z−1 ◦

(
B̄
(
Y ◦ Ȳ −1

))))
i
− XiȲi
X̄iYi

(
Ā
(
Z ◦ Z̄−1

))
i

]

=

n∑
i,j=1

ηiĀi,j

[
3− X̄i

Xi
− Z̄j

Zj

(
B̄
(
Y ◦ Ȳ −1

))
j
− XiȲiZj

X̄iYiZ̄j

]

=

n∑
i,j,k=1

ηiĀi,jB̄j,k

[
3− X̄i

Xi
− Z̄jYk
Zj Ȳk

− XiȲiZj

X̄iYiZ̄j

]
= Hn.

Before proceeding, we recall that a unicyclic graph is a connected digraph with a unique oriented cycle
such that, if we remove the edges on the cycle, we are left with a family of directed rooted trees, whose roots
are precisely the vertices in the cycle—see [28, 44, 61]. Given the graph M, we shall denote by D(n, l) the
set of unicyclic subgraphs of M, that has order n, with cycle of length l. Recalling that M is a n-ECM, we
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notice that, in a similar way as in Guo et al. [27, 28] we have

Hn =

n∑
i,j,k

ηiĀi,jB̄j,k

[
3− X̄i

Xi
− Yk
Ȳk

Z̄j

Zj
− XiȲi
X̄iYi

Zj

Z̄j

]

=

n∑
l=1

 ∑
Q∈D(n,l)

 ∏
(k,h,j)∈E(CQ)

Āk,jB̄j,h


×

∑
(r,m,j)∈E(CQ)

[
3− X̄r

Xr
− Ym
Ȳm

Z̄j

Zj
− XrȲr
X̄rYr

Zj

Z̄j

] ,

where CQ denotes the unique cycle in the unicyclic graph Q. Along such a cycle, we have

∑
(r,m,j)∈E(CQ)

[
3− X̄r

Xr
− Ym
Ȳm

Z̄j

Zj
− XrȲr
X̄rYr

Zj

Z̄j

]

=3|E(CQ)| −
∑

(r,m,j)∈E(CQ)

[
X̄r

Xr
+
Ym
Ȳm

Z̄j

Zj
+
XrȲr
X̄rYr

Zj

Z̄j

]

≤3|E(CQ)| − 3|E(CQ)|

 ∏
(r,m,j)∈E(CQ)

YmȲr
ȲmYr

1/3|E(CQ)|

= 0.

Hence, we have that Hn ≤ 0, with equality being attained only when

X̄r

Xr
=
Ym
Ȳm

Z̄j

Zj
=
XrȲr
X̄rYr

Zj

Z̄j
, (r,m, j) ∈ E(CQ).

But since, we have V̇ ≤ Hn, with equality only when X = X̄ and Z = Z̄, we find that V̇ ≤ 0, with equality
attained only when, for each Q ∈ D(n, l), l = 1, . . . , n, we have

1 =
Ym
Ȳm

=
Ȳr
Yr
, (r,m, ·) ∈ E(CQ).

But since CQ is a cycle, we have that
Yr = Ȳr, r ∈ V(CQ).

Since M is irreducible, we have that ĀB̄ is also irreducible by Proposition 2.1. Thus, we have that any two
vertices will be in some unicyclic graph, and hence we have equality only when

Y = Ȳ .

�

5. Discussion

We have considered a class of multi-group models for vector-borne diseases. This class is a natural
extension of the classical Bailey-Dietz model and it is a natural candidate for modeling the impact of fast
urban movement in some vector transmitted diseases, as for instance, in the case of dengue fever—cf. [1,2,12].
The host-vector interaction along the network gives rise to what we call the host-vector contact network—
denoted by Γ(M)—and that has a number of distinguishing features from the networks that arise in directly
transmitted diseases. The most striking one is, perhaps, that the irreducibility of the circulation topology
is not sufficient to guarantee the irreducibility of the host-vector topology. In addition, we also characterize
the irreducibility of Γ(M) through the irreducibility of the product sub-networks. With this assumption,
we are able to provide a complete analysis of the dynamics in the sense that this class of models possesses
the so-called sharp R0 property, i.e., R0 is a threshold parameter with the disease free equilibrium being
both locally and globally asymptotically stable when R0 ≤ 1, and being unstable when R0 > 1. In addition,
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an interior equilibrium (the endemic equilibrium) that is biologically feasible, i.e. has positive coordinates,
exists if and only if R0 > 1. Furthermore, it is globally asymptotically stable, whenever it exists.

From a mathematical point of view, these results extend previous results of directly transmitted diseases to
the class considered here. The global stability of the disease free equilibrium (which has been obtained by [16]
for a special case, and more restricted conditions) is a very natural extension of the argument presented in [27];
see also [70] for a very general presentation of this argument. The existence, uniqueness and local stability
of the endemic equilibrium shows that the corresponding results of [33] for sub-populations hold for this
class of models. Finally, the global stability proof brings a new ingredient in the graph-theoretic framework
introduced in [27, 28]: the identification of Γ(M) with a multi-graph—that we have termed a transitive
contact multi-graph—which is a c-edge colored multi-digraph, and which contains all the information of the
host-vector contact network encoded on a different way. The product of the host and vector networks can
then be interpreted as a contact matrix for such a graph, and that allows us to organize the calculation of
the Lie-derivative of the Lyapunov function within a similar graph-theoretical framework of [27,28].

The analysis presented here shows that, despite the complexity of the models in the class considered here,
the long-term global dynamics is very simple. This, however, does not imply that the transient dynamics
of the model is necessarily simple, and further studies are necessary. As an example of this complexity, we
refer to [2] which provides examples of situations—included in the class analyzed here—that have a local
group R0 less than unity, but a global R0 that is greater than unity—and hence bounded to evolve to an
endemic state in the long term. While this duality of local versus global R0 has been observed in other
contexts—see [60]—we believe that it should be further studied and understood in the realm of epidemic
models.
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