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Natural Interpretation of UML/MARTE Diagrams for
System Requirements Speci�cation (extended version)

Abstract:
To verify embedded systems early in the design stages, we need formal ways to requirements

speci�cation which can be as close as possible to natural language interpretation, away from the
lower esl/rtl levels. This paper proposes to contribute to the fsl (Formal Speci�cation Level) by
specifying natural language requirements graphically in the form of temporal patterns. Standard
modeling artifacts like uml and marte are used to provide formal semantics of these graphical
models allowing to eliminate ambiguity in speci�cations and automatic design veri�cation at
di�erent abstraction levels using these patterns.

Key-words: Temporal Patterns, Modeling, Embedded Systems, MARTE, CCSL, FSL
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1 Introduction

Conventionally, the design of an embedded system starts with the system requirements speci-
�ed by the requirements engineers. In the Electronic Design Automation (eda) domain, these re-
quirements are then used to implement an executable model and perform early validation. There
is a huge gap between these requirements expressed in natural languages and the subsequent
formal levels like tlm and rtl. To verify embedded systems we need to specify requirements for-
mally. Requirements expressed in natural language are ambiguous and the ones expressed in esl
are too low-level to deal with design complexity. Intermediate levels like the Formal Speci�cation
Level (fsl) have been proposed to �ll this gap [1, 2, 3] with models that are both close enough
to requirements engineer concerns, and formal enough to allow further phases of automatic or
semi-automatic generation and veri�cation. This paper contributes to this e�ort at fsl.

To express our requirements, we want to use graphical representation as close as possible
to what happens naturally. So we propose to use UML [4], a well-accepted modeling language,
and its extensions to provide us a way to express time-related properties in a formal way. We
use the marte pro�le [5] to extend uml to build timed and untimed requirements for real-time
and embedded systems [6]. Additionally, marte proposes as an annex, the Clock Constraint
Speci�cation Language (ccsl) [7] to complement uml/marte modeling elements with timed
or causal extensions. ccsl is also used to encode the semantics of uml/marte models and
resolve potential semantic variation points [8]. In our proposal, ccsl is important to keep the
requirements formal and executable.

We promote the use of graphical models over the use of temporal logics [9] formula. Indeed,
while temporal logics, like ltl/ctl [10], are widely used in the later design stages in conjunction
with model-checkers [11], they are not suitable to directly express high-level requirements at
early stages. They are commonly rejected by requirements engineers [12, 13] despite the various
attempts to alleviate the syntax with higher-level constructs like in psl (Property Speci�cation
Language) [14]. So we endorse to loose the expressiveness of ltl if we have a clear and formal
graphical way of de�ning properties.

This paper proposes graphical properties to represent various temporal patterns that occur
frequently in systems. So for identifying these temporal patterns, we considered several examples
like the famous stream boiler case study [15, 16], railway interlocking system [17] and the tra�c
light controller case study [18]. Working on these diverse examples to model behavioral proper-
ties in uml, we noted that several temporal patterns were repeated across examples. To express
these patterns in uml, we need marte time model and the associated ccsl for representing tem-
poral artifacts. The expressiveness of marte/ccsl alone is not enough to model such graphical
patterns, so we propose some pro�le extension to the uml. Moreover, set of rules are de�ned
for creating such patterns and a library of frequently occurring patterns is presented to model
temporal behavior. Graphical temporal patterns are represented in uml using state machine and
sequence diagrams. Stereotypes from the marte time model are used to constrain the time inter-
vals in sequence diagrams and to express logical clocks and time units. State machine diagrams
are extended with our custom built Observation pro�le which then helps to build scenarios, basic
building block for the graphical patterns.

This paper contributes to the trend to build a Formal Speci�cation Level as an intermediate
level from natural-language requirements to code synthesis. Presented approach �nds its worth
by three characteristics that are not, to the best of our knowledge, used jointly in previous
approaches. (1) A set of pre-de�ned primitive domain-speci�c property patterns, (2) A graphi-
cal uml/ marte formalism to capture the properties. Rather than having to rely on natural-
language, the semantics of these graphical properties is given by a marte/ccsl speci�cation,
(3) Logical polychronous time [19] as a central powerful abstraction to capture both causal and
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4 Khan & Mallet & Rashid

temporal constraints.
Rest of the paper is organized as follows. Section ii discusses the related work and their

di�erences with the proposed approach. Section iii presents the state of the art about uml
artifacts : state machine and sequence diagrams followed by the marte time model. Section iv

introduces the Observation pro�le and its associated concepts like scenarios. Section v presents
the main contribution of the paper in the form of library of temporal patterns. Then the section vi
depicts the application of these temporal patterns on a tra�c light controller case study. Finally
section vii concludes the paper with a glimpse over the future possibilities.

Inria



UML/Marte for System requirements 5

2 Related Work

Various e�orts have been made over the past two decades to bridge the gap between natural
language and temporal logic. Initially property speci�cation patterns [20] were proposed in the
form of a library of prede�ned ltl formulae from where the users can pick their desired pattern
to express the behavior. Later other works proposed the speci�cation of temporal properties
through graphical formalisms [21], [22], [23], and [24]. There have also been several attempts to
encode temporal logics formula as uml diagrams [25, 26].

Property Sequence Charts (psc) [27], [28] are presented as an extension to uml sequence
diagrams to model well-known property speci�cation patterns. Originally pscs focused on the
representation of order of events and lacked the support for the timed properties. But the later
extension in the form of Timed psc [25], [26] support the speci�cation of timing requirements.
pscs mainly target ltl properties. The domain of expressiveness of ccsl is di�erent from ltl

and ltl-based languages, like psl. ccsl can express di�erent kind of properties than ltl [29].
Here we are interested to express properties on logical clocks for which ltl is not an obvious
choice. Also ltl is not meant to express physical time properties, for which, this framework prefer
the use of ccsl. Moreover, pscs do not bene�t from the popular embedded systems modeling
and analysis pro�les like marte. Rather than encoding formula with uml extensions, we propose
to reuse uml/marte constructs to build a set of pre-de�ned property patterns pertinent for the
domain addressed.

The work presented by Bellini and his colleagues is a review of the state of the art for
real-time speci�cation patterns, organizing them in a uni�ed way. It presents a logic language,
tilco-x, which can be used to specify temporal constraints on intervals, again based on ltl. The
work of Konrad et al. [30] is to express real-time properties with a facility to denote time-based
constraints in real-time temporal logics mtl (Metric Temporal Logic) extending the ltl. Finally,
another research work, ddpsl (Drag and Drop psl) [31], presents a template library de�ning psl
formal properties using logical and temporal operators.

The research domain of runtime veri�cation [32, 33] relies on lightweight formal veri�cation
techniques to check the correctness of the behavior of a system. Most works on such online mo-
nitoring algorithms focus on the ltl, ctl, mtl for expressing the temporal constraints [34, 35]
where high expertise is required to correctly capture the properties to be veri�ed. Moreover, spe-
cialized speci�cation formalisms that �t the desired application domains for runtime veri�cation
are usually based on live sequence charts (lscs) or on mscs [13]. Another research work to men-
tion here is about the generation of controller synthesis from ccsl speci�cations [36]. Mostly the
main focus of runtime veri�cation community is on the generation of e�cient observers for online
monitoring whereas our proposed framework targets the integration of observers in a complete
work-�ow. The focus here is on the presenting a natural way to model temporal behavior.

Another aspect of the related work is the advent of Formal Speci�cation Level (fsl), still an
informal level of representation. The focus of the fsl approach is to transform natural language
descriptions directly into models bridging the design gap. On the other hand, our proposed
framework targets the graphical representation of temporal properties replacing the need for
textual speci�cation of the system. Natural language front-end is a general trend to allow for
a syntax-directed translation of concrete pattern instances to formulae of a temporal logic of
choice, also used in [30] and [37]. Our framework approach is di�erent from the fsl approach
as we target the veri�cation and validation of a subset of behavior rather than the complete
system. Design engineers are usually well acquainted to uml diagrams (both state machine and
sequence) and any graphical alternative to complex ccsl or ltl/ctl notations is more likely to
get wide acceptance. Moreover, the use of marte pro�le allows to reuse the concepts of time
and clocks to model timing requirements of embedded systems.
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6 Khan & Mallet & Rashid

3 UML/Marte Semantics

This paper proposes an approach to interpret the uml diagrams in a natural way. Hence
this section introduces state of the art about the uml artifacts we consider : state machines and
sequence diagrams. uml itself lacks the notion of time which is essentially required in modeling
temporal patterns. So selected features from the marte time model are explained which are used
to facilitate semantically sound representation of time.

3.1 uml State of the Art

uml state machine diagrams [38] provide a standardized way to model functional behavior
of state-based systems. They provide behavior to an instance of a class (or object). Each state
machine diagram basically consists of states an object can occupy and the transitions which make
the object change from one state to another according to a set of well de�ned rules. Transitions
are marked by guard conditions and an optional action. Among the set of state machine elements
de�ned, only a small subset is used by the presented approach to represent graphical properties
by giving speci�c semantics to that chosen subset. The presented approach speci�es S as a set of
�nite states consisting of simple states and �nal states while the other states (like initial pseudo-
states and choice pseudo-states) are not used at all. From the standard set of state machine
elements, only the top region is used while all other set of regions like in state hierarchy are not
considered. Finally, the state machine is considered to have a �nite set of valid transitions.

uml sequence diagrams [38] allow describing interactions between system objects and actors
of the environment. A sequence diagram describes a speci�c interaction in terms of the set of
participating objects and a sequence of messages they exchange as they unfold over time to e�ect
the desired operation. Sequence diagrams represent a popular notation to specify scenarios of
the activities in the form of intuitive graphical layout. They show the objects, their lifelines, and
messages exchanged between the senders and the receivers. A sequence diagram speci�es only
a fragment of system behavior and the complete system behavior can be expressed by a set of
sequence diagrams to specify all possible interactions during the object life cycle. It is useful
especially for specifying systems with time-dependent functions such as real-time applications,
and for modeling complex scenarios where time dependency plays an important role. Sequence
diagrams consist of objects, events, messages and operations. Objects represent observable pro-
perties of their class(es). Object existence is depicted by an object box and its `life-line'. A
life-line is a vertical line that shows the existence of an object over a given period of time. An
event is a speci�cation of a signi�cant occurrence having time and space existence. A message
is a speci�cation of a communication that conveys information among objects, or an object and
its environment.

Just like the state machine diagrams, the proposed approach focuses on a subset of sequence
diagram elements. Amongst the combined fragment elements, this work only uses the consider
fragment and sequence diagrams are not used in a hierarchical fashion. Moreover, StateInvariant
are used in the scenarios to represent ActivationState similar to the state machines, showing the
triggering of speci�c state event.

3.2 MARTE Time Model

The proposed approach uses concepts of clocks and time for which marte time model [5,
39] is utilized. marte time model provides a su�ciently expressive structure to represent time
requirements of embedded systems. In marte, time can be physical viewed as dense or discretized,
but it can also be logical related to user-de�ned clocks. Time may even be multiform, allowing

Inria



UML/Marte for System requirements 7

di�erent times to progress in a non-uniform fashion, and possibly independently to any (direct)
reference to physical time. marte time model is a set of logical clocks and each clock can be
represented by xI, y, where I represents the set of instants and   is the binary relation on I.

Figure 1 presents a simpli�ed view of marte Time sub-pro�le. The green elements are not part
of the time sub-pro�le. At the heart of the pro�le, the stereotype ClockType extends the metaclass
Class while the stereotype Clock extends metaclasses InstanceSpeci�cation and Property. Clocks
can appear in structural diagrams (like sysml block de�nition, internal block de�nition, or uml
composite structure) to represent a family of possible behaviors. This clock association gives
the ability to the model elements identifying precisely instants or duration. marte introduces
ClockConstraint stereotype extending the metaclass Constraint through which a marte timed
system can be speci�ed. TimedConstraint is a constraint imposed on the occurrence of an event
or on the duration of some execution, or even on the temporal distance between two events.
The presented approach uses the TimedConstraint on the sequence diagram DurationConstraint
elements, discussed further in the text later.

Figure 1 � Excerpt of marte Time Sub-pro�le

RR n° 8909



8 Khan & Mallet & Rashid

4 Observation Pro�le

The combined features of uml and marte provide a base for developing timed-models but
they still lack the specialized features to model graphical temporal patterns. This section presents
the �rst contribution of this paper in the form of a uml pro�le extension targeting temporal
patterns. We introduce the Observation pro�le which is designed to target the expressiveness
of graphical temporal properties. This pro�le resides on top of the uml/marte to provide a
structure for building some prede�ned patterns. The focus of the presented work is not the
minimalist approach but rather the expressiveness of the property from the system designer's
point-of-view. So when a property speci�es occurrence of something at some point in time, then
it is an event and it seems natural to represent such properties as logical clocks. But when the
properties specify duration or interval (not a particular point in time), then the obvious choice
of representation is state relations.

In the proposed approach, extended state machine diagrams are mainly used to represent the
behavior patterns of a system. These diagrams provide a more natural and syntactically sound
interpretation of graphical behavioral patterns of system states. Moreover, some of the system
state/event relation patterns are mapped to sequence diagrams in this presented approach. State
machines are used to model state-based relations represented graphically in the form of scenarios.
Two basic scenarios are possible : negative and positive. These scenarios act as building blocks
for more complex state patterns.

Positive scenarios model something that must happen under given conditions, as shown in
Figure 2. Two types of stereotypes are used in this scenario. The ObservationScenario stereotype
extends the uml state machine metaclass. It de�nes further three tagged values : ScenarioType,
Consider and Ignore. ScenarioType is the basic type of the scenario. Consider contains the
collection of all the events that are relevant to this scenario. It is just like the sensitivity list in
systemc, Verilog or vhdl. If the list of relevant events is large, then the list of events that are
not relevant maybe modeled using the Ignore. Another stereotype applied to the scenario is the
ActivationState stereotype. It extends the uml state metaclass and is used to identify the state
that activates this particular scenario. It is active whenever the system is in a speci�c condition.
The positive scenario expects an event to occur whenever the considered state is active. Failure
occurs if the event does not occur. The scenario terminates normally if the desired event occurs.
In Figure 2, the positive scenario represents the relation State A starts State B. Hence one state
is ensuring to start another state at the same time, which is a very common behavior in systems.

Negative scenarios model something that must not happen under given conditions. So when
the state machine is active, it checks for a particular trigger event that leads the system to a
violation/error state shown in Figure 2. This type of properties can use model-checking to detect
if the system under observation ever reaches an error state. The negative property in the �gure
models the relation State A excludes Event e, means the event e is not possible while the state
is A. One other stereotype applied optionally to the states is the Duration stereotype used to
model the delay in some case of temporal patterns (not shown here). Such a stereotype is only
required for the state machines while the sequence diagrams utilize the existing features of marte
TimedConstraint stereotype. Figure 3 shows the proposed Observation pro�le as a collection of
all these presented stereotypes.

Inria



UML/Marte for System requirements 9

Figure 2 � Positive and Negative Scenarios

5 Proposed Temporal Patterns

The major contribution of this proposed approach is to provide a set of reusable generic
graphical temporal patterns. For identifying the temporal properties of systems, we started by
considering several examples like the famous stream boiler case study [15, 16], railway interlocking
system [17] and the tra�c light controller case study [18]. Working on these diverse examples
to model behavioral properties in uml, we noted that several temporal patterns were repeated
across di�erent examples. These patterns collected across various examples were re�ned with
some inspiration taken from the Allen's algebra targeting intervals [40]. This practice gave us a
valuable collection of generic patterns divided into three major categories of behavioral relations
that may exist in a system : state-state relations, state-event relations, and event-event rela-
tions. Researchers have already shown that constraints speci�ed in ccsl are capable of modeling
logical event-event temporal relations [39, 41]. These ccsl constraints can be represented gra-
phically using sysml/marte models [42, 43, 44]. Temporal patterns for the other two categories
of relations are :

State-State Relations : precedes, triggers, contains, starts, �nishes, implies, forbids, and

RR n° 8909



10 Khan & Mallet & Rashid

Figure 3 � Proposed Observation Pro�le

Inria



UML/Marte for System requirements 11

excludes.
State-Event Relations : excludes, triggers, forbids, contains and terminates.
Next subsections discuss selected few of these temporal patterns. A detailed list of these

patterns with their syntax and semantics is available online [?].

Table 1 � Allen's Algebra and Proposed Relations

No. Graphic Allen's Algebra for Intervals State-State Relation Symbol

1 A precedes B

A precedes B ¤
2 B preceded-by A

3 A meets B

A triggers B (
4 B met-by A

5 A contains B

A contains B �
6 B during A

7 A starts B

A starts B $
8 B started-by A

9 A �nishes B

A �nishes B %
10 B �nished-by A

11 A equals B A implies B ñ

12 A overlaps B

See the text
13 B overlapped-by A

A forbids B  

A excludes B #

5.1 State-State Relations

Presented approach including the two basic scenarios can be used to formally model relations
between two di�erent states of a system. Allen's algebra [40] for intervals provides a base de�ning
thirteen distinct, exhaustive and qualitative relations of two time intervals, depicted in Table 1.
From the comparative analysis of these relations, six primitive relations are extracted that can
be applied to the state-based systems. Further two `negation' relations are added, based on their
usage and importance in the examples, to complete the set. The overlapping of states is not

RR n° 8909



12 Khan & Mallet & Rashid

particularly interesting relation to dedicate a pattern for. But it can easily be modeled indirectly
using the state-event relation `A contains bs' where bs is the start event of state B.

Semantically a state can be considered similar to an interval. We use the nomenclature of
using capital letters (A,B,...) to denote states and small letters (a,b,...) for events/clocks. Dot
notation like SM1.turnA is also used throughout the text to show the speci�c events. Given a
strict partial ordering S � xS, y, a state in S is a pair ras, af s such that as, af P S and as   af .
Where as is the start and af is the end of the state interval. An event or point e belongs to a
state interval ras, af s if as ¤ e ¤ af (both ends included).

Precedence is an important state property where the relation `A precedes B' means the
state A comes before the state B. It includes a delay/deadline clause to explicitly specify the
duration between the termination of state A and the start of state B. This delayed version also
be equated to the triggers state-event relation (e triggers A after [m,n] on clk). The unit of the
duration is dependent on the level of abstraction that is target of the graphical speci�cation.i.e,
it can be physical clock, loosely timed clock, or logical clock. Deadline defers the evaluation of
state A until some number of ticks of clk (or any other event) occur. The number of ticks of clk
considered are dependent on the two parameter natural numbers min and max evaluated as :
 [0, n] means `before n' ticks of clk
 [m, 0] means `after m' ticks of clk
 [m, m] means `exactly m' ticks of clk
Mathematically, given a partial ordering S having the states A (ras, af s) and B (rbs, bf s), a

constant n and a clock clk, the equation

A ¤ B by rm,ns on clk

means af ¤ bs and bs occurs within the duration af � ∆, where ∆ is between m and n
ticks of event clk. The last tick of clk coincides with the start the state B (i.e, bs). Graphically,
precedence is based on positive scenarios shown in Figure 4. The �rst state (State_is_A) is an
activation state (shown by the stereotype) while the second state has the duration stereotype
applied to specify the interval. The observation scenario gets active when the state machine SM1
is in A state. It then checks for the state exit (turnNotA) and expects the other state machine
SM2 to be in state B within the speci�ed time duration. If this behavior occurs as desired, then
the scenario goes dormant till the next state activation occurs.

Figure 4 � A precedes B by [2, 4] on clk

Inria



UML/Marte for System requirements 13

Forbiddance is a negation property. Relation `A forbids B' bars B to occur after state A
occurs. It has another slightly di�erent operator that works with events (e forbids A), discussed
later on. Hence mathematically, given a partial ordering S having the states A (ras, af s) and
B (rbs, bf s), the equation A  B means bs � af . Its graphical temporal pattern is shown in
Figure 5. Scenario activates whenever SM1 is in state A and on exiting this state, the SM2 is
expected to be not in state B (else violation occurs).

Figure 5 � A forbids B

Exclusion between two states restricts them to occur at the same time. Mathematically,
given a partial ordering S having the states A (ras, af s) and B (rbs, bf s), the relation `A excludes
B' means that bf   as and af   bs for all instances of A and B. This relation can be decomposed
into two basic state-event exclusion relations (shown without boxed symbols).

A # bs and B # as

Graphically, this temporal pattern is derived from the exclusion relation of state and event
(discussed in the next sub-section). Two negative scenarios are used to model this behavior as
shown in Figure 6. So during the particular state A for SM1, the event turnB is expected not to
occur and vice versa for the other case.

5.2 State-Event Relations

The relations between the system states and events can mostly be modeled using the uml
sequence diagrams which suits modeling �ow of events. The concept of state invariant is used
to represent the system activation states. Moreover the sequence diagrams already have the
consider/ignore in the form of combined fragments which were introduced earlier in the state
machines using the Observation pro�le. Based on the use, we identify four state-event relations.

The excludes relation state A excludes event e is a bijective relation. Mathematically, given
a partial ordering S having the state A (ras, af s) and a clock e, it can be expressed as A # e
where e R ras, af s. It implies either e   as or af   e. Graphically it is modeled using a negative
scenario, as shown in Figure 7. Here the SM1 while in state A is causes error on event e.

The triggers relation is similar to triggers and starts relations for states. The relation event
e triggers state A can be expressed mathematically, given a partial ordering S having the state
A (ras, af s), an event e, a constant n and a clock clk, as

RR n° 8909



14 Khan & Mallet & Rashid

Figure 6 � A excludes B

e ( A after rm,ns on clk

It means as occurs within the duration e � ∆, where ∆ is between m and n ticks of event
clk. Graphically, sequence diagram is used to model such relations as shown in Figure 8. The
two lifelines represent the system under test and the observer. The consider combined fragment
maintains the list of participating events for the temporal pattern just like ObservationScenario
did for the state machines. StateInvariants are used in sequence diagrams to represent activation
states. The state invariant `SM1_is_A'represents the conditions when the state machine SM1 is
in state A. Duration constraint element is used to specify the required delay. marte stereotype
TimedConstraint is used to further specify the unit of interval and the associated clock.

The forbids relation is similar to forbids relation for states which is implemented using state
machines but this forbids relation for events is implemented using sequence diagrams (it only
has one state to consider). Event e forbids state A implies A must not occur after the event e
triggers. Hence given a partial ordering S having the state A (ras, af s), an event e, the relation
is expressed mathematically as e  A which means e � as. As this relation involves an event,

Inria
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Figure 7 � A excludes e

Figure 8 � e triggers A after [2,3] on clk

the graphical temporal pattern is best expressed using sequence diagram, as shown in Figure 9.
Here in the forbids relation, the state invariant `SM1_is_not_A'represents the conditions when
the state machine SM1 is not (either not entered or already left) in state A .

The terminates relation is similar to �nishes relation for states. The relation event e ter-
minates state A can be expressed mathematically, given a partial ordering S having the state A
(ras, af s), an event e, a constant n and a clock clk, as

e ) A after rm,ns on clk

It means af occurs within the duration e�∆, where ∆ is between m and n ticks of event clk.
Graphically, it is implemented using the positive scenario state machine, as shown in Figure 10.

RR n° 8909
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Figure 9 � e forbids A

Here it is important to mention that why a state machine is used for an event-based scenario.
Here the important point to note down is that our event e will only trigger when the state
machine SM1 is in state A (only then it can terminate). So obviously and activation state is
required which will then lead to trace desired event.

Figure 10 � e terminates A after [3,7] on clk

Inria
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6 Application of Temporal Patterns

The case study considered to demonstrate the approach is of the tra�c light controller taken
from the SystemVerilog Assertions Handbook [18]. It consists of a cross-road over North-South
highway and the East-West farm road. There are sensors installed for the emergency vehicles
and for the farm road tra�c. Highway tra�c is only interrupted if there is a vehicle detected
by the farm road sensor. The architecture for the tra�c light controller consists of two state
machines, interface signals of the module and the timers. A few temporal veri�cation properties
of the design are discussed next.

Figure 11 � ns_light=green excludes ew_light=green

Safety property, Never NS/EW lights both green simultaneously. This property
is the exclusion of two states ns_light.green and ew_light.green. From our library of graphical
temporal patterns, we consider two state-event excludes temporal patterns, as shown in Figure 11.
Here if ns_light_is_green is the activation state from SM1, then in the generic pattern we
replace the event e with the start event of the opposite light (turngreen of ew_light).

State of lights at reset. This constraint requires that whenever reset occurs, the ns_light
turns o�. This property shows that ns_light.off is the consequence of reset. From our library
of graphical properties, we use the implies operator for the relation, shown in Figure 12. The
implies relation is like the excludes state-state relation as it is further composed of two state-state
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relations : starts and �nishes. The starts relation guards the beginning of implies relation while
the �nishes guards the end of the implication relation. Both the relations are implemented using
positive scenarios.

State of lights during emergency. This constraint requires that whenever the emergency
sensor triggers, ns_light switches from green to yellow to red. The book uses the timing
diagram to explain the intended timing relation of the constraint. Text further speci�es at another
place (chapter 7, SystemVerilog assertions handbook [18]) ;

The design also takes into account emergency vehicles that can activate an emergency sensor.
When the emergency sensor is activated, then the North-South and East-West lights will turn
red, and will stay red for a minimum period of 3 cycles.

Yet the SystemVerilog assertion for the constraint tests the ns_light equals red after two
cycles of the emergency. The yellow state is never tested. This vindicates our statement that
the textual requirement speci�cations are usually ambiguous, not precise, bulky and the infor-

Figure 12 � reset=active implies ns_light=off
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Figure 13 � emgcy_sensor triggers ns_light=off after [1,1] on clk

mation is scattered. We can implement this property using the triggers relation for the event
emgcy_sensor and the state ns_light_is_red, as shown in Figure 13. A delay of exactly one
clock cycle is shown using the duration constraint and the marte stereotype.

Figure 14 � ns_light=yellow precedes ns_light=red

Safety, green to red is illegal. Need yellow. This constraint is another example of the
di�erence between the textual speci�cation and the constraint implemented as assertion. Though
the yellow state is speci�ed in the text but it is never tested in the assertion. Here the graphical
approach is clear and precise in using the precedes relation for states without de�ning any delay,
shown in Figure 14. Here the name of the state `ns_light_is_not_yellow' is not required
(as it is not an activation state), and any desired name can be used. This property here ensures
yellow comes before red. How much before that is not speci�ed. To avoid cases like yellowñ
green ñ red, we can add another constraint ns_light=green precedes ns_light=yellow. A
little varying intent can also be implemented using the forbids relation ns_light=green forbids
ns_light=red which seems to be the desired one for the text `green to red is illegal'
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6.1 Observers

Graphical interpretation of properties are implemented in the form of observers. Veri�cation
by observers is a technique widely used in property checking [45, 46, 47]. They check the programs
for the property to hold or to detect anomalies. In the presented framework, each temporal
pattern is �nally transformed into a unique observer code for a speci�c abstraction level (like
tlm, rtl). It proposes to create a library of veri�cation components for each graphical temporal
pattern. An observer provides implementation to the semantically sound graphical patterns. An
observer consists of a set of input parameters, one for each activation state and event. A special
violation output is there to �ag any anomaly in the behavior.

One important thing to note here is that there is a gap between the way property is captured
in Verilog or other low-level hdls and what the system speci�cation actually requires. So to
build these graphical patterns we assure that everything is explicit. When these patterns speak
about state, we have state information to model and when they speak about events then we
have event information. The way these patterns work is by relying on adapters as a glue logic.
These adapters convert the signal or group of signals from the system to states and events. The

Figure 15 � Integration of Observer in the Veri�cation Environment

Figure 16 � Simulation Result of Observers for Tra�c Light Controller
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property patterns implemented in the framework use these events and states. So adapters come
in-between the module under veri�cation and the observers. They receive inputs in the form
of design module interface signals and state values. From this they generate the appropriate
logical clock outputs and state identi�ers to be consumed by the observers. Figure 15 shows the
integration of observer code in the veri�cation environment. Every design language should have
its own set of adapters e.g., if the design module is in vhdl, adapters written in vhdl should be
used that will interact with the design and provide the appropriate inputs to the observer. For
example, ns_light_is_green is a signal that is true whenever the tra�c light output ns_light
is in green state. In Verilog, the adapter code for the state is given next.

always @ (posedge c l k ) begin
nslightGREEN = ( ns_l ight == GREEN) ;

end
assign ns_light_is_GREEN = nslightGREEN ;

The clock ns_light.turngreen is the rising edge of this state output and represents the change
in the state. In SystemVerilog, we can implement this logic using the $rose or the $past operators.

ns_light_turnGREEN =
$past ( ns_l ight !=GREEN) && ns_l ight==GREEN;

rtl observers are cycle-accurate and need system clocks to operate. Observers in other abs-
traction levels may have di�erent requirements.

6.2 Results

For the veri�cation of the tra�c light controller, four observers (implementing temporal pat-
terns) from a prede�ned library were instantiated. Simulation trace in Figure 16 shows the design
signals in the upper half and state/event outputs from the adapter in the lower half. Though
the �rst three constraints satisfy this particular execution scenario, the last exclusion relation
between the ns_light. green and ew_light.yellow fails, as shown by the red marker in the
execution trace (circled in the �gure). This is exactly the case with this faulty fsm as presented
in the book (chapter 7 case study) [18]. To summarize, some of the observations made from this
work are :

� This framework makes explicit all the steps between the natural language speci�cation,
expressed as a uml diagram, and resulting design veri�cation.

� Notion of adapters is introduced to remove ambiguities between the concepts of states and
events.

� States are encoded to represent temporal patterns in behavior. These state-based relations
are then transformed into ccsl events. These events are �nally encoded as a property used
for veri�cation.
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7 Conclusion and Future Work

This paper presents a natural way to interpret uml diagrams annotated with features from
marte to specify system requirements. It proposes a graphical approach to capture properties in
a bid to replace temporal logic properties like in ltl. It also proposes a way to extend the existing
capabilities of ccsl which can though represent state relations but is not practically meant for
that task. The proposed approach identi�es two major categories of temporal patterns, state-
based and mixed state/event relations. Semantics of the states in both types of properties have
been expressed as state-start and state-end events. An exhaustive set of state relations, based on
Allen's work, have been proposed. Later these relations are implemented using a subset of state
machine diagrams and sequence diagrams coupled with features from marte time model and
Observation pro�le.

In the future, we wish to extend this work as a complete framework providing a comparative
analysis of the presented operators with that of existing ccsl operators and code generation from
the graphical properties. In regards to this continued e�ort, a tool plugin has been developed [48]
for model transformation of such graphical patterns directly into ccsl and Verilog hdl based
observers.
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