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Abstract. Analyzing systems communicating asynchronously via reli-
able FIFO buffers is an undecidable problem. A typical approach is to
check whether the system is bounded, and if not, the corresponding state
space can be made finite by limiting the presence of communication cy-
cles in behavioral models or by fixing the buffer size. In this paper, our
focus is on systems that are likely to be unbounded and therefore result
in infinite systems. We do not want to restrict the system by imposing
any arbitrary bound. We introduce a notion of stability and prove that
once the system is stable for a specific buffer bound, it remains stable
whatever larger bounds are chosen for buffers. This enables one to check
certain properties on the system for that bound and to ensure that the
system will preserve them whatever larger bounds are used for buffers.
We also prove that computing this bound is undecidable but we show
how we succeed in computing these bounds for many examples using
heuristics and equivalence checking.

1 Introduction

Most software systems are constructed by reusing and composing existing com-
ponents or peers. This is the case in many different areas such as component-
based systems, distributed cloud applications, Web services, or cyber-physical
systems. Software entities are often stateful and therefore described using be-
havioral models. Moreover, asynchronous communication via FIFO buffers is a
classic communication model used for such distributed, communicating systems.
A crucial problem in this context is to check whether a new system consisting of
a set of interacting peers respects certain properties. Analyzing asynchronously
communicating software has been studied extensively in the last 30 years and is
known to be undecidable in general [7]. A common approach to circumvent this
issue is to bound the state space by restricting the cyclic behaviors or imposing
an arbitrary bound on buffers. Bounding buffers to an arbitrary size during the
execution is not a satisfactory solution: if at some point buffers’ sizes change (due
to changes in memory requirements for example), it is not possible to know how
the system would behave compared to its former version and new unexpected
errors can show up.

In this paper, we propose a new approach for analyzing a set of peers
described using Labeled Transition Systems (LTSs), communicating asyn-
chronously via reliable (no loss of messages) and possibly unbounded FIFO
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buffers. We do not want to restrict the system by imposing any arbitrary bound
on cyclic behaviors or buffers. We introduce a notion of stability for the asyn-
chronous versions of the system. A system is stable if asynchronous compositions
exhibit the same observable behavior (send actions) from some buffer bound.
This property can be verified in practice using equivalence checking techniques
on finite state spaces by comparing bounded asynchronous compositions, al-
though the system consisting of peers interacting asynchronously via unbounded
buffers can result in infinite state spaces. We prove that once the system is stable
for a specific buffer bound, it remains stable whatever larger bounds are cho-
sen for buffers. This enables one to check temporal properties on the system for
that bound (using model checking techniques for instance) and ensures that the
system will preserve them whatever larger bounds are used for buffers. We also
prove that computing this bound is undecidable, but we show how we succeed
in computing such bounds in practice for many examples.

Figure 1 gives an example where peers are modeled using LTSs. Transi-
tions are labeled with either send actions (exclamation marks) or receive actions
(question marks). Initial states are marked with incoming half-arrows. In the
asynchronous composition, each peer is equipped with one input buffer, and we
consider only the ordering of the send actions, ignoring the ordering of receive
actions. Focusing only on send actions makes sense for verification purposes be-
cause: (i) send actions are the actions that transfer messages to the network and
are therefore observable, (ii) receive actions correspond to local consumptions by
peers from their buffers and can therefore be considered to be local and private
information. We can use our approach to detect that when each peer is equipped
with a buffer bound fixed to 2, the observable behavior of the system depicted
in Figure 1 is stable. This means that we can check properties, such as the ab-
sence of deadlocks, on the 2-bounded asynchronous version of the system and
the results hold for any asynchronous version of the system where buffer bounds
are greater or equal to 2.

Fig. 1. Motivating example

We implemented our approach in a tool that first encodes the peer LTSs and
their compositions into process algebra, and then uses heuristics, search algo-
rithms, and equivalence checking techniques for verifying whether the system
satisfies the stability property. If this is the case, we return the smallest bound
respecting this property. Otherwise, when we reach a certain maximal bound,
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our check returns an inconclusive result. Heuristics and search algorithms aim
at guiding the approach towards the smallest bound satisfying stability whereas
equivalence checking techniques are used for checking the stability property given
a specific bound k. All the steps of our approach are fully automated (no hu-
man intervention). We applied our tool support to more than 300 examples of
communicating systems, many of them taken from the literature on this topic.
These experiments show that a large number of these examples are stable and
can therefore be formally analyzed using our approach.

The contributions of this paper are summarized as follows:

– The introduction of the stability property for asynchronously communicating
systems that, once acquired for a bound k, is preserved for upper bounds;

– A proof demonstrating that computing such a bound k is undecidable;
– A fully automated tool support that shows that the bound exists for a ma-

jority of our examples.

The organization of the rest of this paper is as follows. Section 2 defines
our model for peers and their asynchronous composition. Section 3 presents the
stability property and our results on stable systems. Section 4 describes our
tool support and experiments we carried out to evaluate our approach. Finally,
Section 5 reviews related work and Section 6 concludes.

2 Communicating Systems

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral
model defines the order in which a peer executes the send and receive actions.

Definition 1. A peer is an LTS P = (S, s0, Σ, T ) where S is a finite set of
states, s0 ∈ S is the initial state, Σ = Σ!∪Σ?∪{τ} is a finite alphabet partitioned
into a set of send messages, a set of receive messages, and the internal action,
and T ⊆ S ×Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ for representing internal activities. A transition is

represented as s
l−→ s′ ∈ T where l ∈ Σ. This can be directly extended to s

σ−→ s′,

σ ∈ Σ∗, where σ = l1, ..., ln, s
l1−→ s1, . . . , si

li+1−−→ si+1, . . . , sn−1
ln−→ s′ ∈ T . In

the following, for the sake of simplicity, we will denote this by s
σ−→ s′ ∈ T ∗.

We assume that peers are deterministic on observable messages meaning
that if there are several transitions going out from one peer state, and if all the
transition labels are observable, then they are all different from one another.
Nondeterminism can also result from internal choices when several transitions
(at least two) outgoing from a same state are labeled with τ . Given a set of peers
{P1, . . . ,Pn}, we assume that each message has a unique sender and a unique
receiver: ∀i, j ∈ [1, n], i 6= j, Σ!

i ∩ Σ!
j = ∅ and Σ?

i ∩ Σ?
j = ∅. Furthermore, each

message is exchanged between two different peers: Σ!
i ∩Σ?

i = ∅ for all i. We also
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assume that each send action has a counterpart (receive action) in another peer
(closed systems): ∀i ∈ [1, n], ∀m ∈ Σ!

i =⇒ ∃j ∈ [1, n], i 6= j, m ∈ Σ?
j .

In the asynchronous composition, the peers communicate with each other
asynchronously via FIFO buffers. Each peer Pi is equipped with an unbounded
input message buffer Qi. A peer Pi can either send a message m ∈ Σ!

i to the tail
of the receiver buffer Qj of Pj at any state where this send message is available,
read a message m ∈ Σ?

i from its buffer Qi if the message is available at the
buffer head, or evolve independently through an internal transition. We focus on
send actions in this paper. We consider that reading from the buffer is private
non-observable information, which is encoded as an internal transition in the
asynchronous system.

Definition 2. Given a set of peers {P1, . . ., Pn} with Pi = (Si, s
0
i , Σi, Ti), and

Qi being its associated buffer, the asynchronous composition (P1|Q1)|...|(Pn|Qn)
is the labeled transition system LTSa = (Sa, s

0
a, Σa, Ta) where:

– Sa ⊆ S1 ×Q1 × . . .× Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i )∗

– s0a ∈ Sa such that s0a = (s01, ε, . . . , s
0
n, ε) (where ε denotes an empty buffer)

– Σa = ∪iΣi
– Ta ⊆ Sa × Σa × Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ =

(s′1, Q
′
1, . . . s

′
n, Q

′
n) ∈ Sa, we have three possible behaviors

• s m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!
i ∩Σ?

j , (i) si
m!−−→

s′i ∈ Ti, (ii) Q′j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′k = Qk, and
(iv) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk (send action)

• s τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?
i , (i) si

m?−−→ s′i ∈ Ti, (ii) mQ′i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′k = Qk, and (iv) ∀k ∈ {1, . . . , n} :
k 6= i⇒ s′k = sk (receive action)

• s τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si
τ−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :

Q′k = Qk, and (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk (internal action)

We use LTSka = (Ska , s
0
a, Σ

k
a , T

k
a ) to define the bounded asynchronous compo-

sition, where each message buffer bounded to size k is denoted Qki , for i ∈ [1, n].
The definition of LTSka can be obtained from Def. 2 by allowing send transi-
tions only if the message buffer of the receiving peer has less than k messages
in it. Otherwise, the sender is blocked, i.e., we assume reliable communication
without message losses. The k-bounded asynchronous product can be denoted
(P1|Qk1)|...|(Pn|Qkn) or (P1|(Q1

1| ... |Q1
1))|...|(Pn|(Q1

n| ... |Q1
n)), where each peer

is in parallel with the parallel composition of k buffers of size one. Let us em-
phasize that the encoding of an ordered bounded buffer following this pattern
based on parallel composition was originally proposed by R. Milner in [36] (see
Sections 1.2 and 3.3 of this book for details). Furthermore, we use LTSa for the
asynchronous composition where the receive actions are kept in the resulting

LTS (s
m?−−→ s′ ∈ Ta, receive action rule in Def. 2) instead of being encoded as τ .
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3 Stability-based Verification

In this section, we show that systems consisting of a finite set of peers involv-
ing cyclic behaviors and communicating over FIFO buffers may stabilize from a
specific buffer bound k. We call this property stability and we say that the cor-
responding systems are stable. The class of systems that are stable corresponds
to systems whose asynchronous compositions remain the same from some buffer
bound when we observe send actions only (we ignore receive actions and buffer
contents). Since stable systems produce the same behavior from a specific bound
k, they can be analyzed for that bound to detect for instance the presence of
deadlocks or to check whether they satisfy any kind of temporal properties. Sta-
bility ensures that these properties will be also satisfied for larger bounds. The
stability definition relies on branching bisimulation checking [41] (Definition 3).
We chose branching bisimulation because in this work receive actions are hidden
as internal behaviors, and branching bisimulation is the finest equivalence notion
in presence of internal behaviors. This equivalence preserves properties written
in ACTL\X logic [33].

Definition 3. Given two LTSs LTS1 and LTS2, they are branching bisimilar,
denoted by LTS1 ≡br LTS2, if there exists a symmetric relation R (called a
branching bisimulation) between the states of LTS1 and LTS2 satisfying the
following two conditions: (i) The initial states are related by R; (ii) If R(r, s)

and r
δ−→ r′, then either δ = τ and R(r′, s), or there exists a path s

τ∗−→ s1
δ−→ s′,

such that R(r, s1) and R(r′, s′). For the sake of simplicity, in the following,
R(r, s) is also denoted by r ≡br s.

Definition 4. Given a set of peers {P1, . . . ,Pn}, we say that this system is
stable if and only if ∃k such that LTSka ≡br LTSqa (∀q > k).

As a first result, we show a sufficient condition to ensure stability: if there
exists a bound k such that the k-bounded and the (k+1)-bounded asynchronous
systems are branching equivalent, then we prove that the system remains stable,
meaning that the observable behavior is always the same for any bound greater
than k.

Theorem 1. Given a set of peers {P1, . . . ,Pn}, if ∃k ∈ N, such that LTSka ≡br
LTSk+1

a , then we have LTSka ≡br LTSqa,∀q > k.

Proof. We prove the theorem by induction, starting with the following base case:
If LTSka ≡br LTSk+1

a then LTSka ≡br LTSk+2
a . Let us recall that the strong and

branching bisimulations are congruences with respect to the operators of process
algebras [19], that is, if P and P ′ are branching bisimilar, then for every Q we
have P |Q ≡br P ′|Q. Now, suppose that ∃k ∈ N, such that LTSka ≡br LTSk+1

a ,
then:

(P1|Qk1)|...|(Pn|Qkn) ≡br (P1|Qk+1
1 )|...|(Pn|Qk+1

n ) (1)
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A buffer of size k can be written as a parallel composition of k buffers of size 1
(see Sections 1.2 and 3.3 in [36] for details), hence:

(P1|Qk+2
1 )|...|(Pn|Qk+2

n ) ≡br (P1|Qk+1
1 |Q1

1)|...|(Pn|Qk+1
n |Q1

n) (2)

Then, by congruence and using equation (1) we have:

(P1|Qk+2
1 )|...|(Pn|Qk+2

n ) ≡br (P1|Qk1 |Q1
1)|...|(Pn|Qkn|Q1

n) (3)

(P1|Qk+2
1 )|...|(Pn|Qk+2

n ) ≡br (P1|Qk+1
1 )|...|(Pn|Qk+1

n ) (4)

(P1|Qk+2
1 )|...|(Pn|Qk+2

n ) ≡br (P1|Qk1)|...|(Pn|Qkn) (5)

The same argument can be used to prove the induction case, i.e., we suppose
that LTSka ≡br LTSk+ia and we demonstrate that LTSka ≡br LTSk+i+1

a . This
proves that if LTSka ≡br LTSk+1

a , then we have LTSka ≡br LTSqa,∀q > k. �

The main interest of the stability property is that any temporal property
can be analyzed using existing model checking tools on the minimal k-bounded
version of the system, and this result ensures that these properties are preserved
when buffer bounds are increased or if buffers are unbounded.

Proposition 1. Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSka ≡br LTSqa
(∀q > k), and for some property P written in ACTL\X logic, LTSka |= P , then
LTSqa |= P (∀q > k).

Classic properties, such as liveness or safety properties, can be verified con-
sidering send actions only. If one wants to check a property involving receive
actions, a solution is to replace in the property a specific receive action by one of
the send actions (if there is one) occurring next in the corresponding peer LTS.

We prove now that determining whether a system is stable is an undecid-
able problem. Yet there are many cases in which stability is satisfied and the
corresponding bound can be computed in those cases using heuristics, search
algorithms, and equivalence checking (see Section 4).

To prove that testing the stability is an undecidable problem, we reduce
the halting problem of a Turing machine to the test of stability of a set of
peers communicating asynchronously. We start the proof with some preliminaries
and notation, then we give an overview of the proof. Afterwards, we detail the
construction of a system of two peers simulating the Turing machine and finally
we prove the undecidability result.

Preliminaries and notation. The Turing machine used is a determinis-
tic one-way-infinite single tape model. A Turing machine is defined as M =
(QM , ΣM , ΓM , q0, qhalt, B, δM ) where QM is the set of states, ΣM is the in-
put alphabet, ΓM is the tape alphabet, q0 ∈ QM is the initial state and qhalt
is the accepting state. B ∈ ΓM is the blank symbol and δM : QM × ΓM →
QM × ΓM × {left, right} is the transition function. The machine M accepts an
input word w= a1, ..., am iff M halts on w. If M does not halt on w and the
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word is not accepted at a state q, then M initiates a loop. This loop reads any
symbol and moves to the right. Hence, if the word w is not accepted, then the
machine executes an infinite loop by reading symbols and moving to the right.
This looping behavior is not usual in classic Turing machines and acceptance se-
mantics, but this simplifies the reduction without modifying the expressiveness
of the Turing machine as shown in [18].

A configuration of the Turing machine M is a word uqv# where uv is a word
from the tape alphabet, q is a state of M (meaning that M is in the state q and
the head pointing on the first symbol of v), and # is a fixed symbol which is not
in ΓM (used to indicate the end of the word on the tape).

Overview. To facilitate the understanding of the proof, we present the re-
duction in two phases. In a first phase (i), starting from a Turing machine M and
an input word w, we construct a pair of peers P1 and P2, such that whenever the
machine M halts on w or not, there always exists a k such that LTSka ≡br LTSa,
where LTSa is the asynchronous product of the system {P1, P2}. In a second
phase (ii), we extend P1 and P2 respectively to P

′

1 and P
′

2, and there exists k such
that LTS

′k
a ≡br LTS

′

a iff M does not halt on w, where LTS
′

a is the asynchronous
product of the system {P ′1, P

′

2}.

Phase (i) – Construction of P1 and P2. The peer P1 simulates the exe-
cution of the machine M on w while P2 is used to receive and re-send messages
to P1. A configuration of M of the form uqv# is encoded with the buffer of P1

with the content uheadv#. We give in the following the construction of P1 and
P2.

The peer P1 is defined as (SP1
, sq0 , ΣP1

, TP1
) where SP1

is the set of states,
sq0 is the initial state where q0 is the initial state of M . The alphabet ΣP1

=
Σ!
P1
∪ Σ?

P1
is defined as follows:

– Σ!
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages sent from P1 to P2

are indexed with 2 (e.g., P1 sends B2 instead of sending the blank symbol,
inversely P2 sends B1 instead of sending B to P1).

– Σ?
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P2 are
indexed with 1.

Now we present how each action of the machine M is encoded.

– For each transition of M of the form δM (q, a) = (q′, a′, right) we have the

following transitions in TP1
: sq

head1?−−−−→ s1
a1?−−→ s2

a′2!−−→ s3
head2!−−−−→ sq′ . If

the peer is in the state q and the buffer starts with head1a1 then the two
messages are read and the peer P1 sends the next configuration to P2 as
depicted in Figure 2(a). si’s are fresh intermediary states.

– For each transition of M of the form δM (q, a) = (q′, a′, left) and for each
x ∈ ΓM we have the following transitions in TP1

:

sq
x1?−−→ s1

head1?−−−−→ s2
a1?−−→ s3

head2!−−−−→ s4
x2!−−→ s5

a′2!−−→ sq′ . P1 starts by reading
the letter before head, then it reads head, the next letter, and sends the new
configuration to P2 as depicted in Figure 2(b).
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– For each state sq where q is a state of M we have the following cycle in TP1
:

sq
head1?−−−−→ s1

#1?−−→ s2
head2!−−−−→ s3

B2!−−→ s4
#2!−−→ sq. As depicted in Figure 2(c),

the configuration of M is extended to the right with a blank symbol. Peer 1
starts by reading the current configuration of the machine, then sends the
next configuration of M to P2 (P1 adds a blank symbol before #).

– For each letter x ∈ ΓM ∪ {#} and each sq where q is a state of M , we have

the following cycle: sq
x1?−−→ s1

x2!−−→ sq where P1 reads x indexed with 1, then
sends x indexed with 2.

Note that at a state sq representing a state q of the machine M , there is only
one outgoing transition labeled with head1?, hence P1 is deterministic.

Fig. 2. Mapping the instructions of the machine M to transitions of the peer P1

The peer P2 is only used to read and re-send the messages. It is defined as
(SP2

, sinit, ΣP2
, TP2

) where SP2
is the set of states and sinit is the initial state.

P2 starts by sending the initial configuration of M to P1, then reaches the state
suniv, which contains a set of cycles used to receive any message from P1 and
re-send them. ΣP2=Σ!

P2
∪ Σ?

P2
is defined as follows:

– Σ!
P2

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages sent from P2 to P1 are
indexed with 1.

– Σ?
P2

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P1 are
indexed with 2.

P2 contains the following transitions:

– sinit
head1!−−−−→ s1

a11!−−→ ...
a1n!−−→ sn

#1!−−→ suniv ∈ TP2
where w = a1a2...an.

– suniv
x2?−−→ s1

x1!−−→ suniv ∈ TP2
where x is any symbol in Σ?

P2
.

Lemma 1. Given a Turing machine M with an input word w and the peers P1

and P2 constructed as above, the system composed of {P1, P2} is stable whether
the machine M halts on w or not.
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Proof. To prove that ∃k such that LTSka ≡br LTSa, it is sufficient to prove that
∃k such that LTSka ≡br LTSk+1

a (from Theorem 1). Suppose that M halts on
w. Then, the number of configurations of the machine is finite. Hence, from our
construction, the asynchronous product of {P1, P2} is finite, so there exists a k
such that LTSka ≡br LTSk+1

a , hence LTSka ≡br LTSa.

Now suppose that the machine does not halt on w. Then, the corresponding
communicating system executes infinitely two cycles: (1) one adding a blank
symbol, (2) another reading blank symbols and moving to the right (which occurs
in our construction when the machine does not halt on the input word w). Hence,
for a given bound k, the behavior of the system resulting from the execution of
one of the two cycles in LTSk+1

a may not be reproduced in LTSka , due to the
buffer bound, then LTSka 6≡br LTSk+1

a . We prove that, with our construction,
this case never happens, that is LTSka ≡br LTSa when the machine M does not
halt on w.

Now we detail the proof for cycles of type (1). The proof for cycles of type (2)
is straightforward because those cycles involve receive actions only and do not
make the buffer contents increase. Suppose that the machine M does not stop.
Let sk be the state of LTSka representing the configuration of the machine M
when starting to execute the infinite loop for the first time. From our construc-
tion, at sk the system can execute the first cycle adding a blank symbol. Note
that in sk the buffer of P1 is full (size equal to k) and the buffer of P2 is empty.
More precisely, the buffer of P1 contains the following word: head1#1a11...a

1
m,

where m = k − 2. It is easy to verify that such a state exists, because at a
state sq representing a state q of the machine M , P1 can enter two cycles, one
starting by reading head1, the other one reading any other symbol. Hence, if
the first symbol of the buffer of P1 is not head1, P1 reads the symbol and sends
it to P2 which re-sends the symbol to P1. Thus, in the configuration sk, the
first symbol is head1. Then, P1 executes the cycle which adds a blank symbol:

sk
head1?−−−−→ s1

#1?−−→ s2
head2!−−−−→ s3

B2!−−→ s4
#2!−−→ sk

′
.

At sk
′

the buffer of P1 contains k − 2 messages and the buffer of P2 three
messages. The sum of the two buffers is k + 1 messages, due to the addition
of the blank symbol, but sk

′
is still in LTSka . From our construction, at the

configuration sk
′
, P1 sends a21,..., a2m−1: sk

′ a21!−−→ s1
a22!−−→ ...

a2m−1!−−−−→ sk
′′
.

At sk
′′

the buffer of P2 contains k messages and the buffer of P1 contains one
message. At this configuration, P1 sends the message a2m, and the system reaches
a configuration sk+1 which is in LTSk+1

a but not in LTSka .

Hence, LTSk+1
a and LTSka can send the same sequences of messages from the

initial state to the state sk
′′
. Then, LTSk+1

a can send the message a2m. Moreover,
in the configuration sk

′′
, P2 can read a message (because it is in the state suniv).

Thus, in LTSka there is the following sequence: sk
′′ τ−→ s1

a1m!−−→ s′k. With our
construction, any sequence of send messages which exceeds the buffer size k can
be executed with a buffer size bounded by k. Hence, if the machine does not halt
on w, then ∃k such that LTSka ≡br LTSa.
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Note that, since proving LTSka ≡br LTSk+1
a is sufficient to prove LTSka ≡br

LTSa, we do not need to prove our statement for buffer size containing more
than k or k+1 messages. The bound k depends on the execution of the machine
M and the word w, where k represents the buffer size needed to encode the
configuration of the machine M when starting to execute the infinite loop. �

Phase (ii) – Construction of P ′1 and P ′2. Until now, whenever the machine
M halts on w or not, the system composed of P1 and P2 is always stable. Now,
we extend P1 and P2 respectively to obtain P ′1 and P ′2 such that the machine
M does not halt on w iff the corresponding system (composed of P ′1 and P ′2) is
stable. This is achieved by adding to P1 the transition system Pa to obtain P ′1
and adding to P2 the transition system Pb to obtain P ′2, such that the system
{Pa, Pb} is not stable. The peers Pa and Pb are not formally defined, we can
choose any two peers which are not stable. The additional transitions used to
connect P1 to Pa and P2 to Pb are listed below:

– s0 and s′0 are respectively the initial states of Pa and Pb. The messages
exchanged between Pa and Pb do not appear in P1 and P2.

– sqhalt

halt!−−−→ s0 ∈ TP ′1 .

– suniv
halt?−−−→ s′0 ∈ TP ′2 .

– s0
x?−→ s0 ∈ TP ′1 , where x is any letter in Σ?

P1
.

– s′0
y?−→ s′0 ∈ TP ′2 , where y is any letter in Σ?

P2
.

Lemma 2. Given a Turing machine M with an input word w and the peers P ′1
and P ′2 constructed as above, the system composed of {P ′1, P ′2} is stable iff the
machine M does not halt on w.

Proof. Suppose that the machine M halts on w, then P ′1 reaches the state sqhalt

(see the construction of P1, which simulates the execution of the machine M)
and it sends the message halt to P ′2. Hence, it reaches the state s0. P ′2 is in the
state suniv, hence, it reads the message halt and reaches the state s′0. At s0 and
s′0, the two peers empty their buffers, start executing Pa and Pb, and thus the
stability is violated.

Suppose now that M does not halt on w, then from the construction of P1

simulating the execution of M , the peer P ′1 never reaches the state sqhalt
, and

the system executes an infinite loop. Hence, from Lemma 1, the system {P ′1, P ′2}
is stable. �

We can now formulate one of the main results of this paper, which asserts
that testing the stability property in an undecidable problem.

Theorem 2. Given a set of peers {P1, . . . ,Pn}, it is undecidable to determine
whether the corresponding asynchronous system is stable.

Proof. The proof is a direct consequence of the construction given above and of
both Lemmas 1 and 2. �
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Another result concerns well-formed systems [3]. A system consisting of a
set of peers is well-formed iff whenever the size of the buffer, Qi, of the i-th
peer is non-empty, the system can move to a state where Qi is empty. In other
words, well-formedness concerns the ability of a system to eventually consume
all messages in any of its buffers. In order to check this property, we have to keep
receive messages and thus analyze the system on its asynchronous composition
LTSa instead of LTSa .

Definition 5. Given a set of peers {P1, . . . , Pn}, it is well-formed, denoted
by WF (LTSa), if ∀s = (s1, Q1, ..., sn, Qn) ∈ Sa,∀Qi, it holds that if |Qi| > 0,

then ∃s σ−→ s′ ∈ Ta
∗
, where s′ = (s1′, Q1′, ..., sn′, Qn′) ∈ Sa, |Qi′| = 0. The well-

formedness property can be checked with the CTL temporal formula on LTSa:
AG(|Qi| > 0⇒ EF (|Qi| = 0)).

One can check whether a stable system is well-formed for the smallest k
satisfying stability for instance. If a system is both stable and well-formed for
this smallest k, then it remains well-formed for larger bound q greater than k.

Theorem 3. Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSka ≡br LTSqa
(∀q > k) and WF (LTSka), then we have WF (LTSqa) (∀q > k).

Proof. Suppose that there exists a k such that LTSka ≡br LTSqa (∀q > k).
We know from Proposition 1 that the stability preserves properties written in
ACTL\X logic, i.e., when the system is stable and LTSka |= P , then LTSqa |= P
(∀q > k), where P is a property written in this logic. Well-formedness is a

property expressed in ACTL\X logic. Hence, WF (LTSka) implies WF (LTSqa)
(∀q > k) when the system is stable. �

4 Tool Support

Figure 3 overviews the main steps of our tool support. Given a set of peer LTSs,
we first check as a preprocessing to our approach whether this system is branch-
ing synchronizable [34]. Synchronizability is checked comparing the synchronous
composition with the 1-bounded asynchronous composition. If the system is
synchronizable, the observable behavior for the synchronous and asynchronous
composition always remains the same whatever buffer size is chosen. Therefore,
the synchronous product can be used for analysis purposes. If the set of peers
is not synchronizable, we compute an initial bound k. For that bound, we ver-
ify whether the k-bounded asynchronous system is branching equivalent to the
(k+ 1)-bounded system. If this is the case, the system is stable for bound k, and
properties can be analyzed using that bound. If the equivalence check returns
false, we modify k and apply the check again. We repeat the process up to a
certain arbitrary bound kmax that makes the approach abort inconclusively if
attained. All these checks are achieved using compilers, exploration tools, and
equivalence checking tools available in CADP [22].
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Fig. 3. Methodological aspects

Heuristics and search algorithms. Each strategy consists of the com-
putation of an initial bound k and an algorithm calculating the next bound to
attempt.

– Strategy #1 starts from bound k equal to one and increment k one by one
until obtaining a positive result for the equivalence check or reaching kmax.

– Strategy #2 computes the longest sequence of send actions in all peer LTSs,
then starts from this number and uses a binary search algorithm. The intu-
ition behind the longest sequence of send actions is that in that case all peers
can at least send all their messages even if no peer consumes any message
from its buffer.

– Strategy #3 uses again the longest sequence of send actions for the initial k,
but then progresses by incrementing or decrementing the bound till reaching
kmax or the smallest k satisfying stability.

– Strategy #4 computes the maximum between the longest sequence of send
actions in all peers and the highest number of send actions destinated to
a same peer, and then uses the binary search algorithm (as for #2) for
computing the next bounds.

– Strategy #5 uses the same initial k computation as presented for strategy
#4, and then increments or decrements the bound till completion of the
process as in strategy #3.

Experimental results. We used a Mac OS laptop running on a 2.3 GHz In-
tel Core i7 processor with 16 GB of memory and carried out experiments on more
than 300 examples. Table 1 presents experimental results for some real-world ex-
amples as well as larger (hand-crafted) examples for showing how our approach
scales. The table gives for each example the number of peers (P ), the total num-
ber of states (S) and transitions (T ) involved in these peers, the bound k if the
system is stable (0 if the synchronous and 1-bounded asynchronous composi-
tion are equivalent, and kmax if this upper bound is reached during the analysis
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process), the size of the k-bounded asynchronous system (minimized modulo
branching reduction), and the time for applying the whole process. During our
experiments, we used a bound kmax arbitrarily fixed to 10.

Id Description |P | |S|/|T | k
LTSk

a Time (in seconds)
|S|/|T | #1 #2 #3 #4 #5

(1) Estelle specification [28] 2 7/9 kmax 707/1,751 280 134 302 214 276

(2) News server [34] 2 9/9 3 14/22 89 180 65 173 85

(3) Client/server [7] 2 6/10 0 3/4 34

(4) CFSM system [28] 2 6/7 kmax 393/802 222 107 213 103 212

(5) Promela program (1) [29] 2 6/6 1 3/4 52 71 67 68 66

(6) Promela program (2) [30] 2 8/8 kmax 275/616 219 107 231 103 228

(7) Figure 1 3 8/8 1 5/6 87 208 146 208 145

(8) Web services [20] 3 13/12 0 7/7 44

(9) Trade system [17] 3 12/12 0 30/46 44

(10) Online stock broker [21] 3 13/16 kmax 197/452 >1h 222 >1h 223 >1h

(11) FTP transfer [6] 3 20/17 2 15/19 91 224 155 215 155

(12) Client/server [11] 3 14/13 0 8/7 44

(13) Mars explorer [8] 3 34/34 2 21/25 93 176 142 170 140

(14) Online computer sale [14] 3 26/26 0 11/12 69

(15) E-museum [12] 3 33/40 3 27/46 146 >1h 138 243 182

(16) Client/supplier [10] 3 31/33 0 17/19 44

(17) Restaurant service [40] 3 15/16 1 10/12 68

(18) Travel agency [39] 3 32/38 0 18/21 44

(19) Vending machine [24] 3 15/14 0 8/8 44

(20) Travel agency [4] 3 42/57 3 29/42 118 >1h 113 >1h 112

(21) Train station [38] 4 18/18 2 19/26 114 195 137 197 165

(22) Factory job manager [9] 4 20/20 0 12/15 54

(23) Bug report repository [25] 4 12/12 1 7/8 85 221 137 227 136

(24) Cloud application [27] 4 8/10 kmax 26,754/83,200 352 208 339 208 337

(25) Sanitary agency [37] 4 35/41 3 44/71 144 196 137 196 137

(26) SQL server [35] 4 32/38 2 22/31 165 195 137 199 170

(27) SSH protocol [31] 4 26/28 0 16/18 97

(28) Booking system [32] 5 45/53 1 27/35 179 285 165 >1h >1h

(29) Hand-crafted example 5 396/801 4 17,376/86,345 227 >1h 184 313 189

(30) —— 6 16/18 5 202/559 278 641 188 641 188

(31) —— 7 38/38 6 1,716/6,468 363 763 391 767 393

(32) —— 10 48/47 8 14,904/57,600 624 800 294 804 294

(33) —— 14 85/80 4 19,840/113,520 506 1,449 483 1,442 485

(34) —— 16 106/102 3 22,400/132,400 478 1,620 454 1,621 453

(35) —— 20 128/116 4 80,640/522,480 728 2,194 698 2,183 699

Table 1. Experimental results

Out of the 28 examples presented in the top part of Table 1, 23 can be an-
alyzed using the approach proposed in this paper (10 are synchronizable and
13 are stable). In most cases, LTSs are quite small and computation times rea-
sonable (up to a few minutes). These times increase due to the computation of
intermediate state spaces, which grow with the size of the buffer bounds. Exam-
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ples (29) to (35) show how LTSs and computation time grow mainly with the
number of peers.

Strategies #2 and #4 are less efficient than the others in terms of performance
because binary search may take time before converging to the result and may
return high values for k, which implies calculating asynchronous systems with
larger state spaces. In contrast, the advantage of binary search is that for non-
stable systems, k increases quite fast and quickly reaches kmax, see rows (1) and
(4) for instance. Strategies #3 and #5 are better than the others in most cases.
This gain is not clear for small examples and examples requiring a small buffer
bound, but it becomes obvious for examples involving more peers and for those
requiring larger buffer bounds, see the hand-crafted examples in Table 1.

Let us focus again on the example presented in Figure 1 (row (7) in Ta-
ble 1) in order to illustrate how our approach works in practice using strategy
#1. First, we compute the synchronous composition and the 1-bounded asyn-
chronous composition, both are shown in Figure 4. We can see that these two
systems are not equivalent (i.e., not synchronizable) because in the asynchronous
composition the client can submit a second request before the server sends its
log file to the database. Therefore, we compute the 2-bounded asynchronous
composition, which is equivalent to the 1-bounded asynchronous composition.
This means that the system is stable from bound 1 and can be analyzed using
model checking techniques for that bound and, if the properties are satisfied for
that bound, they will be satisfied as well for upper bounds. Note that only send
actions are preserved in the asynchronous compositions for comparison purposes.
The 1-bounded composition with send and receive actions consists of 16 states
and 24 transitions.

Fig. 4. Synchronous (left) and 1-bounded asynchronous (right) compositions

5 Related Work

Brand and Zafiropulo show in [7] that the verification problem for FSMs inter-
acting via (unbounded) FIFO buffers is undecidable. Gouda et al. [26] presents
sufficient conditions to compute a bound k from which two finite state machines
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communicating through 1-directional channels are guaranteed to progress indef-
initely. Jeron and Jard [28] propose a sufficient condition for testing unbound-
edness, which can be used as a decision procedure in order to check reachability
for CFSMs. Abdulla et al. [1] propose some verification techniques for CFSMs.
They present a method for performing symbolic forward analysis of unbounded
lossy channel systems. In [29], the authors present an incomplete boundedness
test for communication channels in Promela and UML RT models. They also
provide a method to derive upper bound estimates for the maximal occupancy
of each individual message buffer. Cécé and Finkel [13] focus on the analysis
of infinite half-duplex systems and present several (un)decidability results. For
instance, they prove that a symbolic representation of the reachability set is
computable in polynomial time and show how to use this result to solve several
verification problems.

A notion of existential-boundedness was introduced in [23] for communicating
automata. The idea is to assume unbounded channels, but to consider only exe-
cutions that can be rescheduled on bounded ones. Darondeau et al. [15] identify
a decidable class of systems consisting of non-deterministic communicating pro-
cesses that can be scheduled while ensuring boundedness of buffers. [16] proposed
a causal chain analysis to determine upper bounds on buffer sizes for multi-party
sessions with asynchronous communication. Bouajjani and Emmi [5] consider a
bounded analysis for message-passing programs, which does not limit the number
of communicating processes nor the buffers’ size. However, they limit the num-
ber of communication cycles. They propose a decision procedure for reachability
analysis when programs can be sequentialized. By doing so, program analysis
can easily scale while previous related techniques quickly explode.

Compared to all these results, we do not impose any bound on the number
of peers, cycles, or buffer bounds. Another main difference is that we do not
want to ensure or check (universal) boundedness of the systems under analysis.
Contrarily, we are particularly interested in unbounded (yet possibly stable) sys-
tems. Existential boundedness in turn assumes structural hypothesis on models,
e.g., at most one sending transition and no mix of send/receive actions outgoing
from a same state in [23, 15], whereas we do not impose any restriction on our
LTS models.

In [2], the authors rely on language equivalence and propose a result similar
to the stability property introduced here. However, they present this problem
as decidable and propose a decision procedure for checking whether a system
is stable. We have demonstrated here that the stability problem is undecidable.
Since branching bisimulation is a particular case of language equivalence, testing
stability is undecidable for language equivalence as well. Moreover, [2] uses LTL
logic whereas we consider a finest notion of equivalence in this paper (branching),
which allows one to check properties written with ACTL\X logic [33]. The tool
support provided in [2] does not provide any result (infinite loop, inconclusive
result, or error) for more than half of the examples presented in Table 1.
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6 Conclusion

We have presented in this paper a framework for formally analyzing systems
communicating via (possibly unbounded) FIFO buffers. This work focuses on
cyclic behavioral models, namely Labeled Transition Systems. We have intro-
duced the stability property, which shows that several systems become stable
from a specific buffer bound k when focusing on send messages. The stability
problem is undecidable in the general case, but for many systems we can de-
termine whether those systems are stable using heuristics, search algorithms,
and branching equivalence checking. Experiments showed that many real-world
examples satisfy this property and this can be identified in a reasonable time.
Model checking techniques can then be used on the asynchronous version of the
system with buffers bound to the smallest k satisfying stability. If a stable sys-
tem satisfies a specific property for that k, the property will be satisfied too if
buffer bounds are increased or if buffers are unbounded.

As far as future work is concerned, a first perspective is to investigate whether
our results stand or need to be adjusted for different communication models,
e.g., when each peer is equipped with one buffer per message type or when each
couple of peers in a system is equipped with a specific communication buffer.
Many properties on send messages can be formalized using temporal logic and
verified using our approach. However, in some cases, one may also want to write
properties on receive messages or on both send and receive messages. Thus, we
plan to extend our results and define a notion of stability involving not only send
actions but also receive actions. A last perspective aims at identifying subclasses
of systems preserving the stability property. Such a sufficient condition could be
achieved by statically analyzing cycle dependencies.
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25. G. Gössler and G. Salaün. Realizability of Choreographies for Services Interacting
Asynchronously. In Proc. of FACS’11, volume 7253 of LNCS, pages 151–167.
Springer, 2011.



18 Lakhdar Akroun, Gwen Salaün, and Lina Ye

26. M. G. Gouda, E. G. Manning, and Y.-T. Yu. On the Progress of Communications
between Two Finite State Machines. Information and Control, 63(3):200–216,
1984.
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