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Gradient Discretization of Hybrid Dimensional
Darcy Flows in Fractured Porous Media

K. Brenner, M. Groza, C. Guichard, G. Lebeau, R. Masson

Abstract This article deals with the discretization of hybrid dimensional model of
Darcy flow in fractured porous media. These models couple the flow in the frac-
tures represented as the surfaces of codimension one with the flow in the surround-
ing matrix. The convergence analysis is carried out in the framework of Gradient
schemes which accounts for a large family of conforming and nonconforming dis-
cretizations. The Vertex Approximate Gradient (VAG) scheme and the Hybrid Finite
Volume (HFV) scheme are applied to such models and are shown to verify the Gra-
dient scheme framework. Our theoretical results are confirmed by a few numerical
experiments performed both on tetrahedral and hexahedral meshes in heterogeneous
isotropic and anisotropic media.

1 Hybrid Dimensional Darcy Flow in Fractured Porous Media

Let Ω denote a bounded polyhedral domain of Rd , d = 2,3. We consider the asymp-
totic model introduced in [1] where fractures are represented as interfaces of codi-
mension 1. Let Γ =

⋃
i∈I Γ i denotes the network of fractures Γi ⊂Ω , i ∈ I, such that

each Γi is a planar polygonal simply connected open domain. It is assumed that the
angles of Γi are strictly lower than 2π and that Γi∩Γj = /0 for all i 6= j. For all i∈ I, let
us set Σi = ∂Γi, Σi, j = Σi∩Σ j, j ∈ I, Σi,0 = Σi∩∂Ω , Σi,N = Σi\(

⋃
j∈I Σi, j∪Σi,0), and

Σ =
⋃

(i, j)∈I×I,i6= j Σi, j. It is assumed that Σi,0 =Γ i∩∂Ω , and that
⋃

i∈I Γi =Γ \Σ . We
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Fig. 1 Example of a 2D
domain with 3 intersecting
fractures and 2 connected
components.

will denote by dτ(x) the d−1 dimensional Lebesgue measure on Γ . Let H1(Γ ) de-
note the set of functions v= (vi)i∈I such that vi ∈H1(Γi), i∈ I with continuous traces
at the fracture intersections, and endowed with the norm ‖v‖2

H1(Γ )
= ∑i∈I ‖vi‖2

H1(Γi)
.

Its subspace with vanishing traces on Σ0 =
⋃

i∈I Σi,0 is denoted by H1
Σ0
(Γ ). The gra-

dient operator from H1(Ω) to L2(Ω)d is denoted by ∇, and the tangential gradient
from H1(Γ ) to L2(Γ )d−1 by ∇τ . Let us also consider the trace operator γ from
H1(Ω) to L2(Γ ). The function spaces used in the variational formulation of the
hybrid dimensional Darcy flow model are defined by

V = {v ∈H1(Ω), γv ∈H1(Γ )}, and its subspace V0 = {v ∈H1
0 (Ω), γv ∈H1

Σ0
(Γ )}.

The space V0 is endowed with the norm ‖v‖2
V0

= ‖∇v‖2
L2(Ω)d +‖∇τ γv‖2

L2(Γ )d−1 and

the space V with the norm ‖v‖2
V = ‖v‖2

V0
+‖v‖2

L2(Ω)
. Let Ωα ,α ∈ Ξ denote the con-

nected components of Ω \Γ , and let us define the space Hdiv(Ω \Γ ) = {qm =
(qm,α)α∈Ξ |qm,α ∈ Hdiv(Ωα)}. For all i ∈ I, we can define the two sides ± of
the fracture Γi and the corresponding unit normal vector n±i at Γi outward to the
sides ±. For all qm ∈ Hdiv(Ω \Γ ), let q±m · n±i |Γi denote the two normal traces at

the fracture Γi and let us define the jump operator Hdiv(Ω \Γ )→
(
H1/2

00 (Γi)
)′ by

[[qm ·ni]] = q+
m ·n+i |Γi +q−m ·n−i |Γi . For all fractures Γi, i∈ I, we denote by nΣi the unit

vector normal to Σi outward to Γi.

Hybrid Dimensional Darcy Flow Model: In the matrix domain Ω \Γ (resp. in
the fracture network Γ ), let us denote by Λm(x) (resp. Λ f (x)) the permeability
tensor. We also denote by d f (x),x ∈ Γ the width of the fractures, and by dτ f (x)
the weighted Lebesgue d − 1 dimensional measure on Γ defined by dτ f (x) =
d f (x)dτ(x). We consider the source terms hm ∈ L2(Ω) (resp. h f ∈ L2(Γ )) in the
matrix domain Ω \Γ (resp. in the fracture network Γ ). The strong formulation of
the model amounts to find u ∈V0, (qm,q f ) ∈W (Ω ,Γ ) such that

div(qm,α) = hm on Ωα ,α ∈ Ξ ,
qm,α =−Λm∇u on Ωα ,α ∈ Ξ ,

divτ(q f ,i)− [[qm ·ni]] = d f h f on Γi, i ∈ I,
q f ,i =−d f Λ f ∇τ γu on Γi, i ∈ I,

(1)
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where the function space W (Ω ,Γ ) is defined by

W (Ω ,Γ ) = { qm = (qm,α)α∈Ξ ,q f = (q f ,i)i∈I |qm ∈ Hdiv(Ω \Γ ),

q f ,i ∈ L2(Γi)
d−1,r f ,i = divτ(q f ,i)− [[qm ·ni]] ∈ L2(Γi), i ∈ I,

∑
α∈Ξ

∫
Ωα

(qm,α ·∇v+div(qm,α)v)dx

+∑
i∈I

∫
Γi

(q f ,i ·∇τ γv+ r f ,iγv)dτ = 0 for all v ∈V0}.

The last condition corresponds to impose in a weak sense that ∑i∈I q f ,i ·nΣi = 0 on
Σ and q f ,i ·nΣi = 0 on Σi,N , i ∈ I.

In variational form, (1) amounts to find u ∈V0 such that for all v ∈V0:
∫

Ω

Λm(x)∇u(x) ·∇v(x)dx+
∫

Γ

Λ f (x)∇τ γu(x) ·∇τ γv(x)dτ f (x)

−
∫

Ω

hm(x)v(x)dx−
∫

Γ

h f (x)γv(x)dτ f (x) = 0.
(2)

Proposition 1. From the Lax-Milgram theorem, the variational problem (2) has a
unique solution u ∈V0 which satisfies the a priori estimate
‖u‖V ≤C

(
‖hm‖L2(Ω)+‖h f ‖L2(Γ )

)
, with C depending only on Ω , Γ , Λm, Λ f , d f .

In addition (qm =−Λm∇u,q f =−d f Λ f ∇τ γu) belongs to W (Ω ,Γ ).

2 Gradient Discretization

A gradient discretization D of (2) is defined by a vector space of degrees of freedom
XD , its subspace associated with homogeneous Dirichlet boundary conditions X0

D ,
and the following set of linear operators:

• Gradient operator on the matrix domain: ∇Dm : XD → L2(Ω)d

• Gradient operator on the fracture network: ∇D f : XD → L2(Γ )d−1

• A function reconstruction operator on the matrix domain: ΠDm : XD → L2(Ω)
• A function reconstruction operator on the fracture network: ΠD f : XD → L2(Γ ).

XD is endowed with the semi-norm ‖vD‖2
D = ‖∇DmvD‖2

L2(Ω)d + ‖∇D f vD‖2
L2(Γ )d−1

which is assumed to define a norm on X0
D . Next, we define the coercivity, consis-

tency, limit conformity and compactness properties of the gradient discretization.

Coercivity: There exists CD ≥ 0 such that for all v ∈ X0
D one has

‖ΠDmvD‖L2(Ω)+‖ΠD f vD‖L2(Γ ) ≤CD‖vD‖D .

Consistency: Let u ∈V0, and let us define
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SD (u) = infvD∈X0
D

(
‖∇DmvD −∇u‖L2(Ω)d +‖∇D f vD −∇τ γu‖L2(Γ )d−1

+ ‖ΠDmvD −u‖L2(Ω)+‖ΠD f vD − γu‖L2(Γ )

)
Then, a sequence of gradient discretizations (D l)l∈N is said to be consistent if for
all u ∈V0 one has liml→+∞ SD l (u) = 0.

Limit Conformity: For all (qm,q f ) ∈W (Ω ,Γ ), we define

WD (qm,q f ) = sup
06=vD∈X0

D

1
‖vD‖D

(
∑

α∈Ξ

∫
Ωα

(∇DmvD ·qm,α +(ΠDm vD )div(qm,α))(x)dx

+ ∑
i∈I

∫
Γi

(∇D f vD ·q f +ΠD f vD (divτi(q f ,i)− [[qm ·ni]]))(x)dτ(x)
)
.

(3)
Then, a sequence of gradient discretizations (D l)l∈N is said to be limit conforming
if for all (qm,q f ) ∈W (Ω ,Γ ) one has liml→+∞ WD l (qm,q f ) = 0.

Compactness: A sequence of gradient discretizations (D l)l∈N is said to be compact
if for all sequences vD l ∈ X0

D l , l ∈ N such that there exists C > 0 with ‖vD l‖D l ≤C
for all l ∈ N, then there exist um ∈ L2(Ω) and u f ∈ L2(Γ ) with

lim
l→+∞

‖ΠD l
m

vD l −um‖L2(Ω) = 0 and lim
l→+∞

‖ΠD l
f
vD l −u f ‖L2(Γ ) = 0.

The discretization of (2) using the Gradient Scheme framework is defined by:
find u ∈ X0

D such that for all vD ∈ X0
D :

∫
Ω

Λm(x)∇DmuD (x) ·∇DmvD (x)dx+
∫

Γ

Λ f (x)∇D f uD (x) ·∇D f vD (x)dτ f (x)

−
∫

Ω

hm(x)ΠDmvD (x)dx−
∫

Γ

h f (x)ΠD f vD (x)dτ f (x) = 0.
(4)

Proposition 2. Let D be a gradient discretization of (2) assumed to be coercive.
Then (4) has a unique solution uD ∈ X0

D satisfying the a priori estimate ‖uD‖D ≤
C
(
‖hm‖L2(Ω)+‖h f ‖L2(Γ )

)
with C depending only on CD , Λm, Λ f , d f .

Proposition 3. Error Estimates. Let u ∈ V0, (qm,q f ) ∈W (Ω ,Γ ) be the solution
of (2). Let D be a gradient discretization of (2) assumed to be coercive, and let
uD ∈ X0

D be the solution of (4). Then, there exist C1,C2,C3,C4 depending only on
CD , Λm, Λ f , d f such that one has the following error estimates:{
‖∇u−∇DmuD‖L2(Ω)d +‖∇τ γu−∇D f uD‖L2(Γ )d−1 ≤C1SD (u)+C2W (qm,q f ),

‖ΠDmuD −u‖L2(Ω)+‖ΠD f uD − γu‖L2(Γ ) ≤C3SD (u)+C4W (qm,q f ).
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3 Two Examples of Gradient Discretizations of Hybrid
Dimensional Models

In the spirit of [3], we consider generalized polyhedral meshes of Ω . Let M be the
set of cells that are disjoint open polyhedral subsets of Ω such that

⋃
K∈M K = Ω .

For all K ∈M , xK denotes the so-called “centre” of the cell K under the assump-
tion that K is star-shaped with respect to xK . We then denote by FK the set of
interfaces of non zero d− 1 dimensional measure among the interior faces K ∩L,
L ∈M , and the boundary interface K∩∂Ω , which possibly splits in several bound-
ary faces. Let us denote by F =

⋃
K∈M FK the set of all faces of the mesh. The

term “generalized polyhedral mesh” means that the faces are not assumed to be
planar. For σ ∈ F , let Eσ be the set of interfaces of non zero d− 2 dimensional
measure among the interfaces σ ∩σ ′, σ ′ ∈F . Then, we denote by E =

⋃
σ∈F Eσ

the set of all edges of the mesh. Let Vσ =
⋃

e,e′∈Eσ ,e 6=e′
(
e∩ e′

)
be the set of ver-

tices of σ , for each K ∈M we define VK =
⋃

σ∈FK
Vσ , and we also denote by

V =
⋃

K∈M VK the set of all vertices of the mesh. It is then assumed that for each
face σ ∈F , there exists a so-called “centre” of the face xσ ∈ σ \

⋃
e∈Eσ

e such that
xσ = ∑s∈Vσ

βσ ,s xs, with ∑s∈Vσ
βσ ,s = 1, and βσ ,s ≥ 0 for all s ∈ Vσ ; moreover the

face σ is assumed to match with the union of the triangles Tσ ,e defined by the face
centre xσ and each edge e ∈ Eσ . The mesh is also supposed to be conforming w.r.t.
the fracture network Γ in the sense that for all i ∈ I there exist the subsets FΓi of F
such that Γ i =

⋃
σ∈FΓi

σ . We will denote by FΓ the set of fracture faces
⋃

i∈I FΓi .
The discretization of the hybrid dimensional Darcy flow model with continuous
pressures has been the object of several works such as [6] using a cell centred
MultiPoint Flux Approximation scheme, [1] using a Mixed Finite Element (MFE)
method, and [5] using a Control Volume Finite Element Method (CVFE). The MFE
method, as well as some CVFE and MPFA schemes on e.g. tetrahedral meshes can
be shown to be gradient discretizations. In the following we propose to apply the
VAG and HFV schemes.
Vertex Approximate Gradient Discretization: The VAG discretization has been
introduced in [3] for diffusive problems on heterogeneous anisotropic media. Its
extension to the hybrid dimensional two-phase Darcy flow model is presented in
[2]. The scheme is based on the following vector space of degrees of freedom:

XD = {uK ,us,uσ ∈ R for all K ∈M ,s ∈ V ,σ ∈FΓ },

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω : X0
D =

{u ∈ XD |us = 0 for s ∈ Vext} where Vext = V ∩ ∂Ω denotes the set of boundary
vertices, and Vint = V \Vext denotes the set of interior vertices.

The discrete gradients in the matrix and in the fracture are defined as the usual
gradient operators on the conforming space of continuous affine finite elements built
upon a tetrahedral sub-mesh. In addition, the VAG discretization uses two non con-
forming piecewise constant reconstructions of functions from XD into respectively
L2(Ω) and L2(Γ ). In the matrix, it is such that πDmu(x)|ωm,ν = uν where the ωm,ν

for ν ∈M ∪Vint ∪FΓ are neighbourhoods of xν defining a partition of Ω . In the



6 K. Brenner, M. Groza, C. Guichard, G. Lebeau, R. Masson

fractures, it is such that πD f u(x)|ω f ,ν = uν where the ω f ,ν for ν ∈ (VΓ ∩Vint)∪FΓ

are neighbourhoods of xν defining a partition of Γ .

Hybrid Finite Volume Discretization: The Hybrid Finite Volume (HFV) scheme
introduced in [4] can be extended to the hybrid dimensional Darcy flow model as
follows. The faces σ ∈ F are assumed to be planar and xσ is assumed to be the
centre of gravity of the face σ . We also denote by xe the centre of the edge e ∈ E .
Let Fint ⊂ F (resp. Eint ⊂ E ) denote the subset of interior faces (resp. interior
edges). The vector space of degrees of freedom XD is defined by

XD = {uK ,uσ ,ue ∈ R for all K ∈M ,σ ∈F ,e ∈ EΓ },

where EΓ ⊂ E denotes the subset of edges of Γ , and its subspace X0
D is such that

uσ = 0 for all σ ∈F \Fint and ue = 0 for all e ∈ EΓ \Eint . For each cell K and u ∈
XD , let us define ∇Ku= 1

|K| ∑σ∈FK |σ |(uσ−uK)nK,σ , where |K| is the volume of the
cell K, |σ | is the surface of the face σ , and nK,σ is the unit normal vector of the face
σ ∈FK outward to the cell K. The discrete gradient ∇Ku is stabilized using ∇K,σ u=

∇Ku+RK,σ (u)nK,σ , σ ∈FK , with RK,σ (u)=
√

d
dK,σ

(
uσ−uK−∇Ku ·(xK−xσ )

)
, and

dK,σ = nK,σ · (xσ −xK) which leads to the definition of the matrix discrete gradient
∇Dmu(x) = ∇K,σ u on Kσ for all K ∈M ,σ ∈FK , where Kσ is the cone joining the
face σ to the cell centre xK . The fracture discrete gradient is defined similarly by
∇D f u(x) = ∇σ ,eu on σe for all σ ∈FΓ ,e ∈ Eσ , with ∇σ ,eu = ∇σ u+Rσ ,e(u)nσ ,e,

and ∇σ u = 1
|σ | ∑e∈Eσ

|e|(ue−uσ )nσ ,e,Rσ ,e(u) =
√

d−1
dσ ,e

(
ue−uσ −∇σ u · (xσ −xe)

)
,

where nσ ,e is the unit normal vector to the edge e in the tangent plane of the face
σ and outward to the face σ , dσ ,e = nσ ,e · (xe − xσ ), and σe is the triangle of
base e and vertex xσ . The function reconstruction operators are piecewise constant
on a partition of the cells and of the fracture faces. These partitions are respec-
tively denoted, for all K ∈M , by K = ωK ∪

(⋃
σ∈FK∩Fint

ωK,σ

)
, and, for all

σ ∈FΓ , by σ = Σσ ∪
(⋃

e∈Eσ∩Eint
Σσ ,e

)
. Then, the function reconstruction op-

erators are defined by ΠDmu(x) =
{

uK for all x ∈ ωK , K ∈M ,
uσ for all x ∈ ωK,σ , σ ∈FK ∩Fint , K ∈M ,

and ΠD f u(x) =
{

uσ for all x ∈ Σσ , σ ∈FΓ ,
ue for all x ∈ Σσ ,e, e ∈ Eσ ∩Eint , σ ∈FΓ .

We can show the following proposition which can be proven using a lemma stat-
ing the density of smooth function subspaces in the spaces V , V0, and W (Ω ,Γ ).

Proposition 4. Let us consider a family of meshes M (m), m ∈ N as defined above.
It is assumed that the family of tetrahedral submeshes of M (m) is shape regular,
that the cardinal of VK is uniformly bounded for all K ∈M (m), and all m ∈ N, and
that the maximum diameter h(m) of the cells K ∈M (m) tends to zero with m→+∞.
In addition, in the case of the HFV scheme, the faces are assumed to be planar.
Then, the VAG and HFV discretizations are coercive, consistent, limit conforming
and compact gradient discretizations of the hybrid dimensional Darcy flow model.
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4 Numerical Experiments

Let Ω = (0,1)3 and consider the 2 planar fractures defined by x = 0.5 and y = 0.5
and splitting Ω into the four subdomains Ωα , α = 1, · · · ,4 corresponding respec-
tively to {x < 0.5,y < 0.5}, {x > 0.5,y < 0.5}, {x > 0.5,y > 0.5} and {x < 0.5,y >
0.5}. In the fractures, we set Λ f (x) = 100 I and d f (x) = 0.01. In the matrix, the per-
meability tensor Λm(x) is fixed to Λm,α on each subdomain Ωα , α = 1, · · · ,4 with
two choices of the subdomain permeabilities. The first choice considers isotropic
heterogeneous permeabilities setting Λm,α = λα I with λ1 = 1, λ2 = 0.1, λ3 = 0.01,
λ4 = 10. The second choice defines anisotropic heterogeneous permeabilities by

Λm,1 =

a1 b1 0
b1 c1 0
0 0 λ

 ,Λm,2 =

a2 0 b2
0 λ 0
b2 0 c2

 ,Λm,3 =

a3 b3 0
b3 c3 0
0 0 λ

 ,Λm,4 =

λ 0 0
0 a4 b4
0 b4 c4

 ,

with aα = cos2 βα +ω sin2
βα , bα =(1−ω)cosβα sinβα , cα =ω cos2 βα + sin2

βα ,
λ = 0.01, β1 = π

6 , β2 = −π

6 , β3 = 0, β4 = π

6 and ω = 0.01. For each subdomain
let us define t1(x) = y− x+ z, t2(x) = x+ y+ z− 1, t3(x) = x− y+ z and t4(x) =
1− x− y+ z. It can be checked that the function u(x) = ecos(tα (x)), x ∈ Ωα , α =
1, · · · ,4, belongs to V and is such that qm(x) =−Λm∇u(x), q f (x) =−d f Λ f ∇τ γu(x)
belongs to W (Ω ,Γ ). It will be used as exact solution of (1) with ad-hoc right hand
sides and Dirichlet boundary conditions on ∂Ω . For the numerical solutions, three
different families of meshes are considered: uniform Cartesian meshes, a random
perturbation of the previous Cartesian meshes, and tetrahedral meshes generated by
TetGen. To assess the error estimates of Proposition 3, we have computed the sum
of the relative L2 norms of the errors in the matrix and in the fractures, both for the
function and for the gradient reconstructions. As exhibited in Figure 2, the expected
first orders of convergence are obtained both for the function reconstructions and the
gradient reconstructions with observed superconvergence of order 2 for Cartesian
meshes. We note that the HFV scheme seems to be less robust than the VAG scheme
with respect to anisotropy. Also, as expected on tetrahedral meshes, the CPU time
of the computation of the HFV solution is much larger of a factor around 10 than the
CPU time obtained with the VAG scheme using for both schemes a GMRES solver
preconditioned by ILUT.
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matching grids. Computational Geosciences 16, 277–296 (2012)


