
HAL Id: hal-01316196
https://hal.inria.fr/hal-01316196

Submitted on 15 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Parallel solution of the wave equation using higher order
finite elements

Michel Kern, Séraphin Mefire

To cite this version:
Michel Kern, Séraphin Mefire. Parallel solution of the wave equation using higher order fi-
nite elements. Second MPI Developer’s Conference, 1996, Notre-Dame, United States. pp.5,
�10.1109/MPIDC.1996.534103�. �hal-01316196�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49383698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01316196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Parallel Solution of the Wave Equation
Using Higher Order Finite Elements

M. Kern, S. Mbouayouéou Méfire
INRIA, Domaine de Voluceau-Rocquencourt,
BP 105, F-78153 Le Chesnay Cédex, France

Michel.Kern@inria.fr

Abstract

We present a parallel solver for wave propagation prob-
lems based on the higher order explicit finite elements de-
veloped by Cohen et al. These elements were introduce to
allow mass-lumping while preserving high accuracy. Our
approach is based on a coarse grain, domain splitting par-
allelism, and uses the new MPI standard as message pass-
ing library. The program currently runs on a network of
workstations, on a Cray T3D, and on an IBM SP/2.

1. Introduction

The time domain simulation of wave propagation phe-
nomena is a computationally demanding task. The acous-
tic wave equation is the simplest such model and serves as
a useful benchmark for more realistic situations (elastody-
namics, or electromagnetism). This paper presents a paral-
lel simulation code for such phenomena. The initial imple-
mentation is for 2D acoustics, but of course the method is
general, and we are currently investigating more complex
models.

We use the higher order finite elements developed by Co-
hen et al. in [3]. These elements were designed to give
a diagonal mass matrix, thus enabling an explicit solution,
while retaining high accuracy. They are based on a mod-
ification of the classical P� and P� elements, and are de-
scribed briefly in section2.1. We also recall how the mod-
ified equation technique leads to higher order methods in
time. As the resulting method is explicit, it lends itself very
naturally to a parallel implementation. We have chosen
a coarse grain, domain splitting approach, using message
passing, as this is known to be the most portable approach,
likely to give the best efficiency on a wide range of parallel
computers. Our implementation is detailed in section 3, and
we present numerical results in section4.

2. Discretization of the wave equation

2.1. Finite element spaces with mass lumping

When solving wave propagation problems with finite dif-
ferences, it is usual to employ explicit methods because the
time steps are dictated more by accuracy than by stability
constraints. One wants to do the same when solving with fi-
nite elements. However, except for the lowest order (P1)
elements, the mass matrix will not be diagonal, and one
would still have to solve a linear system at each time step.
This makes the method unacceptably costly, and has led Co-
hen et al. [3] to design a new family of finite elements, with
the goal of achieving high accuracy, while keeping the mass
matrix diagonal. This is done by modifying the classical fi-
nite element space (adding new degrees of freedom), so that
quadrature formulas with positive weights can be found.
Positive weights are essential for preserving the stability of
the scheme. We describe the new elements, referring the
reader to [3] or [12] for the details of the construction.

Making the mass matrix diagonal simply means that the
nodes of the quadrature formula have to be the degrees of
freedom of the element. In order to retain sufficient accu-
racy, the quadrature formula must be exact for some poly-
nomial space, whose exact degree has can be found in the
above reference (the result is due to Ciarlet). Last, as we
said above, the weights of the quadrature formula must be
positive. It turns out that these constraints cannot all be met
simultaneously for the classical P� and P� spaces (a unique
quadrature formula with the right degree can be found in
each case, but have either zero, or negative weights).

For P�, the new polynomial space is �P� � P�� b, where
b � ������ is a “bubble” function. The additional degree
of freedom is the function value at the center of mass of the
element. The quadrature formula is simply Simpson's rule.
We show the degrees of freedom of the element on figure 1

For P�, the degrees of freedom are the values of the func-
tion at:



G
M3

M2
S3S1

S2

M1

Figure 1. Degrees of freedom of the �P� ele-
ment

� the three vertices;

� two points on each side, at a distance� from the vertex,

� three interior points, with barycentric coordinates
��� ��� ����� ��� ����� (up to a circular permuta-
tion).

(� and � are parameters whose values can be found in the
above references). The polynomial space is �P� � P� � bP�
(of dimension 12). The basis functions at the three interior
points are bubble type functions. It can be checked that the
set of nodes is �P� unisolvent, and that a (unique) quadrature
formula with positive weights can be found, which uniquely
determines � and �. The degrees of freedom for this ele-
ment are shown on figure 2

It is proved in [12] that one gets error estimates propor-
tional to h� for P� elements, and to h� (resp. h�) for �P�
(resp. �P�) elements.

2.2. Time discretization

The finite element spaces described above are coupled to
a time stepping scheme to obtain a fully discrete solution.
We first use the classical, second order accurate, leap-frog
scheme:

M
un� �� �un � un��

�t�
�Kun � fn (1)

whereM is the mass matrix (which is diagonal, thank to the
choices we made above), and K is the stiffness matrix. This
scheme is centered, explicit, second-order accurate in time,

1 3

2

3113

12

21 23

32

G

GG

M

M

M

M

M

M

S3S1

S2

Figure 2. Degrees of freedom of the �P� ele-
ment

and conditionally stable, with a CFL condition c�t�h �

��. The value of �� is given in [3].
This has the drawback that the the accuracy order in the

space variables is effectively reduced to 2. It is thus useful
to employ a fourth order accurate scheme in time. In order
to obtain an explicit scheme, we follow [2] and derive the
scheme via the modified equation technique. The scheme
thus obtained is fourth order in time, still explicit, and sub-
ject to a CFL condition slightly more restrictive than for the
second order scheme. For details, see [3]. Note that the
cost of the fourth order scheme is double that of the second
order scheme, which will hopefully be offset by the larger
time steps one may use.

3. A parallel implementation

Based on these techniques, we have written a parallel
simulation code for the 2D acoustic wave equation. Paral-
lelism is based on a domain splitting approach (with non-
overlapping domains), and keeps the explicit nature of the
scheme. This corresponds to the fully explicit treatment
given by Quarteroni [9]. Each processor handles one sub-
domain. At every time step, all processors update their
interior nodes (in parallel), then exchange interface nodes
with their neighbors. In contrast to domain decomposi-
tion methods for elliptic problems, our procedure is alge-
braically equivalent to the sequential one.

A different strategy (introduced in [8] would be to use
overlapping subdomains, and to take advantage of the hy-
perbolic nature of the problem by introducing a partition of
unity, thus decomposing the initial condition in 2 functions



with disjoint support. Because of the finite speed of prop-
agation, the solutions in the 2 subdomains remain disjoint
for some time. Thus communication occurs infrequently.
A major drawback of this scheme is that overlapping will
entail a major memory penalty, especially for 3D problems.
This has detered us from using this method.

Our strategy leads naturally to a message passing imple-
mentation. We have chosen to use the MPI [5] in order to
evaluate its ease of use and expressiveness, and also to ben-
efit from its portability.

Contrary to our initial fears, we found MPI rather easy
to learn (at least as far as basic features are concerned). The
book by Gropp et al. [7] was most useful.

In the finite element context, the most useful feature are
the derived data-types. The indices of the nodes to be ex-
changed at each time steps are spread over the whole in-
dex set. Thus a indexed data-type is the natural way to ac-
cess these elements. Unfortunately, this only works on the
sender side. On the receiver side, we had to use a sepa-
rate buffer, and add the elements by hand to their proper
location. This is because MPI does not have a scatter-add
function, an observation that has already been made (e.g. by
Smith [10]).

Since this was easy to implement, we also used non-
blocking receives: at the beginning of each time step, each
node posts its receives, updates all of its node from local
information, then sends the interface nodes to its neighbors,
and waits on its receives. We were not able to quantitatively
evaluate the usefulness of this approach, but we felt it could
provide an advantage over simple “compute, send, receive”
using blocking receives, and it was just as easy to program.

One feature we did not use, but which could probably
make the code somewhat simpler (and maybe give some
more efficiency) are persistent requests. Since we keep a
fixed mesh, the nodes to be exchanged at each time step are
the same. It would thus be possible to predefine all the send
and receive requests, and simply start them (and wait for
them) at each time step.

Finally, most of the results we report below were ob-
tained with the ANL-MSU MPICH implementation [4].
Thus we can testify to the portability of this particular im-
plementation. On the other hand we were able to run the
code with IBM MPI-F [6] implementation. Of course, we
could not then benefit from MPE extensions. Apart from
this (obvious) point, no changes were necessary.

4. Numerical results

4.1. Code development, pre and post processing

The code has been developped and tested on a network of
Digital Alpha workstations (this is yet another nice feature
of MPI), and then ported to a Cray T3D and an IBM SP/2.

We used pre- and post-processing tools from the Mod-
ulef group. Modulef is an extensive finite element library(
see [1]), but we used only the mesh generation, mesh de-
composer and visualization modules. We comment briefly
on the last two, as they were key points in the project. The
decomp mesh decomposer [11] is somewhat unusual in
that it is based on clustering techniques from data analy-
sis, and not from a spectral or or greedy technique. Though
we have no comparison with other methods, this technique
has proved to give balanced sub-domains in several appli-
cations.It is also worth noting that figure 3 was produced
with the visu program. This visualisation program has the
useful feature to have a Fortran interpretor embedded, thus
giving it almost limitless flexibility.

4.2. A simple example

The model we use is the homogeneous unit square, ex-
cited by a Ricker wavelet (a quasi point source, with a time
dependence the second derivative of a Gaussian function).
The experiment is the equivalent of dropping a stone at the
center of a square pond. Figure 3 shows a snapshot obtained
on 16 processors

Figure 3. A snapshot on 16 processors

We also show on figure4 an graph obtained with the
upshot performance evaluation tool. This was done on the
local network of workstations. As is clear from the figure,
one of the nodes was twice as fast as the others. Although
a workstations network is nice during code development, it



is very hard to time runs reliably. All the performance data
we report below were obtained on supercomputers.

Figure 4. Visualizing an upshot log on 8 pro-
cessors

4.3. Performance

In this section we give some performance data on 2 dif-
ferent parallel computers.

We ran the code on a T3D at CEA-CENG, and on an
IBM SP/2 at CNUSC. We used the same model problem
as in the previous section, with 2 different mesh resolution:
the coarse mesh is a 	
� 	
 subdivision of the unit square,
leading to 30241 degrees of freedom (we use �P� elements
throughout. This is a relatively small problem. The fine
mesh is twice as large: a 

 � 

 subdivision of the unit
square, leading to 125441 degrees of freedom. This is still
not a large problem.

We also have two versions of the code, and could un-
fortunately not run all of the experiments with the same
version. Version 1 was an attempt at using an unassem-
bled stiffness matrix, thus using very little memory. This
was found to use too much time, and we switched to an as-
sembled stiffness matrix. This is referred to as version 2.
Basically, all IBM results pertain to version 1, and all Cray
results pertain to version 2. This has the unfortunate effect
of making comparison between machines impossible, but
this was not the goal of this paper anyway. Several good
benchmarks have been published to this effect. Let us just
mention that in the few cases where we ran the same code
on both machines, the SP/2 appeared to be about 60% faster
than the T3D.

We show on table1results for version 1 of the code, on
the IBM SP/2 (first for the coarse mesh, then for the fine
mesh). The times are time per time step (since the mesh is
refined for the second part of the table, the time step was
also divided by 2).

We also show on table 2 the corresponding measure-
ments on the T3D (for version 2 of the code, with again

Nb CPUS 1 2 4 8 16
Time (s) 1.37 0.7 0.37 0.25
Speedup 1 1.96 3.70 5.48

Efficiency 1 0.98 0.93 0.69
Average # DOFs 30200 15200 7800 3800

Time (s) 5.57 2.8 1.43 0.7 0.44
Speedup 1 1.99 3.90 7.95 12.8

Efficiency 1 0.99 0.98 0.99 0.80
Average # DOFs 125000 62800 31900 15800 7900

Table 1. Speedup and efficiency on a SP/2,

coarse mesh first, then fine mesh, and times are per time
step):

Nb CPUS 1 2 4 8 16
Time (s) 0.44 0.24 0.14 0.08
Speedup 1 1.86 3.23 5.68

Efficiency 1 0.93 0.81 0.71

Time (s) 0.93 0.51 0.27 0.14 0.08
Speedup 1 1.83 3.50 6.72 12.2

Efficiency 1 0.91 0.88 0.84 0.77

Table 2. Speedup and efficiency on a T3D

These results call for several comments.

� For version one of the code, one finds that the times for
fine mesh are about 4 times as large as for the coarse
mesh. This makes sense, since we have 4 times as
many elements, and the stiffness matrix is unassem-
bled. This is no longer true for version 2, where a time
step takes about twice as long, even though the matrix
has 4 times as many nonzeros for the fine mesh. It is
not quite clear why this is so.

� As far as scalability is concerned, the observed results
agree with the usual expectations: for each problem
size, there will be a maximum number of processors
that can be profitably utilized. For the smaller problem
size, this number is somewhere between 4 and 8, and
for the larger size it is between 8 and 16.

� It seems that when one keeps the number of degrees of
freedom per processor constant, the time per time step
decreases with increasing number of processors

5. Conclusions

We have implemented a parallel solver for the acoustic
wave equation, using the MPI standard. This code runs on



several massively parallel computers. For small models, rel-
atively good efficiency can be attained on a few processors.

There remains to run larger models, in order to attempt
a scalability analysis. However, we believe that realistic
models for the 2D wave equations will not be large enough
for this task (from another point of view, the sizes needed
for this study will be much too large for what is usually
done in acoustics modeling). For this reason, we are now
extending the code to handle more realistic problems, such
as a 2.5D elastic wave simulator.

Acknowledgments

Time on the T3D was provided by the CEA-CENG
(Grenoble, France) via the Rapid network, and time on the
SP/2 was courtesy of CNUSC (Montpellier France).

References

[1] M. Bernadou, P.-L. George, P. Joly, P. Laug, A. Perronet,
E. Saltel, D. Steer, G. Vanderborck, M. Vidrascu, and
A. Hassim. MODULEF: A Modular Library of Finite El-
ements. INRIA, 1986.

[2] G. Cohen and P. Joly. Fourth order schemes for the hetero-
geneous acoustics equation. Comp. Meth. in Appl. Mech.
Eng., 80:397–407, 1990.

[3] G. Cohen, P. Joly, and N. Tordjman. Higher order triangu-
lar finite elements with mass lumping for the wave equation.
In E. Bécache, G. Cohen, P. Joly, and J. E. Roberts, edi-
tors, Third International Conference on Mathematical and
Numerical Aspects of Wave Propagation, Philadelphia, PA,
1995. INRIA and SIAM, SIAM.

[4] N. Doss, W. Gropp, E. Lusk, and A. Skjellum. An initial
implementation if MPI. Technical report, ANL–MCS, 1993.

[5] M. P. I. Forum. MPI: A message passing interface standard.
Int. J. of Supercomputer Applications, 8, 1994.

[6] H. Franke, C. E. Wu, M. Riviere, P. Pattnaik, and M. Snir.
MPI programming environmentfor IBM SP/1 SP/2. In Pro-
ceedings of ICDCS, 1995.

[7] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. Scientific
and Engineering Computation Series. The MIT Press, 1994.

[8] J. C. Meza and W. W. Symes. Domain decomposition al-
gorithms for linear hyperbolic equations. Technical Report
87-20, Rice University, 1987.

[9] A. Quarteroni. Domain decomposition methods for wave
propagation problems. In D. E. Keyes, Y. Saad, and D. G.
Truhlar, editors, Domain-based Parallelism and Problem
Decomposition Methods in Computational Science and En-
gineering, pages 21–38. SIAM, 1995.

[10] B. Smith and L. C. McInnes. PETSc 2.0: A case study of
using mpi to develop numerical software libraries. In Pro-
ceedings of 1995 MPI Developers Conference, 1995.

[11] P. L. Tallec, E. Saltel, and M. Vidrascu. Solving large scale
structural problems on parallel computers using domain de-
composition techniques. In B. Topping and M.Papadrakakis,
editors, Advances in parallel and vector processing for

structural mechanics, pages 127–134, Athens, August 1994.
Civil-Comp Press.

[12] N. Tordjman. Eléments finis d'ordre élevé avec condensa-
tion de masse pour l'équation des ondes. PhD thesis, Uni-
versité Paris IX Dauphine, 1995.


