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Abstract: Heterogeneity is emerging as one of the most challenging characteristics of today’s
parallel environments. However, not many fully-featured advanced numerical, scientific libraries
have been ported on such architectures. In this paper, we propose to extend a sparse hybrid solver
for handling distributed memory heterogeneous platforms. As in the original solver, we perform
a domain decomposition and associate one subdomain with one MPI process. However, while
each subdomain was processed sequentially (binded onto a single CPU core) in the original solver,
the new solver instead relies on task-based local solvers, delegating tasks to available computing
units. We show that this “MPI+task” design conveniently allows for exploiting distributed memory
heterogeneous machines. Indeed, a subdomain can now be processed on multiple CPU cores (such
as a whole multicore processor or a subset of the available cores) possibly enhanced with GPUs.
We illustrate our discussion with the MaPHyS sparse hybrid solver relying on the PaStiX and
Chameleon dense and sparse direct libraries, respectively. Interestingly, this two-level MPI+task
design furthermore provides extra flexibility for controlling the number of subdomains, enhancing
the numerical stability of the considered hybrid method. While the rise of heterogeneous computing
has been strongly carried out by the theoretical community, this study aims at showing that
it is now also possible to build complex software layers on top of runtime systems to exploit
heterogeneous architectures.

Key-words: High Performance Computing (HPC); heterogeneous architectures; MPI; task-
based programming; runtime system; sparse hybrid solver; multicore; GPU.
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Un solveur linéaire en tâches sur machines hétérogènes à
mémoire distribuée

Résumé : L’hétérogénéité apparaît comme un challenge sur les calculateurs parallèles mod-
ernes. Aujourd’hui, peu de librairies scientifiques avec des fonctionnalités avancées ont été portées
sur de telles architectures. Dans ce travail, nous proposons d’étendre un solveur linéaire hybride
pour des machines hétérogènes à mémoire distribuée. Comme pour le solveur initial qui implante
une méthode de décomposition de domaine, nous associons chaque sous-domaine à un processus
MPI. Cependant, alors que le code initial “bindait” un sous-domaine à un cœur de calcul, le
nouveau solveur s’appuie sur un solveur local à base de tâches, qui délègue les tâches aux unités
de calcul via un moteur d’exécution. Nous montrons que le nouveau solveur “MPI+tâches” permt
l’utilisation de machines hétérogènes à mémoire distribuée. Dasn ce contexte, un sous-domaine
peut être traité par un multi-cœurs possiblement hétérogène. Nous illutrons notre propos avec
le solveur hybride MaPHyS qui utilise PaStiX et Chameleon pour les calculs creux et dense
d’algèbre linéaire.

Mots-clés : Calcul Haute performance (HPC); multi-GPUs; architectures hétérogènes; MPI;
modéle en tâches; support d’exécution; systèmes linéaires creux; solveur creux hybride; machine
multi-cœurs; GPU.
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1 Introduction

Parallel sparse linear algebra solvers are often the innermost numerical kernels in scientific and
engineering applications; consequently, they are one of the most time consuming parts. In
order to cope with the hierarchical hardware design of modern large-scale supercomputers, the
HPC solver community has proposed new sparse methods. One promising approach to high-
performance, scalable solution of large sparse linear systems in parallel scientific computing
is to combine direct and iterative methods. To achieve a high scalability, algebraic domain
decomposition methods are commonly employed to split a large size linear system into smaller
size linear systems that can be efficiently and concurrently handled by a sparse direct solver while
the solution along the interfaces is computed iteratively [40, 37, 22, 20]. Such an hybrid approach
exploits the advantages of both direct and iterative methods. The iterative component allows us
to use a small amount of memory and provides a natural way for parallelization. The direct part
provides its favorable numerical properties; furthermore, this combination provides opportunities
to exploit several levels of parallelism as we do in this paper. In this study we consider an actual
fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS1 [3]

Starting from a baseline MPI version of the considered hybrid solver, the objective of this
study is to propose a prototype extension for which each MPI process can handle heteregenous
processing units with a task-based approach, delegating the task management to a runtime
system. A preliminary experimental study asseses the potential of the approach.

This paper is organized as follows. Section 2 presents the solver considered in this study
and its baseline parellel design. Section 3 presents background on task-based linear algebra and
sparse hybrid solvers. Section 4 presents the design of the task-based extension proposed for our
sparse hybrid solver. Preliminary results are discussed in Section 5 while concluding remarks on
this work and perspectives are discussed in Section 6.

2 Baseline MPI hybrid (direct/iterative) solver

We now present the sparse hybrid (direct/iterative) method (Section 2.1) considered in this study
and its baseline parellel design (Section 2.2).

2.1 Method

Let Ax = b be the linear problem and G = {V,E} the adjacency graph associated with A. In
this graph, each vertex is associated with a row or column of the matrix A and it exists an edge
between the vertices i and j if the entry ai,j is non zero. In the sequel, to facilitate the exposure
and limit the notation we voluntarily mix a vertex of G with its index depending on the context
of the description. The governing idea behind substructuring or Schur complement methods is to
split the unknowns in two categories: interior and interface vertices. We assume that the vertices
of the graph G are partitioned into N disconnected subgraphs I1, ..., IN separated by the global
vertex separator Γ. We also decompose the vertex separator Γ into non-disjoint subsets Γi,
where Γi is the set of vertices in Γ that are connected to at least one vertex of Ii. Notice that
this decomposition is not a partition as Γi ∩ Γj 6= ∅ when the set of vertices in this intersection
defines the separator of Ii and Ij . By analogy with classical domain decomposition in a finite
element framework, Ωi = Ii ∪ Γi will be referred to as a subdomain with internal unknowns Ii
and interface unknowns Γi. If we denote I = ∪Ii and order vertices in I first, we obtain the

1https://project.inria.fr/maphys/
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4 Agullo et al.

following block reordered linear system(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)
=

(
bI
bΓ

)
(2.1)

where xΓ contains all unknowns associated with the separator and xI contains the unknowns
associated with the interiors. Because the interior vertices are only connected to either interior
vertices in the same subgraph or with vertices in the interface, the matrix AII has a block
diagonal structure, where each diagonal block corresponds to one subgraph Ii. Eliminating xI
from the second block row of Equation (2.1) leads to the reduced system

SxΓ = f (2.2)

where
S = AΓΓ −AΓIA−1

IIAIΓ and f = bΓ −AΓIA−1
IIbI . (2.3)

The matrix S is referred to as the Schur complement matrix. This reformulation leads to a
general strategy for solving (2.1). Specifically, an iterative method can be applied to solve (2.2).
Once xΓ is known, xI can be computed with one additional solve for the interior unknowns via

xI = A−1
II (bI −AIΓxΓ) .

We illustrate in Figure 1a all these notations for a decomposition into 4 subdomains. The local

0 cut edges

Ω

(a) Initial global graph.

Ω
1

Ω
2

Ω
3

Ω
4

Γ

(b) Graph subdomains. (c) Block reordered matrix.

Figure 1: Domain decomposition into four subdomains Ω1, . . . , Ω4. The initial domain Ω may
be algebraically represented with the graph G associated to the sparsity pattern of matrix A (a).
The local interiors I1, . . . , IN form a partition of the interior I = tIi (blue vertices in (b)).
They interact with each others through the interface Γ (red vertices in (b)). The block reordered
matrix (c) has a block diagonal structure for the variables associated with the interior AII .

interiors are disjoint and form a partition of the interior I = tIi (blue vertices in Figure 1b).
It is not necessarily the case for the boundaries. Indeed, two subdomains Ωi and Ωj may share
part of their interface (Γi

⋂
Γj 6= ∅), such as Ω1 and Ω2 in Figure 1b which share eleven vertices.

Altogether, the local boundaries form the overall interface Γ = ∪Γi (red vertices in Figure 1b),
which is not a disjoint union. Because interior vertices are only connected to vertices of their
subset (either on the interior or on the boundary), matrix AII associated to the interior has a
block diagonal structure, as shown in Figure 1a. Each diagonal block AIiIi corresponds to a
local interior.

While the Schur complement system is significantly smaller and better conditioned than the
original matrix A [34, Lemma 3.11], it is important to consider further preconditioning when
employing a Krylov method. We introduce the general form of the preconditioner considered

Inria
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in MaPHyS. The preconditioner presented below was originally proposed in [17] and success-
fully applied to large problems in real life applications in [21, 24, 35]. To describe the main
preconditioner in MaPHyS, considering the restriction operator RΓi

from Γ to Γi, we define
S̄i = RΓi

SRT
Γi
, that corresponds to the restriction of the Schur complement to the interface Γi.

If Ii is a fully connected subgraph of G, the matrix S̄i is dense.
With these notations the Additive Schwarz preconditioner reads

MAS =

N∑
i=1

RT
Γi
S̄i
−1RΓi

. (2.4)

2.2 Baseline MPI parallelization
With all these components, the classical parallel implementation of MaPHyS can be decomposed
into four main phases:

• the partitioning step consists of partitioning the adjacency graph G of A into several sub-
domains and distribute the Ai to different processes. For this we are able to use two
state-of-the-art partitioners, Scotch [36] and METIS [28];

• the factorization of the interiors and the computation of the local Schur complement fac-
torizes Ai with the PaStiX [25] or the Mumps [9] sparse direct solver and furthermore
provides the associated local Schur Complement Si thanks to recent progress from the
development teams of those sparse direct solvers;

• the setup of the preconditioner by assembling diagonal blocks of Si via a few neighbour to
neighbour communications and factorization of the dense local Si using Mkl;

• the solve step consists of two steps: a parallel preconditioned Krylov method performed on
the reduced system (Equation 2.2) to compute xΓi

where all BLAS operations are provided
by Mkl, followed by the back solve on the interior to compute xIi , done by the sparse
direct solver.

3 Related work
To cope with the complexity of modern architectures, programming paradigms are being re-
visited. Among others, one major trend consists in writing the algorithms in terms of task
graphs and delegating to a runtime system both the management of the data consistency and
the orchestration of the actual execution. This paradigm has been intensively studied in the
context of dense linear algebraand is now a common utility for related state-of-the-art libraries
such as Plasma [2], Magma [1], DPLASMA [14], Chameleon [4] and FLAME [39]. Dense
linear algebra algorithms were indeed excellent candidates for pioneering in this direction. First,
their computational pattern allows one to design very wide task graphs so that many computa-
tional units can execute tasks concurrently. Second, the building block operations they rely on,
essentially level-three Basic Linear Algebra Subroutines (BLAS), are compute intensive, which
makes it possible to split the work in relatively fine grain tasks while fully benefiting from GPU
acceleration. As a result, these algorithms are particularly easy to schedule in the sense that
state-of-the-art greedy scheduling algorithms may lead to high performance, including on plat-
forms accelerated with multiple GPUs [4].

This trend has then been followed for designing sparse direct methods. The extra challenge
in designing task-based sparse direct method is due to indirection and variable granularities of

RR n° 8913



6 Agullo et al.

the tasks. The PaStiX team has proposed such an extension of the solver capable of running
on the StarPU [11] and PaRSEC [15] runtime systems on cluster of heterogeneous nodes in the
context of X. Lacoste PhD thesis [29, 30]. In the meanwhile, the qr_mumps library developed
by A. Buttari [16] aims at solving sparse linear least square problems and has been ported on
top of those runtime systems in the context of F. Lopez PhD thesis [33, 6].

With the need of solving ever larger sparse linear systems while maintaining numerical ro-
bustness, multiple sparse hybrid variants have been proposed for computing the preconditioner
for the Schur complement. PDSLin [31], ShyLU [37] and Hips [19] first perform an exact2 fac-
torization of the interior of each subdomain concurrently. PDSLin and ShyLU then compute
the preconditioner with a two-fold approach. First, an approximation S̃ of the (global) Schur
complement S is computed. Second, this approximate Schur complement S̃ is factorized to form
the preconditioner for the Schur Complement system, which does not need to be formed ex-
plicitly. While PDSLin has multiple options for discarding values lower than some user-defined
thresholds at different steps of the computation of S̃, ShyLU [37] also implements a structure-
based approach for discarding values named probing and that was first proposed to approximate
interfaces in DDM [18]. Instead of following such a two-fold approach, Hips [19] forms the pre-
conditioner by computing a global ILU factorization based on the multi-level scheme formulation
from [26].

These sparse hybrid solvers have also been extended to cope with hierarchical supercomputers.
Indeed, to ensure numerical robustness while exploiting all the processors of a platform, an im-
portant effort has been devoted to propose two levels of parallelism for these solvers. Designed on
top of the SuperLU_DIST [32] distributed memory sparse direct solver, PDSLin implements
a 2-level MPI (MPI+MPI) approach with finely tuned intra- and inter-subdomain load balanc-
ing [40]. A similar MPI+MPI approach has been assessed for additive Schwarz preconditioning in
a prototype version of MaPHyS [23], relying on the Mumps [9, 10] and ScaLAPACK [13] sparse
direct and dense distributed memory solvers, respectively. On the contrary, expecting a higher
numerical robustness thanks to multi-level preconditioning, Hips associates multiple subdomains
to a single process and distributes the subdomains to the processes in order to maintain load
balancing [19]. Finally, especially tuned for modern multicore platforms, ShyLU implements a
2-level MPI+thread approach [37]. A similar 2-level MPI+thread design has been investigated
for MaPHyS in [35]. However, none of these extensions were tailored to exploit heterogeneous
architectures.

4 Design of task-based sparse hybrid linear solver for dis-
tributed memory heterogeneous architectures

Although very efficient for exploiting multiple modern multicore nodes, the relatively low-level
design of the 2-level parallelism sparse hybrid solvers discussed above cannot exploit heteroge-
neous architectures.

One solution for relieving this bottleneck would consist in fully abstracting the MPI scheme
of the solver in terms of a DAG of tasks where vertices represent fine grain tasks and edges
represent dependencies between them. Once the solver has been designed at such a high-level of
abstraction, advanced fine-grain mapping strategies can be implemented as the burden of moving
data in the system and ensuring their consistency is delegated to a runtime system. However,
such a design prevents from relying on SPMD paradigms. As a consequence, it requires to fully
rewrite the solver in terms of a DAG of tasks as illustrated in Figure 2a: the DAG representing

2There are also options for computing Incomplete LU (ILU) factorizations of the interiors but the related
descriptions are out the scope of this paper.

Inria
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(a) Full task-based paradigm. (b) MPI + task paradigm (this study).

Figure 2: Illustration of the execution of MaPHyS on four subdomains with two different task-
based paradigms on a platform composed of two nodes of eight cores and four GPUs per node

the whole numerical algorithm implemented in MaPHyS is written independently from the
hardware architecture (we represent it on top of the runtime system and of the MPI processes).
While there has been a lot of progress in that direction as discussed in Section 3 for dense
(such as the DPLASMA [14] and Chameleon [4] task-based libraries, derived from Plasma [2]
and Magma [1]) and sparse direct methods (such as the task-based version of PaStiX [29]
and qrm_StarPU [5]), only limited work we are aware of has been devoted to study task-based
Krylov methods, the third numerical pillar on top of which hybrid solvers are built on. Indeed, a
task-based version of the CG algorithm for platforms equipped with several GPUs was proposed
in [7] and a fault-tolerant task-based version of this algorithm was proposed in [27], but none of
them could exploit distributed memory platforms.

A second solution would consist in relying on the modular design of the hybrid solver to
use appropriate libraries depending on the target architecture leading to a collection of MPI+X,
MPI+Y, . . . solutions to support X, Y, . . . architectures respectively.

In this paper, we propose to combine both solutions with a MPI+task approach in order to
benefit from the high-level modular design of the hybrid solver and abstract the architecture
with task-based local sparse and direct solvers which delegate the orchestration of the execution
of the tasks within computational nodes to a runtime system. With such MPI+task approach,
it is not only elegant to support X, Y, . . . architectures in a consistent fashion, but also possible
to exploit heterogeneous { X + Y} distributed memory architectures. Figure 2b illustrates the
proposed design.

4.1 Overall design of the MPI+task extension of MaPHyS

In this section we explain how to create an MPI+task design of the MaPHyS solver. As illus-
trated in Figure 2b, this latter approach aims at abstracting the hardware architecture relying on
task-based programming and delegating the orchestration of the task within computational nodes
to a runtime system. However, contrary to the full task-based abstraction depicted in Figure 2a,
each MPI process explicitly handles a DAG representing the numerical algorithm implemented
in one MaPHyS subdomain. The MPI communications between subdomains are furthermore
handled explicitly by MaPHyS (and not delegated to the task-based runtime system).

The goal of this preliminary study is to show the feasibility of the approach. To do so, we
considered the baseline MPI version of MaPHyS and exploited the modular software architecture

RR n° 8913



8 Agullo et al.

to substitute the multithreaded kernels with task-based versions of these kernels. We restricted
our scope to the Symmetric Positive Definite (SPD) case.

In this paper we focus on the compute intensive numerical steps occurring after the parti-
tioning step. Indeed, this stage is a symbolic pre-processing step; furthermore, to the best of our
knowledge, none of the partitioners have yet been implemented on top of a runtime system:

• For the factorization of the interiors, we are relying on the task-based version of PaStiX
proposed in X. Lacoste thesis [29] for which we further designed a task-based Schur com-
plement functionality thanks to the support of the PaStiX development team.

• For the setup of the preconditioner, we use the task-based dense Cholesky solver from the
Chameleon [4] library 3.

• For the solve step, the application of the preconditioner is performed by the Chameleon
library and other operations involved in the iterative solution step such as level-one BLAS
and matrix-vector product are executed with the multithreaded Mkl library.

All in all, we use task-based sparse (PaStiX) and dense (Chameleon) direct solvers, both
of them expressed through the StarPU task-based runtime system that we now present.

4.2 The StarPU task-based runtime system

In the last decade, a large variety of task-based runtime systems have been developed. The
most common strategy for the parallelization of task-based algorithms consists in traversing
the DAG sequentially and submitting the tasks, as discovered, to the runtime system using a
non blocking function call. The dependencies between tasks are automatically inferred by the
runtime system through a data dependency analysis [8] and the actual execution of the task is
then postponed to the moment when all its dependencies are satisfied. This programming model
is known as a Sequential Task Flow (STF) model as it fully relies on sequential consistency
for the dependency detection. This paradigm is also sometimes referred to as superscalar since
it mimics the functioning of superscalar processors where instructions are issued sequentially
from a single stream but can actually be executed in a different order and, possibly, in parallel
depending on their mutual dependencies. The popularity of this model encouraged the OpenMP
board to include it in the standard 4.0: the task construct was extended with the depend
clause which enables the OpenMP runtime to automatically detect dependencies among tasks
and consequently schedule them. Note that the abstract model that support this mechanism
has been widely used before the inclusion in the standard. Among other, the StarSs [12] and
StarPU [11] runtime systems have certainly strongly contributed to that progress. StarPU (read
*PU) has been specifically designed for abstracting the underlying architecture so that in can
execute task on any type of hardware (CPU core, GPU, ...). As a consequence, it is convenient
for exploiting heterogeneous architecture. For this reason, we decided to use it for implementing
the proposed task-based extension of MaPHyS.

StarPU provides a convenient interface for implementing and parallelizing applications or
algorithms that can be described as a graph of tasks. Tasks have to be explicitly submitted
to the runtime system along with the data they work on and the corresponding data access
mode. Through data analysis, StarPU can automatically detect the dependencies among tasks
and build the corresponding DAG. Once a task is submitted, the runtime tracks its dependencies
and schedules its execution as soon as these are satisfied, taking care of gathering the data on
the unit where the task is actually executed.

3https://project.inria.fr/chameleon/
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Task-based Conjugate Gradient 9

5 Experimental results
In this section we present preliminary results of our task-based prototype of MaPHyS. The tests
presented in this section were performed on the PlaFRIM 2 platform situated installed at Inria
Bordeaux-Sud-Ouest, more precisely on the sirocco nodes. These nodes are composed of two
Dodeca-core Haswell Intel Xeon E5-2680, for a total of 24 cores per node, and 128 GB of RAM
memory. Each node is equipped with 4 Nvidia K40-M GPUs, each one having 12 GB of RAM.
We consider the SPD Audi_kw matrix (size n = 900K and non-zeros nnz = 392M) to illustrate
the behavior of the proposed prototype solver. Both Chameleon and PaStiX use the version
1.1 of the StarPU runtime system described in Section 4.2. All tests were performed in double
precision.

Figures 3a and 3b depict the traces obtained on one node, using only CPU cores or both
GPUs and CPU cores, respectively. In both cases, the matrix has been decomposed in four
subdomains. Each subdomain is associated with one MPI process in charge of a subset of six
CPU cores (left trace 3a), or six CPU cores and one GPU (right trace 3b), respectively. The
runtime system orchestrates the execution of the tasks on the different processing units. The
traces represent the execution on one particular subdomain. In the heterogeneous case, each
GPU has a CPU core dedicated to handle it (see Section 4.2).

Task execution Idle Fetching input

(a) 6 CPUs per subdomain (b) 5 CPUs and a GPU per subdomain

Figure 3: Multicore execution trace associated with one subdomain of the MPI+task MaPHyS
prototype processing the Audi_kw matrix. Four subdomains (hence four processes) are used in
total.

The resulting traces show the versatility of the approach that composed multi-threaded and
task-based numerical kernels. The processing units are abstracted and the same code may be
executed indistinguishably on the homogeneous or on the heterogeneous cases. Although the
implementation is still preliminary and not optimized, Table 1 shows that the resulting timings
allow for accelerating all three numerical steps with the use of one GPU per subdomain in spite
of the preliminary design. The setup of the preconditioner benefits from the highest acceleration
as it mostly consists of a dense factorization accelerated with Chameleon. The factorization of
the interiors has a limited (but not negligible) acceleration because PaStiX internal kernel has
not been tuned for the Nvidia K40-M GPU. The solve step phase is accelerated thanks to the
application of the preconditioner with Chameleon. The time differences between the fastest
and slowest subdomain computation for the factorization of the interiors and preconditioner
setup are related to the matrix partitioning that balances the splitting of the adjacency graph
but not the calculation associated with each subgraph. They are some ongoing work in the graph
community to address this issue that is out of the scope of this work.

RR n° 8913



10 Agullo et al.

Multicore case Heterogeneous case

Factorization of the interiors
min 19.6 23.3
avg 37.2 31.7
max 50.8 38.2

Setup of the preconditioner
min 4.80 1.10
avg 7.02 3.63
max 9.81 7.37

Solve step
min 13.1 11.8
avg 13.2 11.8
max 13.2 11.8

Table 1: Minimum, average and maximum time per subdomain for the MPI+task MaPHyS
prototype for the multicore case (Figure 3a) and the heterogeneous case (Figure 3b) processing
the Audi_kw matrix. Four subdomains (hence four processes) are used in total and a dense
preconditioner is applied.

6 Concluding remarks

We have proposed an MPI+task extension of MaPHyS for exploiting distributed memory het-
erogeneous platforms. The modular design of MaPHyS allowed to use the task-based PaStiX
and Chameleon sparse and dense direct libraries, respectively, in order to benefit from their
ability to efficiently exploit the underlying heterogeneous architecture.

Although this prototype extension of MaPHyS is working properly and showed the feasibil-
ity of the proposed approach, designing a solid MPI+task version of MaPHyS would require
further work. First of all, the proposed approach still follows a bulk-synchronous parallelism [38]
(also sometimes designated as fork-join approach) pattern. Indeed, the calls to PaStiX and
Chameleon, yet local to each subdomain, induce costly pre-processing. On the one hand,
PaStiX need to perform a reordering of the variables to limit fill-in and a symbolic factoriza-
tion. These steps are sequential in the present prototype. Although there exist parallel imple-
mentations of these steps, they are known to have a very limited parallel efficiency. To overcome
the subsequent synchronizations, it would therefore be necessary to overlap these symbolic pre-
processing steps with other numerical operations. On the other hand, following Plasma design,
Chameleon first decomposes the dense matrix in tiles, which is also a synchronizing operation.
As for Plasma, there exists an advanced interface allowing for tackling matrices already decom-
posed into tiles. Using this interface would certainly alleviate the bottleneck occurring within
the setup of the preconditioner when calling the dense solver.

Other operations involved in the iterative solution step such as level-one BLAS and matrix-
vector product could be implemented with a task-based approach. In the case of a dense precon-
ditioner, these operations could also be implemented by calling BLAS operations implemented
in Chameleon. However, in the present state, without using the advanced interface discussed
above, the synchronizations would occur multiple times per iteration. A full task-based CG
solver is presented in [7] and discuss in details how synchronization points can be alleviated.

To completely alleviate the synchronizations between the different sequences into which Ma-
PHyS is decomposed, it would be necessary to further overlap communications with computa-
tions. This could be performed with a clever usage of asynchronous MPI calls. This approach is
relatively difficult to implement and has been applied to overlap main stages in MaPHyS, both
in the MPI+thread version and in the MPI+task prototype discussed in this section. However,
relying on this paradigm for performing fine-grain overlapping would be challenging and certainly

Inria



Task-based Conjugate Gradient 11

result in a code very complex to maintain. Alternatively, the MPI calls can be appended to the
task flow. Doing so, the task-based runtime system can dynamically decide when to perform the
actual MPI call to the MPI layer and interleave them with fine-grain computational tasks. Mod-
ern runtime systems such as StarPU and PaRSEC provide such an opportunity. However, even
in that case, the task-flow would still have to be designed accordingly to the mapping between
tasks and processes. On the contrary, the full task approach (see Figure 2a) would allows for
fully abstracting the hardware architecture and makes the mapping issues practically orthogonal
to the design of the task flow.
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