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CNRS UMR 7502, BP 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
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Abstract— Diffuse low-grade gliomas are rare primitive cere-
bral tumours of adults. These tumors progress continuously
over time and then turn to a higher grade of malignancy
associated with neurological disability, leading ultimately to
death. Tumour size is one of the most important prognostic
factors. Thus, it is of great importance to be able to assess
the volume of the tumor during the patients’ monitoring.
MRI is nowadays the recommended modality to achieve this.
Furthermore, if surgery remains the first option for diffuse
low-grade gliomas, chemotherapy is increasingly used (before
or after a possible surgery). However, crucial and difficult
questions remain to be answered: identifying subgroups of
patients who could benefit from chemotherapy, determining
the best time to initiate chemotherapy, defining the duration
of chemotherapy and evaluating the optimal time to perform
surgery, or otherwise radiotherapy. In this study, we propose to
help clinicians in decision-making, by designing new predictive
models dedicated to the evolution of the diameter of the tumor.
Two proposed statistical models (linear and exponential) have
been tested on a database of 16 patients whose temozolomide-
based chemotherapy lasted between 14 and 32 months, with
an average duration of 22.8125 months. The selection of the
most appropriate model has been achieved with the corrected
Akaike’s Information Criterion. The results are very promising,
with coefficients of determination varying from 0.79 to 0.97
with an average value of 0.90 for the linear model. This shows
it is possible to alert the clinician to a change in the tumor
diameter’s dynamics.

I. INTRODUCTION

Diffuse low-grade gliomas (DLGG) are rare and infiltrative
brain tumors. Three phases characterize their evolution:

– The first phase is asymptomatic with a linear and
constant tumor growth rate (about 3.5mm per year) [1].

– The second phase is associated with few neurological
symptoms (seizure most frequently) allied with a linear
and constant tumor growth rate of about 4 mm per year
[2].

– The third phase corresponds to the anaplastic transfor-
mation (high-grade glioma) with an increased tumor
growth rate.

The aim of treatments is to delay as much as possible
the anaplastic transformation while preserving the quality

of life [3]. Functional surgery is the first therapeutic option
because of its clear impact on survival while maintaining
or improving the quality of life [4]. Radiotherapy, which
was the first complementary treatment proposed, has the
same impact, regardless of its realization’s moment (earlier
at diagnosis or later at progression) [5]. Furthermore, in
an increasing manner, chemotherapy takes place earlier in
the management of these patients, either in a neoadjuvant
position (as a possible first treatment before surgery) or
in case of progression after surgery for non re-operable
patients [6][7]. It is now admitted that MRI is recommended
in the monitoring of the DLGG patients [6] and allows
the assessment of the tumor volume. Indeed, volume mon-
itoring is essential in therapeutic decision. In this context,
two techniques have been proposed in the literature to
estimate the tumor volume : three diameters technique [2]
and segmentation [1] which is considered a gold standard.
Regardless of the adopted technique, one crucial issue is
that the treatment strategy should be strictly tailored to
each patient [8]. In the framework of chemotherapy, it is
of high importance to be able to assess the impact and
the expected benefit of the treatment in order to control it.
Thus, modelling the response to chemotherapy would help
clinicians in decision-making by identifying subgroups of
patients who could benefit from chemotherapy, determining
the best time to initiate chemotherapy, fixing the duration
of chemotherapy and evaluating the optimal time to perform
surgery. In other words, clinicians could more easily propose
a tailored solution to each patient. To our knowledge, two
recent studies have been conducted to address this issue and
have offered interesting results [9][10]. The proposed solu-
tions in these studies are based on a microscopic approach,
at the cellular scale. Furthermore, the volume measurement
is obtained by the three diameters method. Here, we propose
a different approach at a macroscopic scale which is based
on the design of two predictive models for DLGG patients
under Temolozomide chemotherapy. Another key point lies
in the tumor volume assessment which is based here on MRI
scans’ segmentation. Our models are data-driven and adapt



in real-time to each new MRI. This makes our approach
a practical tool in a clinical routine to assist, simply and
quickly, doctors in the establishment of their treatment
strategy. The two proposed models allow us to predict the
tumor diameter as a variable evolving according to time and
are based on a training set of 5 MRI acquisitions from the
begining of chemotherapy. We show that if a new observed
diameter (corresponding to the current MRI examination) is
inside the prediction interval given by the model, a normal
evolution can be considered. On the contrary, if the new
observation leaves the prediction interval, a change in the
tumor diameter’s dynamics of evolution is foreseen and an
alert can be given to the clinician to help him in decision-
making.
The rest of the paper is organized as follows. In section 2,
the material and method are presented. Models are detailed
in section 3. Results are given in section 4. Finally, section
5 provides a discussion and a conclusion.

II. MATERIALS AND METHODS

Some DLGG patients have to undergo one or more
chemotherapy sessions. After being confronted with the
question of optimal timing of treatment initiation, physicians
are then faced with the crucial choice of when to stop
the treatment (if, of course, there is no tolerance problem).
There is currently no consensus among the neuro-oncology
community on how to determine that moment. In order to ad-
dress this problem, we propose statistical predictive models
which are based on the tumor diameter’s evolution over time.
This diameter is obtained from the tumor volume, that is
numerically reconstructed from manual segmentations using
the Delaunay-triangulation-based reconstruction algorithm of
the OsiriX software. In this study, we will only consider
patients in first-line chemotherapy, who didn’t undergo any
prior treatment, except surgery. We will also only investigate
one type of chemotherapy, the temozolomide (TMZ), which
is the most widely used molecule for DLGG due to its
good tolerance by most patients and its practical use (oral
treatment).
For this work, we tested multiple regression models to
predict the moment to end chemotherapy. Spontaneously,
without any treatment, DLGG tumor diameter evolves lin-
early over time [2]. We noticed that under chemotherapy,
for some patients, the diameter evolves linearly, whereas, for
other patients, the evolution is exponential. But for a small
minority of cases, the evolution is neither monotonously
decreasing nor even increasing and the curve does not fit any
known or specific function. Our initial database included 21
patients who underwent TMZ chemotherapy. Five patients
were excluded because they fitted neither the exponential
nor the linear model. For these patients, and for other similar
cases, we will adopt the classical approach of following up
the dynamics of tumor growth. In the present article, we
will only discuss the cases of patients following a linear or
an exponential model, which represent the majority of our
database (16/21 patients), and we will leave the discussion of
other cases for later work. Our predictive models were thus

applied on 16 patients whose duration of treatment lasted
between 14 and 32 months, with an average duration of
22.8125 months. In this first study, we have included tumors
regardless of their pathological (astrocytomas versus oligo-
dendrogliomas versus mixed tumors) or molecular (including
IDH 1/2 or 1p19q) status.

III. STATISTICAL ANALYSIS

Let D be the random variable representing the tumor
diameter, following a simple linear regression model:

D = b0 +b1T + ε where

T : the random variable representing the time of observation.
ε : the unobserved error term.
b0 : the initial value of the tumor diameter.
b1 : the growth rate of the tumor diameter.

Let D′ be the random variable representing the tumor
diameter, following an asymptotic exponential model:

D′ = a0−a1e−a2T + ε where

a0 : the asymptotic term which ensures the data’s adequacy
with reality where the tumor diameter never equals zero,
regardless of the chemotherapy’s efficiency.
a1 : the difference between the asymptotic term and the initial
value of the tumor diameter.
a2 : the decay rate constant.

Our prediction models resort to a training dataset of an
iid sample (Di,Ti,εi) for the linear model and (D′i,Ti,εi)
for the exponential model, where i is the observation
number. Tumor diameters in the chemotherapy period,
(Di)i=0...n and (D′i)i=0...n, are obtained from MRI scans’
manual segmentation by a clinician expert using the OsiriX
software. The number of available training dataset n is low,
often around 6. In any case, to comply with our statistical
analysis, n must be at least equal to 5. The first step is to
estimate the parameters, b0 and b1 for the linear model, a0,
a1 and a2 for the exponential model, from the training data
set.This estimation is based on the least squares method for
the linear model and on the Gauss-Newton algorithm for
the exponential model.
In both models, the statistical error terms εi are assumed
to be independent, normally distributed N (0,σ) and to
fulfill the homoscedasticity condition. After estimating the
parameters, we verify that these hypotheses are fullfilled.
The statistical error terms εi’s normality is verified using
a Shapiro-Wilk test. The homoscedasticity condition is
checked with a White test for the linear model and with the
plot of the residuals vs. the fitted values for the exponential
model. As for the independence hypothesis, a Durbin
Watson test is used for the linear model and the plot of
each residual vs. the previous residual is employed for the
exponential model. Once these conditions are established,
a Student test is applied on b1 for the linear model, on
a1 and a2 for the exponential model, in order to evaluate
the significance of the regression. Moreover, the linear



model’s prediction quality is analysed with the coefficient
of determination R2.
If, for a given patient, all previous conditions are met for
both models, we resort to the corrected Akaike’s Information
Criterion (AICc) [11] to choose the model that best describes
the dataset. AICc is defined as follows:

AICc = n ln SS
n +2K + 2K(K+1)

n−K−1 where

SS : the sum of the square of the vertical distances of the
points from the curve .
K : the number of parameters fit by the regression plus one.
It equals 3 for the linear model and 4 for the exponential
model.

The best model is the one with the minimum value of
AICc. Once the model is validated, we agree the evolution
of the tumor is either linear with estimated parameters b̂0,
b̂1 or exponential with estimated parameters â0, â1, â2. Then
a new observation is predicted at time Tn+1 as follows:

D̂n+1 = b̂0 + b̂1Tn+1 Linear model
D̂′n+1 = â0− â1e−â2Tn+1 Exponential model

A prediction interval is also defined for a certain type I
error α , providing the range of values in which D̂n+1 or D̂′n+1
is likely to fall given Tn+1. If the new observation is inside the
prediction interval, a normal evolution of the tumor diameter
is announced. If it leaves the prediction interval, a change
in the tumor diameter’s dynamics of evolution is observed.
This can be medically interpreted either positively (in case
the diameter decreases below the lower endpoint of the
prediction interval, heralding a likely good response to the
treatment) or negatively (tumor growth under chemotherapy
above the higher endpoint of prediction interval, patient not
responding positively to the treatment).

IV. RESULTS

The results of this study have been implemented with
the R software. Among the 16 patients of our dataset, 13
are classified as linear and 3 are classified as exponential.
We selected a type I error α equal to 0.1. The coefficients
of determination R2 for the 13 linear patients vary from
0.77 to 0.97 with an average value of 0.90. In this paper,
we will present one example of our linear predictive model
and another one for the exponential predictive model for a
representative purpose.

A. Example for the linear model

Patient 1 underwent chemotherapy for 27 months. For
the learning phase, we had 6 points and we predicted
one point preceding the end of the chemotherapy. The
estimation of the linear parameters b0 and b1 gave the
values 5.268757 and -0.025601 respectively. We then tested
the normality hypothesis with the Shapiro-Willk test: W =
0.9888 > Wcrit = 0.713 for type I error equal to 0.01. We

validated the homoscedasticity condition with the White test:
f (2,3) = 30.82 > White = 3.7468 for type I error equal to
0.01. We also confirmed the non correlation hypothesis with
the Durbin Watson test: DW = 1.9082 which is between 1.5
and 2.5 as it should be to pass the test. We also verified the
significance of the regression with a Student test on b1. We
then computed the coefficient of variation R2 which is equal
to 0.87.

We also tested the exponential model. The exponen-
tial model coefficients a0, a1 and a2 were estimated at
4.71256, 0.61778 and 0.08615304 respectively. We checked
the normality hypothesis with the Shapiro-Wilk test: W =
0.9021 >Wcrit = 0.713 for type I error equal to 0.01. The
homoscedasticity and the correlation conditions were verified
with the corresponding plots. As for the significance of the
regression, we confirmed it with a Student test on a1 and a2.

To choose the best model, we computed AICc for
both models. AICcLinear = −6.495425 < AICcExponential =
−1.268149. We thus chose the linear model to predict the last
value of the diameter before the completion of chemotherapy
as well as the prediction interval for type I error α equal to
0.1. The visualization of the curve for the training dataset, the
real diameter value at next time and the prediction interval
in fig.1 show clearly that the data follows the regression
line and that the real point for the predicted one is above
the higher endpoint of the prediction interval. The displayed
alert message is the following: ”Significant increase in the
diameter”.
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Fig. 1. The training dataset, the real value and the prediction interval with
the linear model for patient 1.

B. Example for the exponential model

Patient 2 underwent chemotherapy for 26 months. For
the training phase, we had 6 points and we predicted one
point preceding the end of the chemotherapy. Starting with
the exponential model, the learning step returned the values
4.93097, 2.47087 and 0.1252605 for the estimation of a0,
a1 and a2 respectively. The normality hypothesis was tested
with the Shapiro-Willk test: W = 0.8965 > Wcrit = 0.713
for type I error equal to 0.01. The homoscedasticity and the
correlation conditions were verified with the corresponding



plots. As for the significance of the regression, we confirmed
it with a Student test on a1 and a2. We also tested the
linear model, but as the non correlation hypothesis was not
confirmed (DW = 1.0995 < 1.5), this model was rejected.

With the selected exponential model, we finally estimated
the last point preceding the end of the treatment as well as
the prediction interval for type I error α equal to 0.1. Fig.2
shows the curve for the training dataset, the real diameter
value, the predicted diameter and the prediction interval. The
real data seems to perfectly fit the exponential model and the
real point is inside the prediction interval. The displayed alert
message is the following: ”Regular diameter evolution”.
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Fig. 2. The training dataset, the real value and the prediction interval with
the exponential model for patient 2.

V. DISCUSSION AND CONCLUSION
In this paper, we presented a new approach to help

clinicians in decision-making for DLGG patients under
chemotherapy. This approach is based on two statistical
predictive models (linear and exponential) dedicated to the
measure of tumor’s diameter, as tumor size is one of the
most important prognostic factors. Our study, conducted in
Nancy University Hospital, France, relied on 16 patients
whose temozolomide-based chemotherapy lasted between
14 and 32 months, with an average duration of 22.8125.
Within this database, 13 patients followed the linear model
while the 3 others followed the exponential model. Based
on a training set including at least 5 MRI scans, the model
is able to predict the next diameter from the current one
with significant accuracy. Thus, thanks to the corresponding
computed prediction interval, it is possible to check if the
actual measured diameter matches the predicted one. Then,
if the actual diameter lies within the prediction interval, a
”normal evolution” message is given. In the opposite case,
the clinician is alerted by a ”Significant increase in the
diameter” message. We are aware that the models’ validation
should rely on a different dataset than the learning dataset.
Nevertheless, the small number of cases has not allowed
us to carry out this procedure. That is why, in order to
increase the training set size, but also to allow our models
to predict diameters sooner within the chemotherapy period,
a new protocol has been established in Nancy University

Hospital. New patients who agree to this protocol benefit
from additional non injected MRI scans at the begining of
the treatment. Furthermore, in the near future, we intend
to enlarge our DLGG database thanks to a collaboration
with Montpellier University Hospital, France. Finally, as
other molecular (IDH 1 or 2 mutations, 1p19q codeletion,
MGMT promoter methylation, TERT promoter or ATRX
mutations, etc.) or radiological (perfusion MRI, MR spec-
troscopy, amino acid PET imaging, etc.) factors could sig-
nificantly influence tumor growth, we plan to include some of
them in the design of our proposed models. Our long-term
goal is to design a decision support tool which, based on
different factors (tumor diameter, molecular and radiological
parameters, etc.), would deliver a message to the clinician on
the evolution of the DLGG in order to enable a personalized
therapeutic management of patients.
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