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Abstract

Beaconing is usually employed to allow network discovery and to main-
tain synchronisation in mesh networking protocols, such as those defined in
the IEEE 802.15.4e and IEEE 802.11s standards. Thus, avoiding persistent
or consecutive collisions of beacons is crucial in order to ensure correct net-
work operation. Beacons are also used in receiver-initiated medium access
protocols to advertise that nodes are awake. Consequently, effective beacon
scheduling can enable duty-cycle operation and reduce energy consumption.
In this work, we propose a completely decentralised and low-complexity solu-
tion based on learning techniques to schedule beacon transmissions in mesh
networks. We show the algorithm converges to beacon collision-free oper-
ation almost surely in finite time and evaluate converge times in different
mesh network scenarios.

Keywords: Beacon scheduling, decentralised constraint satisfaction,
collision-free operation

1. Introduction

Beacon transmissions are a fundamental mechanism used to maintain
synchronisation and to enable network discovery in several wireless mesh
networks, such as those based on the standards IEEE 802.15.4e [1] and IEEE
802.11s [2]. These control messages are normally sent at fixed time inter-
vals. Hence, given the random access nature of these protocols, collisions of
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beacons can persistently occur when several devices share the medium, espe-
cially in presence of hidden terminals. That is, in the case more than one node
select the same time to send the beacon, they will collide indefinitely if no
mechanism to recover from these collisions is implemented. Without success-
fully receiving these beacons, a node is neither able to remain synchronised,
nor to discover neighbouring nodes. Thus, coordinating beacon transmissions
to avoid collisions is a primary concern in mesh random-access networks so
as to enable effective communication among neighbouring devices [3]. Addi-
tionally, receiver-initiated protocols for Wireless Sensor Networks (WSNs),
like RI-MAC [4], can benefit from beacon coordination to provide efficient
broadcast support. Coordinating sensor nodes to wake up at approximately
the same time removes the need to send repetitions of broadcast messages to
every receiver. Therefore, this coordination will allow for a reduction in the
energy consumption [5].

The standards IEEE 802.15.4e [1] and IEEE 802.11s [2] define mechanisms
to alleviate collisions of beacons among neighbouring nodes. However, these
approaches do not completely prevent collisions. This is especially relevant in
IEEE 802.15.4e [1], where successive collisions can take place if, for instance,
any of the control messages used to reserve a slot for beacon transmission
are lost, as studied in [6]. In IEEE 802.11s [2], this problem is not as severe
since a mechanism to periodically and randomly delay beacon transmissions
is proposed to resolve collisions. However, it is still possible to experience
beacon collisions for periods of time. Moreover, randomly delaying beacon
transmissions is detrimental for stations working in power saving mode as
they only wake up at the expected time to receive a beacon.

In this work, we propose a fully decentralised, generic and low-complexity
solution to completely avoid beacon collisions based on learning. By taking
a learning approach, we are able to provide scheduling without using extra
control messages to coordinate neighbouring nodes. Similar techniques have
been studied for scheduling unicast data packets in Wireless Local Area Net-
works (WLANs), known as decentralised learning for collision-free operation
[7, 8, 9]. We extend these approaches to beacon coordination as follows:

• We take advantage of the fact that beacons are control messages in or-
der to include information useful for coordinating neighbouring nodes.

• Given that beacons are sent as broadcast and thus, there is normally
not feedback of the correct reception of these messages by neighbouring
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nodes, we propose a mechanism to provide a node with feedback about
whether its previous beacons were successfully received.

The proposed approach aims to provide fast convergence to beacon collision-
free operation1 while relying on local information only. Quick convergence
and decentralisation is important in networks where devices may be mobile
to allow practical reconfiguration upon network changes. To achieve this
aim, nodes probabilistically decide at each schedule (or round) which slot to
use to transmit a beacon based on information transmitted in neighbouring
beacons. When all neighbouring nodes provide positive feedback about a
node’s beacon transmission, it keeps using the same slot in the next sched-
ules. Thus, when all nodes have found the slot in which to transmit without
collision the network operates in a beacon collision-free manner. Given that
beacon collisions can still happen before the network reaches the collision-
free operation phase, nodes must take decisions without a complete view of
the neighbourhood. Despite this constraint, we will show that the algorithm
converges almost surely in finite time. Our evaluation of the convergence rate
will also show that the number of schedules required to converge to beacon
collision-free operation is in the order of ten schedules in different scenarios
and configurations.

This article is organised as follows. In Section 2, we motivate this work
by describing open issues related to beacon scheduling. Then, in Section 3,
we discuss the relevant related work on decentralised scheduling. After that,
in Section 4, we describe the proposed decentralised mechanism to schedule
beacon transmissions. We formulate the problem as a constraint satisfaction
problem in Section 5. The analysis of convergence is provided in Section
6 while the algorithm benchmarking is presented in Section 7. We discuss
practical implications in Section 8 and then, we provide some final remarks.

2. Motivation

Our approach aims to provide coordination of periodic broadcast trans-
missions in mesh networks. However, it is motivated by the identification of
the following issues:

1We denote with beacon collision-free operation the case in which there is no collisions
of beacons. We distinguish this situation to the case where there are no collisions of data
packets, which is the operation the works in [7, 8, 9] aim for.
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• The possibility of facing persistent collisions of beacons in IEEE 802.15.4e
making it impossible to identify neighbouring nodes and to maintain
synchronisation.

• The possibility of facing consecutive collisions of beacons in IEEE
802.11s and a poor support of stations working in power saving mode.

• The inefficient transmission of broadcast messages in receiver-initiated
approaches for WSNs.

These problems are explained in detail in the following subsections. We
will see that the probability of beacon collision is often relatively low, so
the crux of our scheme is to identify these collisions and then make a local
reassignment of slots when this is detected.

It is important to emphasise that our approach aims to provide generic
scheduling of beacon transmissions and can be adapted to other beaconing-
based networks such as vehicular or power line communication networks.

2.1. Mesh WSNs based on IEEE 802.15.4e

IEEE 802.15.4 relies on beacon transmissions for network formation and
synchronisation in WSNs. Previous work has addressed beacon scheduling in
these networks. However, many existing approaches consider a tree topology
or are based on centralised solutions such as the works in [10] and [11].
Distributed solutions, like [12, 13] and [3], have also been proposed for mesh
WSNs and have inspired the beacon collision avoidance of the new IEEE
802.15.4e standard [1].

The Deterministic and Synchronous Multi-channel Extension (DSME) of
the IEEE 802.15.4e [1] aims to support mesh networks by defining a multi-
superframe formed by a number of superframes, each containing a beacon
transmission, a contention-free and a contention access period. Each node
selects a superframe in which to transmit a beacon (Fig. 1). Thus, to
avoid collisions of beacons, beacon scheduling among 2-hop neighbouring
nodes is needed. The standard addresses beacon coordination by including
in the beacon a bitmap of the beacon allocation schedule for the neighbour-
hood. Therefore, a node, by receiving all beacons from its neighbourhood,
is aware of the currently allocated beacons in the multi-superframe in its
2-hop neighbourhood. After that, the node selects a free slot and transmits
a beacon allocation notification command in the contention access period of
the superframe corresponding to the selected slot. If multiple nodes select
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Figure 1: Example of two nodes requesting the same slot in the multi-superframe [1].

the same slot, the standard relies on a beacon collision notification command
sent from a common neighbouring node to resolve contention. This allows
the last station requesting that slot to realise that a conflict has occurred
(example depicted in Fig. 1).

However, DSME does not define any mechanism to recover from collisions
of beacon allocation notification commands or beacon collision notification
commands, as studied in [6]. The case of nodes having no neighbours in
common is also not considered. In both cases, nodes assume they have gained
the slot, as no negative feedback is received, and beacons will persistently
collide. The consequences of this are the inability to detect neighbouring
nodes and to maintain synchronisation. Thus, further design considerations
are needed to schedule beacon transmissions in IEEE 802.15.4e.

In order to illustrate the magnitude of this problem, we analyse the con-
ditional collision probability, that is, the probability that a beacon alloca-
tion notification command collides with another beacon allocation notifica-
tion command. We consider a lower bound on this metric by analysing a sce-
nario in which all nodes are in mutual coverage range (i.e., a fully connected
graph) in the absence of any data transmission, thus, the only messages that
are transmitted are those related to the beacon allocation process. Note that
we also neglect the potential collisions among beacon collision notification
commands when more than one beacon allocation notification commands are
successfully received for a given subframe. Considering that a superframe
is formed by 16 slots (one of them used for the beacon transmission) [14],
that c slots for beacons are available (c superframes still do not have an al-
located beacon) and that n nodes are attempting to allocate their beacon,
the conditional collision probability is simply: pc = 1 − (1 − τ)n−1, where
τ = 1/(15c). Results varying n and c are shown in Fig. 2. Note that al-
though the conditional collision probability is smaller than 2% for n < 6, it
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Figure 2: Conditional collision probability of beacon allocation notification commands.

is still considerable given the importance of persistent collisions of beacons
as outlined before. On the other hand, in all situations shown, the collision
probability is > 1% for n ≥ 4 nodes. This means that in the case that 4
nodes or more in the neighbour try to join the schedule at approximately
the same time, more than one in a hundred cases would result in persistent
collisions.

Attempts to improve the standard have been presented in [15, 6, 16, 17].
The approaches proposed in [15, 6] are based on active associations instead
of passive scans of neighbouring beacons. Thus, requiring a complete change
of the initial standard design, including explicit messages for association and
feedback. In contrast, in [16], the authors propose to use the active period of
the superframe to transmit beacons in order to reduce the beacon collision
probability, motivated by the fact that the active period is longer than the
specified fraction of time devoted to transmit beacons in IEEE 802.15.4e.
However, even though the collision probability of beacons is reduced in this
way, beacon collision-free operation is not ensured and as in the previous
approaches, a substantial change of the standard is needed, i.e., the fraction
of time intended for beacon transmissions is no longer needed. The closest
work to our proposal that we are aware of is [17], where the authors also
propose to use the learning mechanism defined in [7] to schedule beacon
transmissions. However, how a collision of beacons is detected and how the
lack of information due to neighbouring beacons colliding is handled, which
are central aspects in the applicability of the protocol defined in [7], are not
considered. The work in [17] also does not study convergence to beacon
collision-free operation in mesh networks.
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2.2. Mesh WLANs based on IEEE 802.11s

The WiFi mesh standard IEEE 802.11s [2] defines the Mesh Beacon Col-
lision Avoidance (MBCA) mechanism to alleviate beacon collisions among
mesh stations. Stations use their beacons to advertise the expected time of
the next beacon transmission and beacon interval of their neighbours. A
node receiving this information, adjusts its own beacon transmission time
so as to not overlap with other beacons in the 2-hop neighbourhood. To
alleviate beacon collisions among neighbouring nodes, beacon transmissions
are randomly delayed at periodic time intervals. Note that beacon collisions
are not completely avoided and that a node overhearing a beacon collision is
not able to get the required 2-hop neighbourhood information to adjust its
own beacon transmission time. Moreover, delaying beacon transmissions is
detrimental for stations working in power saving mode, which only wake up
at the expected beacon reception time.

A proposal to detect collisions of beacons in IEEE 802.11s is presented
in [18]. The authors propose the use of probe beacons sent intermittently
between beacon intervals. These probe beacons include the time at which
the beacons of the source are scheduled and so enable recipients with equal
beaconing times to change their scheduled time to transmit beacons. Note
that although no explicit messages for scheduling are used, extra control
packets are sent in order to infer a collision of beacons taking place and that
probe beacons are also prone to collisions.

2.3. Efficient Broadcast Support in Receiver-Initiated WSNs

In WSNs, nodes work in a duty-cycle operation in which they go to sleep
and periodically wake up. Beacons are used in receiver-initiated approaches
for WSNs, as the RICER [19], the RI-MAC [4] and the IRDT [20] protocols,
to notify neighbouring nodes that a receiver is awake. Transmitters with data
to send keep listening to the channel for the beacon from the receiver. After
the beacon is received, they can start sending the data. These protocols sup-
port unicast transmission but broadcast messages are handled by transmit-
ting a copy of the message to every receiver. Using coordination to schedule
wake-up times and making just one node in the 2-hop neighbourhood send a
beacon at a time improves broadcast transmission as multiple copies of the
same message are no longer needed [5]. This operation can, therefore, provide
further benefits for energy conservation when broadcast traffic is considered.
Coordinating beacon transmissions also reduces the number of beacons sent,
thus the channel is expected to saturate more gradually. How to coordinate
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beacon transmissions in RI-MAC in a fully-connected network was studied
in [5]. In that work, it was shown that the time to convergence is low, less
than 11 schedules, even for scenarios in which 60 nodes compete for 60 time
slots.

3. Related Work on Decentralised Scheduling

As far we know, this is the first work to propose and analyse a fully de-
centralised solution to achieve beacon collision-free operation that does not
require the use of extra control messages to coordinate neighbouring nodes.
However, the problem addressed here belongs to the well-know problem of
decentralised resource allocation. In this section, we give an overview of
the most closely related approaches: i) decentralised learning for collision-
free operation of unicast packets in WLANs and ii) distributed solutions to
schedule broadcast transmissions. Note that this work differs from scheduling
of beacons for data collection in the sense that our main purpose is on relia-
bility instead of on minimising latency in data collection, such as in [21, 22].
The extension of this work to data collection applications is an interesting
future research line. However minimising data collection latency is a complex
problem, and would distract from our aim of presenting a general protocol
for beacon collision free operation.

Applying decentralised learning for collision-free operation of unicast data
packets has been studied for Wireless Local Area Networks (WLANs) in [7, 8]
and [9]. A schedule of transmissions that is repeated in cycles is defined,
where the schedule length is the number of slots per cycle. The general idea of
these mechanisms relies on the nodes randomly picking a slot in the schedule
and then remain transmitting in the same slot in the subsequent cycles if their
transmissions are successful (i.e., an acknowledgement is received back). In
case of a collision, nodes randomly change the slot selection. The work in [7]
only selects among the empty slots in the schedule. In contrast, the proposal
in [8] allows nodes to pick any slot in the schedule so as to not require them to
monitor the status of each slot in the previous cycle. In [9], both approaches
are extended to improve the convergence rate (the time to reach collision-free
operation). To achieve this goal, a learning parameter (γ) is defined. After
an unsuccessful transmission, nodes change the slot selection with (1 − γ)
probability and remain transmitting in the same slot with probability γ. In
this work, we aim to extend these approaches to beacon transmissions. As
beacons are broadcast, no acknowledgements are transmitted, so one of the
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main challenges is how to provide a node with feedback about successful
beacon receptions at its neighbouring nodes.

Distributed algorithms for broadcast scheduling for nodes without previ-
ous knowledge of their 2-hop neighbourhood depend on joining procedures
where explicit communication allows to create a collision-free schedule. Some
examples are the mechanisms in [23] and [24]. In our work, no request to
use a particular slot is needed as nodes probabilistically decide which slot
to select and rely on indirect information from the neighbourhood as feed-
back to determine if a slot selection causes a conflict. Therefore, compared
to previous approaches, the mechanism presented in this work reduces the
overhead in dynamic scenarios. Moreover, given that the probability of bea-
con collision is expected to be low, as showed in Fig. 2, we could define
a centralised algorithm that re-schedules beacon transmissions only when a
conflict is detected, thus, without incuring excessive overheard. However,
such an approach would still require a mechanim to detect that a collision
is taking place. What we will show in this work is that we are able to re-
schedule slots in a decentralised manner using only the information necessary
to detect the conflict.

4. Decentralised Beacon Scheduling Algorithm

In this section, we provide an overview of the algorithm to schedule beacon
transmissions in a decentralised manner.

4.1. Assumptions

Here we detail the assumptions used to design the algorithm. Later,
in Section 8, we will discuss how they relate to practical deployments and
existing standardisation efforts.

Local Synchronisation: We first assume that, although no global syn-
chronisation is required, nodes have the capability of local synchronisation.
This requirement can be achieved by including synchronisation information
in beacons. Using this information, nodes in the network adapt their clocks
based on the synchronisation information received from neighbours.

Predefined time intervals for beacon transmissions: We assume
beacons are sent at specific time intervals. In this way, a node overhear-
ing a collision during these intervals can infer the collision corresponds to
overlapping beacon transmissions instead of data packets. We consider that
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the predefined intervals for beacon transmissions are slotted. The slot dura-
tion must be fixed so as to avoid misalignment caused by different observed
channel status at different locations.

Sufficient number of slots: In the following we assume that the num-
ber of slots in a schedule is sufficient to allow for collision-free operation of
beacons in a two-hop neighbourhood.

4.2. Overview

The protocol operation is divided in two parts: i) obtaining feedback
from beacons sent by neighbours and ii) deciding the slot to use in the next
cycle (schedule) based on the feedback obtained. Both are explained in detail
next.

4.2.1. Obtaining feedback from neighbouring beacons

The beacon allocation schedule is repeated in cycles, each cycle being
of length C ∈ N. Nodes include in beacons the value of C as well as the
position that the current node occupies in the schedule (its currently selected
slot for beacon transmission). Following this approach, nodes receiving this
information have knowledge about the current length of the schedule and
when it starts/ends.

To schedule beacon transmissions, we take advantage of the fact that these
are control messages. We consider that nodes include in their own beacons
feedback of previously overheard beacon transmissions that serve as implicit
acknowledgements for neighbouring nodes. For this purpose, a bitmap of
previously overheard beacons at each slot in the schedule is included in every
beacon. Note that this is a similar approach to the one defined in IEEE
802.15.4e [1], where a bitmap of the slot occupancy is included in beacons.
However, in the case addressed here, this bitmap includes information on
i) slots where beacons were correctly received, ii) slots in which the node
inferred that a collision of beacons occurred and iii) slots where no beacon
was transmitted. Including this extra information results in an additional
bit per slot in the schedule, however, it is useful for a node in order to:

Infer a satisfactory slot selection: A node assumes its beacon was
correctly received by all its neighbouring nodes if all of them signal a correct
reception in its previously selected slot.

Have a complete view of the 2-hop neighbourhood: Beacons from
neighbouring nodes include information of their own neighbourhood. Thus,
a node is able to infer the slots used in the 1-hop (overheard beacons) and
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2-hop (slots advertised as occupied by overheard beacons but seen as free
by the given node) neighbourhood. This information is used to select the
next slot to use in case no positive feedback is received from all neighbouring
nodes in the current schedule.

Although it is possible to schedule beacons using this information, there
are challenges that must be addressed in order to overcome the following
limitations:

Feedback is prone to loss: The first challenge is based on the fact that
some information may not be accessible. Before convergence, it is possible
that beacons from neighbouring nodes collide, making impossible for a node
to obtain the information included in them. In this case, a node is not certain
whether its beacon was correctly received by all its neighbouring nodes. To
solve this issue, after observing a collision in a slot where a beacon should be
transmitted, a node in our scheme acts as if negative feedback was received.

No node to provide feedback: Another challenge is the case where
there is no node to flag the occurrence of a collision. A given beacon trans-
mission can collide with other beacon transmissions from neighbouring nodes
and if transmitters do not share any neighbour to notify them of the colli-
sion, then, they are not able, in principle, to realise they are colliding. It
is also possible that all nodes in a neighbourhood are colliding in the same
slot. To solve this problem, we assume nodes are able to infer a full list of
their neighbours, say by overhearing regular transmissions. Since nodes can
still transmit data messages even if their beacon collide, this assumption is
reasonable. Therefore, a node assumes it is colliding with a neighbour by
noting the lack of its beacon transmission. Then, it also acts as if negative
feedback on the selected slot was received.

4.2.2. Decision making based on received/lack of feedback

When a node joins the network, it keeps listening to the channel for
beacon receptions from its neighbouring nodes. After listening for CTb, with
C being the initial length of the schedule and Tb the period between beacon
transmissions, two situations can arise: i) no beacon is received, then the
node assumes it is the first node in the network and starts sending its beacon
in a random (uniformly selected) slot in the schedule, or ii) it receives at
least one beacon from a neighbour. In the latter case, the node randomly
(following a uniform distribution) selects an empty slot (a slot advertised as
free by all its neighbouring nodes).

As explained in the last subsection, after sending a beacon, a node obtains
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feedback of this transmission from beacons sent in its neighbourhood and also
from the lack of them. A node considers that it has gained the slot if all the
following occur: i) all beacons received advertise the previously selected slot
as a successful reception or as empty2, ii) it does not overhear a collision of
beacons among neighbouring nodes and iii) it receives all beacons sent by
the nodes in its neighbourhood. If any of those fails, the node considers it
has not gained the slot and therefore, a decision about which slot to use in
the next schedule must be taken.

In order to reduce the convergence time, we use the mechanism proposed
in the Learning Zero Collision (L-ZC) protocol [9]. L-ZC relies on previous
information of the occupied, collision and empty slots. Since we have chosen
to include this information in the beacons, L-ZC is a good option for the
problem addressed here. Then, after realising it has not gained the slot,
the node changes to one of the slots seen as free in the last schedule with
(1− γ) probability and remains in the same slot with probability γ, where γ
is a design parameter. The value of this parameter, which has an impact on
convergence time, will be discussed in Section 6.

If a node considers it has gained the slot, it keeps transmitting in the
same slot in the next cycle. Thus, when all nodes have found the slot in
which to transmit without collision, the network enters a beacon collision-
free operation.

The pseudocode of the decentralised beacon scheduling algorithm is shown
in Algorithm 1, where rand(1) denotes a uniformly random value between 0
and 1, both inclusive.

While operating in the collision-free phase, if a new node joins the net-
work, it selects a slot among the free slots in its 2-hop neighbourhood, so no
further disturbances occur. In case more than one node joins the network
at the same time and selects the same slot, some of the nodes move to the
previous phase until a new collision-free schedule is found.

5. Formulation as a Constraint Satisfaction Problem Solver

We model the network as an undirected graph G = (V,E), with number
of nodes N = |V | and edges (i, j) ∈ E, with (i ↔ j) denoting that nodes
i and j are neighbours. Since beacon transmissions will collide at a given

2Considering a success if the slot is advertised by some neighbouring nodes as empty
solves the problem of link asymmetry, as will be discussed in Section 8.
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Data: C, Tb, γ
Listen for CTb;
if Beacon(s) received then

Update unused slots;
Select slot randomly in unused slots;

else

Select slot randomly in C;
end

for every cycle do

Listen for Beacons;
Update unused slots;
if All neighbours flag correct reception then

Continue using the same slot;
else

if rand(1) < γ then

Continue using the same slot;
else

Select slot randomly in unused slots;
end

end

end

Algorithm 1: Pseudocode of the Beacon Scheduling Algorithm
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receiver if any of its neighbouring nodes transmit the beacon in the same
slot, we are interested in finding a proper colouring of the distance-2 graph
G2 = (V,E2), with N = |V | and edges (i, j) ∈ E2, with (i ↔ j)2 meaning
that nodes i and j are neighbours or have a neighbour in common (1-hop
and 2-hop neighbours, respectively). Then, node i successfully transmits a
beacon if its selected slot is not used by any j with (i ↔ j)2.

We follow the notation in [25], where the first decentralised constraint
satisfaction problem solver was presented. We define N variables, one for
each node in the network, and let ~x := (x1, ..., xN) be the vector of slots
selected by all nodes with xi being the slot selected by sensor node i ∈
{1, ..., N}. Having C = {1, ..., C} as the set of slots in the schedule, then the
vector ~x ∈ CN . We will also define a set of clauses (constraints) per edge,
each clause being Φm(~x), m ∈ {1, ..., |E|}. Clause Φm(~x) evaluates to 1 if the
clause is fulfilled and to 0 otherwise.

The clause for the m-th edge (i ↔ j) in E is defined as a compound of
three different subclauses as shown in Eq. 1.

Φm(~x) =

{

1 if am ∧ bm ∧ cm
0 otherwise.

(1)

where the three subclauses are,

am = (xi 6= xj). (2a)

bm = (xj 6= xk), ∀(k ↔ i), k : k 6= j. (2b)

cm = (xi 6= xl), ∀(l ↔ j), l : (l, i) /∈ E. (2c)

Eq. 2a evaluates to 0 if the 1-hop neighbour j is using the same slot
as node i (problem depicted in Fig. 3(1)). The subclause in Eq. 2b is not
fulfilled if the neighbour j shares the same slot as any other neighbour k of
node i (problem shown in Fig. 3(2)). Finally, subclause in Eq. 2c is not
satisfied if node i shares the same slot as node l that is 2-hops away, with
node j being the neighbour in common (issue shown in Fig. 3(3)).

The participation set of node i (Mi) is formed by the set of clauses in
which node i is at the originating side of the edge:

Mi = {m ≡ (i, j) : (i, j) ∈ E}. (3)
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Figure 3: Causes for node i to be dissatisfied. Filling patterns represent slot selections.

Node i is said to be satisfied if all the clauses in its participation set Mi

are fulfilled. Therefore, we only need that node i evaluates Eq. 4 to decide
whether it is satisfied.

min
m∈Mi

Φm(~x). (4)

Theorem 1. A slot selection ~x that satisfies mini minm∈Mi
Φm(~x) = 1, i ∈

{1, ..., N} is a proper colouring of the distance-2 graph G2.

Proof. Having Φm(~x) = 1, m ∈ Mi for all nodes in the network corresponds
to the case where there are no collisions of beacons among 1-hop neighbours
(Eq. 2a) and that no node is overhearing a collision of beacons among neigh-
bouring nodes (Eq. 2b). Thus, the slot selection ~x ensures no other node in
the 2-hop neighbourhood is using the same slot as node i, ∀i ∈ {1, ..., N}.

To evaluate Eq. 4, it is not necessary that a node is able to specifically
evaluate all the different clauses in Mi. A node just needs to know whether
xi is a satisfactory assignment, but it is not needed that it knows neither
which subclause(s), nor which clause(s), is/are not fulfilled.

Theorem 2. All clauses in Mi are satisfied iff node i receives a beacon from
all its neighbours including a flag acknowledging the correct reception of its
previously transmitted beacon.

Proof. By receiving a collision flag in a beacon from at least one neighbour,
node i knows that either a 1-hop or a 2-hop neighbour selected the same
slot (either subclauses a or c in Eq. 1 are not satisfied). Alternatively, when
overhearing a collision of beacons in the neighbourhood, subclause b in Eq.
1 is not satisfied. The lack of at least one beacon from a neighbour in the
given schedule implies that the beacon of the target node is colliding with
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the beacon transmission of that neighbour, thus subclause a in Eq. 1 is not
satisfied.

Thus, if no collision flag is received, no collision in the neighbourhood
is overheard and all beacons from identified neighbours are received, node i
knows its slot selection is not being used in its 2-hop neighbourhood and can
evaluate minm∈Mi

Φm(~x) = 1. Otherwise, it evaluates minm∈Mi
Φm(~x) = 0.

When node i is dissatisfied (minm∈Mi
Φm(~x) = 0) it updates the next

selection of xi based on the probability vector ~pi ∈ [0, 1]C. Using L-ZC, ~pi
takes value γ ∈ (0, 1) for some j ∈ {1, ..., C}, 0 for the slots node i is aware
that are already used in the 2-hop neighbourhood and (1−γ)/c(i)(t) for some
k ∈ {1, ..., C} with k 6= j, where c(i)(t) denotes the number of slots node i
sees as free in schedule t. On the contrary, if the node is satisfied, the vector
~pi takes value 1 for the previously selected slot and 0 for the rest. When all
nodes are satisfied, the network enters in an absorbing collision-free operation
state.

6. Convergence Analysis

Since information of the slots used in the 2-hop neighbourhood is ex-
changed in beacons and nodes refrain from selecting slots seen as used in
the 2-hop neighbourhood, it is not always possible to move in one cycle from
having 2 dissatisfied nodes to a state in which all nodes in the network are
dissatisfied. Note that, even in the case of collisions of beacons when certain
information cannot be assessed, nodes may be able to obtain the slot selection
in their neighbourhood via other neighbours. Therefore, convergence proofs
as the one presented in [26] or the extension described in [27], in which an
approach based on a flame-front of dissatisfied nodes is considered, are not
directly applicable in this case.

To prove convergence to collision-free operation, we assume that the num-
ber of slots in the schedule is at least equal to the number of nodes in the
largest 2-hop neighbourhood (C ≥ ∆2 + 1 where ∆2 is the maximum degree
of the graph G2). In Section 8, we will discuss the case in which there are
insufficient slots in the schedule to allow for collision-free operation.

Theorem 3. Given C ≥ ∆2 + 1, convergence to a schedule that satisfies
mini minm∈Mi

Φm(~x) = 1, i ∈ {1, ..., N} is almost surely reached in finite
time for any initial selection of slots.
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Proof. Suppose at some time the network has not reached convergence, so
there are n nodes that are not satisfied, with n ≤ N . If all dissatisfied
nodes sequentially select the spare slot in their 2-hop neighbourhood while
the rest remain fixed, after, at worse, N steps the network will have reached
convergence. Observe that, since we consider C ≥ ∆2+1, having at least one
dissatisfied node in the 2-hop neighbourhood means that there is at least one
slot not used by any of the nodes in its 2-hop neighbourhood. Therefore, the
probability of having reached convergence in N schedules is bounded below
by:

L :=

(

1− γ

C − 1
γN−1

)N

=

(

1− γ

C − 1

)N

γN2−N > 0 (5)

Note that, after selecting the spare slot in the 2-hop neighbourhood, sub-
clauses a and c are satisfied, but the node can still be dissatisfied due to
overhearing a collision among neighbours (subclause b). This is the rea-
son why after selecting the spare slot, we require the node to stick to it in
the subsequent steps. Observe also that we have considered the worse case
n = N , although some of them might be satisfied. The probability that a
satisfied node selects a slot not used by any of its 2-hop neighbours in the
next schedule is 1 (it has previously selected it), thus, the lower bound holds.

If the previously defined sequence of events has not happened after N
schedules, it has the same probability of happening in the next N schedules.
We define τ as the first time at which convergence is reached. The probability
of reaching convergence after Nt schedules, with t ∈ N, is upper bounded by:

P (τ ≥ Nt) ≤ (1− L)t (6)

With t → ∞, the probability of not having found convergence is 0 since:

lim
t→∞

P (τ ≥ t) ≤ lim
t→∞

(1− L)t = 0 (7)

We can then use this to show the algorithm converges almost surely. Let
Xn be the number of dissatisfied nodes in round n of the algorithm. Note
that the algorithm converges when Xn = 0. Also note that if Xn = 0 then
Xm = 0, ∀m ≥ n, as Xn = 0 is an absorbing state. Define Cn := {ω ∈ Ω :
Xn(ω) = 0}. Then Cn is a non-decreasing sequence of sets and

⋃

Cn = {ω ∈
Ω : limn Xn(ω) = 0}. So, P(limXn = 0) = P(

⋃

Cn) = limP(Cn). However,
we have shown that P(limXn = 0) = 1, so limP(Cn) = 1. Thus, we have
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proved that the algorithm converges almost surely, i.e., with probability one,
in finite time.

6.1. Reducing the estimated number of steps
In this subsection we briefly consider how our estimate for convergence

time could be improved. Observe that the number of steps used in the
proof can be reduced by noting that nodes not belonging to the same 2-hop
neighbourhood can change to the spare slot simultaneously, as there is no
possibility that they mutually disturb each other. This is not possible with
nodes belonging to the same 2-hop neighbourhood as selecting the same
slot will still result in dissatisfaction. The probability of having a set of
nodes further than 2-hops away changing to the spare slot in their own 2-hop
neighbourhood is:

(

1− γ

C − 1

)ν

γN−ν (8)

where ν is the cardinality of the set of nodes that can change to the
spare slot, i.e., the number of 2-hop neighbourhoods considered in that step.
Observe that, ν can be different at each step as by selecting a node to change
the slot, the number of 2-hop neighbourhoods may be different. However, we
know that ν ∈ [δ, ζ ], where δ and ζ are the minimum and maximum number
of 2-hop neighbourhood divisions that can be made in a graph G, i.e., the
minimum and maximum number of independent sets of the graph G2. Since
Eq. 8 has its minimum at either ν = δ or ν = ζ , depending on the value
of γ, the probability of having at least δ nodes changing to the spare slot in
their 2-hop neighbourhood is lower-bounded by the product of both cases (δ
and ζ nodes changing to the spare slot):

(

1− γ

C − 1

)δ+ζ

γ2N−δ−ζ (9)

Then, the number of steps is reduced to at most ∆2+1 as we sequentially
pick each node in a 2-hop neighbourhood and make it, plus the rest of nodes
not interfering among themselves, to select the spare slot. Therefore, the
probability of reaching convergence in ∆2+1 schedules is bounded below by:

L′ :=

[

(

1− γ

C − 1

)δ+ζ

γ2N−δ−ζ

]∆2+1

> 0 (10)
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Similarly, the probability of reaching convergence for the first time after
(∆2 + 1)t schedules, with t ∈ N, is:

P (τ ≥ (∆2 + 1)t) ≤ (1− L′)t (11)

which also tends to 0 as t tends to infinity.
The lower bound L′ in Eq. 10 is not always higher than the one found in

Eq. 5 as it depends on the values of variables γ,N, C, δ and ζ . However, if
the graph is not complete, we know that ∆2 + 1 will always be smaller than
N . Observe also that, in practice we expect convergence to be faster than
these bounds (Eq. 6 and 11) as we have considered very specific sequences
of events.

7. Algorithm Benchmarking

We have first evaluated the algorithm presented in this work in random
unit disk graphs with given characteristics in order to obtain conclusions
under controlled settings. In particular, we have evaluated the algorithm in
different graphs with the goal of obtaining the convergence rate for finding a
proper schedule assignment. These target scenarios are described and conver-
gence rates are analysed in different conditions (by varying the γ parameter
and the number of available slots in the schedule). For the evaluation, we use
a custom Matlab simulator. Then, we have considered more realistic graphs
to obtain the times to convergence in close-to-reality networks.

7.1. Random Unit Disk Graphs

We are interested in analysing the convergence rate of the proposed pro-
tocol in scenarios where no initial planning of the position of nodes is per-
formed. These scenarios are the worst cases, in the sense that no prior
topology information can be inferred. For this purpose we define the sce-
narios of interest to be random unit disk graphs and vary the average node
degree as performance depends significantly on the node degree distribution.
When selecting our candidate graphs, we have discarded random graphs with
large deviation in the degree distribution. Specifically, we have computed the
95%-percentile of the distribution of the node degrees of the graph G and dis-
carded those graphs with 95%-percentile larger than ⌈(5/4)av(deg(G))⌉+ 1,
where av(deg(G)) denotes the average degree of the graph G. More realistic
graphs are considered later in this section.
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Table 1: Characteristics of the Unit Disk Graphs Selected

deg(G) (av./std./max.) deg(G2) (av./std./max.) degc4(G) (av./std.)
5/1.83/11 11.58/3.87/21 4.05/3.96
7/1.95/12 16.93/4.72/30 13.46/8.89
8/2.11/13 20.32/5.23/32 21.09/12.74
9/2.51/17 22.04/5.89/35 32.04/16.66

We have considered the following metrics of a graph: i) the average degree
of the graph G (number of 1-hop neighbours), ii) the average degree of the
graph G2 (1 and 2-hop neighbours) and iii) a modified count of the average
C4 motif degree. C4 motifs are defined as non-induced graphs in which 4
vertexes are connected in a cycle [28]. The motif degree counting can give
us more information on the interactions among 2-hop neighbouring nodes.
In particular, the average C4 motif degree shows whether a large number
of neighbours do have a neighbouring node in common. A large C4 motif
degree indicates the case depicted in Fig. 3(3) may be more likely to occur.
Common neighbours of the 1-hop neighbourhood are not able to reuse the
same slots and so, the average C4 motif degree is likely to have an impact on
the convergence rate. However, in our case, we are interested in the situation
in which this common neighbour is not connected to the selected node. Note
that, otherwise, this node will also be a neighbour of the selected node, case
depicted in Fig. 3(1) and (2) and its effect is already captured by the node
degree distribution. To compute this modified C4 motif degree count, we use
the algorithm in [28], but adapted to count cases in which there is no edge
between the node of interest and the furthest node in the cycle.

Table 1 shows the characteristics of the 3 different random graphs used
for the performance evaluation (with N = 190). We denote by deg(G),
deg(G2) and degc4(G) the sets of node degrees of the graph G, G2 and C4
motif degrees of G, respectively. It is important to emphasise that, once the
average degree of G is fixed, there is not significant variation in these other
metrics, and so we cannot use these particular graphs to determine how
each parameter individually affects the convergence rate. However, we have
depicted the characteristics of the graphs used for the evaluation in Table 1
to provide the maximum information of the graphs used for the evaluation.
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(a) Average deg(G) = 5
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(b) Average deg(G) = 7
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(c) Average deg(G) = 8
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(d) Average deg(G) = 9

Figure 4: Number of schedules to convergence in a random unit disk graph varying C (the
number of slots in the schedule) and γ (the learning parameter)

.

7.2. Convergence Rate for Random Unit Disk Graphs

The times to convergence for different values of C and γ in the graphs
selected for evaluation are depicted in Fig. 4. Values shown are average
results of 1000 simulation runs.

Observe that the selection of γ has a considerable impact on the time to
convergence for certain configurations. First, when the number of slots in
the schedule (C) is reduced, a small value of γ substantially increases the
number of schedules needed to converge. With a small value of γ, nodes
change the current selected slot after negative feedback with higher proba-
bility. Thus, when there is a small number of empty slots in the schedule,
the probability for selecting the same slot as another node in a 1 and 2-hop
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neighbourhood increases and so does the average time to reach a satisfactory
schedule assignment. Note that, this effect has a huge impact in the time to
reach convergence when the number of nodes in the neighbourhood increases
(Fig. 4(c) and 4(d)). In this case, an increased value of the γ parameter
substantially reduces the time to convergence. However, when γ becomes
large enough, the time to convergence increases, although not to the same
levels as when γ is small. In fact, independently of the number of slots in
the schedule, remaining on the same slot with a high probability provides
an increased time to convergence as nodes keep colliding on the same slot
for longer. On the other hand, when the number of slots in the schedule is
high compared to the number of nodes in the 2-hop neighbourhood (there
are more empty slots to select from), the time to reach convergence remains
similar for moderate to small values of the γ parameter.

It is worth observing that, overall, values in the middle range of possible
values of γ provide a reasonable good performance and that no substantial
gain is obtained by fine tuning γ inside that range. This finding will be
discussed in more detail in the following section.

7.3. Setting the Learning Parameter

As we have just shown, the value of the learning parameter (γ) signifi-
cantly influences the time to convergence. Small values of the learning pa-
rameter (i.e., higher probability to change the slot) combined with few slots
to spare substantially increases the expected time to find a proper assign-
ment. On the other hand, high values of γ (high probability to remain in the
same slot) when a large number of slots are free, is not efficient.

Analysis to find the optimal learning parameter was already performed in
[9] for the special case of coordinating unicast packet transmissions. However,
since the characteristics of the proposal presented in this work substantially
differ from [9], the value of the optimal γ presented in that work is not
applicable here. In particular, i) here we have considered a network in which
not all nodes are in coverage range, thus, different conditions seen at each
node can lead to a different value of γ for every node and ii) nodes are
considered unsatisfied if they overhear a collision of beacons (even if their
slot is not actually causing a conflict).

In the scenario addressed in this work, the optimal value of γ for a target
node depends on factors such as its number of 1 and 2-hop neighbouring
nodes, the number of free slots in the schedule and the interconnections
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between neighbours. So, to derive the optimal value of γ is analytically com-
plex and in practice limited information is available to each node. In terms
of game theory, every node has 2 possible actions to choose from: i) remain
using the same slot and ii) change to a free slot in the schedule. We consider
a uniformly mixed strategy, i.e., a given action is chosen following a uniform
probability function. The value of γ, considering that there are 2 possible
actions to chose from, will then be equal to 0.5. We have already made the
observation that, for the scenarios of interest, setting γ in the middle range
of possible values gives reasonable good results and that no substantial ben-
efits can be obtained by fine tuning inside this range. We now evaluate in
detail which is the penalty of using the uniformly mixed strategy compared
to the minimum convergence time obtained from simulations varying the γ
parameter in different scenarios.

We show in Fig. 5, for the different graphs selected, the times to con-
vergence obtained by setting γ = 0.5 and the minimum value obtained from
Fig. 4 (average as well as 95% confidence intervals are provided). As can
be observed, when the number of slots in the schedule is comparable to the
number of nodes in the 2-hop neighbourhood, there is a negligible penalty
and that there is discrepancy when the number of slots in the schedule sub-
stantially diverges. However, the latter penalty is no more than 1 schedule,
even considering 95% confidence intervals, for the cases evaluated. As a con-
sequence, it can be stated that for the kind of scenarios evaluated (which
are common in wireless networks), setting γ to 0.5 provides a reasonable
good performance without the cost involved in designing a mechanism for
the nodes to be able to compute this parameter in an optimal manner.

7.3.1. Convergence Rate for Realistic Graphs

Although considering random disk unit graphs allows us to derive con-
clusions based on their characteristics, to evaluate the algorithm in more
realistic graphs is crucial. In this section, we evaluate the convergence rate
in two representative graphs drawn from the Wigle [29] database. The 27-
node graph used in [30] as well as a graph built considering the location of 96
access points in a 150m2 area at the junction of 5th Avenue and 59th Street
in Manhattan are considered (nodes are considered neighbours when located
at ≤ 30m distance). Observe in Table 2, that shows the characteristics of
the graphs selected, how the densities of these graphs substantially differ.

Figs. 6(a) and 6(b) show the number of schedules to convergence for
different C and γ = 0.5 for the 27 and 96-node graphs, respectively. When
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Figure 5: Comparison among the minimum number of schedules to convergence obtained
from simulations and setting γ = 0.5 while varying C (the number of slots in the schedule).

Table 2: Characteristics of the Graphs Drawn from Wigle

N deg(G) (av./std./max.) deg(G2) (av./std./max.) degc4(G) (av./std.)
27 2.74/1.85/7 3.15/2.71/7 2.30/4.40
96 55.13/27.73/73 58.73/27.07/82 1.73/7.00

large enough to be shown, 95% confidence intervals are depicted. Note how
the density of the graphs considered affects the range of C for which a fast
convergence rate is achieved. However, it can be observed that even setting
γ equal to 0.5 fast convergence to collision-free operation is obtained for
reasonably large values of schedule lengths in high-density graphs.
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Figure 6: Number of schedules to convergence in the graphs drawn from Wigle varying C

(the number of slots in the schedule).

8. Practical Implications

In this section we discuss some practical implications such as non-ideal
channel-condition and clock drift considerations as well as the applicability
of the proposed approach to the protocols described in Section 2.

8.1. Non-Ideal Channel Conditions

Here, we discuss the implications of noise and external interference, link
asymmetries and the capture effect on the correct protocol operation.

Noise and external interference: Noise and external interference do
not affect the correct protocol operation. However, they can make the con-
vergence time of the protocol increase since erroneous receptions of beacons
could make nodes incorrectly infer that a collision has occurred. Thus, nodes
may change their selected slot, increasing the time to reach convergence or
triggering changes in the schedule, when it would not be necessary.

Link asymmetries: Due to link asymmetries, a node can receive a
beacon from a neighbour advertising its previously selected slot as empty.
That occurs if the given node is able to detect its neighbouring transmissions
but the same does not apply in the other direction. Since there is no conflict
in this case, the node can continue using the same slot. Note that if the
links are symmetric, a node may advertise a slot as empty even though a
beacon was transmitted due to instantaneous channel errors. In that case
we rely on the eventual correct reception and consequent advertisement of a
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successful slot. If another node uses the same slot while it is advertised as
empty, we also rely on the eventual detection of the conflict. This case relates
to the situation where the neighbouring node advertises the slot as occupied
but due to another beacon reception. In that case, there is not a conflict
occurring since there is no collision taking place at the receiver. Therefore,
it is also safe in this case for that node to keep using the currently selected
slot.

Capture effect: In case of capture, a recipient may be in the range of
multiple beacons in a given slot and still be able to correctly decode one of
them. Thus, it will advertise that slot as a successful reception even that
there is actually a conflict. Nodes involved in the conflict would not be able
to realise the problem is occurring if that receiver is the only neighbour in
common or if all the common neighbouring nodes are able to capture one of
the beacons sent. However, as these collisions will be successively occurring,
it is likely that eventually the receiver(s) will not be able to capture any of
the beacons colliding and will, therefore, flag the collision.

8.2. Clock Synchronisation Imperfections

One important aspect for the correct operation of the protocol relates
to clock synchronisation imperfections of wireless cards. Note that beacons
must be transmitted in their allocated slot and aligned to the start of the
slot boundary for the correct detection at neighbouring nodes which expect
the beacon reception at that specific time. However, this problem has been
studied before in [31] from an experimental point of view. In particular, the
authors in [31] demonstrate that a collision-free protocol in which messages
are sent at specific time instants, thus, similar to the one proposed in this
work, is feasible in practice even considering network card imperfections.

8.3. Insufficient Number of Slots in the Schedule

Note that the main purpose of our approach is to schedule beacon trans-
missions to maintain synchronisation, allow for network discovery and re-
duce energy consumption. Consequently using a long schedule does not have
a substantial impact on performance. In contrast, when the messages to
be scheduled are data packets, and especially in WLANs, the length of the
schedule plays an important role in the determination of throughput and la-
tency. Thus, for scheduling beacons, the impact of having some empty slots
in the beacon schedule is low, and so we mainly consider the case where the
designer allows longer than necessary schedules.
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On the other hand, in the case where there are insufficient empty slots, a
node will select a busy slot in the beacon schedule. In such a case convergence
cannot be achieved by any protocol. However, for the proposed protocol
nodes will sporadically be able to transmit their beacons, because of random
reassignment. Thus, even in this case, permanent collisions are not expected
to occur.

Note that as we include information on the conditions seen in the last
schedule, it can happen that, even though enough slots are available in the
current schedule, nodes advertise otherwise. In this case, selecting a slot uni-
formly at random allows nodes to attempt transmission in the given schedule.

8.4. Applicability to Current Standards and Networks

The proposal presented here can be applied to IEEE 802.15.4e with minor
changes to the standard. That is, extending the bitmap to include informa-
tion about previous beacon collisions, probabilistically transmitting a beacon
in a slot and relying on information included in neighbouring beacons instead
of relying on beacon allocation notification commands and beacon collision
notification commands. These changes aim to make the beacon scheduling
robust by enabling nodes to work in a beacon collision-free operation.

Regarding the applicability to IEEE 802.11s, one of the main problems is
that we require beacons to be sent at predefined time intervals. The IEEE
802.11s can be adapted in order to make nodes transmit their beacons in
the subsequent slots after beacon receptions from neighbours or by defining
a time interval between consecutive beacon transmission from neighbouring
nodes, in a similar way as done in the multi-supreframe defined in IEEE
802.15.4e. All these require a change in the standard but at the benefit of
achieving beacon collision-free operation.

To apply the proposed approach to receiver-initiated protocols in WSNs it
requires the inclusion of the bitmap in beacons sent and then nodes may wake
up at approximately the same time to receive neighbouring transmissions, see
[5] for more details.

9. Final Remarks

We have presented a completely decentralised and parsimonious mecha-
nism for collision free-operation of beacon transmissions based on learning.
The solution aims to solve crucial problems in current wireless mesh net-
works, such as those based on IEEE 802.15.4e and IEEE 802.11s standards,
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where beacon transmissions may successively collide making it difficult to
discover neighbouring nodes and maintain synchronisation. It can also be
used to efficiently support broadcast traffic in receiver-initiated WSNs.

The proposed algorithm converges almost surely in finite time and the
actual time to convergence in the scenarios of interest is low, making it
quite practical for mesh networks involving sporadic mobility. We have also
defined how to select the learning parameter in order to: i) keep the time to
convergence low and ii) maintain the protocol simplicity and low overhead.

Finally, we have considered the practical implications of deploying the
presented mechanism considering non-ideal channel conditions as well as tak-
ing into account its integration in current standardisation efforts. We believe
the proposed approach can be readily implemented in IEEE 802.15.4e and
IEEE 802.11s, among others, with some changes in the standards.
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