
HAL Id: hal-01317596
https://hal.archives-ouvertes.fr/hal-01317596

Submitted on 18 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Differentially Private Matrix Factorization using
Sketching Techniques

Raghavendran Balu, Teddy Furon

To cite this version:
Raghavendran Balu, Teddy Furon. Differentially Private Matrix Factorization using Sketching Tech-
niques. ACM Workshop on Information Hiding and Multimedia Security, Jun 2016, Vigo, Spain.
�10.1145/2909827.2930793�. �hal-01317596�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49382535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01317596
https://hal.archives-ouvertes.fr

Differentially Private Matrix Factorization
using Sketching Techniques

Raghavendran Balu
Inria Rennes

Bretagne-Atlantique, France
raghavendran.balu@inria.fr

Teddy Furon
Inria Rennes

Bretagne-Atlantique, France
teddy.furon@inria.fr

ABSTRACT
Collaborative filtering is a popular technique for recommen-
dation system due to its domain independence and reliance
on user behavior data alone. But the possibility of iden-
tification of users based on these personal data raise pri-
vacy concerns. Differential privacy aims to minimize these
identification risks by adding controlled noise with known
characteristics. The addition of noise impacts the utility of
the system and does not add any other value to the sys-
tem other than enhanced privacy. We propose using sketch-
ing techniques to implicitly provide the differential privacy
guarantees by taking advantage of the inherent randomness
of the data structure. In particular, we use count sketch as a
storage model for matrix factorization, one of the successful
collaborative filtering techniques. Our model is also com-
pact and scales well with data, making it well suitable for
large scale applications.

Keywords
Count sketch, differential privacy, matrix factorization, rec-
ommender system, collaborative filtering

1. INTRODUCTION
Recommendation systems has become an indispensable

component in Internet based services. It helps user in dis-
covering new products and services by getting personalized
suggestions based on their past consumption. Collabora-
tive filtering is one of the popular techniques used in recom-
mendation system. It uses user-item ratings relationship to
provide recommendations. Relying on user behavior alone
makes it domain independent and requires minimal exter-
nal knowledge. Many techniques have been suggested in
the past including the popular latent factor model. It maps
both users and items to a low dimensional representation, re-
taining pairwise similarity. Matrix factorization learns these
representation vectors from some observed ratings. They
are then used to predict (by inner product) the missing en-
tries and thereby to fill the incomplete user-item matrix [18].

There is a cost to it and that is user privacy. The consumed
items have to be collected at a centralized database, to per-
form both analysis and prediction, which compromises user
privacy. The usual anonymization alone is not sufficient as
demonstrated in [4]. This calls for robust privacy preserving
techniques. One such is differential privacy [10], which has
gained wide out reach and acceptance from the academic
community. Differential privacy provides strong theoretical
guarantees and is robust to auxiliary information. There are
various mechanisms that can provide differential privacy like
Laplacian mechanism [10], exponential mechanism [21] and
Bayesian inference [28].

Our main idea is to promote a sketching technique for
matrix factorization to design a highly scalable recommen-
dation system. The prize to be paid is a loss of accuracy in
the recommendations because the sketch inherently induces
noise. Yet, this noise has two benefits (which are indeed re-
lated): it provides a better regularization and protects pri-
vacy. We motivate this last argument by stressing the simi-
larities with recent Bayesian learning enhancing differential
privacy. We propose an experimental protocol to measure
privacy from predicted ratings to validate our claims.

Section 2 introduces the scientific background relevant to
this paper. Section 3 describes our differentially private fac-
torization algorithm and Section 4 outlines its main bene-
fits. In Section 5 shows the experimental assessment of the
claimed advantages.

2. BACKGROUND

2.1 Matrix factorization
In a typical collaborative filtering system, the given data

is a sparse matrix R with non zero entries ru,i representing
the rating provided by the user u ∈ U for a given item i ∈ I.
Each row vector in R corresponds to an user u and column
vector to an item i. In latent factor models, each user u is
associated with a vector pu ∈ Rd. Similarly, item i is as-
sociated to a vector qi ∈ Rd. The goal is to approximate
the rating ru,i by a simple scalar product p>u qi. The latent
vectors pu and qi of all users and items are represented as
d× |U| matrix P and d× |I| matrix Q. We need to find the
latent factors from the observed ratings such that the miss-
ing entries of R can be predicted by approximating matrix
R ≈ P>Q. This is done by minimizing the functional:

Rλ(P,Q) =
∑

observed u,i

L(ru,i,p
>
u qi) +

λ

2
(‖pu‖2 + ‖qi‖2).

(1)

L(ru,i,p
>
u qi) quantifies the error between an observed rat-

ing ru,i and its prediction r̂u,i = p>u qi. In the sequel,
L(ru,i,p

>
u qi) = (ru,i − p>u qi)

2/2. The second term is a
penalty preventing overfitting the latent factors to the train-
ing data (i.e. the observed ratings) for a better generaliza-
tion over the missing entries of R.

2.2 Finding latent factors
Techniques to efficiently find the latent factors (P,Q)

minimizers of the objective function Rλ(P,Q) of (1) work
either offline or online. Offline techniques such as alternate
least squares, gradient descent or online approaches such as
the stochastic gradient descent proved to work well. This
paper considers online techniques as its goal is to cope with
the dynamicity of real-world recommendation systems. It is
thus insightful to describe the approach proposed in [18].

At each step, the stochastic gradient descent randomly
picks an observed rating ru,i and optimizes the parameters
with respect to that rating. This update relies on the gra-
dient of the loss function with respect to parameters, con-
trolled by the learning rate η:

pu ← pu − η∇uRλ(P,Q), (2)

qi ← qi − η∇iRλ(P,Q), (3)

where ∇uRλ(P,Q) denotes the gradient of the functional
w.r.t. latent vector pu:

∇uRλ(P,Q) =
∂L(ru,i, r̂u,i)

∂r̂u,i

∂r̂u,i
∂pu

+ λpu (4)

= (ru,i − p>u qi)qi + λpu. (5)

In the same way, ∇iRλ(P,Q) denotes the gradient of the
functional w.r.t. latent vector qi.

As the algorithm is sequential, only the latent factors have
to be stored in main memory. The updates can be paral-
lelized as they are local only to the parameters corresponding
to a particular rating. Hence the algorithm can scale well to
increasing data size.

However, the number of latent factors is linear with the
number of users and items. At very large scale, when the
number of users and/or items becomes extremely large (mil-
lions), then the resulting memory consumption becomes pro-
blematic. Furthermore, determining the latent factors is
challenging in a dynamic environment, particularly when
new users and items are added every now and then. Allo-
cating a d-dimensional vector to every sporadically recurring
new user or item quickly becomes non-tractable.

A more compact representation for the factors is therefore
needed. We propose the adoption of count sketches that are
typically used in other contexts. We therefore review sketch-
ing techniques before discussing their ability to fit within a
recommendation context.

2.3 Sketching techniques
Sketching is an active area of development, particularly

in a streaming setup. A data structure maintaining a par-
ticular synopsis of the data irrespective of the history of
updates can be called a sketch [7]. Sketching technique have
been applied for estimating the items frequency [8], finding
similar items [12] and also limited numerical linear algebra
operation [30]. The popularity of sketching techniques is
attributed to its runtime and space efficiencies. We are in
particular interested in the count sketch [5]. It was origi-

nally proposed to find heavy hitters, but can also be used to
approximate the frequencies in turnstile model.

Count sketch is a probabilistic data structure originally
designed to maintain approximations of quantities constantly
updated in a datastream, but with sub-linear space com-

plexity. Define [N] := {1, · · · , N} and {q(t)1 , · · · , q(t)N } N
quantities. We observe a datastream of quantity updates:
< · · · δqe, · · · , δq`, · · · > and we would like to monitor the

quantities over the time: q
(t+1)
e = q

(t)
e + δqe.

A count sketch is represented by a k×w matrix C and two
sets of pairwise independent hash functions {hj(·), sj(·)}kj=1.
The address hash function hj(·) maps an element of [N] to
the set {1, ..., w} and the sign hash function sj maps an
element of [N] to {+1,−1}. There are two typical processes:
the update and the query actions.

Update: Upon the reception of the update δqe of the e-th
quantity, k entries of matrix C are updated: ∀j, 1 ≤ j ≤ k

cj,hj(e) ← cj,hj(e) + sj(e) · δqe. (6)

Query: At time t, given a query index e, mean or median

of {sj(e)cj,hj(e)}
k
j=1 is returned as an approximation of q

(t)
e .

The median operator is more robust to noise [5] but the
mean is easier to compute. In the sequel, we choose the

mean operator: q̃
(t)
e = k−1∑k

j=1 sj(e)cj,hj(e).
The accuracy of the estimation is related to the size of the

count sketch [7]. Note that if we query index e just before
and after its update, the difference of the approximates is

the true update: q̃
(t+1)
e − q̃

(t)
e = δqe. However, updating

the e-th quantity might have modified the others due to
collision. In the j-th row of the count sketch, one entry has
been modified by ±δqe (see (6)) whereas the w − 1 others
remained the same. In other words, the entries of C have
been modified by random variables i.i.d. according to the
p.m.f. (1−w−1)∂0+(2w)−1(∂δqe+∂−δqe), where ∂a represent
the Dirac distribution on x = a. The expectation is zero and
the variance (δqe)

2/w. This implies that the update of the
e-th quantity adds on all the others q̃e′ , e

′ 6= e, a centered
noise of variance (δqe)

2/wk.
Overall, the estimate based on the mean operator is un-

biased with variance σ2/wk, where σ2 =
∑
e∈[N](δqe)

2. For

a given (w, k), the accuracy decreases with N because the
variance of the estimate increases with σ2. In other words,
the representational capacity N of count sketch can be con-
trolled by varying (w, k).

2.4 Differential privacy
Differential privacy argues that absolute privacy is impos-

sible and instead settles to relative level. It has garnered
wide spread attention among the research community for its
theoretical rigorousness and robustness to side information.

2.4.1 In the context of recommendation system
In our application, differential privacy convinces users to

submit their ratings by showing that an attacker query-
ing the recommendation system has difficulty in deciding
whether a particular rating has been used for learning the
latent factors. Even with the side-information that user u
rates item i by the true value ru,i, the attacker cannot say
whether the user submitted or not this information. We are
thus interested at ε-DP at the rating level with a trusted
recommendation system.

Denote byD the dataset of observed ratings used for learn-

ing the latent vectors, and D′ = D ∪ {< u′, i′, ru′,i′ >} s.t.
these two datasets differs by one rating. Denote by r̂u,i(D)
the output of a recommendation system trained on dataset
D and queried about user u and item i. An ε-DP recommen-
dation system satisfies: ∀(a, b) ∈ R2, a < b, ∀u ∈ U,∀i ∈ I

Pr[a < r̂u,i(D) < b] ≤ eε Pr[a < r̂u,i(D′) < b]. (7)

2.4.2 A posteriori sampling
Paper [28] recently proved that Bayesian posterior sam-

pling is differentially private to some extent. We explain it
as follows in the context of matrix factorization based rec-
ommendation system. We first need a Bayesian framework.
We assume the following prior distribution of latent factors:

p(P,Q) = ΠU
u=1p(pu)ΠI

i=1p(qi), (8)

with p(pu) and p(qi) are Gaussian distributionN (0d, λ
−1Id)

with 0d the all zero d × 1 vector, Id the identity matrix of
size d and λ > 0. We assume a conditional pdf of the rating
knowing the latent factors (i.e. the likelihood):

p(ru,i|P,Q) ∼= N (p>u qi, ν
2), with ν = 1. (9)

This implies that, once some ratings are observed, the a
posteriori distribution of the latent factors is

p(P,Q|observed < u, i, ru,i >) ∝ e−Rλ(P,Q), (10)

with Rλ(P,Q) defined in (1). Therefore, minimizing this
functional as proposed in Sec. 2.2 amounts to chose (P,Q)
as their MAP (Maximum A Posteriori) estimates.

Instead of doing this, [28, 19] shows that drawing (P,Q)
according to their a posteriori distribution (10) enables dif-
ferential privacy: if | log p(ru,i|P,Q)| < B, then the system
is ε-DP with ε = 2B. If 2B is too big, then one may scale
down log p(ru,i|P,Q), which amounts to pick ν > 1, i.e. a
smoother conditional distribution.

The final issue is how to draw according to such a com-
plex a posteriori distribution. Recent papers show that per-
turbating the stochastic gradient descent by some Gaussian
noise is an efficient way to simulate such a sampling [29,
27]. This technique is called Stochastic Gradient Langevin
Dynamics (SGLD). In our context, this would mean replac-
ing (2) and (3) by:

pu ← pu − η∇uRλ(P,Q) +
√
ηBP , (11)

qi ← qi − η∇iRλ(P,Q) +
√
ηBQ, (12)

with BP and BQ ∼ N (0, 1).

3. COUNT SKETCHING LARGE MATRIX
FACTORIZATION

3.1 Sketching vectors
In regular matrix factorization, d-dimensional latent vec-

tors {pu}u∈U and {qi}i∈I are stored as dense arrays P and
Q, contiguous in memory. This facilitates indexing on the
two dimensional array by increments of d. We propose re-
placing this matrix representation with a single count sketch.
Although user and item vectors carry different semantic,
their underlying representations are the same. Therefore
we store both of them in the same structure, which should
provide estimates for N = d(|U| + |I|) elements. For the
sake of clarity, we introduce two families of address hash

functions: {huj (·)}kj=1 for the users, {hij(·)}kj=1 for the items.
Same for the sign hash functions.

Varying (w, k) explores the trade-off between the storage
efficiency and the quality of the estimation. The storage
improvement comes at the cost of increasing the retrieval
complexity from O(d) to O(kd) for a d-dimensional vector.

3.2 Sketch based factorization
The sketch based online factorization differs from regular

online factorization (Sec. 2) in the latent factor queries and
gradient updates merging. When a new tuple < u, i, ru,i >
arrives, the count sketch is first queried to approximately
reconstruct user and item latent vectors. Both user ID u
and component index l, 1 ≤ l ≤ d, are used as inputs to
the k pairs of address and sign hash functions to get a mean
estimate of the vector component (the same holds for item):

p̃u,l =
1

k

k∑
j=1

suj (u, l) · cj,huj (u,l), ∀l ∈ {1, · · · , d}, (13)

q̃i,l =
1

k

k∑
j=1

sij(i, l) · cj,hij(i,l), ∀l ∈ {1, · · · , d}. (14)

The estimated rating r̂u,i = p̃>u q̃i is compared with the
observed ru,i to get the loss L(ru,i, r̂u,i).

If L(ru,i, r̂u,i) ≤ ε, the gradient updates for p̃u and q̃i are
just computed as in (2) and (3). Then for each component
of p̃u (as well as q̃i), the k respective cells C are updated
with their sign corrected gradients:

cj,huj (u,l) ← cj,huj (u,l) − ηs
u
j (u, l)∇u,lRλ(P̃, Q̃), (15)

cj,hij(i,l)
← cj,hij(i,l)

− ηsij(i, l)∇i,lRλ(P̃, Q̃). (16)

∇u,lRλ(P̃, Q̃) denotes the l-th component of the gradient
defined in (5), and similarly for the item gradient.

Otherwise (i.e. L(ru,i, r̂u,i) > ε), the cells are not updated
at all. This is equivalent to not taking into account this
particular observation.

4. BENEFITS OF OUR APPROACH

4.1 Space gain
The use of the count sketch is motivated as a means to

trade space versus complexity. The count sketch has a stor-
age space of wk scalars whereas the regular factorization
would need (|U| + |I|)d scalars to store the latent factors.
We define the space gain γ as

γ :=
(|U|+ |I|)d

wk
≥ 1. (17)

On the other hand, at each update triggered by observation
< u, i, ru,i >, the count sketch adds O(2dk) more operations
to query and update the d components of pu and qi.

4.2 Self regularization
The Tikhonov regularization (i.e. L2 norm based) is gen-

erally associated with matrix factorization, as it can be con-
trolled by λ and customized well to the needs. There are
other methods to regularize like corrupting the input data.
It is shown by Bishop et al in [3] that training with corrupted
data is equivalent to Tikhonov regularization.

In our scheme, we observe that the sketch structure it-
self regularizes the learnt latent vectors. At reception of
rating ru,i, the gradient of the regular factorization is com-
puted based on the error (ru,i−p>u qi) whereas our algorithm
computes the gradient based on ru,i − p̃>u q̃i which can be
expressed as ru,i + nu,i − p>u qi. This shows the equivalence
with working with noisy observed ratings.

This noise is due to the address hash collision among dif-
ferent elements. Thanks to the pairwise independence as-
sumption, the error is independent of the cell location. Also
the sign hash function sj(·) makes sure that the expected
error on the components of the latent factor is centered:
E(p̃u,l − pu,l) = 0. This shows that the equivalent noises
nu,i on the observations are i.i.d. and centered. We surmise
that these indeed provide regularization capabilities. We ex-
perimentally prove the claim in section 5.2 by showing that
the performance of the our system is less sensitive w.r.t. the
regularization parameter λ.

Our algorithm uses regularization with Tikhonov penal-
ization: λ

∑
(u,i) ‖p̃u‖

2 + ‖q̃i‖2. This has also an inter-
pretation: the variance of the count sketch estimation er-
ror is proportional to σ2 (Sect. 2.3), which, in our case, is∑

(u,i) ‖p̃u‖
2 + ‖q̃i‖2. Our method thus aims at minimizing

a combination of the error for predicting the ratings and the
error for estimating latent vectors from the count sketch.

4.3 Differential privacy
Our algorithm inherently adds noise on the updates thanks

to the count sketch. It looks like the SGLD (11) (12), but
this is not. We can find the following differences. First,
when updated, latent factors related to observed ru,i are not
corrupted by noise, whereas all the others are. Second, the
noise induced by the count sketch has a variance equalling
δ2/wk where δ is the last update (see Sec. 2.3). Therefore,
this variance is proportional to η2/wk and not η as in the
SGLD algorithm. Third, this noise results from 2d latent
factors updates only therefore it is certainly not Gaussian
distributed.

The differential privacy is enforced by clipping the log-
likelihood s.t.

| log p(ru,i|P,Q)| =
{

(ru,i − r̂u,i)2/2 if (ru,i − r̂u,i)2 ≤ ε
ε/2 otherwise

This enables ε-DP as shown in [28, 19], except that this no
longer defines a valid conditional probability.

5. EXPERIMENTS
This section evaluates the claimed benefits of our ap-

proach. We first experimentally study its regularization ca-
pabilities. Then we analyze the privacy-utility trade-off and
compare to regular factorization (without privacy).

5.1 Setup

5.1.1 Dataset
We use two publicly available datasets: Movielens1M [1]

and EachMovie. Data characteristics are in Table 1. The
data is preprocessed and randomly partitioned into the train-
ing, validation and test sets with proportion [0.8, 0.1, 0.1].
Preprocessing includes bias correction and frequency based
thresholding: User, item and global means are substracted
from ratings; ratings with user/item frequency < 10 are re-
moved from the test and validation sets.

5.1.2 Evaluation
We use root mean square error to measure the quality of

recommendations. The error materializes the deviation of
the predicted rating from its true value. This squared error
is averaged over the testing set:

RMSE(R′) =

√√√√ 1

‖R′‖0

∑
ru,i∈R′

(p̃>u q̃i − ru,i)2, (18)

where R′ is the restriction of R to the testing set.
We use Kullback-Leibler divergence to gauge privacy. The

KL divergence gives the expected amount of information
‘leaked’ about the fact that user u submitted his rating
about item i. This divergence quantifies the difference be-
tween the probability distributions of the prediction for ob-
served ratings (the training set) and non observed ratings
(the testing set). A low divergence means that the predicted
rating r̂u,i is statistically similar whether ru,i was used in
training or not. An attacker observing r̂u,i and even know-
ing ru,i can not decide whether this rating was submitted to
the recommendation system. To this aim, we experimentally
observed that the prediction error (r̂u,i − ru,i) ∼ N (m, s2).
We measure (mtr, s

2
tr) over the training set and (mte, s

2
te)

over the testing set, and compute

KLD =
1

2

(
s2tr
s2te

+
(mtr −mte)

2

s2te
− 1 + log

s2te
s2tr

)
. (19)

5.1.3 Parameters
We compare the performance for various configurations

(w, k) of the sketch and different latent factor dimensions.
The sketch depth k is picked from {1, 4} and the latent fac-
tor dimension d is chosen from {8, 16, 32}. We measure the
space gain γ by the ratio of space that the regular factor-
ization would need for the same dimension d to the space
actually utilized by sketch based factorization. We vary γ
within {1, 2, 4}. We determine the sketch width based on
the space gain, dimension d and sketch depth k:

w =

⌈
(|U|+ |I|)d

γk

⌉
. (20)

We choose optimal parameters for learning rate η and reg-
ularization constant λ by a two stage line search in log-
scale, based on validation set prediction score. We iterate
for T = 100 epochs over the training set, before predicting
on the testing set, measuring RMSE(R′) and KLD. Learn-
ing rate is scaled down using the formula ηt = η

1+b·t/T .

Dataset |U| |I| |R| rating
MovieLens 1M 6,040 3,952 1,000,209 1:5 (5)
EachMovie 61,265 1,623 2,811,718 1:6 (6)

Table 1: Dataset characteristics

5.2 Regularizing effect of count sketch
We now study the effect of regularization parameter λ on

RMSE. We use EachMovie dataset under the setup (d = 32,
γ = 1). We vary λ from 10 to 0 in log scale. Figure 1
compares the performance. We benchmark our method (k =
4) against regular online matrix factorization and feature
hashing based factorization [16] as it is a special case of our
approach (k = 1). The three techniques share the following

10-4 10-3 10-2 10-1 100 101

lambda

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

rm
se

feature hashing
regular factorization
count sketch

Figure 1: RMSE w.r.t. λ, EachMovie
1 3 6 11 23

1

3

6

11

23

−4.4
−4.0
−3.6
−3.2
−2.8
−2.4
−2.0
−1.6
−1.2

la
m

b
d
a
 (

lo
g
)

d

sp
a
ce

 g
a
in

Figure 2: Best λ w.r.t. (d, γ), MovieLens 1M

observations: The optimal λ is around 0.1 and the RMSE
increases with λ beyond this value. When we decrease λ
below the optimal value, the RMSE degrades and this is
attributed to overfitting. The degradation of count sketch
factorization is not as worse as the other two techniques.
Even when the regularization is turned off (λ = 0), our
scheme performs better than the other two, for the same d.
This shows that the ‘noisy’ sketch structure by itself provides
some regularization capabilities.

The heatmap of Figure 2 represents the optimal lambda
values for various (d, γ) pairs on MovieLens 1M dataset.
The optimal value is often lower than 10−2, except in the
top right corner, where γ is small while d is big. This set-
ting indeed ensures superfluous parameter space, which does
require stronger regularization to avoid overfitting. The λ
value diminishes with d: a smaller model requires less regu-
larization. An interesting observation is that λ lowers with
increase in γ and it is true even for a fixed d. This increases
address hash collisions and hence the variance of the count
sketch estimation (Sect. 4.2) which helps model generaliza-
tion like when learning on noisy data.

5.3 Privacy utility tradeoff
In this section, we compare the variation of RMSE with

respect to parameter ε as shown in figure 3. We vary ε in the
range of {2, 4, 8,∞} and benchmark it against regular fac-
torization. As expected, lowering the privacy by increasing ε
improves the utility, i.e. decreases RMSE. The improvement
is significant in the lower range of ε and drops gradually as
we increase ε further. When the epsilon is above 16 the
RMSE is close to regular factorization.

4.0 8.0 16.0 8192.0
0.85

0.90

0.95

1.00

1.05

1.10

d=8

4.0 8.0 16.0 8192.0

d=16

4.0 8.0 16.0 8192.0

d=32

epsilon

rm
se

space gain=1

space gain=2

space gain=4

regular factorization

Figure 3: RMSE w.r.t. ε, Movielens

4.0 8.0 16.0 8192.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

d=8

4.0 8.0 16.0 8192.0

d=16

4.0 8.0 16.0 8192.0

d=32

epsilon

K
L-

d
iv

e
rg

e
n
ce

space gain=1

space gain=2

space gain=4

regular factorization

Figure 4: KL divergence w.r.t. ε, Movielens

5.4 KL divergence as a privacy measure
We take the role of an attacker willing to know whether

a particular rating was used in the training. We use KL di-
vergence to measure the amount of information ‘leaked’ by
getting access to its prediction. Figure 4 shows that KL di-
vergence increases along with the targeted level of privacy ε.
The KL divergence of regular factorization without any dif-
ferential privacy mechanism is higher for most of the cases.
This supports our approach. It is also clear from the figure
that compact models (higher γ or lower d) produce recom-
mendations leaking less information compared to bigger one.
The KL divergence which is a measurement on average is in-
deed much smaller than the target ε which is a guaranty on
the worst case.

We also had a focused on ‘top users’, i.e. users who sub-
mitted a lot. As foreseen, the RMSE measured on this pop-
ulation is lower: they get better predictions because their
models are more precise as they are learned on more data.
The difference in performance is indeed small. Yet, very sur-
prisingly, the KL divergence measured on this population is
smaller by one order of magnitude. This population enjoys
better recommendations together with better privacy.

6. RELATED WORK
Many mechanisms enable differential privacy including

Laplacian mechanism [9], exponential mechanism [21], Bayes-
ian inference [28], smooth sensitivity, and sample-aggregate
frameworks [25]. The works differ on the stage in which the
randomization mechanism is added to the system. Initial
approaches were advocating at the input and output lev-
els. In [6], they incorporate it at the optimization level and
demonstrated its superiority. Differential privacy is also ap-
plied to online learning in [13]. A detailed survey of different
techniques is available at [26] and [14]. [11] applied differ-
ential privacy to data mining. [17] studied the theoretical

properties of learning under differential privacy setup.
Recommender systems is one of the compelling applica-

tions of differential privacy owing to its data involving sensi-
tive user information. Many approaches have been proposed
in the past for different collaborative filtering approaches like
neighbor based approaches and matrix factorization. [23]
used sketch to provide privacy. Their notion of privacy
is very similar to differential privacy except that the log-
likelihood ratio is bounded by a linear parameter instead of
exponential. [22] proposed a recommender system by ag-
gregating co-occurrence count in a privacy preserving way.
Paper [20] applied differential privacy to the global statistics
collected from the rating matrix.

As for matrix factorization, paper [2] compares different
ways to ensure differential privacy, among them, the Laplace
mechanism on the inputs or on the updates of the stochas-
tic gradient descent. [15] proposed a differentially private
low rank approximation using exponential mechanism. [24]
devised a matrix factorization using cryptographic garbled
circuits, but this does not enable differential privacy.

7. CONCLUSION
This work shows that sketching techniques can be used

to preserve privacy by taking advantage of their inherent
randomness. This is in contrast to conventional techniques
which uses special mechanism to achieve the same. We also
get additional benefits like scalability and adaptivity to dy-
namic data, making it preferable for realistic large-scale ap-
plications. We experimentally validate our approach using
standard datasets. Future works include measurement of in-
formation leaked by the latent factors themselves. This is
relevant when the latent vectors are learned by the server
and sent to the users allowing local recommendation.

8. REFERENCES
[1] http://grouplens.org/datasets/movielens/.

[2] A. Berlioz, A. Friedman, M. A. Kaafar, R. Boreli, and
S. Berkovsky. Applying differential privacy to matrix
factorization. In RecSys, RecSys ’15, pages 107–114,
New York, NY, USA, 2015. ACM.

[3] C. M. Bishop. Training with noise is equivalent to
tikhonov regularization. Neural computation,
7(1):108–116, 1995.

[4] J. Calandrino, A. Kilzer, A. Narayanan, E. Felten, and
V. Shmatikov. ”you might also like:” privacy risks of
collaborative filtering. In SP, pages 231–246, May
2011.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP. 2002.

[6] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.
Differentially private empirical risk minimization. J.
Mach. Learn. Res., 12:1069–1109, July 2011.

[7] G. Cormode. Sketch techniques for approximate query
processing. FnTD. NOW publishers, 2011.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[9] C. Dwork. ICALP 2006, chapter Differential Privacy,
pages 1–12. Berlin, Heidelberg, 2006.

[10] C. Dwork. Encyclopedia of Cryptography and Security,
chapter Differential Privacy, pages 338–340. Springer
US, Boston, MA, 2011.

[11] A. Friedman and A. Schuster. Data mining with
differential privacy. In SIGKDD, KDD ’10, pages
493–502, New York, NY, USA, 2010. ACM.

[12] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In STOC, pages 604–613. ACM, 1998.

[13] P. Jain, P. Kothari, and A. Thakurta. Differentially
private online learning. 09 2011.

[14] Z. Ji, Z. C. Lipton, and C. Elkan. Differential privacy
and machine learning: a survey and review. CoRR,
abs/1412.7584, 2014.

[15] M. Kapralov and K. Talwar. On differentially private
low rank approximation. In ACM-SIAM, pages
1395–1414. SIAM, 2013.

[16] A. Karatzoglou, M. Weimer, and A. J. Smola.
Collaborative filtering on a budget. In AISTATS, 2010.

[17] S. P. Kasiviswanathan, H. K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith. What can we learn
privately? SIAM Journal on Computing,
40(3):793–826, 2011.

[18] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[19] Z. Liu, Y.-X. Wang, and A. Smola. Fast differentially
private matrix factorization. In RecSys, RecSys ’15,
pages 171–178, New York, NY, USA, 2015. ACM.

[20] F. McSherry and I. Mironov. Differentially private
recommender systems: Building privacy into the net.
In SIGKDD, KDD ’09, pages 627–636, New York, NY,
USA, 2009. ACM.

[21] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, Oct 2007.

[22] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient
private statistics with succinct sketches. CoRR,
abs/1508.06110, 2015.

[23] N. Mishra and M. Sandler. Privacy via pseudorandom
sketches. In ACM SIGMOD-SIGACT-SIGART, pages
143–152. ACM, 2006.

[24] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye,
N. Taft, and D. Boneh. Privacy-preserving matrix
factorization. In SIGSAC, pages 801–812. ACM, 2013.

[25] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
STOC, STOC ’07, pages 75–84, New York, NY, USA,
2007. ACM.

[26] A. Sarwate and K. Chaudhuri. Signal processing and
machine learning with differential privacy: Algorithms
and challenges for continuous data. Signal Processing
Magazine, IEEE, 30(5):86–94, Sept 2013.

[27] S. J. Vollmer, K. C. Zygalakis, and Y. Teh. (non-)
asymptotic properties of stochastic gradient langevin
dynamics. arXiv:1501.00438, 2015.

[28] Y.-X. Wang, S. E. Fienberg, and A. Smola. Privacy
for free: Posterior sampling and stochastic gradient
monte carlo. arXiv preprint arXiv:1502.07645, 2015.

[29] M. Welling and Y. W. Teh. Bayesian learning via
stochastic gradient langevin dynamics. In ICML,
pages 681–688, Bellevue, WA, USA, 2011.

[30] D. P. Woodruff. Sketching as a tool for numerical
linear algebra. arXiv preprint arXiv:1411.4357, 2014.

