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A Stochastic Continuous Time Model for Microgrid Energy
Management

Benjamin Heymann1, J. Frédéric Bonnans2, Francisco Silva3,
and Guillermo Jimenez4 Senior Member, IEEE

Abstract— We propose a novel stochastic control formulation
for the microgrid energy management problem and extend
previous works on continuous time rolling horizon strategy to
uncertain demand. We modelize the demand dynamics with a
stochastic differential equation. We decompose this dynamics
into three terms: an average drift, a time-dependent mean-
reversion term and a Brownian noise. We use BOCOPHJB for
the numerical simulations. This optimal control toolbox imple-
ments a semi-Lagrangian scheme and handle the optimization
of switching times required for the discrete on/off modes of the
diesel generator. The scheme allows for an accurate modelling
and is computationally cheap as long as the state dimension is
small. As described in previous works, we use a trick to reduce
the search of the optimal control values to six points. This
increases the computation speed by several orders. We compare
this new formulation with the deterministic control approach
introduced in [1] using data from an isolated microgrid located
in northern Chile.

I. INTRODUCTION

A microgrid is a small network of loads and energy
ressources controlled by an Energy Management System
(EMS). It can be either connected to the main network or
isolated. The coordination of the microgrid units requires
the resolution of an optimization problem. This problem
is described in the literature as the microgrid management
problem. Palma-Behnke et al. introduce in [2] a microgrid
EMS based on a rolling horizon strategy for which the
microgrid management problem is formulated as a Mixed
Integer Programming (MIP) problem. Heymann et al. show
in [1] that this MIP formulation could be replaced by a
continuous Optimal Control (OC) formulation. We extend
this last approach to the stochastic case by introducing a
stochastic dynamics for the load.

In [3] the microgrid energy management problem is
formulated as a two-stage stochastic programming model
based on optimization principle. Then, the optimization
model is decomposed into a mixed integer quadratic pro-
gramming problem by using discrete stochastic scenarios to
approximate the continuous random variables. A scenarios
generation approach based on a time-homogeneous Markov
chain model is proposed to simulate time-series of renewable
energy generation and load demand. Similar approaches are
considered in [4] and [5], especially in [4] uncertainty is
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characterized by a scenarios generation approach based on
autoregressive moving average (ARMA) model according to
the probability density function of each random variable.
In [6], uncertainty is addressed using a two-stage decision
process combined with a receding horizon approach. The first
stage decision variables (unit commitment) are determined
using a stochastic mixed-integer linear programming formu-
lation, whereas the second stage variables (optimal power
flow) are refined using a nonlinear programming formulation.
Other approaches appear, such as the one described in [7]
where uncertainties related to renewable distributed genera-
tion are modeled by proper probability distribution functions
and are managed by reserve provided by both DGs and loads.

The reader may refer to [8] to get an overview of stochastic
control theory and the applications of the dynamic pro-
gramming principle, and to [9] and [10] for more details
about the discretization scheme we use. As in [1] we
solve the microgrid management problem using Bellman’s
Dynamic Programming Principle (DPP). We compute an
approximation of the value function using a time and space
discretization, and then we use this value function to re-
construct an optimal control. The DPP approach presents
numerous advantages. First, no starting point is required to
initiate the optimization algorithm. Second, the algorithm
computes a global optimum, as opposed to other methods
relying for instance on first order optimality conditions that
only compute local optima. Third, we can deal with integer
variables such as the on/off status of a device (in our case the
diesel generator). Fourth, we use directly the original non-
linear model. This simplifies the implementation, and may
also give more accurate solutions. Fifth, since we derive the
optimal controls from the value function, those controls are
in feedback form. Last but not least, if the state dimension is
low (in our case, two), it is competitive from a computational
perspective. In particular, the computational burden is linear
in the number of time steps. We perform numerical simula-
tions with BOCOPHJB, a C++ open source numerical solver
for stochastic optimal control problems (see [11]). We point
out that this solver does not solve stochastic problems with
scenario trees but instead solves an associated deterministic
second order partial differential equation. The data for our
problem come from the Huatacondo microgrid. Huatacondo
is an isolated village in the Atacama desert (northern Chile).
The village relies completely on the microgrid for its energy
supply.

This paper is organized as follows: Section II describes
the microgrid and the demand model, and then formulates



the stochastic optimal control problem. Section III presents
the numerical method as well as the simulation methodology.
We explain the parameters estimation in Section IV, and in
Section V we display and comment the simulations results.
Finally, the conclusion sums up the main results and presents
ongoing research in the continuation of this work.

II. MODEL PRESENTATION

A. System Description

On the supply side, the microgrid includes a photovoltaic
power plant, a wind turbine, a diesel generator and a Battery
Energy Storage System (BESS). The photovoltaic power
plant and the wind turbine are non dispatchable units. Since
one can accurately predict the climate in the desert region of
the microgrid, we assume that we know the future production
of renewable energy. This is why it is deterministic in this
work. The diesel generator and the battery play the role of
the dispatchable units. The marginal cost of the energy the
generator produces is decreasing, i.e. the fuel consumption
cost is a strictly concave function of the energy produced
by the diesel generator. We derived this production function
in [1] from the constructor data sheet. The diesel generator
is either on or off. When on, the diesel generator cannot
work below a given threshold (due to its physical properties).
When switched on, the generator needs an additional amount
of energy to warm up, which is modeled as a fixed switching
cost. Since any ON switching is followed by an OFF
switching and conversely, we account for half this switching
cost for any switch, ON or OFF. We can store the energy
surplus in the BESS when production is greater than demand
and supply this energy to the system when demand is greater
than production. This storage is not free as some energy is
lost in the charge/discharge process. We will not take into
account the battery aging in this work. On the demand side,
the load comes from the villagers domestic needs. In our
model proposal the randomness comes from the demand side.
Since the village is small, the load is volatile. We modelize
the load dynamics with a Stochastic Differential Equation
(SDE). The grid is isolated, so there cannot be any flows
from or to the outer world. We neglect the transmission losses
because the village is small. Our objective is to find a strategy
that minimizes the operating cost (diesel and switching cost)
and produce enough electricity for the village.

B. Load Model

The microgrid historical load might suggest a random
model with several jumps. Nonetheless such type of models
requires a large number of parameters: the sizes and prob-
abilities of jumps need to be fitted. As a first step toward
the integration of stochastic modeling within our framework
we propose a simpler model based on a Brownian motion.
Our proposal is similar to an Ornstein-Uhlenbeck process
(which is the continuous time equivalent of the AR(1) model)
because it is a Brownian dynamics with a mean reversion.
The difference is that the mean and volatility parameters are
time dependent. We model the load process L(t) with the

Stochastic Differential Equation (SDE)

dL(t) = (Λ̇(t)+b(Λ(t)−L(t))dt +σ(t,L)dW (t), (1)

where Λ(t) is a deterministic load process (in kW), b≥ 0 is
a unitless mean reversion coefficient, σ(t,L) is the volatility
(in kW.t−0.5), W (t) is a Wiener process and L(0) = L0. The
volatility σ has a bounded support in [0,T ]× [0,Lmax]. Since
Λ is bounded and b ≥ 0, the load L remains bounded (and
positive):

L(t)≤max(sup
t
{Λ(t)},Lmax). (2)

This allows us to refer to section 3 of [10] for the mathe-
matical properties of the system. Setting Y (t) = L(t)ebt and
applying Itô’s formula we get that L(t) is equal to

Λ(t)+ e−bt(L0−Λ(0))+
∫ t

0
eb(τ−t)

σ(τ,L(τ))dW (τ).

So, L(t) has expectation Λ(t)+(L0−Λ(0))e−bt and, by Itô
isometry, a variance of at most sup(σ2)(1− e−2bt)/(2b). In
Section IV we will discuss the computation of σ and b and
provide an empirical justification of the model.

C. Notations

We denote by t0 the initial time and by T the time horizon.
The state variables will be represented with capital letters.
We denote by C the state of charge of the BESS and by L
the load. We point out that only C is controlled, since the
dynamics (1) of L does not depend on any decision. The
diesel generator mode (on or off) at time t is represented
with the variable m(t) ∈ {0,1} (0 for off and 1 for on). The
control variables will be represented with lower-case letters.
We write d the diesel generator output and s an artificial
slack variable (to ensure the feasibility of the problem). The
variable s represents the excess (s < 0) or missing (s > 0)
power. We penalize decisions with a non zero slack variable
by an integrable cost proportional to the absolute value of
s. We impose s to be non positive if the diesel generator
is off and bigger than a fixed constant if it is positive. We
denote by n(t) the counting variable equals to the number
of switches that occurred between time t0 and t. It is non
decreasing over time and for all t, n(t) ∈N. We associate to
each switch (OFF to ON and ON to OFF) a cost K equals to
half the real cost needed to fire the diesel generator on. We
write PS the quantity of renewable energy produced at time t.
As explained in II-A, this is a deterministic function of time
since we assume we have a reliable deterministic forecast.
If we denote by PI and PO the quantities that go in and out
of the BESS, then the power equilibrium equation writes

d +PO +PS + s−L−PI = 0, (3)

so that PI and PO can be written as non linear functions of
s, L, PS and d:

PO =−min(0,PS +d−L+ s)

PI = max(0,PS +d−L+ s).
(4)

We denote by QB the maximum capacity of the battery,
while ρI and ρO are the efficiency ratios for the charge and



discharge processes. We write ` the cost function associated
to the diesel consumption. The final cost function g ensures
a minimal value of the final state of charge:{

g(C) = 0 if C ≥C0
g(C) = M otherwise .

(5)

where M is a large penalty parameter. Setting C0 =C(t0)
we ensure that the system finishes the day with as much
energy in the BESS as what was store at t0.

D. Stochastic Control Formulation

We now define the value of the microgrid management
problem as

V m0(t0,C0,L0) :=

inf
n,d,s

E
(

Kn(T )+g(C(T ))+
∫ T

t0
`(d(t),s(t))dt

)
(6)

subject to, for all t:

Ċ(t) = FC(L,d,s, t) (7)

dL(t) = (Λ̇(t)+b(Λ(t)−L(t))dt +σ(t,L(t))dW (t) (8)

m(t) =
1+(−1)n(t)(2mt0 −1)

2
(9)

(C(t0),L(t0),m(t0)) = (C0,L0,m0) (10){
d(t) = 0 and s(t)≤ 0 if m(t) = 0,
d(t) ∈ Id otherwise. (11)

C(t) ∈ Ic. (12)

PO ∈ IPO , (13){
PI ∈ IPI if C(t)< 0.9,
PI ≤ A(C(t)−1)2 otherwise, (14)

where FC(L,d,s, t) = 1
QB

(PIρI−PO/ρO). We point out that
by many ways this stochastic optimal control problem is
similar to the deterministic model presented in [1]. Here
the decision variables are the diesel output at any instant
d(t), the slack variable s(t) and the value of the counting
function n(t). Note that optimizing over the counting func-
tions is equivalent to optimizing over the switching times.
Implicitly we impose those decisions to be non anticipative,
i.e. progressively measurable with respect to the filtration
generated by W (t). Constraints (7) and (8) are respectively
the power balance for the battery and the load dynamics.
Relation (9) expresses the current mode as a function of
the initial mode and the number of switches that occurred
since t0. If this number is even, m(t) = m0 and if it is
odd, m(t) = 1−m0. Constraint (10) is the initial condition.
Constraint (11) corresponds to the modeling of the diesel
generator mode (ON = 1 or OFF = 0). If OFF , the diesel
generator cannot produce anything and d = 0, else, the
physics of the generator impose d to be in Id = [d1,d2], with
d1 > 0. Last, constraints (12), (13) and (14) correspond to
physical properties and limitations of the battery, with PI and
PO defined by equation (4). The sets IPO and IPI are segments

of R+ and IC is included in [0,1]. The parameters A and M
are positive constants. Table I contains the numerical values
we use.

E. Technical Remark

We already noticed that L is bounded over [0,T ]. Thus
the number of switches n is bounded on any scenario and
the slack variable s is uniformly bounded over the scenari
(this is of course true for d since d ∈ {0} ∪ Id). To our
knowledge, there are no general well posedness results for
stochastic control with state constraints. Nonetheless, since
the controls are bounded and the diffusion is orthogonal to
the outer normal of the state constraint we can argue that
the viscosity approach developed in [12] for second order
fully nonlinear elliptic equations with state constraints could
be extended to our case with finite horizon and switching
times.

III. NUMERICAL OPTIMIZATION METHOD

A. Dynamic Programming

The Dynamic Programming Principle (DPP) states that
(see [8])

V m0(t0,C0,L0) =

inf
d∈Dm0 ,τ∈Tt ,s

E
∫

τ

t0
`(d,s)dt +min{V m0(τ,C(τ),L(τ)),

K +V 1−m0(τ,C(τ),L(τ))}

(15)

where the optimization is performed over (7)-(14) and D0 =
{0}, D1 = Id , and Tt is the set of stopping times in [t0,T ].
The time dependency of d and s is implicite in the integrand.
Note that from (15) and applying Itô’s formula we get that
the value function formally satisfies the Hamilton-Jacobi-
Bellman equation (see for instance [8])

max
{
−V i

t −0.5V i
LLσ2−V i

L(Λ̇+b(Λ−L))+Hi ,

V i− (K +V 1−i))
}
= 0,

(16)

where
H0 = sup

s≤0
−{`(0,s)+V 1

C FC(L,0,s, t)} (17)

H1 = sup
d∈Id ,s

−{`(d,s)+V 0
C FC(L,d,s, t)}. (18)

We now explain a weaker version of a trick introduced
in [1] for the deterministic case. We assume s = 0, i.e. there
is a good balance between production capacity and load. If
the diesel generator is off then by definition d = 0. Otherwise,
the dynamics of the system is locally (16) for i = 1, so that
heuristically, the control should maximize the Hamiltonian
H1 defined at (18). Since we maximize a piecewise convexe
function, the optimal controls can take a limited number of
values that can be explicitly computed.
• if the diesel is off (m =−1), we simply take d = 0.
• if the diesel is on (m = 1), we test the five cases

– d is set to the minimum power,
– d is set to the maximum power,
– d such that FC = Ċ = 0 (battery unused),
– d such that Pi is maximal (maximal charge),



TABLE I: Numerical parameters

Notation Value
QB 117 kWh
A 1320 kW
M 1000000 CLP
2K 1000 CLP
`(d,s) 500d0.9 +25000|s| CLP
ρO 0.95
ρI 0.95
Id [5,120] kW
IPI [0,13.2] kW
IPO [0,40] kW
Ic [0.2,1] kW

– d such that P0 is maximal (maximal discharge).
From a computational perspective it is sufficient to test those
values instead of discretizing the control space.

B. Algorithm

We solve the Hamilton-Jacobi-Bellman equation (15) with
BOCOPHJB [11]. This open-source software solves second
order finite horizon Hamilton-Jacobi-Bellman equations with
a semi-Lagrangian scheme and allows for the use of switches.
The semi-Lagrangian scheme is obtained by discretizing
(15) first in time and then in space: it consists in the
backward resolution of a discretized dynamic programming
principle The reader may refer to [9] and [10] for the
discretization theory. We point out that the semi-Lagrangian
scheme does not require to generate scenari (as opposed
to other mainstream approaches in stochastic programming),
since the Brownian motion is discretized for each time step
with deterministic variables (see [11]). For this kind of
scheme, the computation burden is exponential in the state
dimension (curse of dimensionality), but here this dimension
is only two. On the other hand, the complexity increases only
linearly with the number of time steps.

IV. PARAMETERS ESTIMATION

We display in Table I the numerical values we have for the
model. Most of them are those used in [1] and [2]. The data
consist in about ten months (Ndays = 300) of historic load
and renewable production from Huatacondo. The renewable
production data look both smooth and very similar days after
days due to the climate in Huatacondo, so we use the average
for the optimization and the simulation (see Figure 5). We
denote by h the time step (15 minutes), tk = kh, σk the
volatility and L̂k the historical load at time tk. The data being
discrete, Equation (8) becomes, for each day i

L̂i
k+1− L̂i

k = Λk+1−Λk +b(Λk− L̂i
k)h+σkε

i
k

√
h, (19)

where ε i
k is a standard centered Gaussian variable and

k ∈ {1, . . . ,96}. Note that as discussed in §II-B, Λk is
the historical average of the load at time tk, i.e. Λk =

∑i∈1..Ndays
L̂i

k/Ndays. Set for all k ∈ {1, . . . ,96} and i ∈
{1, . . . ,Ndays} dk,i = L̂i

k−Λk, b′ = hb and σ ′k = σk
√

h. Then
(19) is equivalent to dk+1,i − dk,i(1− b′) = σ ′kεk. We then
use a mean square estimator. If we consider σ ′k fixed for all
k, then b′ should minimize ∑k,i(di

k+1− di
k(1− b′))2/σ ′2k , so

that b′ = {∑k,i d2
k,i/σ ′2k −∑dk,idk+1,i/σ ′2k }/{∑d2

k,i/σ ′2k }. On
the other hand, if we know b′, σ ′k is the standard deviation
of dk+1,i−dk,i(1−b) computed over the same epoch of the
day i on the data. So we start with σ ′k = 1 and iterate the two
formulas until numerical convergence to get our estimators.
We get b′ = 0.174. We display σ in Figure 1. We display
on Figure 2 some random samples of the data and some
generated scenari. They qualitatively look alike.

Fig. 1: The estimated volatility

Fig. 2: We simulate some scenari with the load model, and
compare them with historical day taken at random. The grey
area correspond to one standard deviation.The unit is the kW.

V. SIMULATION

We compare the stochastic extension with the determinist
rolling horizon algorithm proposed in [1] on a three day sim-



Fig. 3: Deterministic simulation algorithm

Fig. 4: Stochastic simulation algorithm

ulation. The simulation procedure is summarized in Figure
3 and 4.

The rolling horizon for the deterministic algorithm is set
to 24 hours and for each horizon we impose the final state of
charge to be at least equal to the initial state of charge at the
beginning of the horizon. For every time step, we perform an
optimization using an updated load forecast for the next 24
hours. We use as a forecast for the kth step the expectation of
the flow of the load process with initial condition Lk, where
Lk is the corresponding historical Load.

For the stochastic simulation, we solve only once the
Hamilton-Jacobi-Bellman equation, and then use the value
function and the load historical realization to produce a
trajectory. We impose the state of charge to be at least equal
to what is obtained with the deterministic simulation at the
end of the three day period.

We display on Figures 6, 8, 7 and 9 the results for the
model with real data. On our example the slack variable s
is always zero so we do not plot it. The total costs for the
deterministic and the stochastic simulation are respectively
66819 CLP and 62342 CLP.

VI. CONCLUSIONS

We have extended the deterministic continuous time model
for microgrid management to a stochastic setting and per-
formed a numerical experiment on real data from the Hu-
atacondo microgrid. The total cost of the solution proposed
by the stochastic algorithm was lower than the one obtained
with a deterministic rolling horizon formulation. Ongoing
works on this topic include the study of the long-term aging
of the battery as well as a jump model for the load process.

APPENDIX

Fig. 5: Real model: Solar Production (in kW)

Fig. 6: C (in kW) and mode for the deterministic simulation

Fig. 7: C (in kW) and mode for the stochastic simulation



Fig. 8: Load and Production for the deterministic simulation
(in kW)

Fig. 9: Load and Production for the stochastic simulation (in
kW)
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