
HAL Id: hal-00749302
https://hal.inria.fr/hal-00749302

Submitted on 20 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Segmentation of temporal mesh sequences into rigidly
moving components

Romain Arcila, Cédric Cagniart, Franck Hétroy, Edmond Boyer, Florent
Dupont

To cite this version:
Romain Arcila, Cédric Cagniart, Franck Hétroy, Edmond Boyer, Florent Dupont. Segmentation of
temporal mesh sequences into rigidly moving components. Graphical Models, Elsevier, 2013, 75 (1),
pp.10-22. �10.1016/j.gmod.2012.10.004�. �hal-00749302�

https://hal.inria.fr/hal-00749302
https://hal.archives-ouvertes.fr


Segmentation of temporal mesh sequences into rigidly moving components

Romain Arcilaa,b, Cédric Cagniartc,a, Franck Hétroya,∗, Edmond Boyera, Florent Dupontb

aLaboratoire Jean Kuntzmann, Inria & Grenoble University, France
bLIRIS, CNRS & Université de Lyon, France

cComputer Aided Medical Procedures & Augmented Reality (CAMPAR), Technische Universität München, Germany

Abstract

In this paper is considered the segmentation of meshes into rigid components given temporal sequences of deforming meshes. We

propose a fully automatic approach that identifies model parts that consistently move rigidly over time. This approach can handle

meshes independently reconstructed at each time instant. It allows therefore for sequences of meshes with varying connectivities as

well as varying topology. It incrementally adapts, merges and splits segments along a sequence based on the coherence of motion

information within each segment. In order to provide tools for the evaluation of the approach, we also introduce new criteria to

quantify a mesh segmentation. Results on both synthetic and real data as well as comparisons are provided in the paper.

Keywords: mesh sequence, segmentation, topology, mesh matching, rigid part

1. Introduction

Temporal sequences of deforming meshes, also called mesh

animations [1, 43], are widely used to represent 3D shapes

evolving through time. They can be created from a single static

mesh, which is deformed using standard animation techniques

such as skeletal subspace deformation [25] or cloth simulation

methods [15]. They can also be generated from multiple video

cameras [38, 43]. In this case, meshes are usually indepen-

dently estimated at each frame using 2D visual cues such as

silhouettes or photometric information.

These deforming mesh sequences can be edited [21, 8], com-

pressed [24], or used for deformation transfer [39, 23]. When

the shape represents an articulated body, such as a human or

animal character, identifying its rigid, or almost rigid, parts of-

fers useful understanding for most of these applications. To re-

cover the shape kinematic structure, an animation skeleton can

be extracted from the deforming mesh sequence [1]. Another

strategy is to segment the meshes into components that move

rigidly over the sequence [22, 19, 44, 29]. In both cases, mo-

tion information is required in order to cluster mesh elements

into regions with rigid motions. Most existing approaches as-

sume that surface registration is available for that purpose and

consider as the input a single mesh that deforms over time. In

contrast, we do not make any assumptions on the input mesh

sequences and we propose to match meshes and recover their

rigid parts simultaneously. Consequently, our method applies

to any kind of deforming mesh sequence including inconsistent

mesh sequences such as provided by multi-camera systems.

∗Corresponding author.

Email addresses: Franck.Hetroy@grenoble-inp.fr (Franck Hétroy),

Edmond.Boyer@inria.fr (Edmond Boyer),

Florent.Dupont@liris.cnrs.fr (Florent Dupont)

1.1. Classification of mesh sequences

In order to distinguish between mesh sequences with or with-

out temporal coherence, i.e. with or without a one-to-one cor-

respondence between vertices of successive meshes, we first in-

troduce the following definitions.

Definition 1.1 (Temporally coherent mesh sequence (TCMS),

temporally incoherent mesh sequence (TIMS)). Let MS =

{Mi = (V i, Ei, F i), i = 1 . . . f } be a mesh sequence: V i is the

set of vertices of the ith mesh Mi of the sequence, Ei its set of

edges and F i its set of faces. If the connectivity is constant

over the whole sequence, that is to say if there is an isomor-

phism between any Ei and E j, 1 ≤ i, j ≤ f , then MS is called

a temporally coherent mesh sequence (TCMS). Otherwise, MS

is called a temporally incoherent mesh sequence (TIMS).

Note that the definition of TCMS not only implies that the

number of vertices remains constant through time, but also that

there is a one-to-one correspondence between faces of any two

meshes. As a consequence, topological changes (genus and

number of connected components) are not possible in a TCMS.

Figure 1 shows an example of a TCMS and an example of a

TIMS.

1.2. Classification of mesh sequence segmentations

In contrast to single mesh segmentation that consists in

grouping mesh vertices into spatial regions the segmentation of

a mesh sequence can have various interpretations with respect

to time and space. We propose here three different definitions.

Let us first recall a formal definition of a static mesh segmenta-

tion.

Definition 1.2 (Segmentation of a static mesh [33]). Let M =

(V, E, F) be a 3D surface mesh. A segmentation Σ of M is the

set of sub-meshes Σ = {M1, . . . ,Mk} induced by a partition of

either V or E or F into k disjoint sub-sets.

Preprint submitted to Graphical Models November 7, 2012



Figure 1: First row: two consecutive frames of a TCMS. Second row: two

consecutive frames of a TIMS (in particular, notice the change in topology).

Definition 1.2 can be generalized in various ways to mesh

sequences. For instance, the sequence itself can be partitionned

into sub-sequences:

Definition 1.3 (Temporal segmentation). Let MS = {Mi, i =

1 . . . f } be a mesh sequence. A temporal segmentation Σt of

MS is a set of sub-sequences Σt = {MS 1, . . . ,MS k} such that

∀ j ∈ [1, k],MS j = {M
i j , . . . ,Mi j+1−1} with i1 = 1 < i2 < · · · <

ik+1 = f + 1.

Possible applications of a temporal segmentation of a TIMS

are mesh sequence decomposition into sub-sequences without

topological changes or motion-based mesh sequence decompo-

sition, as could be done for instance with the methods of Ya-

masaki and Aizawa [45] or Tung and Matsuyama [40].

In this paper, we are interested by geometric segmentations,

that is to say the spatial segmentation of each mesh of the input

sequence. We propose two different definitions.

Definition 1.4 (Coherent segmentation, variable segmentation).

Let MS = {Mi, i = 1 . . . f } be a mesh sequence. A coher-

ent segmentation Σc of MS is a set of segmentations Σi =

{Mi
1
, . . . ,Mi

ki
} of each mesh Mi of MS , such that:

• the number k of sub-meshes is the same for all segmenta-

tions: ∀i, j ∈ [1, f ], ki = k j;

• there is a one-to-one correspondence between sub-meshes

of any two meshes;

• the connectivity of the segmentations, that is to say the

neighborhood relationships between sub-meshes, is pre-

served over the sequence.

A variable segmentation Σv of MS is a set of segmentations Σi =

{Mi
1
, . . . ,Mi

ki
} of each mesh Mi of MS which is not a coherent

segmentation.

Note that our definition of a variable segmentation is very

general. Intermediate mesh sequence segmentation definitions

can be thought of, such as a sequence of successive coherent

segmentations which would differ only for a few sub-meshes.

A coherent segmentation of a mesh sequence can be thought

as a segmentation of some mesh of the sequence (for instance,

the first one) which is mapped to the other meshes. Coherent

segmentations are usually desired for shape analysis and under-

standing, when the overall structure of the shape is preserved

during the deformation. However, variable segmentations can

be helpful to display different information at each time step.

For instance, they can be used to detect when changes in mo-

tion occur (see Figure 9 (a,b,c) for an example), which is useful

e.g. for animation compression or event detection with a CCTV

system. In this paper, we propose a variable segmentation algo-

rithm which recovers the decomposition of the motion over the

sequence. For instance, two neighboring parts of the shape with

different rigid motions are first put into different sub-meshes.

They are later merged when they start sharing the same motion.

Our algorithm can also create a coherent segmentation, which

distinguishes between parts with different motion for at least a

few meshes.

Please see the accompanying video for examples of coherent

and variable segmentations.

1.3. Contributions

We propose an algorithm to compute a variable segmenta-

tion of a mesh sequence into components that move rigidly over

time (section 3). This algorithm can also create a coherent seg-

mentation of the mesh sequence. It applies to any types of mesh

sequences though it was originally designed for the most gen-

eral case of temporally incoherent mesh sequences, with pos-

sibly topology changes that occur over time. In contrast to ex-

isting approaches, it does not require any prior knowledge as

input. Another contribution lies in the design of error metrics

to assess the results of existing mesh sequence segmentation

techniques (section 5).

2. Related work

Solutions have been proposed to decompose a static mesh

into meaningful regions for motion (e.g., invariant under iso-

metric deformations), e.g. [10, 3, 14, 17, 20, 31, 37, 12]. How-

ever and since our concern is the recovery of the rigid, or almost

rigid, parts of a moving 3D shape, we focus in the following on

approaches that consider deforming mesh sequence as input.

2.1. Segmentation of temporally coherent mesh sequences

Several methods have been proposed to compute motion-

based coherent segmentation of temporally coherent mesh se-

quences. Among them, [23, 1, 19, 44, 32, 29] segment a TCMS

into rigid components. In particular, de Aguiar [1] proposes a

spectral approach which relies on the fact that the distance be-

tween two points is invariant under rigid transformation. In this

paper, a spectral decomposition is also used (see Section 3.3.3).

However, the invariant proposed by de Aguiar et al. cannot be

used since mesh sequences without explicit temporal coherence

are considered.

2



Matching

Mapping

k := k+1

Segmentation

MergingMotion estimate MappingRegistration Spectral clustering

Figure 2: Overall pipeline of our algorithm, at iteration k, 1 ≤ k < f . As input we have meshes Mk , together with an initial segmentation estimate Σk
est , and Mk+1.

As output we get a segmentation Σk of Mk and an initial segmentation estimate Σk+1
est of Mk+1.

2.2. Segmentation of temporally incoherent mesh sequences

To solve the problem for temporally incoherent mesh se-

quences, a first strategy is to convert them to TCMS [43, 7].

While providing rich information for segmentation over time

sequences, this usually requires a reference model that intro-

duces an additional step in the acquisition pipeline, hence in-

creasing the noise level. Moreover, the reference model usu-

ally strongly constrains shape evolution to a limited domain and

does not allow for topology changes.

Only a few methods directly work on TIMS. Lee et al. [22]

propose a segmentation method for TIMS using an additional

skeleton as input. Franco and Boyer [13] propose to track and

recover motion over a TIMS at the same time, hence creating

a coherent segmentation, but the number of sub-meshes must

be known. Varanasi and Boyer [42] segment a few meshes of

a TIMS into convex parts, then register these regions to create

a coherent segmentation. Their approach does not take into ac-

count the shape topology, thus the produced segmentation does

not change with the topology. Tung and Matsuyama [41] handle

topology changes, however their segmentation uses a learning

step from training input sequences. In our work, we do not con-

sider any a priori knowledge about the desired segmentation.

In a previous work [2] we proposed a framework to segment a

TIMS into rigid parts. As for the other works, our approach was

only able to create coherent segmentations. In particular, it did

not handle topology changes.

Another interesting work is Cuzzolin et al.’s method [11] that

computes protrusion segmentation on point cloud sequences.

This method is based on the detection of shape extremities, such

as hands or legs. Our objective is different, it is to decompose

it into rigidly moving parts.

3. Mesh sequence segmentation

In this section we describe our main contribution, that is a

segmentation algorithm of a mesh sequence into rigidly moving

components. Our algorithm takes as input a TIMS. This mesh

sequence can include topology changes (genus and/or number

of connected components of the meshes). It can produce either

a variable or a coherent segmentation, depending on the user’s

choice.

3.1. Overview

We propose an iterative scheme that clusters vertices into

rigid segments along a TIMS using motion information be-

tween successive meshes. For each mesh, rigid segments can be

refined by separating parts that present inconsistent motions or

otherwise merged when neighboring segments present similar

motion. Motion information are estimated by matching meshes

at successive instants. The main features of our algorithm are:

• it is fully automatic and does not require prior knowledge

on the observed shape;

• it handles arbitrary shape evolutions, including changes in

topology;

• it only requires a few meshes in memory at a time. Thus,

segmentation can be computed on the fly and long se-

quences composed of meshes with a high number of ver-

tices can be handled, see e.g. Figure 9.

The algorithm alternates between two stages at iteration

k, 1 ≤ k < f (see Figure 2, f is the number of meshes in the

sequence):

1. matching between 2 consecutive meshes Mk and Mk+1 and

computation of displacement vectors within a time win-

dow;

2. segmentation of Mk and mapping to Mk+1.

Matching and segmentation algorithms are described in sec-

tions 3.2 and 3.3, respectively. This algorithm produces a vari-

able segmentation. In case a coherent segmentation is needed,

a post-processing stage is added (Section 3.4).

Four parameters can be tuned to drive the segmentation:

• the minimum segment size prevents the creation of too

small segments. It is set to 4% of the total number of

vertices of the current mesh in all our experiments. We

noticed that this number is sufficient to avoid the creation

of small segments around articulations, that are usually not

rigid;

• the maximum subdivision of a segment prevents a segment

to be split into too many small segments, when the motion

becomes highly non rigid. It is set to 8 segments in all of

our experiments;

• the eigengap value is used to determine the allowed mo-

tion variation within a segment. It thus affects the refine-

ment of the segmentation (see Section 3.3.3 and Figures 10

and 12);

• the merge threshold is used to decide whether two seg-

ments represent the same motion and need to be merged

(see Section 3.3.2).

3



The notations used throughout the rest of the paper are the

following:

• f : the number of meshes in the sequence;

• Mk: the kth mesh of the sequence (can be composed of

several connected components);

• M′k: the kth mesh Mk registered to Mk+1;

• nv(Mk): the number of vertices in Mk;

• v
(k)

i
: the vertex with index i in Mk;

• Ng(v
(k)

i
): the 1-ring neighbors of vertex v

(k)

i
.

Note that k is always used as the index for a mesh, and i and j

as the indices for vertices in a mesh.

3.2. Mesh matching

The objective of this stage is, given meshes Mk and Mk+1, k ∈

[1, f − 1], to provide a mapping from vertices v
(k)

i
to vertices

v
(k+1)

j
, and a possibly different mapping from vertices v

(k+1)

j
to

vertices v
(k)

i
. This mapping is further used to propagate segment

labels over the sequence. We proceed iteratively according to

the following successive steps (see Figure 3): first, meshes Mk

and Mk+1 are registered (vertices v
(k)

i
are moved to new loca-

tions v
′(k)

i
close to Mk+1), then displacement vectors and vertex

correspondences are estimated. The following subsections de-

tail these steps.

Figure 3: Matching process. Mesh Mk with vertices v
(k)
i

is first registered to

mesh Mk+1 with vertices v
(k+1)
i

, inducing new vertices v
′(k)
i

. Displacement vec-

tors DVi
(k) are defined thanks to this registration. Finally, mappings from Mk

to Mk+1 and from Mk+1 to Mk are computed.

3.2.1. Mesh registration

The matching stage of our approach aims at establishing a

dense cross parametrization between pairs of successive meshes

of the sequence. Among the many available algorithms for this

task, we chose to favor generality by casting the problem as

the registration of two sets of points and normals. This means

that we exclusively use geometric cues to align the two meshes,

even when photometric information is available like in the case

of meshes reconstructed from multi-camera systems. Thus, our

approach also handles the case of software generated mesh se-

quences.

We implemented the method of Cagniart et al. [7] that itera-

tively deforms the mesh Mk to fit the mesh Mk+1. This approach

decouples the dimensionality of the deformation from the com-

plexity of the input geometry by arbitrarily dividing the surface

into elements called patches. Each of these patches is associ-

ated to a rigid frame that encodes for a local deformation with

respect to the reference pose Mk. The optimization procedure

is inspired by ICP as it iteratively re-estimates point correspon-

dences between the deformed mesh and the target point set and

then minimizes the distance between the two point sets while

penalizing non rigid deformations of a patch with respect to its

neighbors. Running this algorithm in a coarse-to-fine manner

by varying the radii of the patches has proven in our experi-

ments to robustly converge, and to be faster than using a single

patch-subdivision level.

3.2.2. Mappings and displacement vectors computation

By using the previous stage, we get the registered mesh M′k

of the mesh Mk on mesh Mk+1. The displacement vector of

each vertex v
(k)

i
in Mk, 0 6 i < nv(Mk) is then defined as:

DVi
(k) = v

′(k)

i
− v

(k)

i
,

with v
′(k)

i
the corresponding vertex in M′k. To create a map-

ping from Mk to Mk+1, the closest vertex in Mk+1 is found for

each vertex v
′(k)

i
in M′k using Euclidean distance. A mapping

from Mk+1 to Mk is also created by finding for each vertex in

Mk+1 the closest vertex in M′k. Both mappings are necessary

for the subsequent stage of our algorithm (see Sections 3.3.1

and 3.3.4). Note that mesh Mk+1 is not registered to mesh Mk

to compute the second mapping. Apart from saving computa-

tion time, this reduces inconsistencies between the two map-

pings: in most (though not all) cases, if v
(k)

i
is mapped to v

(k+1)

i
,

then v
(k+1)

i
is mapped to v

(k)

i
. Also, note that these mappings

are defined on the vertex sets. Hence, topology changes are not

handled here. This is done in the next stage.

Using Euclidean distance instead of geodesic one may lead

to occasional mismatchs. However, error hardly accumulates

thanks to our handling of topology changes, see Section 3.3.4.

3.3. Mesh segmentation

In this part the goal is to create a segmentation Σk of the mesh

Mk into rigidly moving components. The displacement vectors

over a small time window computed during the previous stage

are used, as well as (if k , 1) the segmentation Σk−1 of Mk−1

mapped to Mk thanks to the bi-directional mapping between

meshes Mk−1 and Mk. This provides an initial segmentation es-

timate Σk
est of Mk. For k = 1, the initial estimate is the trivial

segmentation of M1 into a single segment, containing all ver-

tices v
(1)

i
of M1.

We proceed in four successive steps. First, the motion of

each vertex v
(k)

i
of Mk is estimated using the displacements vec-

tors (Section 3.3.1). Then, unless a coherent segmentation is

required, neighboring segments in Σk
est that present similar mo-

tions are merged (Section 3.3.2). Then a spectral clustering ap-

proach is used to refine the segmentation. This yields the seg-

mentation Σk of the vertices of Mk (Section 3.3.3). Finally, Σk

is mapped onto Mk+1, to create the initial estimate Σk+1
est of Σk+1

(Section 3.3.4).

4



Our segmentation algorithm produces, by construction, con-

nected segments since the atomic operations over segments are:

merging neighboring segments (see Section 3.3.2) and splitting

a segment into connected sub-segments (see Section 3.3.3).

3.3.1. Motion estimate

To estimate the motion of each vertex v
(k)

i
of Mk, the

rigid transformation which maps v
(k)

i
together with its one-

ring neighborhood Ng(v
(k)

i
) onto M′k is computed, using Horn’s

method [16]. This method estimates a 4 × 4 matrix represent-

ing the best rigid transformation between 2 point clouds. A

transformation matrix T
(k)

i
is therefore associated to each ver-

tex v
(k)

i
. With such a method however, computed estimates are

noise sensitive, and slow motion is hardly detected. This is due

to the fact that only the two meshes Mk and M′k are used. In

order to improve robustness of motion estimates, we propose to

work on a time window. Motion is estimated from Ml to M′k,

Ml being the mesh where the segment has been created, either

by splitting (see Section 3.3.3) or merging (see Section 3.3.2)

of previous segments, or at the beginning of the process (l = 1).

l may be different for different vertices v
(k)

i
of Mk. Vertex v

(l)

j
of

Ml from which motion is estimated is defined using the previ-

ously computed bi-directional mapping. This method allows to

detect slow motion (see Figure 4), and is less sensitive to noise

and matching errors. Notice that different parts of the mesh may

move with different speeds, this is not a problem as long as they

belong to different segments, since the size of the time window

is segment-dependent.

Figure 4: Three successive meshes Mk (blue), Mk+1 (purple) and Mk+2 (red).

Black dots correspond to vertices with null motion. Motion (black arrows)

between Mk and Mk+1, then between Mk+1 and Mk+2, is too slow to be detected

by our subsequent stage (Section 3.3.3). Using a larger time window [k, k + 2]

allows to detect this motion.

3.3.2. Merging

In the case of a variable segmentation, neighboring segments

with similar motions before are merged at each time step refin-

ing the current segmentation. To this aim, the rigid transforma-

tion T (k)(S ) of any segment S is estimated over all its vertices,

using Horn’s method [16], as the rigid transformation T
(k)

i
of

any vertex v
(k)

i
and its 1-ring neighborhood has been estimated.

A greedy algorithm is then used:

• starting with the segment S with the minimal residual er-

ror, this segment is merged with all neighboring segments

S ′ such that ‖log(T (k)(S )
−1

T (k)(S ′))‖ < Tmerge. Tmerge

is a user-defined threshold distance between the transfor-

mations of neighboring segments (see Section 3.1). The

choice of this logarithm-based distance between transfor-

mations is explained in next section;

• the residual error for the new segment S ∪
⋃

S ′ is com-

puted;

• we iterate, merging the next segment with the minimal

residual error with its neighbors.

We stop when no merging is possible anymore. Note that this

algorithm allows to handle topology changes such as merging

of connected components.

The residual error for a segment S corresponds to the mean

distance, for all points v
(k)

i
of this segment, between the point

v
(k+1)

i
and the location of v

(k)

i
after the computed rigid transfor-

mation T (k)(S ) is applied:

ResidualError(S ) =

∑

v
(k)

i
∈S

‖v
(k+1)

i
− T (k)(S ) ∗ v

(k)

i
‖

card(S )
(1)

In our implementation, the choice of the threshold value

Tmerge is left to the user. According to our experiments, it needs

a few trials to find a suitable value. Choosing a high value

merges most of the segments, while choosing a low value gen-

erates many clusters. The following values have been chosen

for the displayed results in Sections 4 and 5: 0.03 for the Bal-

loon and the Horse sequences (Figures 9 and 11), 0.05 for the

Dancer sequence (Figure 9) and 0.2 for the Cat sequence (Fig-

ure 13).

During the next step the current segmentation is refined. In

order to prevent successive and useless merge and split of the

same segments, we actually apply motion-based spectral clus-

tering on detected pairs of segments to be merged before merg-

ing them. If the clustering results in some pairs splitting, then

these pairs are not merged.

3.3.3. Motion-based spectral clustering

Spectral clustering is a popular and effective technique to

robustly partition a graph according to some criterion [28].

It has been successfully applied to static meshes (see e.g.

[26, 27, 34, 36]), using the mesh vertices as the graph nodes

and the mesh edges as the graph edges. The graph should be

weighted with respect to the partition criterion. More precisely,

edge weights represent similarity between their endpoints. In

our case, these weights are related to the motion of neighboring

vertices. This is in contrast to [1] where Euclidean distances

between vertices are considered. In fact Euclidean distances

can be preserved by non rigud transformation. Related to our

approach is Brox and Malik’s motion-based segmentation algo-

rithm for videos [6].

Edge weights. To compute the weights W (k) of the graph edges,

the following expression is used [30]:

w
(k)

i, j
=















1

‖log(T
(k)

i

−1
T

(k)

j
)‖2

if i , j,

0 if i = j.
(2)

5



As demonstrated in [30], this distance is mathematically

founded since it corresponds to distances on the special Eu-

clidean group of rigid transformations S E(3).

Spectral clustering algorithm. Using the weighted adjacency

matrix W (k), the normalized Laplacian matrix L
(k)
rw is built as fol-

lows. Then the well-known Shi and Malik’s normalized spec-

tral clustering algorithm [35] is used to segment the graph.

D
(k)

ii
=
∑

j∈Ng(v
(k)

i
)

wi j(k) . (3)

L(k) = D(k) −W (k). (4)

L(k)
rw = D(k)−1L(k) = I(k) − D(k)−1W (k). (5)

Shi and Malik compute the first K eigenvectors u1, . . . , uK

of L
(k)
rw and store them as columns of a matrix U. The rows

yi, i = 1 . . . n, of U are then clustered using the classical K-

means algorithm. Clusters for the input graph correspond to

clusters of the rows yi: points i such that yi belong to the same

cluster are said to belong to the same segment of the graph.

This method assumes the number K of clusters to be known.

K is computed using the classical eigengap method: let

λ1, λ2, . . . , λK , . . . be the eigenvalues of L
(k)
rw ordered by increas-

ing value, the smaller K such that λK −λK−1 > eigengap is cho-

sen. In our implementation, the eigengap value’s choice is left

to the user. In our experiments, a few trials (less than 5) were

necessary to set this parameter. Two parameters are also used

to prevent the creation of small segments in non-rigid areas (see

Section 3.1): a minimum segment size and a maximum subdi-

vision of a segment. According to our experiments, results are

not very sensitive to the choice of these three parameters; the

same values have been used for most of our experiments (see

Section 4).

3.3.4. Mapping to Mk+1

The segmentation is computed at each time step on the cur-

rent mesh Mk. Labels are then mapped onto the mesh Mk+1

using the bi-directional mapping defined in Section 3.2.2. Seg-

ments are first transferred using the mapping from Mk to Mk+1.

Then for all unmatched vertices in Mk+1, the mapping from

Mk+1 to Mk is used. Segments which are mapped on differ-

ent connected components are split, see Figure 5. This allows

us to naturally handle topology changes. This segmentation of

Mk+1 serves as an initial estimate for the computation of Σk+1.

Note that segment splitting and merging allows to robustly

handle mismatching, see Figure 6. In case a vertex v
(k)

i
is

wrongly matched to a vertex v
(k+1)

j
, the corresponding segment

is split in two. The new segment containing v
(k+1)

j
is then likely

to be merged with a neighboring segment with similar motion.

3.4. Coherent segmentation

The algorithm can be modified to generate a coherent seg-

mentation instead of a variable segmentation. This coherent

segmentation clusters neighboring vertices that share similar

rigid motion over the whole sequence. In other words, as long

Figure 5: Splitting process. Blue and red arrows indicate the bi-directional

mapping. The current segment (black squares) is split in two (green and ma-

genta dots, respectively), since the three leftmost vertices and the two rightmost

vertices are mapped to two different connected components.

Figure 6: Segment splitting and merging allows to robustly handle mismatch-

ing. In case a vertex (rightmost green square) of Mk is mismatched to a vertex

(dark blue dot) of Mk+1, a new segment is created. This segment is then likely

to be merged with the neighboring segment (magenta dots), since they present

similar motions.

6



as their motion differs over at least one small time window, two

neighboring vertices do not belong to the same segment.

Creating a coherent segmentation is then straightforward. We

only need:

• not to merge segments (step described in Section 3.3.2 is

not applied);

• to map the segmentation Σ f of the last mesh M f back to

the whole sequence.

To this purpose, the bi-directional mapping described in Sec-

tion 3.2.2 is simply applied in reverse order, from M f to M1.

For each pair of successive meshes (Mk,Mk+1) we first use the

mapping from Mk+1 to Mk, then for all vertices of Mk which

are not assigned to a segment, the mapping from Mk to Mk+1 is

used.

4. Results

In this section we show and discuss visual results of our al-

gorithm. A quantitative evaluation of these results is discussed

in the next section. We first examine matching results, then seg-

mentation results on difficult cases (temporally incoherent mesh

sequences with topological changes, acquired from real data).

We also show that our results on temporally coherent mesh se-

quences are visually similar to state-of-the-art approaches.

4.1. Matching results

The vertex matching computation is an important step since

our segmentation algorithm relies on it (see Figure 2). Fig-

ure 7 shows the result of vertex matching between two succes-

sive meshes of a TIMS. Computation time is about 30 seconds

for two meshes with approximately 7000 vertices each. This

outperforms the matching method proposed in [2] which takes

about 13 minutes to complete computation with the same data,

for a similar result. Note that outliers in the matching are not

explicitly taken into account in the segmentation, however their

influence is limited by the threshold on the minimum segment

size (see Section 3.1) that tends to force them to merge with

neighboring segments.

(a) (b)

Figure 7: Result of vertex matching on real data captured from video cameras.

(a) Full display. (b) Partial display.

Figure 8 shows a matching result between two consecutive

frames of a sequence where the vertex density differs drasti-

cally. Even if vertex-to-vertex matching is less accurate than

vertex-to-face matching (that is to say, matching every vertex

of Mk to the closest point of Mk+1, which can lie on an edge or

inside a face), in our experiments it has proved to be sufficient

for our purpose. Meanwhile, its computation is much faster.

Figure 8: Result of vertex matching between two consecutive frames of a se-

quence with varying vertex density.

4.2. Segmentations of TIMS with topology changes

Figure 9 shows variable segmentations computed on two Bal-

loon and Dancer sequences. Figure 10 shows coherent segmen-

tations computed on the Balloon sequence. By construction,

coherent segmentations contain more segments than variable

segmentations since no merging operation occurs. Parameters

for both variable and coherent segmentations of the Balloon se-

quence have the same values, except for the eigengap threshold

that is slightly lower in the variable segmentation case (0.40 vs.

0.48 for result shown on Figure 10 (a)). According to our ex-

periments, suitable parameter values for a given sequence are

found in a few trials. The computation time of one mesh seg-

mentation of the Dancer sequence is approximately 3 minutes

with a (not optimized) Matlab implementation. Additional re-

sults appear in the accompanying video. Our algorithm does not

require the whole sequence in memory at a given time step k,

but only previous meshes which share at least one segment with

the current segmentation, in addition to the next mesh (namely,

meshes from Ml to Mk+1, see Section 3.3.1). Thus, it can handle

long sequences with a high number of vertices, such as the Bal-

loon sequence which contains 300 meshes with approximately

15,000 vertices each.

Timings are given in the following table. The algorithm was

implemented using Matlab on a laptop with a one-core 2.13

GHz processor.

Segmentation Total computation time

Fig. 9 (a–c) 43 min 14

Fig. 9 (d–g) 76 min 48

Fig. 12 (a) 29 min 07

Fig. 12 (b) 25 min 57

Fig. 13 (a) 3 min 46

4.3. Segmentation of TCMS

Although our approach is designed for general cases, it can

also handle TCMS and obtains visually similar results to previ-

ous TCMS-dedicated methods, as shown in Figure 11.

Figure 12 illustrates the influence of the eigengap threshold:

the higher the eigengap value, the coarser the segmentation.

7



(a) (b) (c)

(d) (e) (f) (g)

Figure 9: (a,b,c) Variable segmentation generated by our algorithm on the Dancer sequence [38]. First meshes are decomposed into 6 segments, then the right

arm and right hand segments merge since they move the same way. Finally, this segment is split again. Note that topology changes can be handled (in the last

meshes, the left arm is connected to the body). (d,e,f,g): Variable segmentation of a sequence with 15,000 vertices per mesh and topology changes. The balloon is

over-segmented because its motion is highly non rigid.

(a) (b)

Figure 10: Coherent segmentation results on the Balloon sequence, obtained

with two different eigengap values: (a) 0.48, (b) 0.8. Segments cluster neigh-

boring vertices that share the same motion over the whole sequence.

(a) (b)

(c) (d)

Figure 11: Segmentation results on a TCMS. (a) [23]. (b) [1]. (c) [2]. (d) Our

method.

8



(a) (b)

Figure 12: Segmentation of the Horse sequence [39] with two different eigen-

gap values. (a) eigengap = 0.7. (b) eigengap = 0.5.

5. Evaluation

A quantitative and objective comparison of segmentation

methods is an ill-posed problem since there is no common defi-

nition of what an optimal segmentation should be in the general

case. Segmentation evaluation has been recently addressed in

the static case using ground truth (i.e. segmentations defined by

humans) [5, 9]. In the mesh sequence case, none of the previ-

ously cited articles in Section 2 proposes an evaluation of the

obtained segmentations. We thus propose the following frame-

work to evaluate a mesh sequence segmentation method.

5.1. Optimal segmentation

The optimal segmentation of a mesh sequence, be it a TCMS

or a TIMS, into rigid components can be guessed when the

motion and/or the kinematic structure is known. This is, for

instance, the case with skeleton-based mesh animations, as

created in the computer graphics industry. In this case, each

mesh vertex of the sequence is attached to at least one (usually,

no more than 4) joints of the animation skeleton, with given

weights called skinning weights. These joints are organized in

a hierarchy, which is represented by the “bones” of the skeleton

that are, therefore, directed. For our evaluation, we attach each

vertex to only one joint among the related joints, the furthest

in the hierarchy from the root joint. If this joint is not unique,

the one with the greatest skinning weight is kept. Each joint

has its own motion, but several joints can move together in a

rigid manner. For a given mesh, cluster joints of the animation

skeleton can therefore be clustered into joint sets, each joint set

representing a different motion. We now define as an optimal

segment the set of vertices related to joints in the same joint set.

Since the motion of each joint is known, we exactly know, for

each mesh of the animation, what are the optimal segments.

This definition can be applied in the general case of TIMS,

provided that each vertex of each mesh can be attached to a

joint. However, we only tested it in the more convenient case

of a TCMS.

5.2. Error metrics

We propose the following three metrics in order to evaluate a

given segmentation with respect to the previously defined opti-

mal segmentation:

• Assignment Error (AE): for a given mesh, the ratio of ver-

tices which are not assigned to the correct segment. This

includes the case of segments which are not created, or

which are wrongly created;

• Global Assignment Error (GAE): the mean AE among all

meshes of the sequence;

• Vertex Assignment Confidence (VAC): for a given vertex

of a TCMS, the ratio of meshes in which the vertex is as-

signed to the correct segment.

AE and GAE give a quantitative evaluation of a mesh segmen-

tation and the mesh sequence segmentation, respectively, with

respect to the optimal segmentation. VAC can help to locate

wrongly segmented areas.

Note that more sophisticated evaluation metrics exist to com-

pare two static mesh segmentations [9]. We define AE as a sim-

ple ratio for sake of simplicity, but other metrics can also be

used to define global assignment errors.

5.3. Evaluation results

We tested our algorithm on a walking cat skeleton-based an-

imation (see Figure 13 and the accompanying video). We get a

variable segmentation with a AE up to 17%, in the worst case.

Wrongly assigned vertices correspond to the cat skin around

joints and to a wrong subdivision in cat paw, i.e. in the less

rigid areas.

(a) (b)

Figure 13: Result on a skeleton-based synthetic animation. (a) Computed vari-

able segmentation. (b) Optimal variable segmentation, for the same mesh of the

sequence.

In the case of coherent segmentations, and if matching is-

sues are not taken into account, then the AE is the same for all

meshes. Therefore, the GAE is equal to the AE of any mesh.

For the cat sequence, the GAE is also 17%. The VAC can be 0%

or 100%, and is only relevant as a relative criterion to compare

vertices and find ill-segmented areas. On the cat sequence ver-

tices in rigid areas (paws, tail, body) are often always assigned

to the correct segment; their confidence is equal to 1. In con-

trast, some vertices around joints can be assigned to the same

neighboring segment in all meshes; their confidence drops to 0,

see Figure 14. We also computed these metrics for the method

described in [2], using the same cat sequence. The GAE reaches

42%, while the VAC can also be 0% or 100%.

6. Conclusion

In this paper we addressed the problem of 3D mesh sequence

segmentation into rigidly moving components. We have pro-

posed a classification of mesh sequence segmentations, together

9



Figure 14: Vertex Assignment Confidence results. Vertices for which VAC is 0

are colored in red, while vertices with confidence equal to 1 are in black.

with a segmentation method that takes as input a mesh se-

quence, even when no explicit temporal coherence is available,

and possibly with topology changes. This method produces ei-

ther a coherent or a variable segmentation into rigid compo-

nents depending on the user’s choice. It uses a few parameters

which can be set in a few trials, according to our experiments.

We have also proposed a framework for quantitative evaluations

of rigid segmentation methods.

6.1. Current limitations

We are currently aware of three limitations in the proposed

algorithm:

• our method clearly depends on the quality of the matching

process. Important errors in matching computation may

lead to wrong results;

• segmentation can slightly drift: this is due to the fact that

only 2 meshes are considered when matching;

• segments which are wrongly subdivided are transferred

to the following meshes, meaning that errors on an early

mesh in the sequence can affect the whole segmentation.

Such errors are generally due to errors in the matching

process. This issue is less critical on variable segmenta-

tions than on coherent segmentations, since segments are

merged later.

Figure 15 shows an example of these limitations. In this ex-

ample, the entire left front leg of the horse at frame k was in-

tentionally mismatched to the right front leg at frame k+ 1, and

vice-versa. Resulting erroneous segmentation at frame k + 1 is

then propagated to the following frames, since no merging with

the neighboring segment occurs. Fortunately, this problem sel-

dom happens. As shown in our quantitative evaluations, using

the matching process described in Section 3.2, vertices that are

wrongly assigned to a segment are located near articulations.

Vertices in rigid regions are generally correctly clustered.

Despite these limitations, our method has shown as good re-

sults as current state-of-the-art methods on temporally coherent

mesh sequences (see Figure 11), although it has been designed

for the more difficult case of mesh sequences without temporal

coherence.

(a) (b) (c)

Figure 15: Matching error and resulting coherent segmentation. (a,b) Two con-

secutive frames of the Horse sequence. (c) Matching between these two frames.

6.2. Future work

Our method can be improved in various ways. As explained

above, it would be interesting to improve the vertex assign-

ments around articulations. Adding prior knowledge about the

geometry of desired segments (e.g. cylindrical shape, or sym-

metry information) would be helpful to enhance the robustness

of the method. It would also be useful to reduce the number

of parameters. Our algorithm handles topology changes, but

our solution is not semantically satisfactory in case a new con-

nected component (e.g., the shade of the balloon in the Balloon

sequence) appears, since it is first attached to an existing seg-

ment before being split from it.

We hope our evaluation metrics would be helpful for further

work in the domain. However, a more in-depth study of the

three proposed criteria need to be performed to assess their use-

fulness. Finally, a user validation can also help to quantify seg-

mentations produced by our algorithm.

Acknowledgments

The Balloon sequence is courtesy of Inria Grenoble [18]. The

Dancer sequence is courtesy of University of Surrey [38]. The

Horse sequence is courtesy of M.I.T. [39]. The Cat sequence

is courtesy of Inria Grenoble [4]. This work has been partially

funded by the french National Reseach Agency (ANR) through

the MADRAS (ANR-07-MDCO-015) and MORPHO (ANR-

10-BLAN-0206) projects.

References

[1] de Aguiar, E., Theobalt, C., Thrun, S., Seidel, H., 2008. Automatic con-

version of mesh animations into skeleton-based animations. Computer

Graphics Forum (Eurographics proceedings) 27.

[2] Arcila, R., Buddha, K., Hétroy, F., Denis, F., Dupont, F., 2010. A frame-

work for motion-based mesh sequence segmentation, in: Proceedings of

the International Conference on Computer Graphics, Visualization and

Computer Vision (WSCG).

[3] Attene, M., Falcidieno, B., Spagnuolo, M., 2006. Hierarchical mesh seg-

mentation based on fitting primitives. The Visual Computer 22.

[4] Aujay, G., Hétroy, F., Lazarus, F., Depraz, C., 2007. Harmonic skeleton

for realistic character animation, in: Proceedings of the Symposium on

Computer Animation (SCA).

[5] Benhabiles, H., Vandeborre, J., Lavoué, G., Daoudi, M., 2009. A

framework for the objective evaluation of segmentation algorithms us-

ing a ground-truth of human segmented 3D-models, in: Proceedings of

the IEEE International Conference on Shape Modeling and Applications

(SMI).

10



[6] Brox, T., Malik, J., 2010. Object segmentation by long term analysis of

point trajectories, in: Proceedings of the European Conference on Com-

puter Vision (ECCV).

[7] Cagniart, C., Boyer, E., Ilic, S., 2010. Iterative deformable surface track-

ing in multi-view setups, in: Proceedings of the International Symposium

on 3D Data Processing, Visualization and Transmission (3DPVT).

[8] Cashman, T., Hormann, K., 2012. A continuous, editable representation

for deforming mesh sequences with separate signals for time, pose and

shape. Computer Graphics Forum (Eurographics proceedings) 31.

[9] Chen, X., Golovinskiy, A., Funkhouser, T., 2009. A benchmark for 3d

mesh segmentation. ACM Transactions on Graphics (SIGGRAPH pro-

ceedings) 28.

[10] Cutzu, F., 2000. Computing 3d object parts from similarities among ob-

ject views, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

[11] Cuzzolin, F., Mateus, D., Knossow, D., Boyer, E., Horaud, R., 2008. Co-

herent laplacian 3-d protrusion segmentation, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[12] Fang, Y., Sun, M., Kim, M., Ramani, K., 2011. Heat mapping: a robust

approach toward perceptually consistent mesh segmentation, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[13] Franco, J., Boyer, E., 2011. Learning temporally consistent rigidities,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[14] de Goes, F., Goldenstein, S., Velho, L., 2008. A hierarchical segmen-

tation of articulated bodies. Computer Graphics Forum (Symposium on

Geometry Processing proceedings) 27.

[15] Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E., 2007.

Efficient simulation of inextensible cloth. ACM Transactions on Graphics

(SIGGRAPH proceedings) 26.

[16] Horn, B., 1987. Closed-form solution of absolute orientation using unit

quaternions. J. Opt. Soc. Am. A 4.

[17] Huang, Q., Wicke, M., Adams, B., Guibas, L., 2009. Shape decompo-

sition using modal analysis. Computer Graphics Forum (Eurographics

proceedings) 28.

[18] Inria, . Balloon sequence. http://4drepository.inrialpes.fr/.

[19] Kalafatlar, E., Yemez, Y., 2010. 3d articulated shape segmentation using

motion information, in: Proceedings of the International Conference on

Pattern Recognition (ICPR).

[20] Kalogerakis, E., Hertzmann, A., Singh, K., 2010. Learning 3d mesh seg-

mentation and labeling. ACM Transactions on Graphics (SIGGRAPH

proceedings) 29.

[21] Kircher, S., Garland, M., 2006. Editing arbitrarily deforming surface

animations. ACM Transactions on Graphics (SIGGRAPH proceedings)

25.

[22] Lee, N., T.Yamasaki, Aizawa, K., 2008. Hierarchical mesh decomposi-

tion and motion tracking for time-varying-meshes, in: Proceedings of the

IEEE International Conference on Multimedia and Expo (ICME).

[23] Lee, T.Y., Wang, Y.S., Chen, T.G., 2006. Segmenting a deforming mesh

into near-rigid components. The Visual Computer 22.

[24] Lengyel, J., 1999. Compression of time-dependent geometry, in: Pro-

ceedings of the Symposium on Interactive 3D graphics (I3D).

[25] Lewis, J., Cordner, M., Fong, N., 2000. Pose-space deformation: a uni-

fied approach to shape interpolation and skeleton-driven deformation, in:

Proceedings of SIGGRAPH.

[26] Liu, R., Zhang, H., 2004. Segmentation of 3d meshes through spectral

clustering, in: Proceedings of Pacific Graphics.

[27] Liu, R., Zhang, H., 2007. Mesh segmentation via spectral embedding and

contour analysis. Computer Graphics Forum (Eurographics proceedings)

26.

[28] von Luxburg, U., 2007. A tutorial on spectral clustering. Statistics and

Computing 17.

[29] Marras, S., Bronstein, M.M., Hormann, K., Scateni, R., Scopigno, R.,

2012. Motion-based mesh segmentation using augmented silhouettes.

Graphical Models .

[30] Murray, R., Sastry, S., Zexiang, L., 1994. A Mathematical Introduction

to Robotic Manipulation. CRC Press, Inc.

[31] Reuter, M., 2010. Hierarchical shape segmentation and registration via

topological features of laplace-beltrami eigenfunctions. International

Journal of Computer Vision 89.

[32] Rosman, G., Bronstein, M.M., Bronstein, A.M., Wolf, A., Kimmel, R.,

2011. Group-valued regularization framework for motion segmentation

of dynamic non-rigid shapes, in: Scale Space and Variational Methods in

Computer Vision.

[33] Shamir, A., 2008. A survey on mesh segmentation techniques. Computer

Graphics Forum 27.

[34] Sharma, A., von Lavante, E., Horaud, R., 2010. Learning shape segmen-

tation using constrained spectral clustering and probabilistic label trans-

fer, in: Proceedings of the European Conference on Computer Vision

(ECCV).

[35] Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22.

[36] Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D., 2011. Un-

supervised co-segmentation of a set of shapes via descriptor-space spec-

tral clustering. ACM Transactions on Graphics (SIGGRAPH Asia pro-

ceedings) 30.

[37] Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L., 2010. Persistence-

based segmentation of deformable shapes, in: CVPR Workshop on Non-

Rigid Shape Analysis and Deformable Image Alignment.

[38] Starck, J., Hilton, A., 2007. Surface capture for performance-based ani-

mation. IEEE Computer Graphics and Applications .

[39] Sumner, R., Popović, J., 2004. Deformation transfer for triangle meshes.

ACM Transactions on Graphics (SIGGRAPH proceedings) 23.

[40] Tung, T., Matsuyama, T., 2009. Topology dictionary with markov model

for 3d video content-based skimming and description, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[41] Tung, T., Matsuyama, T., 2010. 3d video performance segmentation, in:

Proceedings of the IEEE International Conference on Image Processing

(ICIP).

[42] Varanasi, K., Boyer, E., 2010. Temporally coherent segmentation of 3d

reconstructions, in: Proceedings of the International Symposium on 3D

Data Processing, Visualization and Transmission (3DPVT).

[43] Vlasic, D., Baran, I., Matusik, W., Popović, J., 2008. Articulated mesh

animation from multi-view silhouettes. ACM Transactions on Graphics

(SIGGRAPH proceedings) 27.

[44] Wuhrer, S., Brunton, A., 2010. Segmenting animated objects into near-

rigid components. The Visual Computer .

[45] Yamasaki, T., Aizawa, K., 2007. Motion segmentation and retrieval for

3d video based on modified shape distribution. EURASIP Journal on

Applied Signal Processing .

11


